Science.gov

Sample records for gene promoter region

  1. Promoter region of mouse Tcrg genes

    SciTech Connect

    Ishimi, Y.; Huang, Y.Y.; Ohta, S.

    1996-06-01

    The mouse T-cell receptor (Tcr){gamma} chain is characterized by a specific expression of V gene segments in the thymus corresponding to consecutive developmental stages; i.e., the Vg5 in fetal, Vg6 in neonatal, and Vg4 and Vg7 in adult. The order of the Vg gene usage correlates with the localization of the Vg gene segment on the chromosome; i.e., the Vg5 gene, being most proximal to the Jg1, is used first, followed by the Vg segments away from the Jg1 in a sequential manner. Since they all rearrange to the same Jg1 gene segment, the sequences in the coding region and/or in the 5{prime} upstream region are responsible for the stage-specific transcription. Also, Goldman and co-workers reported the germline transcription of Vg genes preceding their rearrangement. Therefore, the stage-specific transcription may be involved in the regulation of the stage-specific rearrangement; we sequenced and analyzed the 5{prime} flanking regions of the Vg5, Vg6, Vg4, and Vg7 genes to study the transcriptional relation. 18 refs., 2 figs., 1 tab.

  2. Genetic recombination is targeted towards gene promoter regions in dogs.

    PubMed

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  3. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs

    PubMed Central

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J. Kim; Hayward, Jessica J.; Cohen, Paula E.; Greally, John M.; Wang, Jun; Bustamante, Carlos D.; Boyko, Adam R.

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred. PMID:24348265

  4. Mutations in two regions upstream of the A gamma globin gene canonical promoter affect gene expression.

    PubMed Central

    Lloyd, J A; Lee, R F; Lingrel, J B

    1989-01-01

    Two regions upstream of the human fetal (A gamma) globin gene, which interact with protein factors from K562 and HeLa nuclear extracts, have functional significance in gene expression. One binding site (site I) is at a position -290 to -267 bp upstream of the transcription initiation site, the other (site II) is at -182 to -168 bp. Site II includes the octamer sequence (ATGCAAAT) found in an immunoglobulin enhancer and the histone H2b gene promoter. A point mutation (T----C) at -175, within the octamer sequence, is characteristic of a naturally occurring HPFH (hereditary persistence of fetal hemoglobin), and decreases factor binding to an oligonucleotide containing the octamer motif. Expression assays using a A gamma globin promoter-CAT (chloramphenicol acetyl transferase) fusion gene show that the point mutation at -175 increases expression in erythroid, but not non-erythroid cells when compared to a wild-type construct. This correlates with the actual effect of the HPFH mutation in humans. This higher expression may result from a mechanism more complex than reduced binding of a negative regulator. A site I clustered-base substitution gives gamma-CAT activity well below wild-type, suggesting that this factor is a positive regulator. Images PMID:2472607

  5. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells.

    PubMed

    Takami, Nozomi; Osawa, Kayo; Miura, Yasushi; Komai, Koichiro; Taniguchi, Mariko; Shiraishi, Masahiko; Sato, Keizo; Iguchi, Tetsuhiro; Shiozawa, Kazuko; Hashiramoto, Akira; Shiozawa, Shunichi

    2006-03-01

    To examine the promoter activity and protein expression of the death receptor 3 gene DR3, a member of the apoptosis-inducing Fas gene family, with particular reference to the methylation status of its promoter region in rheumatoid arthritis (RA). Genomic DNA was prepared from peripheral blood mononuclear cells obtained from healthy individuals and from patients with RA and synovial cells obtained from patients with RA and osteoarthritis. The methylation status of the DR3 promoter was analyzed by bisulfite genomic sequencing and methylation-specific polymerase chain reaction techniques. Gene promoter activity and protein expression were examined using the luciferase reporter and Western blotting techniques. The promoter region of the DR3 gene contained many CpG motifs, including one CpG island that was specifically hypermethylated in synovial cells from patients with RA. Promoter assays showed that the promoter CpG island was essential for the transactivation of the DR3 gene and that forced hypermethylation of the CpG island with the bacterial methylase Sss I in vitro resulted in inhibition of the DR3 gene expression. Furthermore, the expression of DR-3 protein was down-modulated in association with methylation of the promoter CpG island in RA synovial cells. The CpG island in the DR3 gene promoter was specifically methylated to down-modulate the expression of DR-3 protein in rheumatoid synovial cells, which may provide resistance to apoptosis in RA synovial cells.

  6. Two 10-bp regions are critical for phytochrome regulation of a Lemna gibba Lhcb gene promoter.

    PubMed Central

    Kehoe, D M; Degenhardt, J; Winicov, I; Tobin, E M

    1994-01-01

    Two small regions of the promoter of an Lhcb gene encoding a light-harvesting chlorophyll a/b protein were identified as essential in conferring phytochrome responsiveness by using a transient expression assay. Initially, 5' deletion analysis of cabAB19, an Lhcb2 gene of Lemna, showed that sequences within the region from -174 to -104 relative to the start of transcription were necessary for phytochrome regulation. Internal deletion and substitution mutants were used to demonstrate that no additional phytochrome-responsive regions exist between -1600 and -174 in this promoter. A 171-bp fragment of the promoter extending from -239 to -69 was sufficient to impart phytochrome responsiveness to a minimal ubiquitin promoter that was not itself regulated by light. Specific binding of Lemna proteins to the region necessary for phytochrome responsiveness was demonstrated using in vitro polyacrylamide gel mobility shift assays and 1,10-phenanthroline copper ion footprinting. Further analysis of the region from -174 to -104 demonstrated that mutations in two separate 10-bp sequences, from -134 to -125 and from -114 to -105, could abolish phytochrome responsiveness; thus, there are two unique regions that are necessary for phytochrome regulation of this gene. One of these regions contains a CCAAT motif and the other a GATA motif. These motifs are conserved in the promoters of many Lhcb genes and may be important elements in the phytochrome responsiveness of this gene family. PMID:7919982

  7. Functional characterization of genetic polymorphisms identified in the promoter region of the bovine PEPS gene.

    PubMed

    Ju, Zhihua; Zheng, Xue; Huang, Jinming; Qi, Chao; Zhang, Yan; Li, Jianbin; Zhong, Jifeng; Wang, Changfa

    2012-06-01

    Peptidase S (PEPS) is a metallopeptidase that cleaves N-terminal residues from proteins and peptides. PEPS is used as a cell maintenance enzyme with critical roles in peptide turnover. The promoter region located upstream of the initiation site plays an important role in regulating gene expression. Polymorphism in the promoter region can alter gene expression and lead to biological changes. In the current study, polymorphisms in the promoter region of the PEPS gene were investigated. Polymerase chain reaction (PCR)-restriction fragment length polymorphism and DNA sequencing methods were used to screen sequence variations in the promoter region of DNA samples from 743 Chinese Holstein cattle. Two polymorphisms (g. -534 T>C and g. -2545 G>A) were identified and eight haplotypes were classified by haplotype analysis. The two genetic polymorphisms and haplotypes were associated with fat percentage and somatic cell score in Chinese Holstein cattle. The results of real-time PCR showed that cow kidneys exhibit the highest PEPS expression level. Moreover, bioinformatics analysis predicted that the single-nucleotide polymorphism g. -534 T>C is located in the core promoter region and in the transcription factor binding sites. The promoter activities of the polymorphism of -543 T>C were measured by luciferase assay in the human kidney epithelial cell line 293T. Transcriptional activity is significantly lower in cell lines transfected with the reporter construct containing 2.5 kb upstream fragments with -543 C than in those with wild-type -543 T. The results indicated that genetic variation at locus -543 influences PEPS promoter activity. The genetic variation in the promoter region of PEPS gene may regulate PEPS gene transcription and might have consequences at a regulatory level.

  8. Methylation status of the promoter region of the human frizzled 9 gene in acute myeloid leukemia.

    PubMed

    Zhang, Yingjie; Jiang, Qi; Kong, Xiaolin; Yang, Lili; Hu, Wanzhen; Lv, Chengfang; Li, Yinghua

    2016-08-01

    The FZD9 gene is located at chromosome 7q11.23, and has been indicated to be a tumor suppressor gene. The present study examined the involvement of FZD9 promoter methylation in the downregulation of FZD9 expression in leukemia cells. The expression of the FZD9 gene was absent in various leukemic cell lines, while it was restored following treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine. Bisulfite sequencing analysis of the FZD9 promoter region showed that it was partially methylated in cell lines in which FZD9 gene was not expressed. Thus, DNA methylation in the promoter region may lead to inactivation of the FZD9 gene, which may represent and aberration associated with leukemia, since DNA was not methylated in normal peripheral blood mononuclear cells. Methylation‑specific polymerase chain reaction analysis revealed that the promoter region of the FZD9 gene was frequently methylated in primary or relapse acute myeloid leukemia (52.9%; excluding acute promyelocytic leukemia); however, methylation was infrequent in B‑cell acute lymphocytic leukemia (5.6%). In conclusion, the present study indicated that the methylation profile of the FZD9 gene corresponded to that of a candidate tumor‑suppressor gene in acute myeloid leukemia.

  9. A novel endosperm transfer cell-containing region-specific gene and its promoter in rice.

    PubMed

    Kuwano, Mio; Masumura, Takehiro; Yoshida, Kaoru T

    2011-05-01

    The endosperm of cereal grains is an important resource for both food and feed. It contains three major types of tissue: starchy endosperm, the aleurone layer, and transfer cells. To improve grain quality and quantity using molecular methods, control of transgene expression directed by distinct temporal and spatial promoter activity is necessary. To identify aleurone layer-specific and/or transfer cell-specific promoters in rice, microarray analyses were performed, comparing the aleurone layer containing transfer cells and the other reproductive and vegetative tissues. After confirmation by RT-PCR analysis, we identified two putative aleurone layer and/or transfer cell-specific genes, AL1 and AL2. The promoter regions of these genes and β-glucuronidase (GUS) fusion constructs were stably transformed into rice. The GUS expression patterns indicated that the AL1 promoter was active exclusively in the dorsal aleurone layer adjacent to the main vascular bundle. In rice, transfer cells are differentiated in this region. Therefore, the promoter of the AL1 gene exhibits transfer cell-containing region-specific activity. The AL1 gene encodes a putative anthranilate N-hydroxycinnamoyl/benzoyltransferase. The promoter of this gene will be useful for enhancing uptake of nutrients from the mother cells and protecting filial seeds from pathogen attack.

  10. Analysis of the sexual development-promoting region of Schizophyllum commune TRP1 gene.

    PubMed

    Sen, Kikuo; Kinoshita, Hideki; Tazuke, Kazuyuki; Maki, Yoshinori; Yoshiura, Yumi; Yakushi, Toshiharu; Shibai, Hiroshiro; Kurosawa, Shin-Ichi

    2016-10-01

    This study aims to elucidate the mechanism of sexual development of basidiomycetous mushrooms from mating to fruit body formation. Sequencing analysis showed the TRP1 gene of basidiomycete Schizophyllum commune encoded an enzyme with three catalytic regions of GAT (glutamine amidotransferase), IGPS (indole-3-glycerol phosphate synthase), and PRAI (5-phosphoribosyl anthranilate isomerase); among these three regions, the trp1 mutant (Trp(-)) had a missense mutation (L→F) of a 338th amino acid residue of the TRP1 protein within the IGPS region. To investigate the function of IGPS region related to sexual development, dikaryons with high, usual, and no expression of the IGPS region of TRP1 gene were made. The dikaryotic mycelia with high expression of the IGPS formed mature fruit bodies earlier than those with usual and no expression of the IGPS. These results showed that the IGPS region in TRP1 gene promoted sexual development of S. commune.

  11. Identification and analysis of the promoter region of the STGC3 gene

    PubMed Central

    Li, Suyun; Wang, Lili; Xie, Yuanjie; Zhang, Zhiwei

    2015-01-01

    Introduction Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck. The STGC3 gene is related to development of nasopharyngeal cancer. The aim of this study is to explore the promoter region of the STGC3 gene. Material and methods The bioinformatic technique was applied to predict its promoter region and construct the gene promoter region luciferase for the gene vector and transfection of the human embryonic kidney epithelial 293T cell line, human nasopharyngeal carcinoma CNE2 cell line and immortalized nasopharyngeal epithelial NP69 cell line. The recombinant plasmid pGL3-en283, pGL3-en281, pGL3-en571, empty plasmid pGL3-control, negative control pGL3-enhance and internal control of marine intestine luciferase expression vector pRL-SV40 were transfected into NP69 cells, 293T cells and CNE2 cells. Dual luciferase activity detection showed luciferase luminescence values and marine intestine luciferase luminescence values. Relative luciferase activity (RLA) in each cell was calculated. Results We observed strong promoter activity of plasmid pGL3-en283, pGL3-en281 and pGL3-en571 in NP69, 293T and CNE2 cells compared with the negative control pGL3-enhance plasmid. Among them, pGL3-en281 showed the strongest promoter activity, and these three kinds of recombinant plasmids showed stronger promoter activity in 293T cells than in CNE2 cells. Conclusions The pGL3-en281 plasmid showed stronger promoter activity than pGL3-en571 in the three cells, indicating that –11048 bp to –653 bp might be the core promoter region. PMID:26528355

  12. Methylation Analysis of the BMPR2 Gene Promoter Region in Patients With Pulmonary Arterial Hypertension.

    PubMed

    Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana

    2016-06-01

    Pulmonary arterial hypertension is characterizated by obstruction of the pulmonary arteries. The gene mainly related to pathology is the bone morphogenetic protein receptor type II (BMPR2). The aim of this study was to analyze the methylation pattern of the BMPR2 promoter region in patients and controls. We used Methyl Primer Express(®) v.1.0 and MatInspector softwares to analyze this region. Genomic DNA obtained from the peripheral blood of patients and controls was modified with sodium bisulphite. Methylation was analyzed using methylation-specific PCR. DNA treated with CpG methyltransferase was used as a positive control for methylation and H1299 cell culture DNA was used as positive control for gene expression. We identified a CpG island, which may have been methylated, in the BMPR2 promoter region, in addition to NIT-2 (global-acting regulatory protein), sex-determining region Y) and heat shock factor transcription factor binding sites. We found no evidence of methylation in patients and controls. No methylated CpG sites were identified in H1299 cells expressing the BMPR2 gene. The BMPR2 promoter region is the most suitable for study because of the high number of transcription factor binding sites that could alter gene function. No evidence of methylation was detected in this region in patients and controls. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  13. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    SciTech Connect

    Liu Yan; Yu Lian; Guo Xiuyang; Guo Tingqing; Wang Shengpeng; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  14. Promoter region of the human platelet-derived growth factor A-chain gene.

    PubMed Central

    Takimoto, Y; Wang, Z Y; Kobler, K; Deuel, T F

    1991-01-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5' flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter region was exceptionally G + C-rich and contained a "TATA box" but no "CAAT box." The transcription start site was identified 845 base pairs 5' to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5' flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs (1.9, 2.3, and 2.8 kilobases) used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results established an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A chain were identified. Images PMID:1848007

  15. Functional analysis of polymorphisms in the promoter regions of genes on 22q11.

    PubMed

    Hoogendoorn, Bastiaan; Coleman, Sharon L; Guy, Carol A; Smith, S Kaye; O'Donovan, Michael C; Buckland, Paul R

    2004-07-01

    Segmental aneusomy, which includes chromosome 22 deletion syndrome (del(22)(q11.2q11.2)), has been associated with DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), conotruncal anomaly face (CAF) syndrome, cat-eye syndrome (CES), der(22) syndrome, and duplication of the del(22)(q11.2q11.2) syndrome's typically deleted region. Adults with del(22)(q11.2q11.2) may develop psychiatric illnesses, including schizophrenia, schizoaffective disorder, and bipolar disorder, suggesting that lower gene dosage leads to a predisposition to these illnesses. In a bid to identify important regulatory polymorphisms (SNPs) that may emulate changes in gene dosage of the genes within the common deletion, we have analyzed the promoter region of 47 genes (44 of which encode a protein with known function) encoding proteins in and around 22q11 for sequence variants. A total of 33 of the promoters contained polymorphisms. Of those, 25 were cloned into a reporter gene vector, pGL3. The relative ability of each promoter haplotype to promote transcription of the luciferase gene was tested in each of two human cell lines (HEK293t and TE671), using a cotransfected CMV-SPAP plasmid as an internal control. Five genes (PRODH, DGCR14, GSTT2, SERPIND1, and a gene tentatively called DKFZP434P211) showed activity differences between haplotypes of greater than 1.5-fold. Of those, PRODH, which encodes proline dehydrogenase, has previously been highlighted in relation to schizophrenia, and the functional promoter polymorphism reported here may be involved in pathogenic mechanisms.

  16. Promoter region of the human platelet-derived growth factor A-chain gene

    SciTech Connect

    Takimoto, Yasuo; Wang, Zhao Yi; Kobler, K.; Deuel, T.F. )

    1991-03-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5{prime} flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter reigon was exceptionally G + C-rich and contained a TATA box but no CAAT box. The transcription start site was identified 845 base pairs 5{prime} to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5{prime} flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results extablished an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A-chain were identified.

  17. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    PubMed Central

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  18. Identification of the functional elements in the promoter region of human DNA topoisomerase IIIbeta gene.

    PubMed

    Cho, Young Hoon; Park, Jee Young; Han, Sang Youp; Chung, In Kwon

    2004-09-17

    In this study, we have isolated and characterized the promoter region of the human DNA topoisomerase IIIbeta (hTOP3beta) gene. The 5' RACE assay showed a short exon 1 encoding only the 35-bp untranslated region and suggested the presence of multiple transcription initiation sites. The hTOP3beta gene promoter lacks a canonical TATA box or initiation element and is moderately high in GC content. Transient expression of a luciferase reporter gene under the control of serially deleted 5'-flanking sequence identified an activator element between -141 and -119 upstream of the transcription initiation site and a second regulatory element between -91 and -71. On the basis of scanning mutations of triple nucleotides, we demonstrated that a 5'GGAACC3' element between -117 and -112 plays a critical role in the up-regulation of the basal transcription activity. Changing the 5'GGAACC3' sequence leads to markedly reduced promoter activity. Gel mobility shift assays revealed that the 5'GGAACC3' element is required for DNA binding by the transcription factor complex. These observations lead to the conclusion that the positive regulatory region including the 5'GGAACC3' core element is essential for efficient expression of the hTOP3beta gene as well as for the binding of as yet unidentified regulatory factor(s).

  19. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons

    PubMed Central

    2010-01-01

    Background Doublecortin (Dcx), a MAP (Microtubule-Associated Protein), is transiently expressed in migrating and differentiating neurons and thereby characterizes neuronal precursors and neurogenesis in developing and adult neurogenesis. In addition, reduced Dcx expression during development has been related to appearance of brain pathologies. Here, we attempt to unveil the molecular mechanisms controlling Dcx gene expression by studying its transcriptional regulation during neuronal differentiation. Results To determine and analyze important regulatory sequences of the Dcx promoter, we studied a putative regulatory region upstream from the mouse Dcx coding region (pdcx2kb) and several deletions thereof. These different fragments were used in vitro and in vivo to drive reporter gene expression. We demonstrated, using transient expression experiments, that pdcx2kb is sufficient to control specific reporter gene expression in cerebellar cells and in the developing brain (E14.5). We determined the temporal profile of Dcx promoter activity during neuronal differentiation of mouse embryonic stem cells (mESC) and found that transcriptional activation of the Dcx gene varies along with neuronal differentiation of mESC. Deletion experiments and sequence comparison of Dcx promoters across rodents, human and chicken revealed the importance of a highly conserved sequence in the proximal region of the promoter required for specific and strong expression in neuronal precursors and young neuronal cells. Further analyses revealed the presence in this short sequence of several conserved, putative transcription factor binding sites: LEF/TCF (Lymphoid Enhancer Factor/T-Cell Factor) which are effectors of the canonical Wnt pathway; HNF6/OC2 (Hepatocyte Nuclear Factor-6/Oncecut-2) members of the ONECUT family and NF-Y/CAAT (Nuclear Factor-Y). Conclusions Studies of Dcx gene regulatory sequences using native, deleted and mutated constructs suggest that fragments located upstream of the

  20. Phenotype of mutations in the promoter region of the β-globin gene.

    PubMed

    Ropero, Paloma; Erquiaga, Sara; Arrizabalaga, Beatriz; Pérez, Germán; de la Iglesia, Silvia; Torrejón, María José; Gil, Celia; Elena, Cela; Tenorio, María; Nieto, Jorge M; de la Fuente-Gonzalo, Félix; Villegas, Ana; González Fernández, Fernando-Ataúlfo; Martínez, Rafael

    2017-10-01

    β(+)-Thalassaemia is characterised by reduced production of β chains, which decrease can be caused by mutations in the promoter region (CACCC or TATA box), and is classified as mild or silent depending on the extent of β-globin chain reduction. In both cases, homozygotes or compound heterozygotes for these mutations usually have thalassaemia intermedia. Frequently the diagnosis is made in adulthood or even in old age. A total of 37 alterations in the promoter region have been described so far. In this report we describe the mutations found in the promoter region of the β-globin gene in a single hospital in Madrid. Between 1998 and 2015, more than 9000 blood samples were analysed for full blood count and underwent haemoglobin electrophoresis and high performance liquid chromatography. Genetic analysis of the β and Gγ-globin genes was carried out by automatic sequencing and, in the case of α genes, by multiplex PCR. 35 samples showed mutation in the promoter region of the β-globin gene, with a total of six different mutations identified: one in the distal CACCC box, two in the proximal CACCC box, three in the ATA box. Any alterations in the proximal CACCC and TATA boxes lead to a moderate decrease in synthesis of the β-globin chain, which has been demonstrated in cases of thalassaemia intermedia that have presented in the second decade of life with a moderate clinical course. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Characterisation of the promoter region of the human DNA-repair gene Rad51.

    PubMed

    Hasselbach, L; Haase, S; Fischer, D; Kolberg, H C; Stürzbecher, H W

    2005-01-01

    Regulatory elements of the 5'-flanking region of the DNA-repair gene Rad51 were analysed to characterise pathological alterations of Rad51 mRNA expression during tumour development. Various fragments of the Rad51 promoter were cloned into the pGL3 reporter vector and the respective promoter activity was determined by luciferase assays in transfected U2-OS cells. Transcription factor binding was identified using Protein/DNA arrays. The region encompassing base pairs -204 to -58 was identified as crucial for Rad51 gene transcription. Down regulator sequences are present upstream (-305 to -204) and downstream (-48 and +204) of this core promoter element. Promoter activity is significantly enhanced by substituting G at the polymorphic positions +135 and +172 for C and T, respectively. Transcription factors Ets1/PEA3, E2F1, p53, EGR1, and Stat5 were identified as relevant for regulating expression of Rad51. We identified three separate cis-sequence elements within the Rad51 transcriptional promoter, one ensuring basal levels of expression and two elements limiting expression to relatively low levels. The characterisation of transcription factor binding might help to explain high-level expression of Rad51 in a variety of solid tumours. The polymorphic sites appear important for the increased risk of breast and/or ovarian cancer for BRCA2 mutation carriers.

  2. Rarity of DNA sequence alterations in the promoter region of the human androgen receptor gene.

    PubMed

    Cabral, D F; Santos, A; Ribeiro, M L; Mesquita, J C; Carvalho-Salles, A B; Hackel, C

    2004-12-01

    The human androgen receptor (AR) gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR) may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T) in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.

  3. Characterization and functional analysis of the 5'-flanking promoter region of the mouse Tcf3 gene.

    PubMed

    Solberg, Nina; Machon, Ondrej; Krauss, Stefan

    2012-01-01

    Tcf3 is a nuclear mediator of canonical Wnt signaling which functions in many systems as a repressor of target gene transcription. In this study, we have cloned and characterized a 6.7 kb fragment of the 5'-flanking promoter region of the mouse Tcf3 gene. In silico analysis of the promoter sequence identified the existence of GC boxes and CpG islands, but failed to identify any TATA box. In addition, the promoter sequence contained putative binding sites for multiple transcription factors, including a few known to regulate the function of mTcf3. Of those, we confirmed functional binding sites for NFκB and Oct1 using a luciferase assay and ChIP. In vitro analysis revealed five potential transcription start sites which resulted in a 298 base pair 5'-untranslated region upstream of the mTcf3 translation start site ATG. Using a luciferase assay, we analyzed the activity of the cloned promoter fragment in embryonically derived neural stem cells. The luciferase activity of a 3.5 kb core promoter fragment (-3243/+211) showed up to 40-fold increased activity compared to the empty vector. Addition of sequences 5' to the 3.5 kb core promoter fragment resulted in a 20-fold drop in luciferase activity, indicating the presence of further upstream repressive elements. In vivo analysis of a 4.5 kb promoter fragment (-4303/+211) driving, the expression of EGFP in mouse embryos highly resembled endogenous expression of mTcf3.

  4. A 5′- Regulatory Region and Two Coding Region Polymorphisms Modulate Promoter Activity and Gene Expression of the Growth Suppressor Gene ZBED6 in Cattle

    PubMed Central

    Huang, Yong-Zhen; Li, Ming-Xun; Wang, Jing; Zhan, Zhao-Yang; Sun, Yu-Jia; Sun, Jia-Jie; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Chen, Hong

    2013-01-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, rapid amplification of 5’ cDNA ends (5'-RACE) analysis revealed two transcription start sites (TSS) for the bovine ZBED6 starting within exon 1 of the ZC3H11A gene (TSS-1) and upstream of the translation start codon of the ZBED6 gene (TSS-2). There was one SNP in the promoter and two missense mutations in the coding region of the bovine ZBED6 by sequencing of the pooled DNA samples (Pool-Seq, n = 100). The promoter and coding region are the key regions for gene function; polymorphisms in these regions can alter gene expression. Quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution in cattle and is highly expressed in skeletal muscle. Eleven promoter-detection vectors were constructed, which enabled the cloning of putative promoter sequences and analysis of ZBED6 transcriptional activity by luciferase reporter gene assays. The core region of the basal promoter of bovine ZBED6 is located within region -866 to -556. The activity of WT-826G-pGL3 in driving reporter gene transcription is significantly higher than that of the M-826A-pGL3 construct (P < 0.01). Analysis of gene expression patterns in homozygous full-sibling Chinese Qinchuan cattle showed that the mutant-type Hap-AGG exhibited a lower mRNA level than the wild-type Hap-GCA (P < 0.05) in longissimus dorsi muscle (LDM). Moreover, ZBED6 mRNA expression was low in C2C12 cells overexpressing the mutant-type ZBED6 (pcDNA3.1+-Hap-GG) (P < 0.01). Our results suggest that the polymorphisms in the promoter and coding regions may modulate the promoter activity and gene expression of bovine ZBED6 in the skeletal muscles of these cattle breeds. PMID:24223190

  5. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    PubMed

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  6. Genomic structure and characterization of the promoter region of the human NAK gene.

    PubMed

    Li, Sheng Fan; Fujita, Fumitaka; Hirai, Momoki; Lu, Rui; Niida, Hiroyuki; Nakanishi, Makoto

    2003-01-30

    NAK has been identified as an IkappaB-kinase activating-kinase that plays an important role in NF-kappaB activation in response to several pro-inflammatory cytokines such as TNF-alpha. We describe here the genomic structure of the human NAK gene and analysis of the promoter. The gene spanned 40.5 kb and contained 21 exons with lengths ranging from 39 to 196 bp. Comparison of the phase and position of intron insertions within the human NAK gene with those within IKKalpha, IKKbeta and IKK epsilon indicated that the exon/intron organization of IKK epsilon is more highly conserved than that of IKKalpha or IKKbeta. The transcriptional start site was mapped at a position about 98 bp upstream from the translation start site by means of both an RNase protection assay and a primer extension method. Fluorescence in situ hybridization using full-length human NAK cDNA as a probe showed that the human NAK gene is localized to human chromosome 13q14.2-3, a region in which the loss of heterozygosity is associated with squamous cell carcinoma and leukemia. By using a series of deletion constructs in performing a reporter assay, a minimal 77 bp upstream of the transcriptional initiation site was shown to contribute to the major promoter activity.

  7. 5-Hydroxy tryptamine transporter (5HTT) gene promoter region polymorphism in anxiety and depressive disorders.

    PubMed

    Mushtaq, Raheel; Shoib, Sheikh; Shah, Tabindah; Mushtaq, Sahil

    2014-01-01

    5HTTLPR polymorphism (5- Hydroxy tryptamine transporter linked promoter region polymorphism) is the most widely studied genetic variant in psychiatry. The present study is a modest effort at ascertaining the role of 5HT transporter linked promoter region polymorphism (5HTTLPR) in anxiety and depressive disorders in Kashmir (India).The aim of this study was to examine 5-Hydroxy tryptamine transporter (5HTT) gene promoter region polymorphism in anxiety and depressive disorders. Thirty patients with unipolar depressive disorders, 30 patients with anxiety disorders and 40 healthy volunteers (controls) were studied on a case control design, using polymerase chain reaction (PCR) and agarose gel electrophoresis after digestion with endonuclease enzyme. Genotypes and allele frequencies were compared using chi square tests, and p value of < 0.05 was considered as statistically significant. The mean (±sd) HAM-A (Hamilton rating scale for anxiety) scores for anxiety and depressive groups were 28.2±5.14 and 17±5.61, respectively (P < 0.001). The mean (±sd) HAM-D (Hamilton rating scale for depression) scores for depressive and anxiety groups were 25±5.58 and 15±6.13, respectively. (p< 0.001). The frequency of S allele was significantly high (83.3% vs 60%) in the group with anxiety (p< 0.05) compared to the control group (p> 0.05). The genetic studies are still evolving as pathogenesis of anxiety and depressive disorders and involve the interaction of environmental factors with various genes. Genetic variation in different populations and hence different environments is important for elucidation of the mechanisms of these disorders. However, the study concludes that the locus under study is not shared between the two disorders.

  8. 5-Hydroxy tryptamine transporter (5HTT) gene promoter region polymorphism in anxiety and depressive disorders

    PubMed Central

    Mushtaq, Raheel; Shoib, Sheikh; Shah, Tabindah; Mushtaq, Sahil

    2014-01-01

    Background: 5HTTLPR polymorphism (5- Hydroxy tryptamine transporter linked promoter region polymorphism) is the most widely studied genetic variant in psychiatry. The present study is a modest effort at ascertaining the role of 5HT transporter linked promoter region polymorphism (5HTTLPR) in anxiety and depressive disorders in Kashmir (India).The aim of this study was to examine 5-Hydroxy tryptamine transporter (5HTT) gene promoter region polymorphism in anxiety and depressive disorders. Methods: Thirty patients with unipolar depressive disorders, 30 patients with anxiety disorders and 40 healthy volunteers (controls) were studied on a case control design, using polymerase chain reaction (PCR) and agarose gel electrophoresis after digestion with endonuclease enzyme. Genotypes and allele frequencies were compared using chi square tests, and p value of < 0.05 was considered as statistically significant. Results: The mean (±sd) HAM-A (Hamilton rating scale for anxiety) scores for anxiety and depressive groups were 28.2±5.14 and 17±5.61, respectively (P < 0.001). The mean (±sd) HAM-D (Hamilton rating scale for depression) scores for depressive and anxiety groups were 25±5.58 and 15±6.13, respectively. (p< 0.001). The frequency of S allele was significantly high (83.3% vs 60%) in the group with anxiety (p< 0.05) compared to the control group (p> 0.05). Conclusion: The genetic studies are still evolving as pathogenesis of anxiety and depressive disorders and involve the interaction of environmental factors with various genes. Genetic variation in different populations and hence different environments is important for elucidation of the mechanisms of these disorders. However, the study concludes that the locus under study is not shared between the two disorders. PMID:25679006

  9. Isolation and characterization of the promoter region of the chicken N-cadherin gene.

    PubMed

    Li, B; Paradies, N E; Brackenbury, R W

    1997-05-20

    N-cadherin (CDH2) is a member of the cadherin family of Ca2(+)-dependent cell-cell adhesion molecules. To investigate mechanisms controlling CDH2 transcription, we isolated and analyzed a genomic DNA sequence containing 2.8 kb of 5' flanking region and the first two exons of chicken CDH2. Sequence analysis of the promoter region of CDH2 revealed no CCATT or TATA boxes, but showed a high overall GC content, high CpG dinucleotide content, and several consensus Sp1 and Ap2 binding sequences. When fused to the cat reporter gene in transient transfection experiments, the sequence from positions -3231 to -118 (relative to the translation start site) directed high-level expression in CDH2-expressing chicken primary retinal cells and mouse N2A cells, but was much less active in chicken embryonic fibroblast cells and mouse 3T3 cells which do not express CDH2. Similarly, this promoter fragment directed variable, but neuronal-specific, expression of reporter genes in adult transgenic mice, but failed to produce the correct pattern of expression in other tissues, implying that additional sequences further upstream and/or within introns of CDH2 may play important roles in the transcriptional control.

  10. Association between VNTR Polymorphism in Promoter Region of Prodynorphin (PDYN) Gene and Methamphetamine Dependence

    PubMed Central

    Saify, Khyber; Saadat, Mostafa

    2015-01-01

    AIM: Prodynorphin (PDYN; OMIM: 131340) is the precursor of the dynorphin related peptides which plays an important role in drug abuse. Previous studies have been shown that the expression of PDYN is regulated by a genetic polymorphism of VNTR in the promoter region of the gene. MATERIALS AND METHODS: The present case-control study was performed on 52 (41 males, 11 females) methamphetamine dependence patients and 635 (525 males, 110 females) healthy blood donors frequency matched with the patients according to age and gender, as a control group was participated in the study. RESULTS: The genotypes of VNTR PDYN polymorphism were determined using PCR method. The HL (OR = 1.22, 95%CI: 0.67-2.20, P = 0.500) and LL (OR = 0.86, 95%CI: 0.28-2.57, P = 0.792) genotypes does not alter the risk of methamphetamine dependence, in comparison with the HH genotypes. CONCLUSION: The present study revealed no association between the VNTR polymorphism in the promoter region of the PDYN gene and methamphetamine dependence risk. PMID:27275252

  11. IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis.

    PubMed

    Rezaei, Ramazan; Mahmoudi, Mahdi; Gharibdoost, Farhad; Kavosi, Hoda; Dashti, Navid; Imeni, Vahideh; Jamshidi, Ahmadreza; Aslani, Saeed; Mostafaei, Shayan; Vodjgani, Mohammad

    2017-09-26

    The aim of the current study was to evaluate if methylation status of CpG sites of interferon regulatory factor 7 (IRF7) promoter in peripheral blood mononuclear cells (PBMCs) of systemic sclerosis (SSc) patients is involved in pathogenesis of the disease. PBMCs were isolated from whole blood of 50 SSc patients and 30 controls. After the extraction of total RNA and DNA contents from PBMCs, complementary DNA (cDNA) was synthesized. Afterwards, quantitative analysis of IRF7 messenger RNA (mRNA) was conducted by real-time polymerase chain reaction (PCR). To evaluate the methylation status of the promoter region of IRF7 gene, PCR products of bisulfite-treated DNA from SSc patients and controls were sequenced. The mRNA expression of IRF7 in PBMCs from patients compared with controls was significantly upregulated. While limited cutaneous SSc patients expressed the mRNA of IRF7 higher than controls, the diffuse cutaneous SSc group did not demonstrate significantly increased expression in comparison to controls. Insignificant promoter hypomethylation of IRF7 was observed in SSc patients compared with the control group. However, CpG2 hypomethylation was significantly associated with increased SSc risk. Furthermore, overall promoter methylation and mRNA level of IRF7 were significantly correlated with each other. Nonetheless, none of them correlated with Rodnan score of SSc patients. There was significant difference in IRF7 mRNA expression between CpG8 methylated and unmethylated SSc patients. Moreover, the difference of methylation and expression was not significant between anti-nuclear antibody (ANA)-positive and ANA-negative SSc patients. It is suggested that hypomethylation of the IRF7 promoter might play a role in SSc pathogenesis, probably through promoting the IRF7 expression in PBMCs of patients with SSc. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  12. The control region of the metH gene of Salmonella typhimurium LT2: an atypical met promoter.

    PubMed

    Urbanowski, M L; Stauffer, G V

    1988-12-15

    The control region of the Salmonella typhimurium metH gene was sequenced and the transcription start point was determined by S1 nuclease mapping experiments. Activation of the metH gene by the metR gene product was shown to occur at the level of transcription. The translation start site was determined by amino acid sequence analysis of the amino terminus of a chimeric Met-Lac fusion protein encoded by a metH-lacZ gene fusion. Analysis of the nucleotide sequence of the metH promoter region showed that two sequence elements, present in the promoters of all other met biosynthetic genes thus far examined, are not present in the metH promoter region, namely, the repeated MetJ repressor recognition sequence 5'-AGACGTCT-3' and a highly conserved sequence 5'-TGGA----TAAAC-3' of unknown function.

  13. A 350 bp region of the proximal promoter of Rds drives cell-type specific gene expression

    PubMed Central

    Cai, Xue; Conley, Shannon M.; Cheng, Tong; Al-Ubaidi, Muayyad R.; Naash, Muna I.

    2010-01-01

    RDS (retinal degeneration slow) is a photoreceptor-specific tetraspanin protein required for the biogenesis and maintenance of rod and cone outer segments. Mutations in the Rds gene are associated with multiple forms of rod- and cone-dominant retinal degeneration. To gain more insight into the mechanisms underlying the regulation of this gene the identification of regulatory sequences within the promoter of Rds was undertaken. A 3.5kb fragment of the 5′ flanking region of the mouse Rds gene was isolated and binding sites for Crx, Otx2, Nr2e3, RXR family members, Mef2C, Esrrb, NF1, AP1, and SP1 in addition to several E-boxes, GC-boxes and GAGA-boxes were identified. Crx binding sequences were conserved in all mammalian species examined. Truncation expression analysis of the Rds promoter region in Y-79 retinoblastoma cells showed maximal activity in the 350bp proximal promoter region. We also show that inclusion of more distal fragments reduced promoter activity to the basal level, and that the promoter activities are cell-type and direction specific. Co-transfection with Nrl increased promoter activity, suggesting that this gene positively regulates Rds expression. Based on these findings, a relatively small fragment of the Rds promoter may be useful in future gene transfer studies to drive gene expression in photoreceptors. PMID:20447394

  14. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    PubMed Central

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, p<0.05) and ChIP-qPCR in patients' myoblasts (65-fold enrichment, p<0.01). Interestingly, the interaction was only observed in FSHD myoblasts but not in the control myoblasts. Upon further treatment of FSHD myoblasts with PARP1 inhibitors, we showed that treatment with a PARP1 inhibitor, 3-aminobenzamide (0.5 mM), for 24 h had a suppression of DUX4 (2.6 fold, p<0.05) and ZSCAN4, a gene previously shown to be upregulated by DUX4, (1.6 fold, p<0.01) in FSHD myoblasts. Treatment with fisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1

  15. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni

    PubMed Central

    Anderson, Letícia; Gomes, Monete Rajão; daSilva, Lucas Ferreira; Pereira, Adriana da Silva Andrade; Mourão, Marina M.; Romier, Christophe; Pierce, Raymond

    2017-01-01

    Background Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. Methodology/Principal findings TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Conclusions/Significance Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression

  16. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni.

    PubMed

    Anderson, Letícia; Gomes, Monete Rajão; daSilva, Lucas Ferreira; Pereira, Adriana da Silva Andrade; Mourão, Marina M; Romier, Christophe; Pierce, Raymond; Verjovski-Almeida, Sergio

    2017-04-01

    Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression of dozens of histone reader genes involved in regulation of the

  17. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    SciTech Connect

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D.

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  18. Hypomethylation within Gene Promoter Regions and Type 1 Diabetes in Discordant Monozygotic Twins

    PubMed Central

    Elboudwarej, Emon; Cole, Michael; Briggs, Farren B.S.; Fouts, Alexandra; Fain, Pamela R.; Quach, Hong; Quach, Diana; Sinclair, Elizabeth; Criswell, Lindsey A.; Lane, Julie A.; Steck, Andrea K.; Barcellos, Lisa F.; Noble, Janelle A.

    2016-01-01

    Genetic susceptibility to type 1 diabetes (T1D) is well supported by epidemiologic evidence; however, disease risk cannot be entirely explained by established genetic variants identified so far. This study addresses the question of whether epigenetic modification of the inherited DNA sequence may contribute to T1D susceptibility. Using the Infinium HumanMethylation450 BeadChip array (450k), a total of seven long-term disease-discordant monozygotic (MZ) twin pairs and five pairs of HLA-identical, disease-discordant non-twin siblings (NTS) were examined for associations between DNA methylation (DNAm) and T1D. Strong evidence for global hypomethylation of CpG sites within promoter regions in MZ twins with TID compared to twins without T1D was observed. DNA methylation data were then grouped into three categories of CpG sites for further analysis, including those within: 1) the major histocompatibility complex (MHC) region, 2) non-MHC genes with reported T1D association through genome wide association studies (GWAS), and 3) the epigenome, or remainder of sites that did not include MHC and T1D associated genes. Initial results showed modest methylation differences between discordant MZ twins for the MHC region and T1D-associated CpG sites, BACH2, INS-IGF2, and CLEC16A (DNAm difference range: 2.2% – 5.0%). In the epigenome CpG set, the greatest methylation differences were observed in MAGI2, FANCC, and PCDHB16, (DNAm difference range: 6.9% – 16.1%). These findings were not observed in the HLA-identical NTS pairs. Targeted pyrosequencing of five candidate CpG loci identified using the 450k array in the original discordant MZ twins produced similar results using control DNA samples, indicating strong agreement between the two DNA methylation profiling platforms. However, findings for the top five candidate CpG loci were not replicated in six additional T1D-discordant MZ twin pairs. Our results indicate global DNA hypomethylation within gene promoter regions may

  19. Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins.

    PubMed

    Elboudwarej, Emon; Cole, Michael; Briggs, Farren B S; Fouts, Alexandra; Fain, Pamela R; Quach, Hong; Quach, Diana; Sinclair, Elizabeth; Criswell, Lindsey A; Lane, Julie A; Steck, Andrea K; Barcellos, Lisa F; Noble, Janelle A

    2016-04-01

    Genetic susceptibility to type 1 diabetes (T1D) is well supported by epidemiologic evidence; however, disease risk cannot be entirely explained by established genetic variants identified so far. This study addresses the question of whether epigenetic modification of the inherited DNA sequence may contribute to T1D susceptibility. Using the Infinium HumanMethylation450 BeadChip array (450k), a total of seven long-term disease-discordant monozygotic (MZ) twin pairs and five pairs of HLA-identical, disease-discordant non-twin siblings (NTS) were examined for associations between DNA methylation (DNAm) and T1D. Strong evidence for global hypomethylation of CpG sites within promoter regions in MZ twins with TID compared to twins without T1D was observed. DNA methylation data were then grouped into three categories of CpG sites for further analysis, including those within: 1) the major histocompatibility complex (MHC) region, 2) non-MHC genes with reported T1D association through genome wide association studies (GWAS), and 3) the epigenome, or remainder of sites that did not include MHC and T1D associated genes. Initial results showed modest methylation differences between discordant MZ twins for the MHC region and T1D-associated CpG sites, BACH2, INS-IGF2, and CLEC16A (DNAm difference range: 2.2%-5.0%). In the epigenome CpG set, the greatest methylation differences were observed in MAGI2, FANCC, and PCDHB16, (DNAm difference range: 6.9%-16.1%). These findings were not observed in the HLA-identical NTS pairs. Targeted pyrosequencing of five candidate CpG loci identified using the 450k array in the original discordant MZ twins produced similar results using control DNA samples, indicating strong agreement between the two DNA methylation profiling platforms. However, findings for the top five candidate CpG loci were not replicated in six additional T1D-discordant MZ twin pairs. Our results indicate global DNA hypomethylation within gene promoter regions may contribute to T

  20. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    ERIC Educational Resources Information Center

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  1. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    ERIC Educational Resources Information Center

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  2. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions

    PubMed Central

    2012-01-01

    Background The core protein (HBc) of hepatitis B virus (HBV) has been implicated in the malignant transformation of chronically-infected hepatocytes and displays pleiotropic functions, including RNA- and DNA-binding activities. However, the mechanism by which HBc interacts with the human genome to exert effects on hepatocyte function remains unknown. This study investigated the distribution of HBc binding to promoters in the human genome and evaluated its effects on the related genes’ expression. Results Whole-genome chromatin immunoprecipitation microarray (ChIP-on-chip) analysis was used to identify HBc-bound human gene promoters. Gene Ontology and pathway analyses were performed on related genes. The quantitative polymerase chain reaction assay was used to verify ChIP-on-chip results. Five novel genes were selected for luciferase reporter assay evaluation to assess the influence of HBc promoter binding. The HBc antibody immunoprecipitated approximately 3100 human gene promoters. Among these, 1993 are associated with known biological processes, and 2208 regulate genes with defined molecular functions. In total, 1286 of the related genes mediate primary metabolic processes, and 1398 encode proteins with binding activity. Sixty-four of the promoters regulate genes related to the mitogen-activated protein kinase (MAPK) pathways, and 41 regulate Wnt/beta-catenin pathway genes. The reporter gene assay indicated that HBc binding up-regulates proto-oncogene tyrosine-protein kinase (SRC), type 1 insulin-like growth factor receptor (IGF1R), and neurotrophic tyrosine kinase receptor 2 (NTRK2), and down-regulates v-Ha-ras Harvey rat sarcoma viral oncogene (HRAS). Conclusion HBc has the ability to bind a large number of human gene promoters, and can disrupt normal host gene expression. Manipulation of the transcriptional profile in HBV-infected hepatocytes may represent a key pathogenic mechanism of HBV infection. PMID:23088787

  3. High diversity due to balancing selection in the promoter region of the Medea gene in Arabidopsis lyrata.

    PubMed

    Kawabe, Akira; Fujimoto, Ryo; Charlesworth, Deborah

    2007-11-06

    Molecular imprinting is the differential expression and/or silencing of alleles according to their parent of origin [1, 2]. Conflicts between parents, or parents and offspring, should cause "arms races," with accelerated evolution of the genes involved in imprinting. This should be detectable in the evolution of imprinting genes' protein sequences and in the promoter regions of imprinted genes. Previous studies, however, found no evidence of more amino acid substitutions in imprinting genes [1, 3]. We have analyzed sequence diversity of the Arabidopsis lyrata Medea (MEA) gene and divergence from the A. thaliana sequence, including the first study of the promoter region. In A. thaliana, MEA is imprinted, with paternal alleles silenced in endosperm cells [4, 5], and also functions in the imprinting machinery [4, 6]; MEA protein binding at the MEA promoter region indicates self-regulated imprinting [7-9]. We find the same paternal MEA allele silencing in A. lyrata endosperm but no evidence for adaptive evolution in the coding region, whereas the 5' flanking region displays high diversity, with distinct haplotypes, suggesting balancing selection in the promoter region.

  4. Promoter region sequence differences in the A and G gamma globin genes of Brazilian sickle cell anemia patients.

    PubMed

    Barbosa, C G; Goncalves-Santos, N J; Souza-Ribeiro, S B; Moura-Neto, J P; Takahashi, D; Silva, D O; Hurtado-Guerrero, A F; Reis, M G; Goncalves, M S

    2010-08-01

    Fetal hemoglobin (HbF), encoded by the HBG2 and HBG1 genes, is the best-known genetic modulator of sickle cell anemia, varying dramatically in concentration in the blood of these patients. This variation is partially associated with polymorphisms located in the promoter region of the HBG2 and HBG1 genes. In order to explore known and unknown polymorphisms in these genes, the sequences of their promoter regions were screened in sickle cell anemia patients and correlated with both their HbF levels and their betaS-globin haplotypes. Additionally, the sequences were compared with genes from 2 healthy groups, a reference one (N = 104) and an Afro-descendant one (N = 98), to identify polymorphisms linked to the ethnic background.The reference group was composed by healthy individuals from the general population. Four polymorphisms were identified in the promoter region of HBG2 and 8 in the promoter region of HBG1 among the studied groups. Four novel single nucleotide polymorphisms (SNP) located at positions -324, -317, -309 and -307 were identified in the reference group. A deletion located between -396 and -391 in the HBG2 promoter region and the SNP -271 C-->T in the HBG1 promoter region were associated with the Central African Republic betaS-globin haplotype. In contrast, the -369 C-->G and 309 A-->G SNPs in the HBG2 promoter region were correlated to the Benin haplotype. The polymorphisms -396_-391 del HBG2, -369 SNP HBG2 and -271 SNP HBG1 correlated with HbF levels. Hence, we suggest an important role of HBG2 and HBG1 gene polymorphisms on the HbF synthesis.

  5. Association study of the CNR1 gene exon 3 alternative promoter region polymorphisms and substance dependence

    PubMed Central

    Herman, Aryeh I.; Kranzler, Henry R.; Cubells, Joseph F.; Gelernter, Joel; Covault, Jonathan

    2008-01-01

    An alternative promoter producing a novel 5′-untranslated region of cannabinoid receptor mRNA has recently been described in CNR1, the gene encoding the cannabinoid receptor protein. Single nucleotide polymorphisms (SNPs) adjacent to this site were reported to be associated with polysubstance abuse (Zhang et al. 2004). We examined the association of 4 SNPs (rs6928499, rs806379, rs1535255, rs2023239) in the distal region of intron 2 of CNR1 both with individual substance dependence diagnoses (i.e., alcohol, cocaine, and opioids), as well as with polysubstance dependence. The study samples consisted of European American and African American subjects with drug and or alcohol dependence (n=895), and controls (n = 472). Subjects were grouped as polysubstance dependent, opioid dependent, cocaine dependent, cannabis dependent and alcohol dependent. There was a modest association of marker rs1535255 with alcohol dependence, respectively (P=0.04), though with correction for multiple phenotype comparisons, this effect was not considered statistically significant. These findings fail to replicate the original report of an association between SNPs adjacent to an alternative CNR1 exon 3 transcription start site and polysubstance abuse. PMID:16741937

  6. Identification of Promoter Regions in the Human Genome by Using a Retroviral Plasmid Library-Based Functional Reporter Gene Assay

    PubMed Central

    Khambata-Ford, Shirin; Liu, Yueyi; Gleason, Christopher; Dickson, Mark; Altman, Russ B.; Batzoglou, Serafim; Myers, Richard M.

    2003-01-01

    Attempts to identify regulatory sequences in the human genome have involved experimental and computational methods such as cross-species sequence comparisons and the detection of transcription factor binding-site motifs in coexpressed genes. Although these strategies provide information on which genomic regions are likely to be involved in gene regulation, they do not give information on their functions. We have developed a functional selection for promoter regions in the human genome that uses a retroviral plasmid library-based system. This approach enriches for and detects promoter function of isolated DNA fragments in an in vitro cell culture assay. By using this method, we have discovered likely promoters of known and predicted genes, as well as many other putative promoter regions based on the presence of features such as CpG islands. Comparison of sequences of 858 plasmid clones selected by this assay with the human genome draft sequence indicates that a significantly higher percentage of sequences align to the 500-bp segment upstream of the transcription start sites of known genes than would be expected from random genomic sequences. We also observed enrichment for putative promoter regions of genes predicted in at least two annotation databases and for clones overlapping with CpG islands. Functional validation of randomly selected clones enriched by this method showed that a large fraction of these putative promoters can drive the expression of a reporter gene in transient transfection experiments. This method promises to be a useful genome-wide function-based approach that can complement existing methods to look for promoters. PMID:12805274

  7. Binding Sites for Ets Family of Transcription Factors Dominate the Promoter Regions of Differentially Expressed Genes in Abdominal Aortic Aneurysms

    PubMed Central

    Nischan, Jennifer; Gatalica, Zoran; Curtis, Mindee; Lenk, Guy M.; Tromp, Gerard; Kuivaniemi, Helena

    2011-01-01

    Background Previously, we identified 3,274 distinct differentially expressed genes in abdominal aortic aneurysm (AAA) tissue compared to non-aneurysmal controls. As transcriptional control is responsible for these expression changes, we sought to find common transcriptional elements in the promoter regions of the differentially expressed genes. Methods and Results We analyzed the up- and downregulated gene sets with Whole Genome rVISTA to determine the transcription factor binding sites (TFBSs) overrepresented in the 5 kb promoter regions of the 3,274 genes. The downregulated gene set yielded 144 TFBSs that were overrepresented in the subset when compared to the entire genome. In contrast, the upregulated gene set yielded only 13 distinct overrepresented TFBSs. Interestingly, as classified by TRANSFAC®, 8 of the 13 transcription factors (TFs) binding to these regions belong to the ETS family. Additionally, NFKB and its subunits p50 and p65 showed enrichment. Immunohistochemical analyses in 10 of the TFs from the upregulated analysis showed 9 to be present in AAA tissue. Based on Gene Ontology analysis of biological process categories of the upregulated target genes of enriched TFs, 10 TFs had enrichment in immune system process among their target genes. Conclusions Our genome-wide analysis provides further evidence of ETS and NFKB involvement in AAA. Additionally, our results provide novel insight for future studies aiming to dissect the pathogenesis of AAA and have uncovered potential therapeutic targets for AAA prevention. PMID:20031636

  8. Gene flow and selection interact to promote adaptive divergence in regions of low recombination.

    PubMed

    Samuk, Kieran; Owens, Gregory L; Delmore, Kira E; Miller, Sara E; Rennison, Diana J; Schluter, Dolph

    2017-09-01

    Adaptation to new environments often occurs in the face of gene flow. Under these conditions, gene flow and recombination can impede adaptation by breaking down linkage disequilibrium between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive alleles are tightly linked in regions of low recombination, potentially favouring divergence and adaptive evolution in these regions over others. Here, we compiled a global genomic data set of over 1,300 individual threespine stickleback from 52 populations and compared the tendency for adaptive alleles to occur in regions of low recombination between populations that diverged with or without gene flow. In support of theory, we found that putatively adaptive alleles (FST and dXY outliers) tend to occur more often in regions of low recombination in populations where divergent selection and gene flow have jointly occurred. This result remained significant when we employed different genomic window sizes, controlled for the effects of mutation rate and gene density, controlled for overall genetic differentiation, varied the genetic map used to estimate recombination and used a continuous (rather than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that our study provides the first statistical evidence that the interaction of gene flow and selection biases divergence toward regions of low recombination. © 2017 John Wiley & Sons Ltd.

  9. Genomic Organization and Identification of Promoter Regions for the BDNF Gene in the Pond Turtle Trachemys scripta elegans

    PubMed Central

    Zheng, Zhaoqing; Keifer, Joyce

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I–III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI–III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression. PMID:24443176

  10. Regional rearrangements in chromosome 15q21 cause formation of cryptic promoters for the CYP19 (aromatase) gene.

    PubMed

    Demura, Masashi; Martin, Regina M; Shozu, Makio; Sebastian, Siby; Takayama, Kazuto; Hsu, Wei-Tong; Schultz, Roger A; Neely, Kirk; Bryant, Michael; Mendonca, Berenice B; Hanaki, Keiichi; Kanzaki, Susumu; Rhoads, David B; Misra, Madhusmita; Bulun, Serdar E

    2007-11-01

    Production of appropriate quantities of estrogen in various tissues is essential for human physiology. A single gene (CYP19), regulated via tissue-specific promoters, encodes the enzyme aromatase, which catalyzes the key step in estrogen biosynthesis. Aromatase excess syndrome is inherited as autosomal dominant and characterized by high systemic estrogen levels, short stature, prepubertal gynecomastia and testicular failure in males, and premature breast development and uterine pathology in females. The underlying genetic mechanism is poorly understood. Here, we characterize five distinct heterozygous rearrangements responsible for aromatase excess syndrome in three unrelated families and two individuals (nine patients). The constitutively active promoter of one of five ubiquitously expressed genes located within the 11.2 Mb region telomeric to the CYP19 gene in chromosome 15q21 cryptically upregulated aromatase expression in several tissues. Four distinct inversions reversed the transcriptional direction of the promoter of a gene (CGNL1, TMOD3, MAPK6 or TLN2), placing it upstream of the CYP19 coding region in the opposite strand, whereas a deletion moved the promoter of a fifth gene (DMXL2), normally transcribed from the same strand, closer to CYP19. The proximal breakpoints of inversions were located 17-185 kb upstream of the CYP19 coding region. Sequences at the breakpoints suggested that the inversions were caused by intrachromosomal nonhomologous recombination. Splicing the untranslated exon downstream of each promoter onto the identical junction upstream of the translation initiation site created CYP19 mRNA encoding functional aromatase protein. Taken together, small rearrangements may create cryptic promoters that direct inappropriate transcription of CYP19 or other critical genes.

  11. Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes

    PubMed Central

    Kristell, Carolina; Orzechowski Westholm, Jakub; Olsson, Ida; Ronne, Hans; Komorowski, Jan; Bjerling, Pernilla

    2010-01-01

    Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1+ and urg2+, displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions. PMID:20086243

  12. Functional analysis of the promoter region of amphioxus β-actin gene: a useful tool for driving gene expression in vivo.

    PubMed

    Feng, Jun; Li, Guang; Liu, Xin; Wang, Jing; Wang, Yi-Quan

    2014-10-01

    Amphioxus is a promising new animal model for developmental biology. To develop molecular tools for this model, we characterized the promoter region of a cytoplasmic β-actin gene (Bb-actin-6-2) from the Chinese amphioxus Branchiostoma belcheri. In situ hybridization and real time-quantitative PCR analyses showed that this gene is expressed in many tissues throughout embryonic development. Cloning of cDNA revealed two isoforms with distinct transcription start sites. Isoform #1 exhibits a similar exon/intron and regulatory element organization to that of vertebrate β-actin, whereas isoform #2 lacks the first exon of isoform #1 and recruits its first intron as a promoter. The activities of upstream promoter regions in the two isoforms were examined using the lacZ reporter system in amphioxus embryos. The proximal promoter of isoform #1 drove reporter gene expression broadly in 58.6 % of injected embryos. That of isoform #2 exhibited much higher activity (91.5 %) than that of isoform #1 or the human EF-1-α gene (38.2 %). We determined the minimal promoter regions of the two isoforms via functional analysis. These two regions, alone or inserted a random DNA fragment upstream, had no detectable activity, but when an upstream enhancer was inserted, the promoters directed reporter gene expression in 61.0 and 93.8 %, respectively, of injected embryos in a tissue-specific manner. Our study not only provides insight into the regulatory mechanism underlying amphioxus Bb-actin-6-2 gene expression, but also identifies two sets of efficient proximal and minimal promoters. These promoters could be used to construct gene expression vectors for transgenic studies using amphioxus as a model.

  13. Characterization of the Promoter Regions of Two Sheep Keratin-Associated Protein Genes for Hair Cortex-Specific Expression.

    PubMed

    Zhao, Zhichao; Liu, Guangbin; Li, Xinyun; Huang, Ji; Xiao, Yujing; Du, Xiaoyong; Yu, Mei

    2016-01-01

    The keratin-associated proteins (KAPs) are the structural proteins of hair fibers and are thought to play an important role in determining the physical properties of hair fibers. These proteins are activated in a striking sequential and spatial pattern in the keratinocytes of hair fibers. Thus, it is important to elucidate the mechanism that underlies the specific transcriptional activity of these genes. In this study, sheep KRTAP 3-3 and KRTAP11-1 genes were found to be highly expressed in wool follicles in a tissue-specific manner. Subsequently, the promoter regions of the two genes that contained the 5' flanking/5' untranslated regions and the coding regions were cloned. Using an in vivo transgenic approach, we found that the promoter regions from the two genes exhibited transcriptional activity in hair fibers. A much stronger and more uniformly expressed green fluorescent signal was observed in the KRTAP11-1-ZsGreen1 transgenic mice. In situ hybridization revealed the symmetrical expression of sheep KRTAP11-1 in the entire wool cortex. Consistently, immunohistochemical analysis demonstrated that the pattern of ZsGreen1 expression in the hair cortex of transgenic mice matches that of the endogenous KRTAP11-1 gene, indicating that the cloned promoter region contains elements that are sufficient to govern the wool cortex-specific transcription of KRTAP11-1. Furthermore, regulatory regions in the 5' upstream sequence of the sheep KRTAP11-1 gene that may regulate the observed hair keratinocyte specificity were identified using in vivo reporter assays.

  14. Characterization of the Promoter Regions of Two Sheep Keratin-Associated Protein Genes for Hair Cortex-Specific Expression

    PubMed Central

    Zhao, Zhichao; Liu, Guangbin; Li, Xinyun; Huang, Ji; Xiao, Yujing; Du, Xiaoyong; Yu, Mei

    2016-01-01

    The keratin-associated proteins (KAPs) are the structural proteins of hair fibers and are thought to play an important role in determining the physical properties of hair fibers. These proteins are activated in a striking sequential and spatial pattern in the keratinocytes of hair fibers. Thus, it is important to elucidate the mechanism that underlies the specific transcriptional activity of these genes. In this study, sheep KRTAP 3–3 and KRTAP11-1 genes were found to be highly expressed in wool follicles in a tissue-specific manner. Subsequently, the promoter regions of the two genes that contained the 5′ flanking/5′ untranslated regions and the coding regions were cloned. Using an in vivo transgenic approach, we found that the promoter regions from the two genes exhibited transcriptional activity in hair fibers. A much stronger and more uniformly expressed green fluorescent signal was observed in the KRTAP11-1-ZsGreen1 transgenic mice. In situ hybridization revealed the symmetrical expression of sheep KRTAP11-1 in the entire wool cortex. Consistently, immunohistochemical analysis demonstrated that the pattern of ZsGreen1 expression in the hair cortex of transgenic mice matches that of the endogenous KRTAP11-1 gene, indicating that the cloned promoter region contains elements that are sufficient to govern the wool cortex-specific transcription of KRTAP11-1. Furthermore, regulatory regions in the 5′ upstream sequence of the sheep KRTAP11-1 gene that may regulate the observed hair keratinocyte specificity were identified using in vivo reporter assays. PMID:27100288

  15. New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro.

    PubMed

    Klaassen, Kristel; Stankovic, Biljana; Kotur, Nikola; Djordjevic, Maja; Zukic, Branka; Nikcevic, Gordana; Ugrin, Milena; Spasovski, Vesna; Srzentic, Sanja; Pavlovic, Sonja; Stojiljkovic, Maja

    2017-02-01

    Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.

  16. Methylation of Promoter Regions of Genes of the Human Intrauterine Renin Angiotensin System and Their Expression

    PubMed Central

    Sykes, Shane D.; Mitchell, Carolyn; Pringle, Kirsty G.; Wang, Yu; Zakar, Tamas; Lumbers, Eugenie R.

    2015-01-01

    The intrauterine renin angiotensin system (RAS) is implicated in placentation and labour onset. Here we investigate whether promoter methylation of RAS genes changes with gestation or labour and if it affects gene expression. Early gestation amnion and placenta were studied, as were term amnion, decidua, and placenta collected before labour (at elective caesarean section) or after spontaneous labour and delivery. The expression and degree of methylation of the prorenin receptor (ATP6AP2), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AGTR1), and two proteases that can activate prorenin (kallikrein, KLK1, and cathepsin D, CTSD) were measured by qPCR and a DNA methylation array. There was no effect of gestation or labour on the methylation of RAS genes and CTSD. Amnion and decidua displayed strong correlations between the percent hypermethylation of RAS genes and CTSD, suggestive of global methylation. There were no correlations between the degree of methylation and mRNA abundance of any genes studied. KLK1 was the most methylated gene and the proportion of hypermethylated KLK1 alleles was lower in placenta than decidua. The presence of intermediate methylated alleles of KLK1 in early gestation placenta and in amnion after labour suggests that KLK1 methylation is uniquely dynamic in these tissues. PMID:25918528

  17. Characterization of the bovine pregnancy-associated glycoprotein gene family--analysis of gene sequences, regulatory regions within the promoter and expression of selected genes.

    PubMed

    Telugu, Bhanu Prakash V L; Walker, Angela M; Green, Jonathan A

    2009-04-24

    The Pregnancy-associated glycoproteins (PAGs) belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence differences between family members, there are clear distinctions in their spatio-temporal distribution and in their relative level of expression. In this report, 1) we performed an in silico analysis of the bovine genome to further characterize the PAG gene family, 2) we scrutinized proximal promoter sequences of the PAG genes to evaluate the evolution pressures operating on them and to identify putative regulatory regions, 3) we determined relative transcript abundance of selected PAGs during pregnancy and, 4) we performed preliminary characterization of the putative regulatory elements for one of the candidate PAGs, bovine (bo) PAG-2. From our analysis of the bovine genome, we identified 18 distinct PAG genes and 14 pseudogenes. We observed that the first 500 base pairs upstream of the translational start site contained multiple regions that are conserved among all boPAGs. However, a preponderance of conserved regions, that harbor recognition sites for putative transcriptional factors (TFs), were found to be unique to the modern boPAG grouping, but not the ancient boPAGs. We gathered evidence by means of Q-PCR and screening of EST databases to show that boPAG-2 is the most abundant of all boPAG transcripts. Finally, we provided preliminary evidence for the role of ETS- and DDVL-related TFs in the regulation of the boPAG-2 gene. PAGs represent a relatively large gene family in the bovine genome. The proximal promoter regions of these genes display differences in putative TF binding sites, likely contributing to observed differences in spatial and temporal expression. We also

  18. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    PubMed Central

    Telugu, Bhanu Prakash VL; Walker, Angela M; Green, Jonathan A

    2009-01-01

    Background The Pregnancy-associated glycoproteins (PAGs) belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence differences between family members, there are clear distinctions in their spatio-temporal distribution and in their relative level of expression. In this report, 1) we performed an in silico analysis of the bovine genome to further characterize the PAG gene family, 2) we scrutinized proximal promoter sequences of the PAG genes to evaluate the evolution pressures operating on them and to identify putative regulatory regions, 3) we determined relative transcript abundance of selected PAGs during pregnancy and, 4) we performed preliminary characterization of the putative regulatory elements for one of the candidate PAGs, bovine (bo) PAG-2. Results From our analysis of the bovine genome, we identified 18 distinct PAG genes and 14 pseudogenes. We observed that the first 500 base pairs upstream of the translational start site contained multiple regions that are conserved among all boPAGs. However, a preponderance of conserved regions, that harbor recognition sites for putative transcriptional factors (TFs), were found to be unique to the modern boPAG grouping, but not the ancient boPAGs. We gathered evidence by means of Q-PCR and screening of EST databases to show that boPAG-2 is the most abundant of all boPAG transcripts. Finally, we provided preliminary evidence for the role of ETS- and DDVL-related TFs in the regulation of the boPAG-2 gene. Conclusion PAGs represent a relatively large gene family in the bovine genome. The proximal promoter regions of these genes display differences in putative TF binding sites, likely contributing to observed differences in spatial

  19. The Nine Genes of the Nocardia lactamdurans Cephamycin Cluster Are Transcribed into Large mRNAs from Three Promoters, Two of Them Located in a Bidirectional Promoter Region

    PubMed Central

    Enguita, Francisco J.; Coque, Juan Jose R.; Liras, Paloma; Martin, Juan F.

    1998-01-01

    The nine biosynthesis genes of the Nocardia lactamdurans cephamycin cluster are expressed as three different mRNAs initiating at promoters latp, cefDp, and pcbABp, as shown by low-resolution S1 nuclease protection assays and Northern blotting analysis. Bidirectional expression occurred from divergent promoters (latp and cefDp) located in a 629-bp intergenic region that contains three heptameric direct repeats similar to those recognized by members of the SARP (Streptomyces antibiotic regulatory proteins) family. The lat gene is transcribed in a single monocistronic transcript initiating at latp. A second unusually long polycistronic mRNA (more than 16 kb) corresponding to six biosynthesis genes (pcbAB, pcbC, cmcI, cmcJ, cefF, and cmcH) started at pcbABp. A third polycistronic mRNA corresponding to the cefD and cefE genes started at cefDp. PMID:9765587

  20. Association of a Human FABP1 Gene Promoter Region Polymorphism with Altered Serum Triglyceride Levels.

    PubMed

    Peng, Xian-E; Wu, Yun-Li; Zhu, Yi-Bing; Huang, Rong-Dong; Lu, Qing-Qing; Lin, Xu

    2015-01-01

    Liver fatty acid-binding protein (L-FABP), also known as fatty acid-binding protein 1 (FABP1), is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD) and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs) of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182) from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032).Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05). The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01). In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003), while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014). Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans.

  1. MICB gene diversity and balancing selection on its promoter region in Yao population in southern China.

    PubMed

    Chen, Xiang; Liu, Xuexiang; Wei, Xiaomou; Meng, Yuming; Liu, Limin; Qin, Shini; Liu, Yanyu; Dai, Shengming

    2016-12-01

    To comprehensively examine the MICB gene polymorphism and identify its differences in Chinese Yao population from other ethnic groups, we investigated the polymorphism in the 5'-upstream regulation region (5'-URR), coding region (exons 2-4), and the 3'-untranslated region (3'-UTR) of MICB gene by using PCR-SBT method in 125 healthy unrelated Yao individuals in Guangxi Zhuang Autonomous Region. Higher polymorphism was observed in the 5'-URR, nine single nucleotide polymorphisms (SNPs) and a two base pairs deletion at position -139/-138 were found in our study. Only five different variation sites, however, were detected in exons 2-4 and three were observed in the 3'-UTR. The minor allele frequencies of all variants were greater than 5%, except for rs3828916, rs3131639, rs45627734, rs113620316, rs779737471, and the variation at position +11803 in the 3'-UTR. The first nine SNPs of 5'-URR and rs1065075, rs1051788 of the coding region showed significant linkage disequilibrium with each other. Ten different MICB extended haplotypes (EH) encompassing the 5'-URR, exons 2-4, and 3'-UTR were found in this population, and the most frequent was EH1 (23.2%). We provided several evidences for balancing selection effect on the 5'-URR of MICB gene in Yao population. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. [Putative promoter region of type III effector gene avrAC(Xcc8004) in Xanthomonas campestris pv. campestris].

    PubMed

    Jiang, Guofeng; Wu, Qiuju; Liang, Xiaoxia; Yang, Lichao; Yang, Liyan; Wang, Lin; Wu, Xiaojian; Jiang, Bole

    2014-02-04

    Xanthomonas campestris pv. campestris (Xcc) is the cause agent of black rot of crucifers. Xcc uses type III secretion system (T3SS) to deliver T3SS effectors (T3SEs) directly into host cells, where they play important roles in pathogenesis. Many identified T3SEs genes contain plant-inducible promoter(PIP) box and -10 box in their promoter regions. However, the relation among PIP-box, -10 box and -10 region, -35 region of the classic promoter is unclear, and the conservative characteristic of -10 box sequence is hardly reported. The aim of this study was to analyze the putative promoter region of T3SE gene avrAC(Xcc8004). Through 5' RACE, the transcriptional start site of avrAC(Xcc8004) was identified. Fusion PCR was introduced to generate the site-mutagenesis of -10 box for constructing the GUS fusion report strains. The 5' RACE results indicate that the transcription start site was A. After analysis, we found that -35 region was located 8 bp downstream of PIP-box, and -10 box was exactly overlapped with -10 region. The whole motif of PIP-box, -35 region, and -10 box was then counted as: TTCAC-N15-TTCGC-N8-TTGATG-N18-TACGTT. The GUS assay results demonstrate that the site-mutagenesis of -10 box caused a higher expression of avrAC(Xcc8004). The GUS activities in the mutant strains delta hrpX and delta hrpG were significantly lower than that in the wild type Xcc strains. PIP-box is tandem with -35 region, -10 box is just the same as -10 region, -10 box is important for the transcription of avrAC(Xcc8004), and HrpG and HrpX activate the expression of avrAC(X8004), despite of -10 box site-mutagenesis.

  3. Structure of the cutinase gene and detection of promoter activity in the 5'-flanking region by fungal transformation.

    PubMed Central

    Soliday, C L; Dickman, M B; Kolattukudy, P E

    1989-01-01

    The cutinase gene from Fusarium solani f. sp. pisi (Nectria hematococa) was cloned and sequenced. Sau3A fragments of genomic DNA from the fungus were cloned in a lambda Charon 35 vector. When restriction fragments generated from the inserts were screened with 5' and 3' probes from cutinase cDNA, a 5.5-kilobase SstI fragment hybridized with both probes, suggesting the presence of the entire cutinase gene. A 2,818-base pair segment was sequenced, revealing a 690-nucleotide open reading frame that was identical to that found in the cutinase cDNA with a single 51-base pair intron. Transformation vectors were constructed containing a promoterless gene for hygromycin resistance, which was translationally fused to flanking sequences of the cutinase gene. When protoplasts and mycelia were transformed with these vectors, hygromycin-resistant transformants were obtained. Successful transformation was assessed by Southern blot analysis by using radiolabeled probes for the hygromycin resistance gene and the putative promoter. The results of Southern blot analysis indicated that the plasmid had integrated into the Fusarium genome and that the antibiotic resistance was a manifestation of the promoter activity of the cutinase flanking sequences. Transformation of Colletotrichum capsici with the same construct confirmed the promoter activity of the flanking region and the integration of the foreign DNA. Transformation and deletion analysis showed that promoter activity resided within the 360 nucleotides immediately 5' to the cutinase initiation codon. Images PMID:2703464

  4. Analysis of the promoter region of the gene encoding NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase.

    PubMed Central

    Bélanger, C; Peri, K G; MacKenzie, R E

    1991-01-01

    Sequence analysis of the 5'-flanking region of the gene encoding NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) revealed several putative cis-regulatory elements. To delineate the function of these regulatory elements, various deletion mutants of the 5'-flanking region were connected to the reporter gene chloramphenicol acetyltransferase (CAT) and promoter activity was measured in transient transfection assays. Transfection experiments performed with the sequence extending from -508 to +59 produced a high-level transient expression of the CAT gene in BALB/c 3T3-SV-T2 and NIH 3T3 cells. Removal of the sequence from +16 to +59 which includes the second transcription start point at +43, a TATA-like box and 5'-untranslated sequences abolished the promoter activity. Deletion analysis of 5'-upstream sequences revealed that the region from positions -55 to +59 is sufficient to mediate a high CAT activity comparable to the level obtained with the construct -508/+59. Within this region are found a CAAT box, a TATA-like box and two putative GC boxes. A functional analysis of the promoter showed that the sequence from -55 to +59 is sufficient to respond to stimulation by serum. Images PMID:1843253

  5. Structural and functional analysis of the human CD45 gene (PTPRC) upstream region: evidence for a functional promoter within the first intron of the gene

    PubMed Central

    Timón, M; Beverley, P C L

    2001-01-01

    Expression of the leucocyte common antigen (CD45) in mammals is restricted to the nucleated lineages of haematopoietic cells. It appears in early progenitors in the bone marrow and is expressed at the surface of these cells throughout their differentiation. However, at least in T cells, the pattern of expression switches between different isoforms during the successive stages of differentiation in the thymus and after activation in the periphery. In order to understand the mechanisms controlling the transcription of the human CD45 gene, 2·7 kbp of the 5′-flanking region were sequenced and analysed for their ability to direct expression of a reporter gene. The only region with promoter activity was localized within the first intron of the gene. This promoter shows no tissue specificity but could be enhanced by a heterologous enhancer. Mobility shift assays showed complex but specific protein binding. The sequence in this region lacks similarity with known promoters or initiators but is highly conserved in evolution. No transcription initiation could be detected within or downstream of this region, suggesting that this might be a new type of RNA polymerase II promoter able to drive transcription from an upstream sequence. An additional exon was also found upstream of exon 1. The two exons 1 (1a and 1b) are mutually exclusive and both are spliced to exon 2. This makes the structure of the 5′ region of the human CD45 gene identical to its mouse homologue. PMID:11260323

  6. BLG-e1 - a novel regulatory element in the distal region of the beta-lactoglobulin gene promoter.

    PubMed

    Reichenstein, Moshe; German, Tania; Barash, Itamar

    2005-04-11

    beta-Lactoglobulin (BLG) is a major ruminant milk protein. A regulatory element, termed BLG-e1, was defined in the distal region of the ovine BLG gene promoter. This 299-bp element lacks the established cis-regulatory sequences that affect milk-protein gene expression. Nevertheless, it alters the binding of downstream BLG sequences to histone H4 and the sensitivity of the histone-DNA complexes to trichostatin A treatment. In mammary cells cultured under favorable lactogenic conditions, BLG-e1 acts as a potent, position-independent silencer of BLG/luciferase expression, and similarly affects the promoter activity of the mouse whey acidic protein gene. Intragenic sequences upstream of BLG exon 2 reverse the silencing effect of BLG-e1 in vitro and in transgenic mice.

  7. Association between a polymorphism in the promoter region of the TPH2 gene and the personality trait of harm avoidance.

    PubMed

    Reuter, Martin; Kuepper, Yvonne; Hennig, Juergen

    2007-06-01

    In a genetic association study the role of the -703 G/T (rs4570625) polymorphism, located in the promoter region of the tryptophan hydroxylase 2 gene (TPH2), in personality traits was investigated in a sample of 404 healthy Caucasian subjects. A significant association between harm avoidance (HA), a trait related to anxiety, and the -703 G/T polymorphism was detected supporting the findings by Gutknecht and colleagues.

  8. A double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region.

    PubMed

    Chang, Yuh-Long; King, Balas; Lin, Shu-Chun; Kennison, James A; Huang, Der-Hwa

    2007-08-01

    More than a dozen trithorax group (trxG) proteins are involved in activation of Drosophila HOX genes. How they act coordinately to integrate signals from distantly located enhancers is not fully understood. The female sterile (1) homeotic (fs(1)h) gene is one of the trxG genes that is most critical for Ultrabithorax (Ubx) activation. We show that one of the two double-bromodomain proteins encoded by fs(1)h acts as an essential factor in the Ubx proximal promoter. First, overexpression of the small isoform FSH-S, but not the larger one, can induce ectopic expression of HOX genes and cause body malformation. Second, FSH-S can stimulate Ubx promoter in cultured cells through a critical proximal region in a bromodomain-dependent manner. Third, purified FSH-S can bind specifically to a motif within this region that was previously known as the ZESTE site. The physiological relevance of FSH-S is ascertained using transgenic embryos containing a modified Ubx proximal promoter and chromatin immunoprecipitation. In addition, we show that FSH-S is involved in phosphorylation of itself and other regulatory factors. We suggest that FSH-S acts as a critical component of a regulatory circuitry mediating long-range effects of distant enhancers.

  9. Analysis of the promoter region of a cardiac specific phospholipase A{sub 2} gene located at 1p35

    SciTech Connect

    Winstead, M.V.; Chen, J.; Tischfield, J.A.

    1994-09-01

    Phospholipases may play an important role in the pathology of tissue damage and in membrane remodeling. We have previously shown that the Group II PLA{sub 2} gene and two PLA{sub 2}-like gene fragments map to 1p35. We have since shown that at least one of the fragments is part of a cardiac-specific PLA{sub 2} gene. Thus the identification and characterization of the regulatory regions of this new phospholipase A{sub 2} (PLA{sub 2}) may be important for understanding the regulation of this gene under normal and pathologic conditions. HPLA2-10, mainly expressed in heart, is a low molecular weight, Ca{sup 2+}-dependent PLA{sub 2} that we have classified as a new group (Group III) based on structural considerations. The 5{prime} regulatory region of HPLA2-10 was isolated from a human genomic DNA bacteriophage library and cloned into pUC19. Computer analysis of the region`s DNA sequence indicates the presence of multiple transcription factor binding sites. A comparison between the human promoter region and the promoter region of the rat homologue, RPLA2-10, indicates that at least two putative transcription factor binding sites are conserved between the two species. These include a CCAAT box and an AGTCCT hexanucleotide, which has been implicated as a binding site for the glucocorticoid receptor. DNA footprint analysis is being performed to determine whether or not these putative regions are sites of protein binding. Also, a proposed view of the evolution of the distinct groups of low molecular weight PLA{sub 2}s will be presented.

  10. Monomorphic region of the serotonin transporter promoter gene in New World monkeys.

    PubMed

    Pascale, Esterina; Lucarelli, Marco; Passarelli, Francesca; Butler, Richard H; Tamellini, Andrea; Addessi, Elsa; Visalberghi, Elisabetta; Manciocco, Arianna; Vitale, Augusto; Laviola, Giovanni

    2012-11-01

    Genetic variation in the human serotonin system has long been studied because of its functional consequences and links to various neuropsychiatric and behavior-related disorders. Among non-human primates, the common marmosets (Callithrix jacchus) and tufted capuchins monkeys (Cebus apella) are becoming increasingly used as models to study the effects of genes, environments, and their interaction on physiology and complex behavior. In order to investigate the independent functions of and potential interactions between serotonin-related genes, anxiety and neuropsychiatric disorders, we analyzed the presence and variability of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) in marmoset and capuchin monkeys. By PCR and using heterologous primers from the human sequence, we amplified and then sequenced the corresponding 5-HTT region in marmosets and capuchins. The resulting data revealed the presence of a tandem repeat sequence similar to that described in humans, but unlike humans and other Old World primates, no variable length alleles were detected in these New World monkeys, suggesting that if serotonin transporter is involved in modulating behavior in these animals it does so through different molecular mechanisms. © 2012 Wiley Periodicals, Inc.

  11. DNMT 1 maintains hypermethylation of CAG promoter specific region and prevents expression of exogenous gene in fat-1 transgenic sheep.

    PubMed

    Yang, Chunrong; Shang, Xueying; Cheng, Lei; Yang, Lei; Liu, Xuefei; Bai, Chunling; Wei, Zhuying; Hua, Jinlian; Li, Guangpeng

    2017-01-01

    Methylation is an important issue in gene expression regulation and also in the fields of genetics and reproduction. In this study, we created fat-1 transgenic sheep, investigated the fine-mapping and the modulatory mechanisms of promoter methylation. Sheep fetal fibroblasts were transfected by pCAG-fat1-IRES-EGFP. Monoclonal cell line was screened as nuclear donor and carried out nuclear transfer (441 transgenic cloned embryos, 52 synchronism recipient sheep). Six offsprings were obtained. Expressions of exogenous genes fat-1 and EGFP were detectable in 10 examined tissues and upregulated omega-3 fatty acid content. Interestingly, more or less EGFP negative cells were detectable in the positive transgenic fetal skin cells. EGFP negative and positive cells were sorted by flow cytometry, and their methylation status in the whole promoter region (1701 nt) were investigated by bisulphate sequencing. The fine-mapping of methylation in CAG promoter were proposed. The results suggested that exogenous gene expression was determined by the methylation status from 721-1346 nt and modulated by methylation levels at 101, 108 and 115 nt sites in CAG promoter. To clarify the regulatory mechanism of methylation, examination of four DNA methyltransferases (DNMTs) demonstrated that hypermethylation of CAG promoter is mainly maintained by DNMT 1 in EGFP negative cells. Furthermore, investigation of the cell surface antigen CD34, CD45 and CD166 indicated that EGFP positive and negative cells belong to different types. The present study systematically clarified methylation status of CAG promoter in transgenic sheep and regulatory mechanism, which will provide research strategies for gene expression regulation in transgenic animals.

  12. DNMT 1 maintains hypermethylation of CAG promoter specific region and prevents expression of exogenous gene in fat-1 transgenic sheep

    PubMed Central

    Yang, Chunrong; Shang, Xueying; Cheng, Lei; Yang, Lei; Liu, Xuefei; Bai, Chunling; Wei, Zhuying; Hua, Jinlian; Li, Guangpeng

    2017-01-01

    Methylation is an important issue in gene expression regulation and also in the fields of genetics and reproduction. In this study, we created fat-1 transgenic sheep, investigated the fine-mapping and the modulatory mechanisms of promoter methylation. Sheep fetal fibroblasts were transfected by pCAG-fat1-IRES-EGFP. Monoclonal cell line was screened as nuclear donor and carried out nuclear transfer (441 transgenic cloned embryos, 52 synchronism recipient sheep). Six offsprings were obtained. Expressions of exogenous genes fat-1 and EGFP were detectable in 10 examined tissues and upregulated omega-3 fatty acid content. Interestingly, more or less EGFP negative cells were detectable in the positive transgenic fetal skin cells. EGFP negative and positive cells were sorted by flow cytometry, and their methylation status in the whole promoter region (1701 nt) were investigated by bisulphate sequencing. The fine-mapping of methylation in CAG promoter were proposed. The results suggested that exogenous gene expression was determined by the methylation status from 721–1346 nt and modulated by methylation levels at 101, 108 and 115 nt sites in CAG promoter. To clarify the regulatory mechanism of methylation, examination of four DNA methyltransferases (DNMTs) demonstrated that hypermethylation of CAG promoter is mainly maintained by DNMT 1 in EGFP negative cells. Furthermore, investigation of the cell surface antigen CD34, CD45 and CD166 indicated that EGFP positive and negative cells belong to different types. The present study systematically clarified methylation status of CAG promoter in transgenic sheep and regulatory mechanism, which will provide research strategies for gene expression regulation in transgenic animals. PMID:28158319

  13. Mutations in the promoter region of the aldolase B gene that cause hereditary fructose intolerance.

    PubMed

    Coffee, Erin M; Tolan, Dean R

    2010-12-01

    Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.-132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.-132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity.

  14. Promoter regions of potato vacuolar invertase gene in response to sugars and hormones.

    PubMed

    Ou, Yongbin; Song, Botao; Liu, Xun; Xie, Conghua; Li, Meng; Lin, Yuan; Zhang, Huiling; Liu, Jun

    2013-08-01

    Potato vacuolar acid invertase (StvacINV1) (β-fructofuranosidase; EC 3.2.1.26) has been confirmed to play an important role in cold-induced sweetening of potato tubers. However, the transcriptional regulation mechanisms of StvacINV1 are largely unknown. In this study, the 5'-flanking sequence of StvacINV1 was cloned and the cis-acting elements were predicted. Histochemical assay showed that the StvacINV1 promoter governed β-glucuronidase (GUS) expression in potato leaves, stems, roots and tubers. Quantitative analysis of GUS expression suggested that the activity of StvacINV1 promoter was suppressed by sucrose, glucose, fructose, and cold, while enhanced by indole-3-acetic acid (IAA), and gibberellic acid (GA3). Further deletion analysis clarified that the promoter regions from -118 to -551, -551 to -1021, and -1021 to -1521 were required for responding to sucrose/glucose, GA3, and IAA, respectively. These findings provide essential information regarding transcriptional regulation mechanisms of StvacINV1.

  15. Polymorphisms in the kappa casein (CSN3) gene in horse and comparative analysis of its promoter and coding region.

    PubMed

    Hobor, S; Kunej, T; Dovc, P

    2008-10-01

    The major parts of the coding region and promoter of the equine kappa casein (CSN3) gene were sequenced and compared among several species. Four SNPs were identified in the CSN3 gene: two in exon 1 and two in exon 4. The SNPs were genotyped in six Slovenian horse breeds using RFLP and two different PCR-based methods. The highest variation in genotype frequencies was found in the Slovenian cold-blood breed. The SNPs in exon 4 may cause a change in the amino acid sequence and may alter chemical/functional properties of the protein. Using horse-specific primers, we obtained 400 bp of exon 4 sequence from zebra and donkey. Two SNPs within the zebra exon 4 sequence were discovered; both presumably caused amino acid substitutions. Within the equine promoter sequence, 15 SNPs were found and 12 of them could be involved in the gain/loss of potential transcription factor (TF) binding sites. Using a comparative genomics approach, we obtained 1482 bp of the promoter sequence from zebra and donkey. Sequence alignment revealed highly conserved blocks of promoter sequence among nine species (sheep, goat, cow, zebra, donkey, horse, chimp, macaque and human) and clustered these species in three distinct groups. Consensus binding sites for TFs STAT5, C/EBP, NF1 and STAT6, previously demonstrated to be associated with expression, were located within conserved regions. Four promoter regions were tested for specific binding of TFs using electrophoretic mobility shift assays. Predicted binding sites for C/EBP and NF1 were confirmed and one conserved region was specifically detected by a yet-uncharacterized TF.

  16. Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle.

    PubMed

    Aslan, Ozlem; Hamill, Ruth M; Davey, Grace; McBryan, Jean; Mullen, Anne Maria; Gispert, Marina; Sweeney, Torres

    2012-04-01

    Intramuscular fat (IMF) and subcutaneous fat (back fat-BF) are two of the major fat depots in livestock. A QTN located in the insulin-like growth factor 2 gene (IGF2) has been associated with a desirable reduction in BF depth in pigs. Given that the lipid metabolism of intramuscular adipocytes differs from that of subcutaneous fat adipocytes, this study aimed to search for genetic variation in the IGF2 gene that may be associated with IMF, as well as BF, in diverse pig breeds. Four proximal promoter regions of the IGF2 gene were characterised and the association of IGF2 genetic variation with IMF and BF was assessed. Six promoter SNPs were identified in four promoter regions (P1-P4; sequence coverage 945, 866, 784 and 864 bp, respectively) in phenotypically diverse F1 cross populations. Three promoter SNPs were subsequently genotyped in three pure breeds (Pietrain = 98, Duroc = 99 and Large White = 98). All three SNPs were >95% monomorphic in the Pietrain and Duroc breeds but minor alleles were at moderate frequencies in the Large White breed. These SNPs were linked and one was located in a putative transcription factor binding site. Five haplotypes were inferred and three combined diplotypes tested for association with IMF and BF in the Large White. As expected haplotype 1 (likely in LD with the beneficial QTN allele) was superior for BF level. In contrast, the heterozygote diplotype of the most common haplotypes (1 and 2) was associated with higher IMF and marbling scores compared to either homozygote. Gene expression analysis of divergent animals showed that IGF2 was 1.89 fold up-regulated in muscle with higher compared to lower IMF content. These findings suggest that genetic variation in the promoter region of the IGF2 gene is associated with IMF content in porcine skeletal muscle and that greater expression of the IGF2 gene is associated with higher IMF content.

  17. Long noncoding RNA PCA3 gene promoter region is related to the risk of prostate cancer on Chinese males.

    PubMed

    Zhou, Wu; Tao, Zhihua; Wang, Zhongyong; Hu, Wangqiang; Shen, Mo; Zhou, Lianlian; Wen, Zhiliang; Yu, Zhixian; Wu, Xiuling; Huang, Kate; Hu, Yuanping; Lin, Xiangyang

    2014-12-01

    Long noncoding RNA prostate cancer gene antigen 3 (PCA3) is one of the most prostate cancer-specific genes at present. Consequently, the prostate-specific expression and the sharp up-regulation of PCA3 RNA in prostate cancer suggest a unique transcriptional regulation, which possibly can be attributed to promoter polymorphism. In this study, we investigated a short tandem repeat (STR) polymorphism of TAAA in the promoter region of PCA3 gene found in our previous study in prostate cancer (PCa) patients and benign prostatic hypertrophy (BPH) patients, aiming to evaluate the association between the STR and increased risk for PCa. 120 PCa cases and 120 benign prostatic hypertrophy (BPH) cases were identified among participants. The region encompassing the TAAA repeat was amplified with a specific primer set we designed and screened by PCR-based cloning and sequencing in paired peripheral blood leukocytes and prostate tissues. Genotype-specific risks were estimated as odds ratios (ORs) associated with 95% confidence intervals (CIs) and adjusted for age by means of unconditional logistic regression. 5 PCA3 TAAA STR polymorphisms and 8 genotypes were found in both peripheral blood leukocytes and prostate tissues, the carriers with more TAAA repeats were associated with increased risk for PCa than individuals having less TAAA repeats. Interestingly, 18 (15.0%) of 120 PCa patients had more (TAAA)n repeats in prostate tissues than that in peripheral blood leukocytes, and 3 (2.5%) of 120 had less (TAAA)n repeats in prostate tissues. The results of this study suggest that short tandem repeat polymorphism of TAAA in the promoter region of PCA3 gene is a risk-increasing factor for prostate cancer in the Chinese population. In addition to the hereditary factor, the insertion mutation of (TAAA)n in a local tissue maybe another mechanism of the onset of PCa. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions.

    PubMed

    Schneeberger, Richard G; Zhang, Ke; Tatarinova, Tatiana; Troukhan, Max; Kwok, Shing F; Drais, Josh; Klinger, Kevin; Orejudos, Francis; Macy, Kimberly; Bhakta, Amit; Burns, James; Subramanian, Gopal; Donson, Jonathan; Flavell, Richard; Feldmann, Kenneth A

    2005-10-01

    Mobile insertion elements such as transposons and T-DNA generate useful genetic variation and are important tools for functional genomics studies in plants and animals. The spectrum of mutations obtained in different systems can be highly influenced by target site preferences inherent in the mechanism of DNA integration. We investigated the target site preferences of Agrobacterium T-DNA insertions in the chromosomes of the model plant Arabidopsis thaliana. The relative frequencies of insertions in genic and intergenic regions of the genome were calculated and DNA composition features associated with the insertion site flanking sequences were identified. Insertion frequencies across the genome indicate that T-strand integration is suppressed near centromeres and rDNA loci, progressively increases towards telomeres, and is highly correlated with gene density. At the gene level, T-DNA integration events show a statistically significant preference for insertion in the 5' and 3' flanking regions of protein coding sequences as well as the promoter region of RNA polymerase I transcribed rRNA gene repeats. The increased insertion frequencies in 5' upstream regions compared to coding sequences are positively correlated with gene expression activity and DNA sequence composition. Analysis of the relationship between DNA sequence composition and gene activity further demonstrates that DNA sequences with high CG-skew ratios are consistently correlated with T-DNA insertion site preference and high gene expression. The results demonstrate genomic and gene-specific preferences for T-strand integration and suggest that DNA sequences with a pronounced transition in CG- and AT-skew ratios are preferred targets for T-DNA integration.

  19. Serotonin Transporter Gene Promoter Region Polymorphism and Selective Processing of Emotional Images

    PubMed Central

    Beevers, Christopher G.; Ellis, Alissa J.; Wells, Tony T.; McGeary, John E.

    2009-01-01

    Several studies have now documented that the serotonin transporter promoter region (5-HTTLPR) polymorphism predicts neural response to affective images in brain regions involved in the experience of emotion. However, the behavioral consequences of this genetic effect are less well known. The current study used eye-tracking methodology to examine how individuals genotyped for the 5-HTTLPR allocated their attention when simultaneously presented an array of positive and negative emotional scenes. Short 5-HTTLPR allele homozygotes displayed a bias to focus on positive images, particularly in the first half of the 30-second trial. In contrast, long 5-HTTLPR allele homozygotes viewed the stimuli in a more evenhanded fashion. Thus, short 5-HTTLPR allele homozygotes may be attempting to regulate greater reactivity to negative stimuli by purposefully turning their attention towards positive stimuli. Although this sensitivity may have benefits under benign conditions, it may also increase vulnerability to affective disorders when cognitive resources needed to turn attention away from negative stimuli are compromised. PMID:19715738

  20. Role of Interleukin-10 Gene Promoter Region Polymorphism in the Development of Chronic Lymphoid Leukemia.

    PubMed

    Ovsepyan, V A; Gabdulkhakova, A Kh; Shubenkiva, A A; Zotina, E N

    2015-12-01

    Relationship between interleukin-10 (IL-10) gene G-1082A (rs1800896) polymorphism and the risk of development and stages of chronic lymphoid leukemia is studied in ethnic Russian residents of the Kirov region of Russia. Associations of allele -1082A and genotypes (-1082AA/-1082AG) with the risk of chronic lymphoid leukemia are detected (OR=1.39, 95%CI=1.09-1.78 and OR=1.66, 95%CI=1.09-2.54, respectively). In addition, association of 1082AA genotype with late stages of the disease by the moment of diagnosis is detected. These data indicate that IL-10 polymorphism G-1082A may be involved in the pathogenesis of chronic lymphoid leukemia.

  1. Molecular cloning, sequencing and functional study of the promoter region of the human alpha2C4-adrenergic receptor gene.

    PubMed

    Schaak, S; Devedjian, J C; Cayla, C; Sender, Y; Paris, H

    1997-12-01

    Screening of a human foetal brain genomic DNA library allowed us to isolate an EcoRI-EcoRI fragment containing 6 kb of the 5'-flanking region, the open reading frame and 4 kb of the 3'-flanking region of the alpha2C4 gene. Analysis of the sequenced region (4850 bp) revealed that the first 900 bp 5' to the start codon are very rich in GC (84%), contain several Sp1-binding sites and lack a consensus TATA box. The 5'- and 3'-ends of the alpha2C4 transcript were determined by RNase-protection assays carried out with a series of antisense probes. The data obtained with cellular RNA from HepG2 cells demonstrated that transcription is initiated 891 bases upstream of the translation-start site and that the polyadenylation site is located 550 bases downstream of the stop codon. These results are consistent with the existence of a non-conventional TATA box (TTAGAAA) and the presence of a unique polyadenylation signal (AATAAA). They also fit with the size of alpha2C4-RNA found by Northern-blot analysis (2.9 kb). The transcriptional activity of the alpha2C4 promoter region was investigated by transfecting several cell types with chimaeric constructs containing various fragments of the 5'-non-coding region and luciferase as a reporter gene. The activity of the construct containing the entire 5'-non-coding region appeared to depend on the host cell. Removal of the 5'-untranslated region resulted in loss of cell specificity and a concomitant increase in luciferase activity. Transfection of HepG2 and SK-N-MC cells with constructs deleted of additional 5'-flanking fragments permitted the definition of a minimal 200 bp promoter fragment containing the pseudo-TATA box and two putative SP1-binding sites.

  2. Regulation of the promoter region of the human adiponutrin/PNPLA3 gene by glucose and insulin.

    PubMed

    Rae-Whitcombe, Sharleen M; Kennedy, Darnell; Voyles, Matt; Thompson, Mary P

    2010-11-26

    The adiponutrin/PNPLA3 gene is highly expressed in adipose tissue and liver. Its expression is down-regulated by fasting and rapidly induced by refeeding a high carbohydrate diet. We aimed to determine whether the promoter region of adiponutrin is regulated by glucose and insulin. Endogenous adiponutrin mRNA was increased in mouse 3T3-L1 and human SGBS adipocytes and in human HepG2 cells cultured in 25 mM glucose compared to absence of glucose. A 3100 bp 5'-upstream region of the human adiponutrin gene was cloned into a luciferase reporter plasmid and used in transient transfection studies. Promoter activity was up-regulated by 25 mM glucose, 4.7-fold in HepG2 cells and 2-fold in CHO cells. The effect was shown in CHO cells to be concentration dependent and to depend on glucose metabolism as a non-metabolisable analogue was without effect. In CHO cells constitutively expressing human insulin receptor (CHO-IR), there was a concentration dependent increase of promoter activity by insulin in the presence of glucose. Cotransfection with an expression plasmid for upstream stimulatory factor 2 (USF2), increased promoter activity 1.6-fold in CHO-IR cells. The combined effect of insulin and USF2 (2.3-fold) was greater than the individual effects. Cotransfection of carbohydrate-response element binding protein did not elicit any induction of promoter activity. These results point to potential mechanisms for the observed in vivo nutritional regulation of adiponutrin expression and its up-regulation in fatty liver and by obesity. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Functional polymorphism of the promoter region of the prostacyclin synthase gene and severity of RSV infection in hospitalized children.

    PubMed

    Hashimoto, Koichi; Ishibashi, Kei; Gebretsadik, Tebeb; Hartert, Tina V; Yamamoto, Akihiro; Nakayama, Tomohiro; Ohashi, Kazutaka; Sakata, Hiroshi; Kawasaki, Yukihiko; Katayose, Masahiko; Sakuma, Hiroko; Suzuki, Hitoshi; Hosoya, Mitsuaki; Peebles, Ray Stokes; Suzutani, Tatsuo

    2008-11-01

    Prostaglandin I(2) (PGI(2)) protects against RSV-induced illness in mice. A variable-number tandem repeat (VNTR) polymorphism has been detected in the promoter region of the PGI(2) synthase (PGIS) gene. We sought to determine if PGI(2) concentrations or polymorphisms of the PGIS gene correlate with severity of RSV lower respiratory tract infections (LRTI) in human infants. VNTR polymorphisms were studied in 81 previously healthy children between birth and 12 months of age who were hospitalized for LRTI due to RSV and 98 healthy adult control subjects. The severity of RSV infection was quantified using a clinical scoring system, and infant urine samples were collected during the acute illness for measurement of the urinary metabolite of PGI(2). There were no significant differences in the overall distribution of alleles and genotypes between infants with RSV LRTI and the control subjects. The severity of RSV infection significantly inversely correlated with urinary PGI(2) metabolite concentrations. The urinary PGI(2) metabolite concentration correlated with the number of VNTR. The presence of a genotype with a low number VNTR repeats significantly correlated with the most severe RSV LRTI, and genotypes with the highest number of VNTR correlated with the least severe RSV LRTI. A functional polymorphism in the promoter region of the PGIS gene is associated with both significant differences in urinary PGI(2) concentrations during RSV LRTI, and severity of RSV infection in previously healthy infants.

  4. Determination of the promoter region of mouse ribosomal RNA gene by an in vitro transcription system.

    PubMed Central

    Yamamoto, O; Takakusa, N; Mishima, Y; Kominami, R; Muramatsu, M

    1984-01-01

    Sequences required for a faithful and efficient transcription of a cloned mouse ribosomal RNA gene (rDNA) are determined by testing a series of deletion mutants in an in vitro transcription system utilizing two kinds of mouse cellular extract. Deletion of sequences upstream of -40 or downstream of +52 causes only slight reduction in promoter activity as compared with the "wild-type" template. For upstream deletion mutants, the removal of a sequence between -40 and -35 causes a significant decrease in the capacity to direct efficient initiation. This decrease becomes more pronounced when the deletion reaches -32 and the sequence A-T-C-T-T-T, conserved among mouse, rat, and human rDNAs, is lost. Residual template activity is further reduced as more upstream sequence is deleted and finally becomes undetectable when the deletion is extended from -22 down to -17, corresponding to the loss of the conserved sequence T-A-T-T-G. As for downstream deletion mutants, the removal of the sequence downstream of +23 causes some (and further deletions up to +11 cause a more) serious decrease in template activity in vitro. These deletions involve other conserved sequences downstream of the transcription start site. However, the removal of the original transcription start site does not abolish the transcription initiation completely, provided that the whole upstream sequence is intact. Images PMID:6320178

  5. Priming affects the activity of a specific region of the promoter of the human beta interferon gene.

    PubMed Central

    Dron, M; Lacasa, M; Tovey, M G

    1990-01-01

    Treatment of Daudi or HeLa cells with human interferon (IFN) alpha 8 before induction with either poly(I)-poly(C) or Sendai virus resulted in an 8- to 100-fold increase in IFN production. The extent of priming in Daudi cells paralleled the increase in the intracellular content of IFN-beta mRNA. IFN-alpha mRNA remained undetectable in poly(I)-poly(C)-treated Daudi cells either before or after priming. An IFN-resistant clone of Daudi cells was found to produce 4- to 20-fold more IFN after priming, indicating that priming was unrelated to the phenotype of IFN sensitivity. IFN treatment of either Daudi or HeLa cells transfected with the human IFN-beta promoter (-282 to -37) linked to the chloramphenicol acetyltransferase (CAT) gene resulted in an increase in CAT activity after induction with poly(I)-poly(C) or Sendai virus. A synthetic double-stranded oligonucleotide corresponding to an authentic 30-base-pair (bp) region of the human IFN-beta promoter between positions -91 and -62 was found to confer virus inducibility upon the reporter CAT gene in HeLa cells. IFN treatment of HeLa cells transfected with this 30-bp region of the IFN-beta promoter in either the correct or reversed orientation also increased CAT activity upon subsequent induction. IFN treatment alone had no detectable effect on the activity of either the 30-bp region or the complete human IFN promoter. Images PMID:2153928

  6. Identification of evolutionarily conserved, functional noncoding elements in the promoter region of the sodium channel gene SCN8A.

    PubMed

    Drews, Valerie L; Shi, Kehui; de Haan, Georgius; Meisler, Miriam H

    2007-10-01

    SCN8A is a major neuronal sodium channel gene expressed throughout the central and peripheral nervous systems. Mutations of SCN8A result in movement disorders and impaired cognition. To investigate the basis for the tissue-specific expression of SCN8A, we located conserved, potentially regulatory sequences in the human, mouse, chicken, and fish genes by 5' RACE of brain RNA and genomic sequence comparison. A highly conserved 5' noncoding exon, exon 1c, is present in vertebrates from fish to mammals and appears to define the ancestral promoter region. The distance from exon 1c to the first coding exon increased tenfold during vertebrate evolution, largely by insertion of repetitive elements. The mammalian gene acquired three novel, mutually exclusive noncoding exons that are not represented in the lower vertebrates. Within the shared exon 1c, we identified four short sequence elements of 10-20 bp with an unusually high level of evolutionary conservation. The conserved elements are most similar to consensus sites for the transcription factors Pou6f1/Brn5, YY1, and REST/NRSF. Introduction of mutations into the predicted Pou6f1 and REST sites reduced promoter activity in transfected neuronal cells. A 470-bp promoter fragment containing all of the conserved elements directed brain-specific expression of the LacZ reporter in transgenic mice. Transgene expression was highest in hippocampal neurons and cerebellar Purkinje cells, consistent with the expression of the endogenous gene. The compact cluster of conserved regulatory elements in SCN8A provides a useful target for molecular analysis of neuronal gene expression.

  7. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain.

    PubMed

    van der Doelen, Rick H A; Arnoldussen, Ilse A; Ghareh, Hussein; van Och, Liselot; Homberg, Judith R; Kozicz, Tamás

    2015-02-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene × Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid release upon exposure to stress. Both endophenotypes are regulated by the neuropeptide corticotropin-releasing factor (CRF) or hormone, which is expressed by the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, and the central amygdala (CeA). Therefore, we hypothesized that altered regulation of the expression of CRF in these areas represents a major neurobiological mechanism underlying the interaction of early life stress and 5-HTT gene variation. The programming of gene transcription by Gene × Environment interactions has been proposed to involve epigenetic mechanisms such as DNA methylation. In this study, we report that early life stress and 5-HTT genotype interact to affect DNA methylation of the Crf gene promoter in the CeA of adult male rats. Furthermore, we found that DNA methylation of a specific site in the Crf promoter significantly correlated with CRF mRNA levels in the CeA. Moreover, CeA CRF mRNA levels correlated with stress coping behavior in a learned helplessness paradigm. Together, our findings warrant further investigation of the link of Crf promoter methylation and CRF expression in the CeA with behavioral changes that are relevant for psychopathology.

  8. Amplification and analysis of promoter region of insulin receptor gene in a patient with leprechaunism associated with severe insulin resistance.

    PubMed

    Haruta, T; Imamura, T; Iwanishi, M; Egawa, K; Goji, K; Kobayashi, M

    1995-04-01

    A patient with leprechaunism associated with severe insulin resistance was studied to identify the molecular and genetic basis for insulin resistance. Insulin binding and surface labeling of transformed lymphocytes prepared from the patient showed a significantly decreased insulin receptor number on the cell surface. Southern blot analysis of the insulin receptor gene showed no evidence of large insertions or deletions. Furthermore, direct sequencing of all 22 exons and exon-intron junctions of the insulin receptor gene failed to show any missense mutations, nonsense mutations, or mutations at exon-intron junctions. However, Northern blot analysis indicated significantly decreased insulin receptor mRNA expression in the patient's cells. Moreover, restriction endonuclease digestion of the amplified cDNA suggested that the expression levels of one allele were less efficient than the other. These findings suggested that the regulatory region of the insulin receptor gene might have abnormalities. Therefore, we examined the 5' flanking region of the insulin receptor gene. Southern blot analysis showed no major deletions or insertions between positions -1,823 and -2 relative to the translation initiation site. A 5' flanking region of the insulin receptor gene spanning positions -881 approximately +7 was amplified by polymerase chain reaction (PCR) and introduced into a reporter plasmid carrying the human growth hormone (hGH) gene. The nucleotide sequence of the amplified fragment showed two polymorphic sites at positions -603 and -500 in the patient, as well as in normal subjects. No other abnormal sequence was found in the patient. Promoter activity measured by hGH expression in transfected mouse L cells was not influenced by the polymorphism at position -603 located in a cluster of GC boxes.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD.

    PubMed

    Wang, Chunrong; Peng, Huirong; Li, Jiada; Ding, Dongxue; Chen, Zhao; Long, Zhe; Peng, Yun; Zhou, Xin; Ye, Wei; Li, Kai; Xu, Qian; Ai, Sanxi; Song, Chengyuan; Weng, Ling; Qiu, Rong; Xia, Kun; Tang, Beisha; Jiang, Hong

    2017-05-01

    DNA methylation has been acknowledged as one of the key epigenetic mechanisms involved in the regulation of gene expression and genomic functions. Alteration of the DNA methylation level has been linked to modification of the disease progression and instability regulation of certain disease-causing repeats in neurodegenerative diseases. In this study, blood samples collected from spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) patients versus control were used to explore the potential link of DNA methylation levels at ATXN3 gene promoter to the pathogenesis of SCA3/MJD. We found that the methylation levels in the ATXN3 promoter were significantly higher in SCA3/MJD patients relative to the controls. Furthermore, higher methylation levels were detected in the SCA3/MJD patients with earlier age at onset and the families with an intergenerational CAG repeats instability. In addition, the first CpG island of the ATXN3 promoter served as the main regulation region of DNA methylation. These findings suggested that an epigenetic change may contribute to the pathogenesis of the SCA3/MJD and provide potential therapeutic targets for CAG repeats-based diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle

    USDA-ARS?s Scientific Manuscript database

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation, and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, a total of three no...

  11. Identification of laticifer-specific genes and their promoter regions from a natural rubber producing plant Hevea brasiliensis.

    PubMed

    Aoki, Yuichi; Takahashi, Seiji; Takayama, Daisuke; Ogata, Yoshiyuki; Sakurai, Nozomu; Suzuki, Hideyuki; Asawatreratanakul, Kasem; Wititsuwannakul, Dhirayos; Wititsuwannakul, Rapepun; Shibata, Daisuke; Koyama, Tanetoshi; Nakayama, Toru

    2014-08-01

    Latex, the milky cytoplasm of highly differentiated cells called laticifers, from Hevea brasiliensis is a key source of commercial natural rubber production. One way to enhance natural rubber production would be to express genes involved in natural rubber biosynthesis by a laticifer-specific overexpression system. As a first step to identify promoters which could regulate the laticifer-specific expression, we identified random clones from a cDNA library of H. brasiliensis latex, resulting in 4325 expressed sequence tags (ESTs) assembled into 1308 unigenes (692 contigs and 617 singletons). Quantitative analyses of the transcription levels of high redundancy clones in the ESTs revealed genes highly and predominantly expressed in laticifers, such as Rubber Elongation Factor (REF), Small Rubber Particle Protein and putative protease inhibitor proteins. HRT1 and HRT2, cis-prenyltransferases involved in rubber biosynthesis, was also expressed predominantly in laticifers, although these transcript levels were 80-fold lower than that of REF. The 5'-upstream regions of these laticifer-specific genes were cloned and analyzed in silico, revealing seven common motifs consisting of eight bases. Furthermore, transcription factors specifically expressed in laticifers were also identified. The common motifs in the laticifer-specific genes and the laticifer-specific transcription factors are potentially involved in the regulation of gene expression in laticifers.

  12. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene

    SciTech Connect

    Shannon, M.F.; Gamble, J.R.; Vadas, M.A.

    1988-02-01

    The gene for human granulocyte/macrophage colony-stimulating factor (GM-CSF) is expressed in a tissue-specific as well as an activation-dependent manner. The interaction of nuclear proteins with the promoter region of the GM-CSF gene that is likely to be responsible for this pattern of GM-CSF expression was investigated. The authors show that nuclear proteins interact with DNA fragments from the GM-CSF promoter in a cell-specific manner. A region spanning two cytokine-specific sequences, cytokine 1 (CK-1, 5', GAGATTCCAC 3') and cytokine 2 (CK-2, 5' TCAGGTA 3') bound two nuclear proteins from GM-CSF-expressing cells in gel retardation assays. NF-GMb was inducible with phorbol 12-myristate 13-acetate and accompanied induction of GM-CSF message. NF-GMb was absent in cell lines not producing GM-CSF, some of which had other distinct binding proteins. NF-GMa and NF-GMb eluted from a heparin-Sepharose column at 0.3 and 0.6 M KCl, respectively. They hypothesize that the sequences CK-1 and CK-2 bind specific proteins and regulate GM-CSF transcription.

  13. Polymorphism in the promoter region of the Toll-like receptor 9 gene and cervical human papillomavirus infection.

    PubMed

    Oliveira, Lucas Boeno; Louvanto, Karolina; Ramanakumar, Agnihotram V; Franco, Eduardo L; Villa, Luisa L

    2013-08-01

    Polymorphism in the Toll-like receptor (TLR) 9 gene has been shown to have a significant role in some diseases; however, little is known about its possible role in the natural history of human papillomavirus (HPV) infections. We investigated the association between a single-nucleotide polymorphism (SNP) (rs5743836) in the promoter region of TLR9 (T1237C) and type-specific HPV infections. Specimens were derived from a cohort of 2462 women enrolled in the Ludwig-McGill Cohort Study. We randomly selected 500 women who had a cervical HPV infection detected at least once during the study as cases. We defined two control groups: (i) a random sample of 300 women who always tested HPV negative, and (ii) a sample of 234 women who were always HPV negative but had a minimum of ten visits during the study. TLR9 genotyping was performed using bidirectional PCR amplification of specific alleles. Irrespective of group, the WT homozygous TLR9 genotype (TT) was the most common form, followed by the heterozygous (TC) and the mutant homozygous (CC) forms. There were no consistent associations between polymorphism and infection risk, either overall or by type or species. Likewise, there were no consistently significant associations between polymorphism and HPV clearance or persistence. We concluded that this polymorphism in the promoter region of TLR9 gene does not seem to have a mediating role in the natural history of the HPV infection.

  14. Promoter Analyses of CCN Genes.

    PubMed

    Eguchi, Takanori; Kubota, Satoshi; Takigawa, Masaharu

    2017-01-01

    Promoter analysis is the most basics in the analysis of gene regulation. Luciferase gene is the most commonly used reporter gene in promoter analysis. Luciferase is an enzyme that is used when firefly and Renilla reniformis (sea pansy) emit light. The first experimental step in this reporter gene assay is to connect a particular DNA segment to a luciferase gene. The second step is to transfect the reporter construct into the cells. Thereafter, stable luciferase will be produced with the help of transcriptional machinery, mRNA transporters, and translational machinery in the cells. Luciferase assay measures the quantity of light that is emitted by luciferin-luciferase reaction. Consistent with the fact that CCN2 expression has been shown to be altered by a variety of stimuli, the CCN2 promoter region also haa been shown to be bound and regulated by multiple transcription factors such as Smad, MMP3, NF-κB, AP1, TCF/LEF, and Sox9.

  15. Genetic polymorphisms in the promoter region of catalase gene, creates new potential PAX-6 and STAT4 response elements.

    PubMed

    Saify, Khyber

    2016-06-01

    Catalase (CAT, OMIM: 115500) is an endogenous antioxidant enzyme and genetic variations in the regulatory regions of the CAT gene may alter the CAT enzyme activity and subsequently may alter the risk of oxidative stress related disease. In this study, potential influence(s) of the A-21T (rs7943316) and C-262T (rs1001179) genetic polymorphisms in the CAT promoter region, using the ALGGEN-PROMO.v8.3 online software were analyzed. Our findings show that the A allele at the -21 position creates a new potential binding site for PAX-6 and the T allele at the -262 position changes the TFII-I binding site into STAT4 response element. The PAX-6 and STAT4 are the multifunctional and enhancing transcription factors.

  16. A triple stranded G-quadruplex formation in the promoter region of human myosin β(Myh7) gene.

    PubMed

    Singh, Anju; Kukreti, Shrikant

    2017-09-19

    Regulatory regions in human genome, enriched in guanine-rich DNA sequences have the propensity to fold into G-quadruplex structures. On exploring the genome for search of G-tracts, it was interesting to find that promoter of Human Myosin Gene (MYH7) contains a conserved 23-mer G-rich sequence (HM-23). Mutations in this gene are associated with familial cardiomyopathy. Enrichment of MYH7 gene in G-rich sequences could possibly play a critical role in its regulation. We used polyacrylamide gel electrophoresis (PAGE), UV-Thermal denaturation (UV-Tm) and Circular Dichroism (CD), to demonstrate the formation of a G-quadruplex by 23-mer G-rich sequence HM23 in promoter location of MYH7 gene. We observed that the wild G-rich sequence HM23 containing consecutive G5 stretch in two stacks adopt G-quadruplexes of diverse molecularity by involvement of four-strand, three-strand and two-strands with same parallel topology. Interestingly, the mutated sequence in the absence of continuous G5 stretch obstructs the formation of three-stranded G-quadruplex. We demonstrated that continuous G5 stretch is mandatory for the formation of a unique three-stranded G-quadruplex. Presence of various transcription factors (TF) in vicinity of the sequence HM23 leave fair possibility of recognition by TF binding sites, and so modulate gene expression. These findings may add on our understanding about the effect of base change in the formation of varied structural species in similar solution condition. This study may give insight about structural polymorphism arising due to recognition of non-Watson-Crick G-quadruplex structures by cellular proteins and designing structure specific molecules.

  17. Systematic screening for mutations in the promoter and the coding region of the 5-HT{sub 1A} gene

    SciTech Connect

    Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S.

    1995-10-09

    In the present study we sought to identify genetic variation in the 5-HT{sub 1A} receptor gene which through alteration of protein function or level of expression might contribute to the genetic predisposition to neuropsychiatric diseases. Genomic DNA samples from 159 unrelated subjects (including 45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 healthy controls) were investigated by single-strand conformation analysis. Overlapping PCR (polymerase chain reaction) fragments covered the whole coding sequence as well as the 5{prime} untranslated region of the 5-HT{sub 1A} gene. The region upstream to the coding sequence we investigated contains a functional promoter. We found two rare nucleotide sequence variants. Both mutations are located in the coding region of the gene: a coding mutation (A{yields}G) in nucleotide position 82 which leads to an amino acid exchange (Ile{yields}Val) in position 28 of the receptor protein and a silent mutation (C{yields}T) in nucleotide position 549. The occurrence of the Ile-28-Val substitution was studied in an extended sample of patients (n = 352) and controls (n = 210) but was found in similar frequencies in all groups. Thus, this mutation is unlikely to play a significant role in the genetic predisposition to the diseases investigated. In conclusion, our study does not provide evidence that the 5-HT{sub 1A} gene plays either a major or a minor role in the genetic predisposition to schizophrenia, bipolar affective disorder, or Tourette`s syndrome. 29 refs., 4 figs., 1 tab.

  18. A functional polymorphism in the promoter region of MAOA gene is associated with daytime sleepiness in healthy subjects.

    PubMed

    Ojeda, Diego A; Niño, Carmen L; López-León, Sandra; Camargo, Andrés; Adan, Ana; Forero, Diego A

    2014-02-15

    Excessive daytime sleepiness (EDS) is one of the main causes of car and industrial accidents and it is associated with increased morbidity and alterations in quality of life. Prevalence of EDS in the general population around the world ranges from 6.2 to 32.4%, with a heritability of 38-40%. However, few studies have explored the role of candidate genes in EDS. Monoamine oxidase A (MAOA) gene has an important role in the regulation of neurotransmitter levels and a large number of human behaviors. We hypothesized that a functional VNTR in the promoter region of the MAOA gene might be associated with daytime sleepiness in healthy individuals. The Epworth sleepiness scale (ESS) was applied to 210 Colombian healthy subjects (university students), which were genotyped for MAOA-uVNTR. MAOA-uVNTR showed a significant association with ESS scores (p = 0.01): 3/3 genotype carriers had the lowest scores. These results were supported by differences in MAOA-uVNTR frequencies between diurnal somnolence categories (p = 0.03). Our finding provides evidence for the first time that MAOA-uVNTR has a significant association with EDS in healthy subjects. Finally, these data suggest that functional variations in MAOA gene could have a role in other phenotypes of neuropsychiatric relevance. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells

    SciTech Connect

    Gilmour, D.S.; Lis, J.T.

    1986-11-01

    By using a protein-DNA cross-linking method, we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.

  20. [Effectiveness of expression of tdh gene of Vibrio parahaemolyticus depends on two point mutations in promoter region].

    PubMed

    Shalu, O A; Pisanov, R V; Monakhova, E V

    2012-12-01

    A molecular-biological study of the clinical strains of Vibrio parahaemolyticus that contain genes of thermostable direct hemolysin Tdh) and Tdh-related hemolysin (Trh). Using Southern blot hybridization, it is shown that genomes of strains that carry determinants of both hemolysins (tdh(+)-trh+) represent a single copy, whereas in tdh2+RH+ strains, there are two copies (tdh1 and tdh2). All of the examined tdh+trh+ and some of the tdh+trh strains either did not express the tdh gene or did not express the tdh gene (Kanagawa negative or KP-) or expressed it weakly and not often (Kanagawa intermediate, KP+), unlike several Kanagawa positive tdh+trh- strains. To establish the reasons for KP -/+ phenotypes, tdh, tdh11, and tdh2 genes of 13 strains isolated in Russia and neighboring foreign countries were sequenced, followed by the biotransformation analysis of the obtained sequences, as well as a comparison with those of a number of strains presented in GenBank. The results revealed that the weak expression of the tdh gene depends, not only on one point mutation in the promoter region (substitution of A for G in the -35 region), as was thought previously, but also on the second substitution (G for A in the -3 position relative to the -10 sequence), which is quite sufficient when the former is absent. Therefore, the reversion of KP -/+ strains that contain one of these substitutions can take place as a result of a single reverse point mutation, and they should be considered potentially dangerous. Strains that contain both substitutions may revert with lesser probability because, in this case, both mutations are necessary.

  1. The dynamics of mobile promoters: Enhanced stability in promoter regions.

    PubMed

    Rabbani, Mahnaz; Wahl, Lindi M

    2016-10-21

    Mobile promoters are emerging as a new class of mobile genetic elements, first identified by examining prokaryote genome sequences, and more recently confirmed by experimental observations in bacteria. Recent datasets have identified over 40,000 putative mobile promoters in sequenced prokaryote genomes, however only one-third of these are in regions of the genome directly upstream from coding sequences, that is, in promoter regions. The presence of many promoter sequences in non-promoter regions is unexplained. Here we develop a general mathematical model for the dynamics of mobile promoters, extending previous work to capture the dynamics both within and outside promoter regions. From this general model, we apply rigorous model selection techniques to identify which parameters are statistically justified in describing the available mobile promoter data, and find best-fit values of these parameters. Our results suggest that high rates of horizontal gene transfer maintain the population of mobile promoters in promoter regions, and that once established at these sites, mobile promoters are rarely lost, but are commonly copied to other genomic regions. In contrast, mobile promoter copies in non-promoter regions are more numerous and more volatile, experiencing substantially higher rates of duplication, loss and diversification.

  2. Panic Disorder is Associated with the Serotonin Transporter Gene (SLC6A4) But Not the Promoter Region (5-HTTLPR)

    PubMed Central

    Strug, Lisa J.; Suresh, Rathi; Fyer, Abby; Talati, Ardesheer; Adams, Philip B.; Li, Weili; Hodge, Susan E.; Gilliam, T. Conrad; Weissman, Myrna M.

    2008-01-01

    Panic disorder (PD) and social anxiety disorder (SAD) are moderately heritable anxiety disorders. We analyzed five genes, derived from pharmacological or translational mouse models, in a new case-control study of PD and SAD in European Americans: (1) the serotonin transporter (SLC6A4), (2) the serotonin receptor 1A (HTR1A), (3) catechol-o-methyltransferase (COMT), (4) a regulator of g-protein signalling, RGS2, and (5) the gastrin releasing peptide receptor (GRPR). Cases were interviewed using the Schedule for Affective disorders and Schizophrenia (SADS-LA-IV) and were required to have a probable or definite lifetime diagnosis of PD (N = 179), SAD (161) or both (140), with first onset by age 31 and a family history of anxiety. Final diagnoses were determined using the best estimate procedure, blind to genotyping data. Controls were obtained from the NIMH Human Genetics Initiative; only subjects above 25 years of age who screened negative for all psychiatric symptoms were included (N = 470). A total of 45 SNPs were successfully genotyped over the 5 selected genes using Applied Biosystems SNPlex protocol. SLC6A4 provided strong and consistent evidence of association with the PD and PD+SAD groups, with the most significant association in both groups being at rs140701 (χ2=10.72, p=0.001 with PD and χ2=8.59, p=0.003 in the PD+SAD group). This association remained significant after multiple test correction. Those carrying at least one copy of the haplotype A-A-G constructed from rs3794808, rs140701 and rs4583306 have 1.7 times the odds of PD than those without the haplotype (90%CI 1.2-2.3). The SAD only group did not provide evidence of association, suggesting a PD driven association. The findings remained after adjustment for age and sex, and there was no evidence that the association was due to population stratification. The promoter region of the gene, 5-HTTLPR, did not provide any evidence of association, regardless of whether analyzed as a triallelic or biallelic

  3. Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation.

    PubMed

    Harony-Nicolas, Hala; Mamrut, Shimrat; Brodsky, Leonid; Shahar-Gold, Hadar; Barki-Harrington, Liza; Wagner, Shlomo

    2014-01-01

    Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species. The diversity in the pattern of brain Oxtr expression among mammals is thought to contribute to the broad range of social systems and organizations. Yet, the mechanisms underlying this diversity are poorly understood. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression levels of the Oxtr in individuals with autism. Here we hypothesize that DNA methylation is involved in the expression regulation of Oxtr in the mouse brain. By combining bisulfite DNA conversion and Next-Generation Sequencing we found that specific CpG sites are differentially methylated between distinct brain regions expressing different levels of Oxtr mRNA. Some of these CpG sites are located within putative binding sites of transcription factors known to regulate Oxtr expression, including estrogen receptor α (ERα) and SP1. Specifically, methylation of the SP1 site was found to positively correlate with Oxtr expression. Furthermore, we revealed that the methylation levels of these sites in the various brain regions predict the relationship between ERα and Oxtr mRNA levels. Collectively, our results suggest that brain region-specific expression of the mouse Oxtr gene is epigenetically regulated by DNA methylation of its promoter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Haplotypes in the promoter region of the CIDEC gene associated with growth traits in Nanyang cattle

    USDA-ARS?s Scientific Manuscript database

    Cell death-inducing DFFA-like effector c (CIDEC, also known as Fsp27) has emerged as an important regulator of metabolism associated with lipodystrophy, diabetes, and hepatic steatosis. It is required for unilocular lipid droplet formation and optimal energy storage. The mechanism between this gene ...

  5. Two bi-allelic single nucleotide polymorphisms within the promoter region of the horse tumour necrosis factor alpha gene.

    PubMed

    Matiasovic, J; Lukeszová, L; Horín, P

    2002-08-01

    Primers based on GenBank sequences within the 5' untranslated region (UTR) of the human and horse tumour necrosis factor alpha (TNF-alpha) genes were designed and used to amplify a 522-bp product. Sequencing of five clones derived from five independent PCRs obtained from three different animals of three different breeds (Old Kladruber, Akhal-Teke and Shetland Pony) revealed a high level of sequence identity to the TNF-alpha promoter regions of other species. The existing GenBank horse sequences were confirmed and extended upstream by 230 nucleotides. Based on the sequence obtained, a new horse-specific forward primer was designed to amplify a 213-bp PCR product, which was screened for polymorphism using single-strand conformation polymorphism (SSCP). Three allelic variants of the horse TNF-alpha gene were identified and sequenced (GenBank accession numbers ADF 349558-60). Two single nucleotide polymorphisms explained the existence of the three SSCP alleles detected: C/T and T/C single base pair substitutions at positions 137 and 147, respectively. Differences in allelic frequencies between Old Kladruber and Akhal-Teke breeds were observed.

  6. Effects of genetic variants in the promoter region of the bovine adiponectin (ADIPOQ) gene on marbling of Hanwoo beef cattle.

    PubMed

    Choi, Yoonjeong; Davis, Michael E; Chung, Hoyoung

    2015-07-01

    This study aimed to verify genetic effects of the bovine adiponectin (ADIPOQ) gene on carcass traits of Hanwoo cattle. The measured carcass traits were marbling score (MAR), backfat thickness (BFT), loineye area (LEA), and carcass weight (CAW). Selection of primers was based on the bovine ADIPOQ sequence, and the analysis amplified approximately 267 and 333 bp genomic segments, including 67 bp of insertions in the promoter region. Sequencing analysis confirmed genetic variants (g.81966235C>T, g.81966377T>C, and g.81966364D>I) that showed significant effects on MAR. The present results suggest that the identified SNPs are useful genetic markers for the improvement of carcass traits in Hanwoo cattle.

  7. Impaired executive control is associated with a variation in the promoter region of the tryptophan hydroxylase 2 gene.

    PubMed

    Reuter, Martin; Ott, Ulrich; Vaitl, Dieter; Hennig, Jürgen

    2007-03-01

    Current models of attention describe attention not as a homogenous entity but as a set of neural networks whose measurement yields a set of three endophenotypes-alerting, orienting, and executive control. Previous findings revealed different neuroanatomical regions for these subsystems, and data from twin studies indicate differences in their heritability. The present study investigated the molecular genetic basis of attention in a sample of 100 healthy subjects. Attention performance was assessed with the attention network test that distinguishes alerting, orienting, and executive control (conflict) using a simple reaction time paradigm with different cues and congruent and incongruent flankers. Two gene loci on candidate genes for cognitive functioning, the functional catechol-O-methyltransferase (COMT) VAL158MET and the tryptophan hydroxylase 2 (TPH2) -703 G/T promoter polymorphism, were tested for possible associations with attention. COMT is involved in the catabolism of dopamine, and TPH is the rate-limiting enzyme for serotonin synthesis. Results showed no effect of the COMT polymorphism on attention performance. However, the TT genotype of TPH2 -03 G/T was significantly associated with more errors (a possible indicator of impaired impulse control; p = .001) and with decreased performance in executive control (p = .001). This single-nucleotide polymorphism on the TPH2 gene explained more than 10% of the variance in both indicators of attention stressing the role of the serotonergic system for cognitive functions.

  8. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes

    PubMed Central

    Xu, Hongqin; Wang, Fan; Kranzler, Henry R.; Gelernter, Joel; Zhang, Huiping

    2017-01-01

    Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina’s GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P < 0.05) with AD-ND codependence in both AAs and EAs. One CpG (HTR2B cg27531267) was hypomethylated in AA cases (P = 7.2 × 10−5), while 17 CpGs in 16 genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10−9 ≤ P ≤ 9.5 × 10−5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around. PMID:28165486

  9. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene.

    PubMed

    Koilan, Subramaniyan; Hamilton, David; Baburyan, Narina; Padala, Mythili K; Weber, Karl T; Guntaka, Ramareddy V

    2010-10-01

    Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from -141 to -165 (relative to the transcription start site) in the 5' end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules.

  10. Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region.

    PubMed

    Zhang, Jian; Chen, Suning; Zhang, Wei; Zhang, Jing; Liu, Xinping; Shi, Hai; Che, Honglei; Wang, Weizhong; Li, Fuyang; Yao, Libo

    2008-07-01

    N-Myc downstream-regulated gene 1 (ndrg1) is up-regulated in N-Myc knockout mouse embryos. The human NDRG family consists of 4 highly homologous members and human Ndrg1 exhibits approximately 94% homology with mouse ndrg1. However, the regulatory mechanism of NDRG1 via Myc repression is as yet unknown. We previously identified human NDRG2 and demonstrated that this gene is transcriptionally down-regulated by Myc via Miz-1-dependent interaction with the core promoter region of NDRG2. Here, we provide evidence that human NDRG1 is regulated by Myc in a manner similar to NDRG2. We found that Ndrg1 expression levels were enhanced as Myc expression declined in differentiated cells, but were down-regulated following Myc induction. The data revealed that both N-Myc and c-Myc can repress human NDRG1 at the transcriptional level. We further determined that the core promoter region of human NDRG1 is required for Myc repression, and verified the interaction of Myc with the core promoter region. However, the presence of the protein synthesis inhibitor cycloheximide could reverse the repression of Myc, indicating the indirect repression of human NDRG1 by Myc. Moreover, we found that c-Myc-mediated repression can be inhibited by TSA, an HDACs inhibitor, which suggests the involvement of HDACs in the repression process. Taken together, our results demonstrate that, in common with NDRG2, human NDRG1 can be indirectly transcriptionally down-regulated by Myc via interaction with the NDRG1 core promoter.

  11. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds.

    PubMed

    Banlaki, Zsofia; Cimarelli, Giulia; Viranyi, Zsofia; Kubinyi, Eniko; Sasvari-Szekely, Maria; Ronai, Zsolt

    2017-06-01

    A growing body of evidence highlights the relationship between epigenetics, especially DNA methylation, and population divergence as well as speciation. However, little is known about how general the phenomenon of epigenetics-wise separation of different populations is, or whether population assignment is, possible based on solely epigenetic marks. In the present study, we compared DNA methylation profiles between four different canine populations: three domestic dog breeds and their ancestor the gray wolf. Altogether, 79 CpG sites constituting the 65 so-called CpG units located in the promoter regions of genes affecting behavioral and temperamental traits (COMT, HTR1A, MAOA, OXTR, SLC6A4, TPH1, WFS1)-regions putatively targeted during domestication and breed selection. Methylation status of buccal cells was assessed using EpiTYPER technology. Significant inter-population methylation differences were found in 52.3% of all CpG units investigated. DNA methylation profile-based hierarchical cluster analysis indicated an unambiguous segregation of wolf from domestic dog. In addition, one of the three dog breeds (Golden Retriever) investigated also formed a separate, autonomous group. The findings support that population segregation is interrelated with shifts in DNA methylation patterns, at least in putative selection target regions, and also imply that epigenetic profiles could provide a sufficient basis for population assignment of individuals.

  12. Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region.

    PubMed Central

    Benvenuto, G; Carpentieri, M L; Salvatore, P; Cindolo, L; Bruni, C B; Chiariotti, L

    1996-01-01

    The galectin-1 gene is developmentally regulated gene whose activity is strongly modulated during cell differentiation and transformation. We have previously shown that galectin-1 promoter constructs are highly active when transiently transfected in cells both expressing and not expressing the endogenous gene and that the basal activity is determined by a small region encompassing the transcription start site (from positions -50 to +50). We have now investigated the role of DNA methylation in galectin-1 gene expression. Southern blot analysis with HpaII and MspI endonucleases and sodium bisulfite analysis of genomic DNA from expressing and nonexpressing cell lines and cell hybrids showed a close correlation between gene activity and demethylation of the 5' region of the galectin-1 gene. We found that the galectin-1 promoter region is fully methylated, at every CpG site on both strands, in nonexpressing differentiated rat liver (FAO) and thyroid (PC C13) cells and unmethylated in the expressing undifferentiated liver (BRL3A) and thyroid transformed (PC myc/raf) cell lines. In addition, reactivation of the silent FAO alleles in FAO-human osteosarcoma (143tk-) hybrid cells is accompanied by a complete demethylation of the promoter region. Finally, when galectin-1 chloramphenicol acetyltransferase (CAT) promoter constructs were methylated in vitro by SssI methylase at every cytosine residue of the CpG doublets and transfected into mouse fibroblasts, the transcription of the CAT reporter gene was strongly inhibited. PMID:8649381

  13. Genome-Wide Anaplasma phagocytophilum AnkA-DNA Interactions Are Enriched in Intergenic Regions and Gene Promoters and Correlate with Infection-Induced Differential Gene Expression

    PubMed Central

    Dumler, J. Stephen; Sinclair, Sara H.; Pappas-Brown, Valeria; Shetty, Amol C.

    2016-01-01

    Anaplasma phagocytophilum, an obligate intracellular prokaryote, infects neutrophils, and alters cardinal functions via reprogrammed transcription. Large contiguous regions of neutrophil chromosomes are differentially expressed during infection. Secreted A. phagocytophilum effector AnkA transits into the neutrophil or granulocyte nucleus to complex with DNA in heterochromatin across all chromosomes. AnkA binds to gene promoters to dampen cis-transcription and also has features of matrix attachment region (MAR)-binding proteins that regulate three-dimensional chromatin architecture and coordinate transcriptional programs encoded in topologically-associated chromatin domains. We hypothesize that identification of additional AnkA binding sites will better delineate how A. phagocytophilum infection results in reprogramming of the neutrophil genome. Using AnkA-binding ChIP-seq, we showed that AnkA binds broadly throughout all chromosomes in a reproducible pattern, especially at: (i) intergenic regions predicted to be MARs; (ii) within predicted lamina-associated domains; and (iii) at promoters ≤ 3000 bp upstream of transcriptional start sites. These findings provide genome-wide support for AnkA as a regulator of cis-gene transcription. Moreover, the dominant mark of AnkA in distal intergenic regions known to be AT-enriched, coupled with frequent enrichment in the nuclear lamina, provides strong support for its role as a MAR-binding protein and genome “re-organizer.” AnkA must be considered a prime candidate to promote neutrophil reprogramming and subsequent functional changes that belie improved microbial fitness and pathogenicity. PMID:27703927

  14. Microsatellite polymorphism in the P1 promoter region of the IGF-1 gene is associated with endometrial cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; WOLUN-CHOLEWA, MARIA; POLAK, GRZEGORZ; SIEROCINSKA-SAWA, JADWIGA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2016-01-01

    Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF-1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI-H) accumulate mutations at a microsatellite sequence in the IGF-1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF-1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)-1 and IGFBP-3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF-1. ELISA was used to determine the blood serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=−0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=−0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P= 0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with those in the MSI-H 20

  15. Microsatellite polymorphism in the P1 promoter region of the IGF‑1 gene is associated with endometrial cancer.

    PubMed

    Kwasniewski, Wojciech; Gozdzicka-Jozefiak, Anna; Wolun-Cholewa, Maria; Polak, Grzegorz; Sierocinska-Sawa, Jadwiga; Kwasniewska, Anna; Kotarski, Jan

    2016-06-01

    Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF‑1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI‑H) accumulate mutations at a microsatellite sequence in the IGF‑1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF‑1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)‑1 and IGFBP‑3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF‑1. ELISA was used to determine the blood serum levels of IGF‑1, IGFBP‑1, IGFBP‑3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF‑1, IGFBP‑1, IGFBP‑3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=-0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=-0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P=0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with

  16. Contribution of individual promoters in the ddlB-ftsZ region to the transcription of the essential cell-division gene ftsZ in Escherichia coli.

    PubMed

    Flärdh, K; Garrido, T; Vicente, M

    1997-06-01

    The essential cell-division gene ftsZ is transcribed in Escherichia coli from at least six promoters found within the coding regions of the upstream ddlB, ftsQ, and ftsA genes. The contribution of each one to the final yield of ftsZ transcription has been estimated using transcriptional lacZ fusions. The most proximal promoter, ftsZ2p, contributes less than 5% of the total transcription from the region that reaches ftsZ. The ftsZ4p and ftsZ3p promoters, both located inside ftsA, produce almost 37% of the transcription. An ftsAp promoter within the ftsQ gene yields nearly 12% of total transcription from the region. A large proportion of transcription (approximately 46%) derives from promoters ftsQ2p and ftsQ1p, which are located inside the upstream ddlB gene. Thus, the ftsQAZ genes are to a large extent transcribed as a polycistronic mRNA. However, we find that the ftsZ proximal region is necessary for full expression, which is in agreement with a recent report that mRNA cleavage by RNase E at the end of the ftsA cistron has a significant role in the contol of ftsZ expression.

  17. New Variations in the Promoter Regions of Human DOCK4 and RAP1A Genes, and Coding Regions of RAP1A in Sporadic Breast Tumors

    PubMed Central

    Jalali, Akram; Ebrahimi, Hassan; Ohadi, Mina; Karimloo, Masood; Shemirani, Atena Irani; Mohajer, Behrokh; Khorshid, Hamid Reza Khorram

    2009-01-01

    Breast cancer is the most common cancer among women in developed countries. The prevalence of the disease is increasing in the world. Its annual incidence among Iranian women is about 7000 cases. RAP1A, a tumor suppressor gene, is located at 1p13.3 and plays an important role in the cellular adhesion pathway and is involved in the pathogenesis of breast cancer. The DOCK4 gene, which is located at 7q31.1, specifically activates RAP1A gene. In the present study, DNA samples from 64 cases of sporadic breast tumors (referred to Mehrad Hospital in Tehran) were screened using PCR-SSCP method and the number of observed variations compared with the control group (100 normal women). Mutation detection for coding exons of RAP1A gene and the 500 bp upstream of transcription initiation site as promoters of both DOCK4 and RAP1A were carried out and compared with the control group. The promoter region of DOCK4 showed a heterozygous mutation with G>A transition at nucleotide −303 in a fibroadenoma case. With regard to RAP1A we found a heterozygous mutation, G>A transition in an adenoid cystic carcinoma case, and another heterozygous mutation, G>T transversion in an intraductal papilloma case both at nucleotide +45. A homozygous variation, T>A transversion was also found at nucleotide +29 of a fibroadenoma case. The differences in the frequency of variations mentioned above were not statistically significant. However Fisher's exact showed significant difference for T>A transversion. Although, the higher frequency of these mutations and variations may be related to the disease, a larger sample size is needed for the confirmation of our findings. PMID:23407849

  18. New Variations in the Promoter Regions of Human DOCK4 and RAP1A Genes, and Coding Regions of RAP1A in Sporadic Breast Tumors.

    PubMed

    Jalali, Akram; Ebrahimi, Hassan; Ohadi, Mina; Karimloo, Masood; Shemirani, Atena Irani; Mohajer, Behrokh; Khorshid, Hamid Reza Khorram

    2009-07-01

    Breast cancer is the most common cancer among women in developed countries. The prevalence of the disease is increasing in the world. Its annual incidence among Iranian women is about 7000 cases. RAP1A, a tumor suppressor gene, is located at 1p13.3 and plays an important role in the cellular adhesion pathway and is involved in the pathogenesis of breast cancer. The DOCK4 gene, which is located at 7q31.1, specifically activates RAP1A gene. In the present study, DNA samples from 64 cases of sporadic breast tumors (referred to Mehrad Hospital in Tehran) were screened using PCR-SSCP method and the number of observed variations compared with the control group (100 normal women). Mutation detection for coding exons of RAP1A gene and the 500 bp upstream of transcription initiation site as promoters of both DOCK4 and RAP1A were carried out and compared with the control group. The promoter region of DOCK4 showed a heterozygous mutation with G>A transition at nucleotide -303 in a fibroadenoma case. With regard to RAP1A we found a heterozygous mutation, G>A transition in an adenoid cystic carcinoma case, and another heterozygous mutation, G>T transversion in an intraductal papilloma case both at nucleotide +45. A homozygous variation, T>A transversion was also found at nucleotide +29 of a fibroadenoma case. The differences in the frequency of variations mentioned above were not statistically significant. However Fisher's exact showed significant difference for T>A transversion. Although, the higher frequency of these mutations and variations may be related to the disease, a larger sample size is needed for the confirmation of our findings.

  19. The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter

    PubMed Central

    Liu, Xiaoqing; Yang, Wenzhu; Li, Ye; Li, Suzhen; Zhou, Xiaojin; Zhao, Qianqian; Fan, Yunliu; Lin, Min; Chen, Rumei

    2016-01-01

    Bidirectional promoters are identified in diverse organisms with widely varied genome sizes, including bacteria, yeast, mammals, and plants. However, little research has been done on any individual endogenous bidirectional promoter from plants. Here, we describe a promoter positioned in the intergenic region of two defensin-like protein genes, Def1 and Def2 in maize (Zea mays). We examined the expression profiles of Def1 and Def2 in 14 maize tissues by qRT-PCR, and the results showed that this gene pair was expressed abundantly and specifically in seeds. When fused to either green fluorescent protein (GFP) or β-glucuronidase (GUS) reporter genes, P ZmBD1, P ZmDef1, and P ZmDef2 were active and reproduced the expression patterns of both Def1 and Def2 genes in transformed immature maize embryos, as well as in developing seeds of transgenic maize. Comparative analysis revealed that PZmBD1 shared most of the expression characteristics of the two polar promoters, but displayed more stringent embryo specificity, delayed expression initiation, and asymmetric promoter activity. Moreover, a truncated promoter study revealed that the core promoters only exhibit basic bidirectional activity, while interacting with necessary cis-elements, which leads to polarity and different strengths. The sophisticated interaction or counteraction between the core promoter and cis-elements may potentially regulate bidirectional promoters. PMID:27279278

  20. A novel regucalcin gene promoter region-related protein: comparison of nucleotide and amino acid sequences in vertebrate species.

    PubMed

    Sawada, Natsumi; Yamaguchi, Masayoshi

    2005-01-01

    The molecular cloning and sequencing of the cDNA coding for a novel regucalcin gene promoter region-related protein (RGPR-p117) from bovine, rabbit and chicken livers was investigated using rapid amplification of cDNA endo (RACE) method. Their nucleotide and amino acid sequences were compared with human, rat and mouse sequences published previously. RGPR-p117 of bovine, rabbit and chicken livers consisted of 1052, 1045, and 929 amino acid residues with calculated molecular mass of 117, 114, and 103 kDa, and estimated pI of 5.64, 5.84, and 5.59, respectively. Comparison analysis revealed that the nucleotide sequences of RGPR-p117 from mammalian species were highly-conserved in their coding region, and the homologies were at least 72.9%. The RGPR-p117 proteins in mammalian species consisted of 1045-1060 amino acids, and had 63.1-90.2% identity. Meanwhile, the nucleotide and amino acid sequences of chicken RGPR-p117 had at least 36.4 and 43.7% identities, respectively. Phylogenetic analysis showed that RGPR-p117 in six vertebrates appears to form a single cluster. Mammalian RGPR-p117 conserved a leucine zipper motif. Moreover, the analysis for subcellular localization of RGPR-p117 from six vertebrates showed the probability of nuclear localization >52.2%; the nuclear localization in rat and mouse was 78.3%. This study demonstrates a great conservation of RGPR-p117 genes throughout evolution.

  1. Human tumor necrosis factor-alpha gene 3' untranslated region confers inducible toxin responsiveness to homologous promoter in monocytic THP-1 cells.

    PubMed

    Seiler-Tuyns, A; Dufour, N; Spertini, F

    1999-07-30

    To better define the role of 3' untranslated region (3'UTR) on transcriptional regulation of the human tumor necrosis factor (TNF)-alpha gene, monocytic human THP-1 cells were transfected with two TNF-alpha promoter constructs spanning base pairs -1897/-1 and -1214/-1, respectively, and linked to the rabbit beta-globin gene. Quantitative globin gene expression of chimerae was measured by reverse transcription-polymerase chain reaction. A construct linking the chicken beta-actin promoter and a deleted portion of the beta-globin gene was cotransfected and used as internal standard. Unexpectedly, when THP-1 cells were stimulated with lipopolysaccharide or toxic shock syndrome toxin-1, gene regulation was hardly detected. In contrast, endogenous TNF-alpha gene regulation measured by the same reverse transcription-polymerase chain reaction procedure was vigorous. Remarkably, ligation of 3'UTR to chimeric constructs led to a drastic drop in the basal level of chimeric gene expression, resulting in a 15- to 40-fold induction of the reporter gene. Consistently, when the TNF-alpha promoter was replaced by the cytomegalovirus early immediate promoter, gene expression was also uniformly reduced but was no longer up-regulated upon stimulation with lipopolysaccharide and toxic shock syndrome toxin-1. These data provide the first line of evidence that, in addition to its role in TNF-alpha transcript stability and translation, human TNF-alpha 3'UTR also participates in modulating gene expression at the transcriptional level.

  2. The study of the transformer gene from Bactrocera dorsalis and B. correcta with putative core promoter regions.

    PubMed

    Laohakieat, Kamoltip; Aketarawong, Nidchaya; Isasawin, Siriwan; Thitamadee, Siripong; Thanaphum, Sujinda

    2016-02-01

    The transformer (tra) is a sex determining switch in different orders of insects, including Diptera, as in the family Tephritidae. The lifelong autoregulatory loop of tra female-specific splicing can be reset by the intervention of male-specific primary signals (M factor). In early development, the functional female and truncated male TRA proteins relay the sexual fates to the alternative splicing of a bisexual switch gene, doublesex (dsx) cascading the sexual differentiation processes. Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) are among the Bactrocera model worldwide key pests. Area-wide integrated pest management using the male-only Sterile Insect Technique (SIT) relying on genetic sexing systems is effective in control programs. We undertook the molecular characterization and comparative studies of the tra orthologues in the Bactrocera species, including the Salaya1 genetic sexing strain (GSS). RT-PCR revealed that B. dorsalis tra (Bdtra) and B. correcta tra (Bctra) transcripts contained conservation of both constitutive exons and male-specific exons as in other Bactrocera. However, new Bdtra male-specific exons were retained, diversifying the pattern of the male-specifically spliced transcripts. The coding sequences of tra were highly conserved in Bactrocera (86-95%) but less so among related genera (61-65%) within the same Tephritidae family. A conservation of deduced amino acid sequences (18 residues), called the TEP region, was identified to be distinctive among tephritids. The 5' regulatory sequence containing many structural characteristics of the putative core promoter was discovered in B. correcta. The expression patterns of Bdtra and Bctra were sex-specifically spliced and the signals relayed to the dsx genes in the adult wild-types. However, the coexistence of male- and female-specifically spliced transcripts (980 and 626 bp, respectively) of the B. dorsalis wild-type strain was found in the Salaya1 GSS adult males. The Bdtra RNA

  3. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region

    PubMed Central

    2004-01-01

    The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle. PMID:15496137

  4. Identification of the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, using a reverse genetic approach

    SciTech Connect

    Hua Su; Lau, Y.F.C. )

    1993-01-01

    Using a simple strategy involving cosmid-mediated gene transfer, cDNA library construction, and molecular characterization techniques, the authors have determined the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, the putative testis-determining factor (TDF) gene on the human Y chromosome. By this approach, a recombinant cosmid harboring the human SRY sequence was isolated and transfected to appropriate tissue-cultured cells. Recombinant cDNA clones were isolated from a cDNA library constructed from poly (A) + RNA of the transfected cells. Comparative studies between the respective cDNAs and the genomic cosmid have provided information regarding the organization of the SRY gene and its mRNAs. The results indicate that the human SRY gene is an intronless gene, produces transcripts of 1.1 kb, and possesses promoter activities in the transfected cells at approximately 310 bp of its upstream sequences. 57 refs., 5 figs.

  5. Identification of cis-acting regulatory elements in the promoter region of the rat brain creatine kinase gene.

    PubMed Central

    Hobson, G M; Molloy, G R; Benfield, P A

    1990-01-01

    The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element. Images PMID:2247071

  6. [Relationship of T-->A mutation in the promoter region of myostatin gene with growth traits in swine].

    PubMed

    Jiang, Yun-Liang; Li, Ning; Du, Li-Xin; Wu, Chang-Xin

    2002-05-01

    A T-->A mutation in the promoter region of porcine myostatin (MSTN) gene has been identified in previous work. Associations of the myostatin genotypes with growth traits are unknown in swine. The present study attempts to analyze the relationship of the mutation with the growth traits which included body weight at 60 d (BW60), average daily gain from 25 kg to 60 kg(ADG1), average daily gain from 60 kg to 100 kg (ADG2) and average daily gain from 25 kg to 100 kg (ADG). Data from 165, 275, 276 and 276 unrelated individuals respectively were collected from three different swine breeding companies. Detections of the mutation were carried out by PCR-RFLP approach. The effect of MSTN genotypes (TT and TA) on growth traits was estimated by GLM procedure. The results showed that for ADG2, individuals with TA genotype were higher than those of TT genotype (P = 0.052), indicating a positive effect for A allele. For BW60, ADG1 and ADG, the effect of porcine MSTN genotype was non-significant (P > 0.1). Studies are still necessary for examining the effects in "double-muscled" pigs.

  7. The promoter regions of the Myb-regulated Adora2B and Mcm4 genes co-localize with origins of DNA replication

    PubMed Central

    Gundelach, Holger; Braas, Daniel; Klempnauer, Karl-Heinz

    2007-01-01

    Background The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which is responsible for the transformation of myelomonocytic cells by avian myeloblastosis virus (AMV). v-Myb is thought to exert its biological effects by deregulating the expression of specific target genes. We have recently demonstrated that the chicken Gas41 gene, whose promoter co-localizes with an origin of DNA replication, is a bona fide Myb target gene. Because of this finding we have asked whether other Myb-regulated genes are also associated with DNA replication origins. Results We show that the promoter region of the chicken adenosine receptor 2B gene (Adora2B), a known Myb-target gene, acts as a DNA replication origin. Furthermore, we have examined known replication origins for the presence of Myb binding sites. We found that the intergenic region between the genes for the minichromosome maintenance 4 protein (Mcm4) and the catalytic subunit of DNA-dependent protein kinase (Prkdc), whose human counterpart has been identified as a replication origin, contains a number of Myb binding sites. Our data show that this region also acts as an origin of replication in chicken cells. Interestingly, we found that the chicken Mcm4 gene is also Myb-regulated. Conclusion Our work identifies the chicken Mcm4 gene as a novel Myb target gene and presents evidence for the co-localization of two novel origins of DNA replication with Myb-regulated genes. Our work raises the possibility that a fraction of Myb target gene promoters is associated with DNA replication origins. PMID:17822556

  8. An infant with cartilage-hair hypoplasia due to a novel homozygous mutation in the promoter region of the RMRP gene associated with chondrodysplasia and severe immunodeficiency.

    PubMed

    Vatanavicharn, N; Visitsunthorn, N; Pho-iam, T; Jirapongsananuruk, O; Pacharn, P; Chokephaibulkit, K; Limwongse, C; Wasant, P

    2010-01-01

    Cartilage-hair hypoplasia (CHH) is a rare autosomal-recessive disorder characterized by short-limbed dwarfism, sparse hair, and immune deficiency. It is caused by mutations in the RMRP gene, which encodes the RNA component of the mitochondrial RNA-processing ribonuclease (RNase MRP). Several mutations have been identified in its promoter region or transcribed sequence. However, homozygous mutations in the promoter region have been only reported in a patient with primary immunodeficiency without other features of CHH. We report on a Thai girl who first presented with chronic diarrhea, recurrent pneumonia, and severe failure to thrive, without apparently disproportionate dwarfism. The diagnosis of CHH was made after the severe wasting was corrected, and disproportionate growth became noticeable. The patient had the typical features of CHH, including sparse hair and metaphyseal abnormalities. The immunologic profiles were consistent with combined immune deficiency. Mutation analysis identified a novel homozygous mutation, g.-19_-25 dupACTACTC, in the promoter region of the RMRP gene. Identification of the mutation enabled us to provide a prenatal diagnosis in the subsequent pregnancy. This patient is the first CHH case with the characteristic features due to the homozygous mutation in the promoter region of the RMRP gene. The finding of severe immunodeficiency supports that promoter mutations markedly disrupt mRNA cleavage function, which causes cell-cycle impairment.

  9. Characterization of various promoter regions of the human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element.

    PubMed

    Uchiumi, Fumiaki; Watanabe, Takeshi; Tanuma, Sei-ichi

    2010-05-15

    DNA helicases are important in the regulation of DNA transaction and thereby various cellular functions. In this study, we developed a cost-effective multiple DNA transfection assay with DEAE-dextran reagent and analyzed the promoter activities of the human DNA helicases. The 5'-flanking regions of the human DNA helicase-encoding genes were isolated and subcloned into luciferase (Luc) expression plasmids. They were coated onto 96-well plate and used for co-transfection with a renilla-Luc expression vector into various cells, and dual-Luc assays were performed. The profiles of promoter activities were dependent on cell lines used. Among these human DNA helicase genes, XPB, RecQL5, and RTEL promoters were activated during TPA-induced HL-60 cell differentiation. Interestingly, duplicated ets (GGAA) elements are commonly located around the transcription start sites of these genes. The duplicated GGAA motifs are also found in the promoters of DNA replication/repair synthesis factor genes including PARG, ATR, TERC, and Rb1. Mutation analyses suggested that the duplicated GGAA-motifs are necessary for the basal promoter activity in various cells and some of them positively respond to TPA in HL-60 cells. TPA-induced response of 44-bp in the RTEL promoter was attenuated by co-transfection of the PU.1 expression vector. These findings suggest that the duplicated ets motifs regulate DNA-repair associated gene expressions during macrophage-like differentiation of HL-60 cells.

  10. The 5'-flanking region of the human dopamine beta-hydroxylase gene promotes neuron subtype-specific gene expression in the central nervous system of transgenic mice.

    PubMed

    Morita, S; Kobayashi, K; Mizuguchi, T; Yamada, K; Nagatsu, I; Titani, K; Fujita, K; Hidaka, H; Nagatsu, T

    1993-03-01

    Dopamine beta-hydroxylase (DBH, EC 1.14.17.1) catalyzes the conversion of dopamine to norepinephrine, the third step of catecholamine biosynthesis. We have previously created transgenic mice harboring a chimeric gene consisting of the 4-kb DNA fragment of the human DBH gene promoter and the human phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) cDNA, to express PNMT in norepinephrine- and epinephrine-producing cells in the brain, sympathetic ganglia, and adrenal medullary chromaffin cells (Kobayashi et al., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 1631-1635). In this paper, we produced for the first time the antibody that specifically detects human PNMT, but not mouse PNMT, with the synthetic oligopeptide characteristic of the human PNMT sequence, and used this antibody to investigate the cells expressing human PNMT in transgenic mice. Immunohistochemical analysis of transgenic mice showed typical expression of human PNMT immunoreactivity in norepinephrinergic and epinephrinergic neurons in brain, as well as norepinephrine- and epinephrine-producing cells in the adrenal gland, indicating that the 4-kb 5'-flanking region is essential for the tissue-specific expression of the DBH gene. We also detected the ectopic expression in some DBH-immunonegative cells in the olfactory bulb of transgenic mice.

  11. Genomic footprinting: detection of putative regulatory proteins in the promoter region of the interferon alpha-1 gene in normal human tissues.

    PubMed Central

    Palmieri, M; Tovey, M G

    1990-01-01

    Dimethyl sulfate (DMS) genomic footprinting revealed the presence of putative regulatory proteins attached to specific sequences of the promoter region of the interferon (IFN) alpha-1 gene in normal human tissue. The pattern of protein-DNA interactions observed for the human alpha-1 promoter in freshly isolated human spleen cells was identical to that seen in DNA from the B-cell line Namalwa. The protein interactions involving the human IFN alpha-1 promoter spanned a region from positions -38 to -174 relative to the cap site which encompasses that part of the IFN alpha-1 promoter previously shown by deletion analysis to confer virus inducibility on the IFN alpha-1 gene. DNase I footprinting performed on isolated nuclei revealed a pattern of protein-DNA interactions for the promoter region of the IFN alpha-1 gene similar to that obtained with DMS footprinting performed on whole cells, with the appearance or disappearance of only a few additional protected nucleotides outside the region identified by the use of DMS. These results provide the first direct evidence for the presence of proteins bound in vivo to those parts of the IFN alpha-1 promoter between positions -64 and -109 previously shown by deletion analysis to confer virus inducibility on the IFN alpha-1 gene. The pattern of protein-DNA interactions observed for the IFN alpha-1 promoter after virus induction was identical to that seen before induction, in keeping with the finding that many transcriptional activators are present in both induced and uninduced cells. Images PMID:2342457

  12. [DNA methylation in the promoter regions of the laminin family genes in normal and breast carcinoma tissues].

    PubMed

    Simonova, O A; Kuznetsova, E B; Poddubskaya, E V; Kekeeva, T V; Kerimov, R A; Trotsenko, I D; Tanas, A S; Rudenko, V V; Alekseeva, E A; Zaletayev, D V; Strelnikov, V V

    2015-01-01

    Extracellular glycoproteins of the laminin family are essential components of basement membranes involved in a number of biological processes, including tissue differentiation, wound healing, and tumorigenesis. We present the first comprehensive study of promoter methylation status of the genes encoding laminin chains in normal tissues (peripheral blood leucocytes, buccal epithelial cells, autopsy breast tissue samples) and in breast carcinoma samples. Based on the results of this study, we divide laminin genes into three categories. Genes, constitutively methylated in breast tissues include LAMA3A, LAMB2, LAMB3, and LAMC2. Genes prone to abnormal methylation in breast carcinoma include LAMA1, LAMA2, LAMA3B, LAMA4, LAMB1, and LAMC3. Genes that are rarely if ever methylated in breast carcinoma include LAMA5 and LAMC1. The constitutively methylated group includes all of the genes that encode subunits of laminin-5 (the historical name of laminin 332), the promoters of which were previously considered unmethylated in normal tissues and prone to abnormal methylation in breast cancer.

  13. Usefulness of DNA Methylation Levels in COASY and SPINT1 Gene Promoter Regions as Biomarkers in Diagnosis of Alzheimer’s Disease and Amnestic Mild Cognitive Impairment

    PubMed Central

    Shinagawa, Shunichiro; Nagata, Tomoyuki; Shimada, Kazuya; Shibata, Nobuto; Ohnuma, Tohru; Kasanuki, Koji; Arai, Heii; Yamada, Hisashi; Nakayama, Kazuhiko; Kondo, Kazuhiro

    2016-01-01

    In order to conduct early therapeutic interventions for Alzheimer’s disease (AD), convenient, early diagnosis markers are required. We previously reported that changes in DNA methylation levels were associated with amnestic mild cognitive impairment (aMCI) and AD. As the results suggested changes in DNA methylation levels in the COASY and SPINT1 gene promoter regions, in the present study we examined DNA methylation in these regions in normal controls (NCs, n = 30), aMCI subjects (n = 28) and AD subjects (n = 30) using methylation-sensitive high resolution melting (MS-HRM) analysis. The results indicated that DNA methylation in the two regions was significantly increased in AD and aMCI as compared to NCs (P < 0.0001, P < 0.0001, ANOVA). Further analysis suggested that DNA methylation in the COASY gene promoter region in particular could be a high sensitivity, high specificity diagnosis biomarker (COASY: sensitivity 96.6%, specificity 96.7%; SPINT1: sensitivity 63.8%, specificity 83.3%). DNA methylation in the COASY promoter region was associated with CDR Scale Sum of Boxes (CDR-SB), an indicator of dementia severity. In the SPINT1 promoter region, DNA methylation was negatively associated with age in NCs and elevated in aMCI and AD subjects positive for antibodies to Herpes simplex virus type 1 (HSV-1). These findings suggested that changes in DNA methylation in the COASY and SPINT1 promoter regions are influenced by various factors. In conclusion, DNA methylation levels in the COASY and SPINT1 promoter regions were considered to potentially be a convenient and useful biomarker for diagnosis of AD and aMCI. PMID:27992572

  14. Analysis of the promoter region and the N-propeptide domain of the human pro alpha 2(I) collagen gene.

    PubMed Central

    Dickson, L A; de Wet, W; Di Liberto, M; Weil, D; Ramirez, F

    1985-01-01

    We have located the exon coding for the start site of transcription of the human pro alpha 2(I) collagen gene. Comparison with the homologous region of other fibrillar collagen genes has confirmed the existence of a consensus sequence (CATGTCTA-n-TAGACATG) capable of forming a hairpin secondary structure possibly involved in the regulation of collagen biosynthesis. Sequence comparison of the chromosomal regions at the 5' end of the pro alpha 1(I) and pro alpha 2(I) collagen genes failed to identify unique DNA elements potentially mediating common regulatory signals. Sequencing of four exons coding for the N-terminal propeptide has determined most of its structure and it has implied the existence of smaller coding units similar to the 11 and 18 bp exons originally described in the avian gene. Images PMID:4011429

  15. Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism.

    PubMed Central

    Blackwell, J. M.; Barton, C. H.; White, J. K.; Searle, S.; Baker, A. M.; Williams, H.; Shaw, M. A.

    1995-01-01

    BACKGROUND: Murine Nramp is a candidate for the macrophage resistance gene Ity/Lsh/Bcg. Sequence analysis of human NRAMP was undertaken to determine its role in man. MATERIALS AND METHODS: A yeast artificial chromosome carrying NRAMP was subcloned and positive clones sequenced. The transcriptional start site was mapped using 5' RACE PCR. Polymorphic variants were amplified by PCR. Linkage analysis was used to map NRAMP. RESULTS: NRAMP spans 12kb and has 15 exons encoding a 550 amino acid protein showing 85% identity (92% similarity) with Nramp. Two conserved PKC sites occur in exon 2 encoding the Pro/Ser rich SH3 binding domain, and in exon 3. Striking sequence similarities (57 and 53%) were observed with yeast mitochondrial proteins, SMF1 and SMF2, especially within putative functional domains: exon 6 encoding the second transmembrane spanning domain, site of the murine susceptibility mutation; and exon 11 encoding a conserved transport motif. No mutations comparable to the murine susceptibility mutation were found. The transcriptional initiation site mapped 148 bp 5' of the translational initiation codon. 440bp of 5' flanking sequence contained putative promoter region elements: 6 interferon-gamma response elements, 3 W-elements, 3 NF kappa B binding sites and 1 AP-1 site. Nine purine-rich GGAA core motifs for the myeloid-specific PU.1 transcription factor were identified, two combining with imperfect AP1-like sites to create PEA3 motifs. TATA, GC and CCAAT boxes were absent. A possible enhancer element containing the Z-DNA forming dinucleotide repeat t(gt),ac(gt),ac(gt),g was polymorphic (4 alleles; n = 4,9,10,11), and was used to map NRAMP to 2q35. CONCLUSIONS: This analysis provides important resources to study the role of NRAMP in human disease. Images FIG. 3 FIG. 4 PMID:8529098

  16. Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana.

    PubMed

    Mishra, Sonal; Shukla, Aparna; Upadhyay, Swati; Sanchita; Sharma, Pooja; Singh, Seema; Phukan, Ujjal J; Meena, Abha; Khan, Feroz; Tripathi, Vineeta; Shukla, Rakesh Kumar; Shrama, Ashok

    2014-04-01

    Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72% or more of the total predicted 2,052 genes had a gap distance of less than 400 bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,052 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition. © 2013 Institute of Botany, Chinese Academy of Sciences.

  17. Cloning of rainbow trout (Oncorhynchus mykiss) alpha-actin, myosin regulatory light chain genes and the 5'-flanking region of alpha-tropomyosin. Functional assessment of promoters.

    PubMed

    Krasnov, Aleksei; Teerijoki, Heli; Gorodilov, Yuri; Mölsä, Hannu

    2003-02-01

    We report PCR cloning of rainbow trout alpha-actin (alpha-OnmyAct), myosin regulatory light chain (OnmyMLC2) genes and the 5'-flanking region of alpha-tropomyosin (alpha-OnmyTM). Being expressed in skeletal and cardiac muscle, alpha-OnmyAct was a predominant isoform in trunk muscle of adult rainbow trout. Exon structure of this gene was identical to all known vertebrate skeletal and to some of the cardiac alpha-Act genes. Two distinct OnmyMLC2 promoters were cloned and both included transposon-like sequences. The coding part of OnmyMLC2 consisted of seven exons whose length was typical for vertebrate MLC2 genes. The upstream regions of alpha-OnmyAct and OnmyMLC2 included a TATA box and a number of putative regulatory motifs (E-boxes in all three sequences and CArG-boxes in alpha-OnmyAct), whereas there were no canonical motifs in the alpha-OnmyTM promoter. LacZ reporter gene was fused with the 5'-flanking regions of alpha-OnmyAct, two OnmyMLC2 genes and alpha-OnmyTM promoters. These constructs were transferred into rainbow trout eggs. At the stage of 39 somite pairs, LacZ reporter was detected in the myotomes, neural plate and neural crest, brain and yolk syncytial layer of all analysed embryos. alpha-OnmyTMLacZ was also expressed in the heart. Functionality of promoters and the alpha-OnmyAct terminator was confirmed in rainbow trout primary embryonic cell cultures. We cloned rainbow trout glucose transporter type I (OnmyGLUT1) into vectors including the alpha-OnmyAct and OnmyMLC2 promoters and the alpha-SkAct terminator. Recombinant OnmyGLUT1 transcripts were detected in rainbow trout embryos during somitogenesis.

  18. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  19. A Circadian Clock Gene, PER2, Activates HIF-1 as an Effector Molecule for Recruitment of HIF-1α to Promoter Regions of Its Downstream Genes.

    PubMed

    Kobayashi, Minoru; Morinibu, Akiyo; Koyasu, Sho; Goto, Yoko; Hiraoka, Masahiro; Harada, Hiroshi

    2017-09-30

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor functioning in cellular adaptive responses to hypoxia. Recent studies have suggested that HIF-1 activity is upregulated by one of the important circadian clock genes, period circadian clock 2 (PER2); however, its underlying mechanism remains unclear. Here, we show that PER2 functions as an effector protein for the recruitment of HIF-1α to its cognate enhancer sequence, the hypoxia-response element (HRE). We found that the forced expression of PER2 enhanced HIF-1 activity without influencing expression levels of the regulatory subunit of HIF-1, HIF-1α, at either mRNA or protein levels. A series of co-immunoprecipitation-based experiments revealed that PER2 interacted with HIF-1α and facilitated the recruitment of HIF-1α to HRE derived from vascular endothelial growth factor (VEGF) promoter. The PER2-mediated activation of HIF-1 was observed only when the asparagine residue at position 803 of HIF-1α (HIF-1α N803) was kept unhydroxylated by hypoxic stimulation, by introducing an N803A point mutation, or by an inhibitor of N803-dioxygenase, deferoxamine. However, the extent of PER-2-HIF-1α interaction was equivalent regardless of the N803 hydroxylation status. Taken together, these results suggest that, with the help of an unknown sensor molecule for the N803 hydroxylation status, PER2 functions as an effector molecule for the recruitment of HIF-1 to promoter regions of its downstream genes. Our findings reveal a novel regulatory step in the activation of HIF-1, which can be targeted to develop therapeutic strategies against HIF-1-related diseases, such as cancers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Structure of transcripts from the homeotic Antennapedia gene of Drosophila melanogaster: two promoters control the major protein-coding region.

    PubMed Central

    Laughon, A; Boulet, A M; Bermingham, J R; Laymon, R A; Scott, M P

    1986-01-01

    The Antennapedia (Antp) homeotic gene of Drosophila melanogaster regulates segmental identity in the thorax. Loss of Antp function results in altered development of the embryonic thoracic segments or can cause legs to be transformed into antennae. Certain combinations of Antp recessive lethal alleles complement to permit normal development. The structure of the Antp gene, analyzed by sequencing cDNA clones and exons and by transcript mapping, revealed some of the basis for its genetic complexity. It has two promoters governing two nested transcription units, one unit 36 and one 103 kilobase pairs (kb) long. Both units incorporated the same protein-coding exons, all of which are located in the 3'-most 13 kb of the gene. The two promoters resulted in the attachment of either of two long noncoding leader sequences (1.5 and 1.7 kb) to a 1.1-kb open reading frame. Both transcription units used the same pair of alternative polyadenylation sites 1.4 kb apart; the choice of sites was developmentally regulated. Some of the mutations that disrupt the larger transcription unit complemented a mutation affecting the smaller one. Dominant mutations that transform antennae into legs split the gene but left the coding exons intact. The encoded protein has unusually long runs of glutamine and a homeodomain near the C terminus. Images PMID:2879223

  1. Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region

    PubMed Central

    Kasahara, Koji; Ohyama, Yoshifumi; Kokubo, Tetsuro

    2011-01-01

    Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revealed a region between the RPS5 upstream activating sequence (UAS) and core promoter, termed the intervening region (IVR), responsible for strong Hmo1 binding and an upstream TSS shift in Δhmo1 cells. Chromatin immunoprecipitation analyses showed that the RPS5-IVR resides within a nucleosome-free region and that pre-initiation complex (PIC) assembly occurs at a site between the IVR and a nucleosome overlapping the TSS (+1 nucleosome). The PIC assembly site was shifted upstream in Δhmo1 cells on this promoter, indicating that Hmo1 normally masks the RPS5-IVR to prevent PIC assembly at inappropriate site(s). This novel mechanism ensures accurate transcriptional initiation by delineating the 5′- and 3′-boundaries of the PIC assembly zone. PMID:21288884

  2. Molecular cloning of the Matrix Gla Protein gene from Xenopus laevis. Functional analysis of the promoter identifies a calcium sensitive region required for basal activity.

    PubMed

    Conceição, Natércia; Henriques, Nuno M; Ohresser, Marc C P; Hublitz, Philip; Schüle, Roland; Cancela, M Leonor

    2002-04-01

    To analyze the regulation of Matrix Gla Protein (MGP) gene expression in Xenopus laevis, we cloned the xMGP gene and its 5' region, determined their molecular organization, and characterized the transcriptional properties of the core promoter. The Xenopus MGP (xMGP) gene is organized into five exons, one more as its mammalian counterparts. The first two exons in the Xenopus gene encode the DNA sequence that corresponds to the first exon in mammals whereas the last three exons show homologous organization in the Xenopus MGP gene and in the mammalian orthologs. We characterized the transcriptional regulation of the xMGP gene in transient transfections using Xenopus A6 cells. In our assay system the identified promoter was shown to be transcriptionally active, resulting in a 12-fold induction of reporter gene expression. Deletional analysis of the 5' end of the xMGP promoter revealed a minimal activating element in the sequence from -70 to -36 bp. Synthetic reporter constructs containing three copies of the defined regulatory element delivered 400-fold superactivation, demonstrating its potential for the recruitment of transcriptional activators. In gel mobility shift assays we demonstrate binding of X. laevis nuclear factors to an extended regulatory element from -180 to -36, the specificity of the interaction was proven in competition experiments using different fragments of the xMGP promoter. By this approach the major site of factor binding was demonstrated to be included in the minimal activating promoter fragment from -70 to -36 bp. In addition, in transient transfection experiments we could show that this element mediates calcium dependent transcription and increasing concentrations of extracellular calcium lead to a significant dose dependent activation of reporter gene expression.

  3. 3-Methylcholanthrene elicits DNA adduct formation in the CYP1A1 promoter region and attenuates reporter gene expression in rat H4IIE cells

    SciTech Connect

    Moorthy, Bhagavatula . E-mail: bmoorthy@bcm.tmc.edu; Muthiah, Kathirvel; Fazili, Inayat S.; Kondraganti, Sudha R.; Wang Lihua; Couroucli, Xanthi I.; Jiang Weiwu

    2007-03-23

    Cytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 {mu}g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 {sup o}C for 2 h, giving rise to 9 adducts, as determined by {sup 32}P-postlabeling. Eighty percent of adducts was located in the promoter region. Transient transfection of the adducted plasmids into rat hepatoma (H4IIE) cells for 16 h, followed by MC (1 {mu}M) treatment for 24 h inhibited reporter (luciferase) gene expression by 75%, compared to unadducted controls. Our results suggest that CYP1A2 plays a key role in sequence-specific MC-DNA adduct formation in the CYP1A1 promoter region, leading to attenuation of CYP1A1 gene expression.

  4. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers.

    PubMed

    Dallol, Ashraf; Forgacs, Eva; Martinez, Alonso; Sekido, Yoshitaka; Walker, Rosemary; Kishida, Takeshi; Rabbitts, Pamela; Maher, Eamonn R; Minna, John D; Latif, Farida

    2002-05-02

    The human homologue of the Drosophila Roundabout gene DUTT1 (Deleted in U Twenty Twenty) or ROBO1 (Locus Link ID 6091), a member of the NCAM family of receptors, was recently cloned from the lung cancer tumour suppressor gene region 2 (LCTSGR2 or U2020 region) at 3p12. DUTT1 maps within a region of overlapping homozygous deletions characterized in both small cell lung cancer lines (SCLC) and in a breast cancer line. In this report we (a) defined the genomic organization of the DUTT1 gene, (b) performed mutation and expression analysis of DUTT1 in lung, breast and kidney cancers, (c) identified tumour specific promoter region methylation of DUTT1 in human cancers. The gene was found to contain 29 exons and spans at least 240 kb of genomic sequence. The 5' region contains a CpG island, and the poly(A)(+) tail has an atypical 5'-GATAAA-3' signal. We analysed DUTT1 for mutations in lung, breast and kidney cancers, no inactivating mutations were detected by PCR-SSCP. However, seven germline missense changes were found and characterized. DUTT1 expression was not detectable in one out of 18 breast tumour lines analysed by RT-PCR. Bisulfite sequencing of the promoter region of DUTT1 gene in the HTB-19 breast tumour cell line (not expressing DUTT1) showed complete hypermethylation of CpG sites within the promoter region of the DUTT1 gene (-244 to +27 relative to the translation start site). The expression of DUTT1 gene was reactivated in HTB-19 after treatment with the demethylating agent 5-aza-2'-deoxycytidine. The same region was also found to be hypermethylated in six out of 32 (19%) primary invasive breast carcinomas and eight out of 44 (18%) primary clear cell renal cell carcinomas (CC-RCC) and in one out of 26 (4%) primary NSCLC tumours. Furthermore 80% of breast and 75% of CC-RCC tumours showing DUTT1 methylation had allelic losses for 3p12 markers hence obeying Knudson's two hit hypothesis. Our findings suggest that DUTT1 warrants further analysis as a candidate for

  5. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions.

    PubMed

    Ortuño, Maria José; Susperregui, Antonio R G; Artigas, Natalia; Rosa, José Luis; Ventura, Francesc

    2013-02-01

    Bone-specific transcription factors promote differentiation of mesenchymal precursors toward the osteoblastic cell phenotype. Among them, Runx2 and Osterix have been widely accepted as master osteogenic factors, since neither Runx2 nor Osterix null mice form mature osteoblasts. Recruitment of Osterix to a number of promoters of bone-specific genes has been shown. However, little is known about the functional interactions between Osterix and the Col1a1 promoter. In this study we determined in several mesenchymal and osteoblastic cell types that either BMP-2 or Osterix overexpression increased Col1a1 transcription. We identified consensus Sp1 sequences, located in the proximal promoter and in the bone-enhancer, as Osterix binding regions in the Col1a1 promoter in vitro and in vivo. Furthermore, we show that p38 or Erk MAPK signaling is required for maximal transcriptional effects on Col1a1 expression. Runx2 has been shown to activate Col1a1 expression through binding to sites which are located close to the Sp1 sites where Osterix binds. Our data show that overexpression of Runx2 and Osterix leads to a cooperative effect on the expression of the Col1a1 endogenous gene and its promoter reporter construct. These effects mainly affect the long isoform of Osterix which suggest that the two Osterix isoforms might display some differential effects on the transactivation of bone-specific genes.

  6. 5'-Untranslated region of the tryptophan hydroxylase-2 gene harbors an asymmetric bidirectional promoter but not internal ribosome entry site in vitro.

    PubMed

    Chen, Guo-Lin; Miller, Gregory M

    2009-04-15

    Tryptophan hydroxylase-2 (TPH2) catalyzes the synthesis of neuronal serotonin, a major neurotransmitter involved in many brain functions and psychiatric disorders. We have previously revealed a critical role of the human TPH2 (hTPH2) 5'-UTR in gene expression regulation. This study aimed to further characterize mechanism(s) by which the hTPH2 5'-UTR regulates gene expression. An internal ribosome entry site (IRES) activity in hTPH2 5'-UTR was suggested by the conventional bicistronic reporter assay; however, further stringent experiments, including in vitro translation, quantitative real-time PCR, Northern blot, ribonuclease protection assay, and monocistronic reporter assay, demonstrated that the hTPH2 5'-UTR harbors a bidirectional promoter, but not IRES, within its downstream segment (61-141). The antisense promoter is much stronger than the sense promoter, but the strength of both promoters are cell-line dependent, with the highest and lowest activities being observed in HEK-293T and SK-N-MC cells, respectively. In accordance with our previous findings, the upstream segment (1-60) of hTPH2 5'-UTR suppresses the neighboring promoter of both direction, independent of the cell line and its location in the 5'- or 3'-flanking regions of the gene. In summary, this study demonstrates that no IRES but an asymmetric bidirectional promoter is present in the downstream segment of hTPH2 5'-UTR, and this promoter is susceptible to a gene silencing effect caused by the upstream segment (1-60) of hTPH2 5'-UTR. Our findings point to the potential involvement of antisense transcription and non-coding RNA in the regulation of TPH2 gene expression.

  7. Differential protein-DNA interactions at the promoter and enhancer regions of developmentally regulated U4 snRNA genes.

    PubMed

    Miyake, J H; Botros, I W; Stumph, W E

    1992-01-01

    In the chicken genome there are two closely-linked genes, U4B and U4X, that code for different sequence variants of U4 small nuclear RNA (snRNA). Both genes are expressed with nearly equal efficiency in the early embryo, but U4X gene expression is specifically down-regulated relative to U4B as development proceeds. At the present time, little is known about the mechanisms that regulate differential expression of snRNA genes. We have now identified a novel chicken factor, PPBF, that binds sequence-specifically in vitro to the proximal regulatory region of the U4X gene, but not to the proximal region of the U4B gene. PPBF is itself regulated during development and may therefore be a key factor involved in differentially regulating U4X gene transcription relative to U4B. The U4X and U4B enhancers contain distinct sequence variants of two essential motifs (octamer and SPH). The Oct-1 transcription factor binds with similar affinities to both the U4X and U4B octamer motifs. However, a second essential snRNA enhancer-binding protein, SBF, has a 20- to 30-fold lower affinity for the SPH motif in the U4X enhancer than for the homologous SPH motif in the U4B enhancer. A potential role therefore exists for SBF, as well as PPBF, in the preferential down-regulation of the U4X RNA gene during chicken development.

  8. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    SciTech Connect

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-12-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection.

  9. Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation

    PubMed Central

    Zhu, Zhixin; Wang, Hailong; Wang, Yiting; Guan, Shan; Wang, Fang; Tang, Jingyu; Zhang, Ruijuan; Xie, Lulu; Lu, Yingqing

    2015-01-01

    Cellular activities such as compound synthesis often require the transcriptional activation of an entire pathway; however, the molecular mechanisms underlying pathway activation have rarely been explained. Here, the cis regulatory architecture of the anthocyanin pathway genes targeted by the transcription factor (TF) complex including MYB, bHLH, and WDR was systematically analysed in one species and the findings extended to others. In Ipomoea purpurea, the IpMYB1-IpbHLH2-IpWDR1 (IpMBW) complex was found to be orthologous to the PAP1-GL3-TTG1 (AtPGT) complex of Arabidopsis thaliana, and interacted with a 7-bp MYB-recognizing element (MRE) and a 6-bp bHLH-recognizing element (BRE) at the proximal promoter region of the pathway genes. There was little transcription of the gene in the absence of the MRE or BRE. The cis elements identified experimentally converged on two syntaxes, ANCNNCC for MREs and CACN(A/C/T)(G/T) for BREs, and our bioinformatic analysis showed that these were present within anthocyanin gene promoters in at least 35 species, including both gymnosperms and angiosperms. For the anthocyanin pathway, IpMBW and AtPGT recognized the interspecific promoters of both early and later genes. In A. thaliana, the seed-specific TF complex (TT2, TT8, and TTG1) may regulate all the anthocyanin pathway genes, in addition to the proanthocyanidin-specific BAN. When multiple TF complexes in the anthocyanin pathway were compared, the cis architecture played a role larger than the TF complex in determining the variation in promoter activity. Collectively, a cis logic common to the pathway gene promoters was found, and this logic is essential for the trans factors to regulate the pathway. PMID:25911741

  10. The - 564 A/G polymorphism in the promoter region of the proteinase 3 gene associated with Wegener's granulomatosis does not increase the promoter activity.

    PubMed

    Pieters, K; Pettersson, A; Gullberg, U; Hellmark, T

    2004-11-01

    Proteinase 3 is the major autoantigen in patients with Wegener's granulomatosis. Earlier studies have shown that circulating leucocytes from patients with Wegener's granulomatosis show elevated proteinase 3 surface expression and mRNA levels. Wegener's granulomatosis patients also have increased levels of proteinase 3 in plasma. A single nucleotide polymorphism (SNP) (-564 A/G SNP) in the promoter region has been associated with disease. This SNP introduces a new potential Sp1 transcription factor binding site that may be responsible for the observed up-regulated expression of proteinase 3. To investigate this a 740 base pair long region of the promoter was cloned from genomic DNA. The disease-associated -564 A/G, as well as a control -621 A/G exchange, were introduced by polymerase chain reaction mutagenesis and cloned into a luciferase reporter vector. Endogenous expression levels of proteinase 3 mRNA and promoter activity of the cloned constructs were measured in three myeloid cell lines, HL-60, U937 and NB-4, and in epithelial HeLa cells. The results demonstrate a good correlation between the endogenous proteinase 3 mRNA expression and the promoter activity, as judged by luciferase activity. However, no significant differences in activity between the wild-type, polymorphic and the mutated control variant were found. In conclusion, the -564 A/G polymorphism is not responsible for the increased expression levels seen in myeloid cells from patients with Wegener's granulomatosis.

  11. The −564 A/G polymorphism in the promoter region of the proteinase 3 gene associated with Wegener's granulomatosis does not increase the promoter activity

    PubMed Central

    PIETERS, K; PETTERSSON, Å; GULLBERG, U; HELLMARK, T

    2004-01-01

    Proteinase 3 is the major autoantigen in patients with Wegener's granulomatosis. Earlier studies have shown that circulating leucocytes from patients with Wegener's granulomatosis show elevated proteinase 3 surface expression and mRNA levels. Wegener's granulomatosis patients also have increased levels of proteinase 3 in plasma. A single nucleotide polymorphism (SNP) (− 564 A/G SNP) in the promoter region has been associated with disease. This SNP introduces a new potential Sp1 transcription factor binding site that may be responsible for the observed up-regulated expression of proteinase 3. To investigate this a 740 base pair long region of the promoter was cloned from genomic DNA. The disease-associated −564 A/G, as well as a control −621 A/G exchange, were introduced by polymerase chain reaction mutagenesis and cloned into a luciferase reporter vector. Endogenous expression levels of proteinase 3 mRNA and promoter activity of the cloned constructs were measured in three myeloid cell lines, HL-60, U937 and NB-4, and in epithelial HeLa cells. The results demonstrate a good correlation between the endogenous proteinase 3 mRNA expression and the promoter activity, as judged by luciferase activity. However, no significant differences in activity between the wild-type, polymorphic and the mutated control variant were found. In conclusion, the −564 A/G polymorphism is not responsible for the increased expression levels seen in myeloid cells from patients with Wegener's granulomatosis. PMID:15498036

  12. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells.

    PubMed

    Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run

    2014-01-25

    This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells.

  13. The circadian clock-related gene pex regulates a negative cis element in the kaiA promoter region.

    PubMed

    Kutsuna, Shinsuke; Kondo, Takao; Ikegami, Haruki; Uzumaki, Tatsuya; Katayama, Mitsunori; Ishiura, Masahiro

    2007-11-01

    In the cyanobacterium Synechococcus sp. strain PCC 7942, a circadian clock-related gene, pex, was identified as the gene prolonging the period of the clock. A PadR domain, which is a newly classified transcription factor domain, and the X-ray crystal structure of the Pex protein suggest a role for Pex in transcriptional regulation in the circadian system. However, the regulatory target of the Pex protein is unknown. To determine the role of Pex, we monitored bioluminescence rhythms that reported the expression activity of the kaiA gene or the kaiBC operon in pex deficiency, pex constitutive expression, and the wild-type genotype. The expression of kaiA in the pex-deficient or constitutive expression genotype was 7 or 1/7 times that of the wild type, respectively, suggesting that kaiA is the target of negative regulation by Pex. In contrast, the expression of the kaiBC gene in the two pex-related genotypes was the same as that in the wild type, suggesting that Pex specifically regulates kaiA expression. We used primer extension analysis to map the transcription start site for the kaiA gene 66 bp upstream of the translation start codon. Mapping with deletion and base pair substitution of the kaiA upstream region revealed that a 5-bp sequence in this region was essential for the regulation of kaiA. The repression or constitutive expression of the kaiA transgene caused the prolongation or shortening of the circadian period, respectively, suggesting that the Pex protein changes the period via the negative regulation of kaiA.

  14. Identification of the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, using a reverse genetic approach.

    PubMed Central

    Su, H; Lau, Y F

    1993-01-01

    Using a simple strategy involving cosmid-mediated gene transfer, cDNA library construction, and molecular characterization techniques, we have determined the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, the putative testis-determining factor (TDF) gene on the human Y chromosome. By this approach, a recombinant cosmid harboring the human SRY sequence was isolated and transfected to appropriate tissue-cultured cells. Recombinant cDNA clones were isolated from a cDNA library constructed from poly (A) + RNA of the transfected cells. Comparative studies between the respective cDNAs and the genomic cosmid have provided information regarding the organization of the SRY gene and its mRNAs. The results indicate that the human SRY gene is an intronless gene, produces transcripts of 1.1 kb, and possesses promoter activities in the transfected cells at approximately 310 bp of its upstream sequences. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:8434602

  15. The ChrA response regulator in Corynebacterium diphtheriae controls hemin-regulated gene expression through binding to the hmuO and hrtAB promoter regions.

    PubMed

    Burgos, Jonathan M; Schmitt, Michael P

    2012-04-01

    Corynebacterium diphtheriae, the etiologic agent of diphtheria, utilizes heme and hemoglobin (Hb) as iron sources for growth. Heme-iron utilization involves HmuO, a heme oxygenase that degrades cytosolic heme, resulting in the release of heme-associated iron. Expression of the hmuO promoter is under dual regulation, in which transcription is repressed by DtxR and iron and activated by a heme source, such as hemin or Hb. Hemin-dependent activation is mediated primarily by the ChrAS two-component system, in which ChrS is a putative heme-responsive sensor kinase while ChrA is proposed to serve as a response regulator that activates transcription. It was recently shown that the ChrAS system similarly regulates the hrtAB genes, which encode an ABC transporter involved in the protection of C. diphtheriae from hemin toxicity. In this study, we characterized the phosphorelay mechanism in the ChrAS system and provide evidence for the direct regulation of the hmuO and hrtAB promoters by ChrA. A fluorescence staining method was used to show that ChrS undergoes autophosphorylation and that the phosphate moiety is subsequently transferred to ChrA. Promoter fusion studies identified regions upstream of the hmuO and hrtAB promoters that are critical for the heme-dependent regulation by ChrA. Electrophoretic mobility shift assays revealed that ChrA specifically binds at the hmuO and hrtAB promoter regions and that binding is phosphorylation dependent. A phosphorylation-defective mutant of ChrA [ChrA(D50A)] exhibited significantly diminished binding to the hmuO promoter region relative to that of wild-type ChrA. DNase I footprint analysis further defined the sequences in the hmuO and hrtAB promoters that are involved in ChrA binding, and this analysis revealed that the DtxR binding site at the hmuO promoter partially overlaps the binding site for ChrA. DNase I protection studies as well as promoter fusion analysis suggest that ChrA and DtxR compete for binding at the hmuO promoter

  16. Ectopic activation of the transcription promoter for the testis-specific mouse Pgk-2 gene on elimination of a cis-acting upstream DNA region.

    PubMed

    Ando, H; Haruna, Y; Suzuki, M; Yamada, S; Okabe, M; Nakanishi, Y

    2000-08-01

    Transgenic mice carrying the coding sequence of beta-galactosidase, for which expression was driven by various upstream regions including the transcription promoter of the testis-specific mouse Pgk-2 gene, were generated. Expression of beta-galactosidase mRNA driven by the region between nucleotide positions -1404 and +61, with respect to the transcription initiation site numbered +1, was examined by reverse transcription-mediated polymerase chain reaction, blot hybridization and in situ hybridization, and compared with that of endogenous Pgk-2 mRNA. The results revealed that the 1.4kb DNA region is sufficient for determining the organ-specific, developmental stage-specific and spermatogenic stage-specific transcription of the mouse Pgk-2 gene. When the region between -684 and +61 was used to generate transgenic mice, beta-galactosidase mRNA was detectable not only in the testis, but also in other organs such as brain and lung. However, the timing and cell-type specificity of testicular expression of beta-galactosidase mRNA were retained in these mice. Because the region between -1404 and -685 repressed the Pgk-2 promoter in somatic cell-derived cell lines, it is suggested that the organ specificity of Pgk-2 transcription is achieved at least partly by negative regulation.

  17. A polymorphism in the promoter region of the selenoprotein S gene (SEPS1) contributes to Hashimoto's thyroiditis susceptibility.

    PubMed

    Santos, Liliana R; Durães, Cecília; Mendes, Adélia; Prazeres, Hugo; Alvelos, Maria Inês; Moreira, Carla Susete; Canedo, Paulo; Esteves, César; Neves, Celestino; Carvalho, Davide; Sobrinho-Simões, Manuel; Soares, Paula

    2014-04-01

    The association between selenium and inflammation and the relevance of selenoproteins in follicular thyroid cell physiology have pointed to a putative role of selenoproteins in the pathogenesis of autoimmune thyroid diseases. The aim of this study was to evaluate the role of a promoter variation in SEPS1, the selenoprotein S gene, in the risk for developing Hashimoto's thyroiditis (HT). A case-control study was performed to assess the association of genetic variation in the SEPS1 gene (SEPS1 -105G/A single-nucleotide polymorphism, rs28665122) and HT. The study was conducted in north Portugal, Porto, in the period of 2007-2013. A total of 997 individuals comprising 481 HT patients and 516 unrelated controls were enrolled in the study. Genetic variants were discriminated by real-time PCR using TaqMan single-nucleotide polymorphism genotyping assays. There is a significant association between the SEPS1 -105 GA and AA genotypes and HT [odds ratio (OR) 2.24, confidence interval (CI) 1.67-3.02, P < 5.0 × 10(-7), and OR 2.08, CI 1.09-3.97, P = .0268, respectively]. The A allele carriers are in higher proportion in the patient group than in the control population (46.2% vs 28.1%, P < 5.0 × 10(-7)) with an OR (CI) of 2.22 (1.67-2.97). The proportion of patients carrying the A allele is significantly higher in male patients with HT, representing a 3.94 times increased risk (P = 7.9 × 10(-3)). Our findings support the existence of a link between SEPS1 promoter genetic variation and HT risk.

  18. Polymorphisms in the promoter region of the adiponectin (ADIPOQ) gene are presumably associated with transcription level and carcass traits in pigs.

    PubMed

    Cieslak, J; Flisikowska, T; Schnieke, A; Kind, A; Szydlowski, M; Switonski, M; Flisikowski, K

    2013-06-01

    The main goal of this study was to screen for polymorphisms in the porcine adiponectin (ADIPOQ) gene promoter, analyse their influence on transcription and identify any association with production traits in pigs. A 1018-bp region of the ADIPOQ gene promoter was analysed in 113 pigs, and seven novel polymorphisms found. Luciferase assays were performed in HEK293 (human embryonic kidney) cells and primary porcine adipose mesenchymal stem cells (pADMSCs) to investigate their affect on promoter activity. A 16-bp indel (c.-106_-91delGCCAGGGGTGTGAGCC) was found to influence promoter strength in vitro. In the HEK293 cell line, the Del/Del genotype showed greater luciferase activity than did the Ins/Ins genotype (P < 0.01). In pADMSCs, the insertion genotype of the ADIPOQ promoter showed greater luciferase activity than did the deletion genotype (P < 0.01). An association study performed for two novel polymorphisms, c.-67G>A and the 16-bp indel, showed significant correlation with loin measurements in Polish Landrace (P < 0.05) and synthetic line 990 (P < 0.01) pigs.

  19. Cloning of the promoter region of a human gene, FOXL2, and its regulation by STAT3.

    PubMed

    Han, Yangyang; Wang, Tianxiao; Sun, Shudong; Zhai, Zhaohui; Tang, Shengjian

    2017-09-01

    Forkhead box L2 (FOXL2) is a transcription factor, which is involved in blepharophimosis, ptosis, and epicanthus in versus syndrome (BPES), premature ovarian failure (POF), as well as almost all stages of ovarian development and function. FOXL2 has various target genes, which are implicated in numerous processes, including sex determination, cell cycle regulation and apoptosis and stress response regulation in mammals. However, studies regarding the upstream regulation of FOXL2 are limited. In the present study, the promoter of FOXL2 was successfully cloned and registered in Gen Bank, and a dual luciferase reporter (DLR) analysis demonstrated that the luciferase activity was significantly induced by the promoter of FOXL2. Subsequently, bioinformatics analysis indicated that FOXL2 may be regulated by STAT3, and this was confirmed by a DLR analysis and western blotting, using STAT3 inhibitors. Further study using real‑time cellular analysis indicated that the viability of He La cells was markedly suppressed by STAT3 inhibitors. The present study demonstrated novel findings regarding the upstream regulation of FOXL2 expression and provide a new perspective for future studies in the field.

  20. Repetitive genomic insertion of gene-sized dsDNAs by targeting the promoter region of a counter-selectable marker

    PubMed Central

    Jeong, Jaehwan; Seo, Han Na; Jung, Yu Kyung; Lee, Jeewon; Ryu, Gyuri; Lee, Wookjae; Kwon, Euijin; Ryoo, Keunsoo; Kim, Jungyeon; Cho, Hwa-Young; Cho, Kwang Myung; Park, Jin Hwan; Bang, Duhee

    2015-01-01

    Genome engineering can be used to produce bacterial strains with a wide range of desired phenotypes. However, the incorporation of gene-sized DNA fragments is often challenging due to the intricacy of the procedure, off-target effects, and low insertion efficiency. Here we report a genome engineering method enabling the continuous incorporation of gene-sized double-stranded DNAs (dsDNAs) into the Escherichia coli genome. DNA substrates are inserted without introducing additional marker genes, by synchronously turning an endogenous counter-selectable marker gene ON and OFF. To accomplish this, we utilized λ Red protein-mediated recombination to insert dsDNAs within the promoter region of a counter-selectable marker gene, tolC. By repeatedly switching the marker gene ON and OFF, a number of desired gene-sized dsDNAs can be inserted consecutively. With this method, we successfully inserted approximately 13 kb gene clusters to generate engineered E. coli strains producing 1,4-butanediol (1,4-BDO). PMID:25736821

  1. Interaction of a rhizobial DNA-binding protein with the promoter region of a plant leghemoglobin gene

    SciTech Connect

    Welters, P.; Metz, B.; Felix, G.; Palme, K. ); Szczyglowski, K. ); Bruijn, F.J. de Michigan State Univ., East Lansing, MI )

    1993-08-01

    A nucleotide sequence was identified approximately 650 bp upstream of the Sesbania rostrata leghemoglobin gene Srglb3 start codon, which interacts specifically with a proteinaceous DNA-binding factor found in nodule extracts but not in extracts from leaves or root. The binding site for this factor was delimited using footprinting techniques. The DNA-binding activity of this factor was found to be heat stable, dependent on divalent cations, and derived from the (infecting) Azorhizobium caulinodans bacteria or bacteroids (A. caulinodans bacterial binding factor 1, AcBBF1). A 9- to 10-kD protein was isolated from a free-living culture of A. caulinodans that co-purifies with the DNA-binding activity (A. caulinodans bacterial binding protein 1, AcBBP1) and interacts specifically with its target (S. rostrata bacterial binding site 1, SrBBS1). The amino acid sequence of the N-terminal 27 residues of AcBBP1 was determined and was found to share significant similarity (46% identity; 68% similarity) with a domain of the herpes simplex virus major DNA-binding protein infected cell protein 8(ICP8). An insertion mutation in the SrBBS1 was found to result in a substantial reduction of the expression of a Srglb3-gus reporter gene fusion in nodules of transgenic Lotus corniculatus plants, suggesting a role for this element in Srglb3 promoter activity. Based on these results, the authors propose that (a) bacterial transacting factor(s) may play a role in infected cell-specific expression of the symbiotically induced plant lb genes. 70 refs., 11 figs.

  2. Analysis of C43G mutation in the promoter region of the XIST gene in patients with idiopathic primary ovarian insufficiency.

    PubMed

    Yoon, Sang Ho; Choi, Young Min

    2015-06-01

    The XIST gene is considered to be an attractive candidate gene for skewed X-chromosome inactivation and a possible cause of primary ovarian insufficiency (POI). The purpose of this study was to investigate whether the XIST gene promoter mutation is associated with idiopathic POI in a sample of the Korean population. Subjects consisted of 102 idiopathic POI patients and 113 healthy controls with normal menstrual cycles. Patients with the following known causes of POI were excluded in advance: cytogenetic abnormalities, prior chemo- or radiotherapy, or prior bilateral oophorectomy. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism analysis. The mean age of onset of ovarian insufficiency was 28.7±8.5 years and the mean values of serum luteinizing and follicle-stimulating hormones and estradiol in the POI group were 31.4±18.2 mIU/mL, 74.5±41.1 mIU/mL, and 30.5±36.7 pg/mL, respectively. We found no cytosine to guanine (C43G) variation in the XIST gene in both POI patients and controls. The C43G mutation in the promoter region of the XIST gene was not present in the Korean patients with idiopathic POI in our study, in contrast to our expectation, suggesting that the role of XIST in the pathogenesis of POI is not yet clear.

  3. Analysis of C43G mutation in the promoter region of the XIST gene in patients with idiopathic primary ovarian insufficiency

    PubMed Central

    Yoon, Sang Ho

    2015-01-01

    Objective The XIST gene is considered to be an attractive candidate gene for skewed X-chromosome inactivation and a possible cause of primary ovarian insufficiency (POI). The purpose of this study was to investigate whether the XIST gene promoter mutation is associated with idiopathic POI in a sample of the Korean population. Methods Subjects consisted of 102 idiopathic POI patients and 113 healthy controls with normal menstrual cycles. Patients with the following known causes of POI were excluded in advance: cytogenetic abnormalities, prior chemo- or radiotherapy, or prior bilateral oophorectomy. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism analysis. Results The mean age of onset of ovarian insufficiency was 28.7±8.5 years and the mean values of serum luteinizing and follicle-stimulating hormones and estradiol in the POI group were 31.4±18.2 mIU/mL, 74.5±41.1 mIU/mL, and 30.5±36.7 pg/mL, respectively. We found no cytosine to guanine (C43G) variation in the XIST gene in both POI patients and controls. Conclusion The C43G mutation in the promoter region of the XIST gene was not present in the Korean patients with idiopathic POI in our study, in contrast to our expectation, suggesting that the role of XIST in the pathogenesis of POI is not yet clear. PMID:26161334

  4. Regulation of the transfer genes of Streptomyces plasmid pSN22: in vivo and in vitro study of the interaction of TraR with promoter regions.

    PubMed Central

    Kataoka, M; Kosono, S; Seki, T; Yoshida, T

    1994-01-01

    Expression of the tra operon, essential for conjugative transfer of the 11-kb Streptomyces nigrifaciens plasmid pSN22, is negatively regulated by traR, which is located upstream of the tra operon and transcribed in the opposite orientation. The transcriptional start points for the tra and traR mRNAs were determined by primer extension; they are 72 bp apart and have identical -10 promoter sequences. The TraR protein was overexpressed in Escherichia coli and used for gel retardation and DNase I protection experiments. It bound specifically to the bidirectional tra-traR promoter region and protected four DNA regions, each of which contains a similar 12-bp sequence. The binding was strongest to the region downstream of the tra promoter, probably ensuring that expression of the potentially lethal traB gene is turned off before traR. The efficiency of intramycelial plasmid transfer was decreased by the mutation at the downstream region. Images PMID:7961501

  5. Identification of a non-canonical E-box motif as a regulatory element in the proximal promoter region of the apolipoprotein E gene.

    PubMed Central

    Salero, Enrique; Giménez, Cecilio; Zafra, Francisco

    2003-01-01

    We have used the yeast one-hybrid system to identify transcription factors with binding capability to specific sequences in proximal regions of the apolipoprotein E gene ( APOE ) promoter. The sequence between -113 and -80 nt, which contains regulatory elements in various cell types, was used as a bait to screen a human brain cDNA library. Four cDNA clones that encoded portions of the human upstream-stimulatory-factor (USF) transcription factor were isolated. Electrophoretic-mobility-shift assays ('EMSAs') using nuclear extracts from various human cell lines as well as from rat brain and liver revealed the formation of two DNA-protein complexes within the sequence CACCTCGTGAC (region -101/-91 of the APOE promoter) that show similarity to the E-box element. The retarded complexes contained USF1, as deduced from competition and supershift assays. Functional experiments using different APOE promoter-luciferase reporter constructs transiently transfected into U87, HepG2 or HeLa cell lines showed that mutations that precluded the formation of complexes decreased the basal activity of the promoter by about 50%. Overexpression of USF1 in U87 glioblastoma cells led to an increased activity of the promoter that was partially mediated by the atypical E-box. The stimulatory effect of USF1 was cell-type specific, as it was not observed in hepatoma HepG2 cells. Similarly, overexpression of a USF1 dominant-negative mutant decreased the basal activity of the promoter in glioblastoma, but not in hepatoma, cells. These data indicated that USF, and probably other related transcription factors, might be involved in the basal transcriptional machinery of APOE by binding to a non-canonical E-box motif within the proximal promoter. PMID:12444925

  6. In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity.

    PubMed

    Khan, Imtiaz A; Mort, Matthew; Buckland, Paul R; O'Donovan, Michael C; Cooper, David N; Chuzhanova, Nadia A

    2006-01-01

    DNA sequence features were sought that could be used for the in silico ascertainment of the likely functional consequences of single nucleotide changes in human gene promoter regions. To identify relevant features of the local DNA sequence context, we transformed into consensus tables the nucleotide composition of sequences flanking 101 promoter SNPs of type C<-->T or A<-->G, defined empirically as being either 'functional' or 'non-functional' on the basis of a standardised reporter gene assay. The similarity of a given sequence to these consensus tables was then measured by means of the Shapiro-Senapathy score. A decision rule with the potential to discriminate between empirically ascertained functional and non-functional SNPs was proposed that potentiated discrimination between functional and non-functional SNPs with a sensitivity of 80% and a specificity of 20%. Two further datasets (viz. disease-associated SNPs of types A<-->G and C<-->T (N = 75) and pathological promoter mutations (transitions, N = 114)) were retrieved from the Human Gene Mutation Database (HGMD; http://www.hgmd.org/) and analyzed using consensus tables derived from the functional and non-functional promoter SNPs; approximately 70% were correctly recognized as being of probable functional significance. Complexity analysis was also used to quantify the regularity of the local DNA sequence environment. Functional SNPs/mutations of type C<-->T were found to occur in DNA regions characterized by lower average sequence complexity as measured with respect to symmetric elements; complexity values increased gradually from functional SNPs and pathological mutations to functional disease-associated SNPs and non-functional SNPs. This may reflect the internal axial symmetry that frequently characterizes transcription factor binding sites.

  7. Functional evaluation of novel single nucleotide polymorphisms and haplotypes in the promoter regions of CYP1B1 and CYP1A1 genes.

    PubMed

    Han, Weiguo; Pentecost, Brian T; Spivack, Simon D

    2003-07-01

    Interindividual variation in the expression of the carcinogen- and estrogen-metabolizing enzymes cytochrome P4501B1 and 1A1 (CYP1B1 and CYP1A1) has been detected in human lung. To search for polymorphisms with functional consequences for CYP1B1 and CYP1A1 gene expression, we examined 1.5 kb of the promoter region of each gene. Genomic DNA from 21 Caucasian individuals was amplified by polymerase chain reaction (PCR) for direct cycle sequencing. Eight single nucleotide polymorphisms (SNPs) for CYP1B1 and 13 SNPs for CYP1A1 were found. The majority of polymorphisms occurred as multiSNP combinations for individual subjects. The wild-type sequences were cloned into a luciferase reporter construct. The most frequent polymorphisms were then recreated by iterative site-directed mutagenesis, replicating single polymorphisms and multiSNP combinations. These wild-type and variant constructs were functionally evaluated in transient transfection experiments employing exposures to either the index polycyclic aromatic hydrocarbon (PAH) inducer benzo[a]pyrene (B[a]P), a composite mixture of cigarette smoke extract (CSE), or the repressor chemopreventive agent trans-3,4,5-trihydroxystilbene (reseveratrol). Results indicated that all wild-type and variant constructs responded in qualitatively concordant fashion to the inducers and to the repressor. The CYP1B1 haplotypes and the majority of CYP1A1 haplotypes were shown to have no functional consequence, as compared to those of the wild-type promoter sequences. Two constructs of composite polymorphisms of CYP1A1 appeared to result in a statistically significant increase in basal promoter activity (1.38- and 1.50-fold, respectively), but the degree of functional impact was judged unlikely to be biologically important in vivo. We conclude that the observed promoter region polymorphisms in these genes are common, but are of unclear functional consequence.

  8. DNA damage in peripheral blood lymphocytes and association with polymorphisms in the promoter region of the CYP2E1 gene in alcoholics from Central Brazil.

    PubMed

    Ramos, Jheneffer Sonara Aguiar; Alves, Alessandro Arruda; Lopes, Mariana Paiva; Pedroso, Thays Millena Alves; Felício, Leandro Prado; Carvalho, Wanessa Fernandes; Franco, Fernanda Craveiro; Araújo Melo, Caroline Oliveira; Gonçalves, Macks Wendhell; Soares, Thannya Nascimento; da Cruz, Aparecido Divino; de Melo E Silva, Daniela

    2016-12-01

    DNA damage caused by the accumulation of bio-products generated in the biotransformation of ethanol to acetaldehyde mediated by the CYP2E1 enzyme has been studied. To evaluate DNA damage in peripheral blood lymphocytes and the possible association with polymorphisms in the promoter region of the CYP2E1 gene, we performed a case-control study including 75 alcoholics and 59 individuals who consume alcohol socially. Alcoholics were previously diagnosed by the Psychosocial Care Center - Alcohol and Drugs (CAPS A/D) in the city of Goiania, Goias state, Central Brazil. DNA damage was evaluated by comet assay. The analysis of the rs3813867, rs2031920, and rs2031921 polymorphisms in the promoter region of CYP2E1 gene was performed by Sanger sequencing. Men older than 35 years old were the most common alcoholics. We found increased DNA damage in the case group, compared to the control group (p < 0.001). Alcoholics who were heterozygous in the rs3813867, rs2031920, and rs2031921 polymorphisms showed higher DNA damage (tail length and olive tail moment), compared to individuals with the homozygous non-mutated allele. Previous studies have shown that polymorphisms in the promoter region of the CYP2E1 gene could cause higher CYP2E1 transcriptional activity, increasing enzyme activity compared with nondrinkers, indicating that the presence of the mutated allele (heterozygous or homozygous) may be associated with higher alcohol metabolic rates and therefore show increased acetaldehyde levels after alcohol consumption, which then can exert its carcinogenic effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. hSmad5 gene, a human hSmad family member: its full length cDNA, genomic structure, promoter region and mutation analysis in human tumors.

    PubMed

    Gemma, A; Hagiwara, K; Vincent, F; Ke, Y; Hancock, A R; Nagashima, M; Bennett, W P; Harris, C C

    1998-02-19

    hSmad (mothers against decapentaplegic)-related proteins are important messengers within the Transforming Growth Factor-beta1 (TGF-beta1) superfamily signal transduction pathways. To further characterize a member of this family, we obtained a full length cDNA of the human hSmad5 (hSmad5) gene by rapid amplification of cDNA ends (RACE) and then determined the genomic structure of the gene. There are eight exons and two alternative transcripts; the shorter transcript lacks exon 2. We identified the hSmad5 promoter region from a human genomic YAC clone by obtaining the nucleotide sequence extending 1235 base pairs upstream of the 5' end of the cDNA. We found a CpG island consistent with a promoter region, and we demonstrated promoter activity in a 1232 bp fragment located upstream of the transcription initiation site. To investigate the frequency of somatic hSmad5 mutations in human cancers, we designed intron-based primers to examine coding regions by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Neither homozygous deletions or point mutations were found in 40 primary gastric tumors and 51 cell lines derived from diverse types of human cancer including 20 cell lines resistant to the growth inhibitory effects of TGF-beta1. These results suggest that the hSmad5 gene is not commonly mutated and that other genetic alterations mediate the loss of TGF-beta1 responsiveness in human cancers.

  10. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants.

    PubMed

    Peng, Fred Y; Hu, Zhiqiu; Yang, Rong-Cai

    2016-08-08

    Many genes involved in responses to photoperiod and vernalization have been characterized or predicted in Arabidopsis (Arabidopsis thaliana), Brachypodium (Brachypodium distachyon), wheat (Triticum aestivum) and barley (Hordeum vulgare). However, little is known about the transcription regulation of these genes, especially in the large, complex genomes of wheat and barley. We identified 68, 60, 195 and 61 genes that are known or postulated to control pathways of photoperiod (PH), vernalization (VE) and pathway integration (PI) in Arabidopsis, Brachypodium, wheat and barley for predicting transcription factor binding sites (TFBSs) in the promoters of these genes using the FIMO motif search tool of the MEME Suite. The initial predicted TFBSs were filtered to confirm the final numbers of predicted TFBSs to be 1066, 1379, 1528, and 789 in Arabidopsis, Brachypodium, wheat and barley, respectively. These TFBSs were mapped onto the PH, VE and PI pathways to infer about the regulation of gene expression in Arabidopsis and cereal species. The GC contents in promoters, untranslated regions (UTRs), coding sequences and introns were higher in the three cereal species than those in Arabidopsis. The predicted TFBSs were most abundant for two transcription factor (TF) families: MADS-box and CSD (cold shock domain). The analysis of publicly available gene expression data showed that genes with similar numbers of MADS-box and CSD TFBSs exhibited similar expression patterns across several different tissues and developmental stages. The intra-specific Tajima D-statistics of TFBS motif diversity showed different binding specificity among different TF families. The inter-specific Tajima D-statistics suggested faster TFBS divergence in TFBSs than in coding sequences and introns. Mapping TFBSs onto the PH, VE and PI pathways showed the predominance of MADS-box and CSD TFBSs in most genes of the four species, and the difference in the pathway regulations between Arabidopsis and the three

  11. Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas.

    PubMed

    Ferreri, Andrés J M; Dell'Oro, Stefania; Capello, Daniela; Ponzoni, Maurilio; Iuzzolino, Paolo; Rossi, Davide; Pasini, Felice; Ambrosetti, Achille; Orvieto, Enrico; Ferrarese, Fabio; Arrigoni, Gianluigi; Foppoli, Marco; Reni, Michele; Gaidano, Gianluca

    2004-09-01

    We investigated the prevalence and prognostic role of CpG island methylation of the reduced folate carrier (RFC) gene promoter region in primary central nervous system lymphoma (PCNSL) in immunocompetent patients. Genomic DNA from 40 PCNSL was used for methylation-specific polymerase chain reaction and bisulphite genomic sequencing of the RFC promoter region. Human immunodeficiency virus-negative systemic diffuse large B-cell lymphomas (DLBCL) were used as controls (n = 50). The impact on outcome of RFC promoter methylation was assessed in 37 PCNSL patients treated with high-dose methotrexate (HD-MTX)-based chemotherapy +/- radiotherapy. RFC promoter methylation occurred in 12 of 40 (30%) PCNSL and in four of 50 (8%) DLBCL (P = 0.01). Of 37 PCNSL treated with HD-MTX-based chemotherapy, methylation occurred in nine cases (24%, M-PCNSL), while 28 cases (76%, U-PCNSL) were negative. Three M-PCNSL (33%) and 15 U-PCNSL (54%) achieved complete remission (CR) after primary chemotherapy. Logistic regression confirmed the independent association between CR rate and International Extranodal Lymphoma Study Group score (P = 0.03), RFC promoter methylation (P = 0.07) and use of cytarabine (P = 0.08). The 3-year failure-free survival (FFS) and overall survival for M-PCNSL and U-PCNSL was 0% vs. 31 +/- 9% (P = 0.34) and 0% vs. 31 +/- 9% (P = 0.35) respectively. This is the first study to assess the methylation status of the RFC promoter in human tumour samples. RFC methylation is more common in PCNSL compared with systemic DLBCL, and is associated with a lower CR rate to HD-MTX-based chemotherapy. If confirmed in prospective trials on PCNSL treated with HD-MTX alone, these data may suggest the necessity for alternative strategies in M-PCNSL considering the increased risk of MTX resistance by tumour cells.

  12. Exploring the 5'-UTR DNA region as a target for optimizing recombinant gene expression from the strong and inducible Pm promoter in Escherichia coli.

    PubMed

    Berg, Laila; Kucharova, Veronika; Bakke, Ingrid; Valla, Svein; Brautaset, Trygve

    2012-04-30

    By using the strong and inducible Pm promoter as a model, we recently reported that the β-lactamase production (encoded by bla) can be stimulated up to 20-fold in Escherichia coli by mutating the DNA region corresponding to the 5'-untranslated region of mRNA (UTR). One striking observation was the unexpected large stimulatory effect some of these UTR variants had on the bla transcript production level. We here demonstrate that such UTR variants can also be used to improve the expression level of the alternative genes celB (encoding phosphoglucomutase) and inf-α2b (encoding human cytokine interferon α2b), which both can be expressed to high levels even with the wild-type Pm UTR DNA sequence. Our data indicated some degree of context dependency between the UTR DNA and concomitant recombinant gene sequences. By constructing and using a synthetic operon, we demonstrated that UTR variants optimized for high-level expression of probably any recombinant gene can be efficiently selected from large UTR mutant libraries. The stimulation affected both the transcript production and translational level, and such modified UTR sequences therefore clearly have a significant applied potential for improvement of recombinant gene expression processes.

  13. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity

    PubMed Central

    Borrmann, Lars; Schwanbeck, Ralf; Heyduk, Tomasz; Seebeck, Birte; Rogalla, Piere; Bullerdiek, Jörn; Wiśniewski, Jacek R.

    2003-01-01

    High mobility group A2 (HMGA2) chromosomal non-histone protein and its derivatives play an important role in development and progression of benign and malignant tumors, obesity and arteriosclerosis, although the underlying mechanisms of these conditions are poorly understood. Therefore, we tried to identify target genes for this transcriptional regulator and to provide insights in the mechanism of interaction to its target. Multiple genes have been identified by microarray experiments as being transcriptionally regulated by HMGA2. Among these we chose the ERCC1 gene, encoding a DNA repair protein, for this study. DNA-binding studies were performed using HMGA2 and C-terminally truncated ΔHMGA2, a derivative that is frequently observed in a variety of tumors. A unique high affinity HMGA2 binding site was mapped to a specific AT-rich region located –323 to –298 upstream of the ERCC1 transcription start site, distinguishing it from other potential AT-rich binding sites. The observed 1:1 stoichiometry for the binding of wild-type HMGA2 to this region was altered to 1:2 upon binding of truncated ΔHMGA2, causing DNA bending. Furthermore, the regulatory effect of HMGA2 was confirmed by luciferase promoter assays showing that ERCC1 promoter activity is down-regulated by all investigated HMGA2 forms, with the most striking effect exerted by ΔHMGA2. Our results provide the first insights into how HMGA2 and its aberrant forms bind and regulate the ERCC1 promoter. PMID:14627817

  14. Functional analysis of the durum wheat gene TdPIP2;1 and its promoter region in response to abiotic stress in rice.

    PubMed

    Ayadi, Malika; Mieulet, Delphine; Fabre, Denis; Verdeil, Jean-Luc; Vernet, Aurore; Guiderdoni, Emmanuel; Masmoudi, Khaled

    2014-06-01

    In a previous work, we demonstrated that expression of TdPIP2;1 in Xenopus oocytes resulted in an increase in Pf compared to water injected oocytes. Phenotypic analyses of transgenic tobacco plants expressing TdPIP2;1 generated a tolerance phenotype towards drought and salinity stresses. To elucidate its stress tolerance mechanism at the transcriptional level, we isolated and characterized the promoter region of the TdPIP2;1 gene. A 1060-bp genomic fragment upstream of the TdPIP2;1 translated sequence has been isolated, cloned, and designated as the proTdPIP2;1 promoter. Sequence analysis of proTdPIP2;1 revealed the presence of cis regulatory elements which could be required for abiotic stress responsiveness, for tissue-specific and vascular expression. The proTdPIP2;1 promoter was fused to the β-glucuronidase (gusA) gene and the resulting construct was transferred into rice (cv. Nipponbare). Histochemical analysis of proTdPIP2;1::Gus in rice plants revealed that the GUS activity was observed in leaves, stems and roots of stably transformed rice T3 plants. Histological sections prepared revealed accumulation of GUS products in phloem, xylem and in some cells adjacent to xylem. The transcripts were up-regulated by dehydration. Transgenic rice plants overexpressing proTdPIP2;1 in fusion with TdPIP2;1, showed enhanced drought tolerance, while wild type plants were more sensitive and exhibited symptoms of wilting and chlorosis. These findings suggest that expression of the TdPIP2;1 gene regulated by its own promoter achieves enhanced drought tolerance in rice.

  15. Association of the Serotonin Transporter Gene Promoter Region (5-HTTLPR) Polymorphism with Biased Attention for Emotional Stimuli

    PubMed Central

    Beevers, Christopher G.; Wells, Tony T.; Ellis, Alissa J.; McGeary, John E.

    2010-01-01

    A deletion polymorphism in the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with vulnerability to affective disorders, yet the mechanism by which this gene confers vulnerability remains unclear. Two studies examined associations between the 5-HTTLPR polymorphism and attentional bias for emotional stimuli among non-depressed adults. Biased attention, attention engagement, and difficulty with attention disengagement were assessed with a spatial cueing task using emotional stimuli. Results from Study 1 (N = 38) indicated that short 5-HTTLPR allele carriers experienced greater difficulty disengaging their attention from sad and happy stimuli compared to long allele homozygotes. Study 2 participants (N = 144) were genotyped for the 5-HTTLPR polymorphism, including single nucleotide polymorphism (SNP) rs25531 in the long allele of the 5-HTTLPR. Consistent with Study 1, individuals homozygous for the low expressing 5-HTTLPR alleles (i.e., S and LG) experienced greater difficulty disengaging attention from sad, happy, and fear stimuli than high expressing 5-HTTLPR homozygotes. Since this association exists in healthy adults, it may represent a susceptibility factor for affective disorders that becomes problematic during stressful life experiences. PMID:19685963

  16. Association of the serotonin transporter gene promoter region (5-HTTLPR) polymorphism with biased attention for emotional stimuli.

    PubMed

    Beevers, Christopher G; Wells, Tony T; Ellis, Alissa J; McGeary, John E

    2009-08-01

    A deletion polymorphism in the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with vulnerability to affective disorders, yet the mechanism by which this gene confers vulnerability remains unclear. Two studies examined associations between the 5-HTTLPR polymorphism and attentional bias for emotional stimuli among nondepressed adults. Biased attention, attention engagement, and difficulty with attention disengagement were assessed with a spatial cuing task using emotional stimuli. Results from Study 1 (N = 38) indicated that short 5-HTTLPR allele carriers experienced greater difficulty disengaging their attention from sad and happy stimuli compared with long allele homozygotes. Study 2 participants (N = 144) were genotyped for the 5-HTTLPR polymorphism, including single nucleotide polymorphism rs25531 in the long allele of the 5-HTTLPR. Consistent with Study 1, individuals homozygous for the low-expressing 5-HTTLPR alleles (i.e., S and LG) experienced greater difficulty disengaging attention from sad, happy, and fear stimuli than high-expressing 5-HTTLPR homozygotes. Because this association exists in healthy adults, it may represent a susceptibility factor for affective disorders that becomes problematic during stressful life experiences.

  17. DNA methylation within the I.4 promoter region correlates with CYPl19A1 gene expression in human ex vivo mature omental and subcutaneous adipocytes

    PubMed Central

    2013-01-01

    Background DNA methylation at specific CpG sites within gene promoter regions is known to regulate transcriptional activity in vitro. In human adipose tissue, basal transcription of the aromatase (CYP19A1) gene is driven primarily by the I.4 promoter however the role of DNA methylation in regulating expression in ex vivo mature adipocytes is unknown. This observational study reports the correlation of DNA methylation within the I.4 promoter region of human mature subcutaneous and omental adipocytes with aromatase expression and body composition measures. Methods Omental and subcutaneous adipose tissue were collected from 25 obese subjects undergoing bariatric surgery and the mature adipocyte fraction purified. DNA methylation status of 5 CpG sites within a 550 base pair region encompassing the transcription start site (TSS) of promoter I.4 was determined using pyrosequencing. Relative aromatase and I.4 promoter specific mRNA expression was determined by qRT-PCR and whole body DXA performed in 25 participants. Results Site-specific DNA methylation varied from 21 ± 10% to 81 ± 11%. In omental adipocytes percentage methylation at the I.4.1 and I.4.2 CpG sites, but not other nearby sites, was negatively correlated with relative aromatase mRNA expression (R = - 0.52, P = 0.017 and R = - 0.52, P = 0.015). In contrast subcutaneous adipocytes percentage DNA methylation at the I.4.3 and I.4.5 sites were positively correlated with relative aromatase mRNA expression (R = 0.47, P = 0.022 and R = 0.55, P = 0.004). In a small subset of patients DNA methylation at the I.4.5 site was also positively correlated with whole body lean mass, bone mineral content and density. Conclusions In conclusion in mature adipocytes, the primary source of estradiol after menopause, increasing DNA methylation was correlated with aromatase mRNA expression and thus estradiol biosynthesis. These findings support a tissue-specific epigenetic regulation of the

  18. An IS257-Derived Hybrid Promoter Directs Transcription of a tetA(K) Tetracycline Resistance Gene in the Staphylococcus aureus Chromosomal mec Region

    PubMed Central

    Simpson, Alice E.; Skurray, Ronald A.; Firth, Neville

    2000-01-01

    Transcription of the tetA(K) tetracycline resistance determinant encoded by an IS257-flanked cointegrated copy of a pT181-like plasmid, located within the chromosomal mec region of a methicillin-resistant Staphylococcus aureus isolate, has been investigated. The results demonstrated that transcription of tetA(K) in this strain is directed by both an IS257-derived hybrid promoter, which is stronger than the native tetA(K) promoter in the autonomous form of pT181, and a complete outwardly directed promoter identified within one end of IS257. Despite lower gene dosage, the chromosomal configuration was shown to afford a higher level of resistance than that mediated by pT181 in an autonomous multicopy state. Furthermore, competition studies revealed that a strain carrying the chromosomal tetA(K) determinant exhibited a higher level of fitness in the presence of tetracycline but not in its absence. This finding suggests that tetracycline has been a selective factor in the emergence of strains carrying a cointegrated pT181-like plasmid in their chromosomes. The results highlight the potential of IS257 to influence the expression of neighboring genes, a property likely to enhance its capacity to mediate advantageous genetic rearrangements. PMID:10852863

  19. Prediction of response to chemoradiation in rectal cancer by a gene polymorphism in the epidermal growth factor receptor promoter region

    SciTech Connect

    Spindler, Karen-Lise Garm . E-mail: kalgsp@vgs.vejleamt.dk; Nielsen, Jens Nederby; Lindebjerg, Jan; Brandslund, Ivan; Jakobsen, Anders

    2006-10-01

    Purpose: Epidermal growth factor receptor (EGFR) has been associated with radioresistance in solid tumors. Recently a polymorphism in the Sp1 recognition site of the EGFR promoter region was identified. The present study investigated the predictive value of this polymorphism for the outcome of chemoradiation in locally advanced rectal cancer. Methods and Materials: The study included 77 patients with locally advanced T3 rectal tumors. Treatment consisted of preoperative radiation therapy at a total tumor dose of 65 Gy and concomitant chemotherapy with Uftoral. Blood samples from 63 patients were evaluated for Sp1 -216 G/T polymorphism by polymerase chain reaction analysis. Forty-eight primary tumor biopsies were available for EGFR immunostaining. Patients underwent surgery 8 weeks after treatment. Pathologic response evaluation was performed according to the tumor regression grade (TRG) system. Results: Forty-nine percent had major response (TRG1-2) and 51% moderate response (TRG 3-4) to chemoradiation. The rates of major response were 34% (10/29) in GG homozygote patients compared with 65% (22/34) in patients with T containing variants (p = 0.023). Fifty-eight percent of biopsies were positive for EGFR expression (28/48). The major response rates with regard to EGFR immunostaining were not significantly different. EGFR-positive tumors were found in 83% of the GG homozygote patients compared with 38% of patients with TT or GT variants (p = 0.008). Conclusions: There was a significant correlation between EGFR Sp1 -216 G/T polymorphism and treatment response to chemoradiation in locally advanced rectal cancer. Further investigations of a second set of patient and other treatment schedules are warranted.

  20. Functional variant in the promoter region of IL-27 alters gene transcription and confers a risk for ulcerative colitis in northern Chinese Han.

    PubMed

    Yu, Wei; Zhang, Kun; Wang, Zhongyi; Zhang, Jiayu; Chen, Tong; Jin, Lifang

    2017-03-01

    Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown etiology and a polygenic disease. IL-27 encodes p28, a subunit of IL-12 family cytokines, and has been implicated in the pathogenesis of UC. The aims of the present study were to evaluate the genetic association of a variant of the IL-27 gene with UC and to further characterize the functional variant in the IL-27 gene that influences the risk for UC. Our data demonstrated that the genetic variant rs153109 in the 5' upstream region of IL-27 is significantly associated with UC in Chinese Han individuals. Analysis of IL-27 transcripts demonstrated that individuals carrying the risk allele of rs153109 display reduced transcription of IL-27 in PBMCs. Luciferase activity assays demonstrated that the risk allele rs153109 results in decreased promoter activity compared to a non-risk allele in a tissue specific manner. Mechanistic characterization of histone modifications in the promoter region revealed that the risk haplotype tagged by the risk allele of rs153109 reduces the levels of H3K3me3 and H3K27ac.

  1. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    PubMed

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples.

  2. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder.

    PubMed

    Jackson, Pamela B; Boccuto, Luigi; Skinner, Cindy; Collins, Julianne S; Neri, Giovanni; Gurrieri, Fiorella; Schwartz, Charles E

    2009-08-01

    Previous studies in three independent cohorts have shown that the rs1858830 C allele variant in the promoter region of the MET gene on chromosome 7q31 is associated with autism. Another study has found correlations between other alterations in the MET gene and autism in two unrelated cohorts. This study screened two cohorts, an Autistic Disorder cohort from South Carolina and a Pervasive Developmental Disorder (PDD) cohort from Italy, for the presence of the C allele variant in rs1858830. A significant increase in the C allele variant frequency was found in the South Carolina Autistic Disorder patients as compared to South Carolina Controls (chi(2)=5.8, df=1, P=0.02). In the South Carolina cohort, a significant association with Autistic Disorder was found when comparing the CC and CG genotypes to the GG genotype (odds ratio (OR)=1.64; 95% confidence interval (CI)=1.12-2.40; chi(2)=6.5, df=1, P=0.01) in cases and controls. In the Italian cohort, no significant association with PDD was found when comparing the CC or CG genotype to the GG genotype (OR=1.20; 95% CI=0.56-2.56; chi(2)=0.2, df=1, P=0.64). This study is the third independent study to find the rs1858830 C variant in the MET gene promoter to be associated with autism.

  3. Chromatin immunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain.

    PubMed

    van der Laan, Siem; Sarabdjitsingh, R Angela; Van Batenburg, Marcel F; Lachize, Servane B; Li, Hualing; Dijkmans, Thomas F; Vreugdenhil, Erno; de Kloet, E Ron; Meijer, Onno C

    2008-09-01

    While the actions of glucocorticoids on brain functions have been comprehensively studied, the underlying genomic mechanisms are poorly understood. In this study, we show that glucocorticoid-induced leucine zipper (GILZ) mRNA is strongly and ubiquitously induced in rat brain. To decipher the molecular mechanisms underlying these genomic effects, it is of interest to identify the regulatory sites in the promoter region. Alignment of the rat GILZ promoter with the well-characterized human promoter resulted in poor sequence homology. Consequently, we analyzed the rat 5' flanking sequence by Matrix REDUCE and identified two high-affinity glucocorticoid response elements (GRE) located 2 kb upstream of the transcription start site. These findings were corroborated using the glucocorticoid receptor (GR) expressing Ns-1 PC12 rat cell-line. In these cells, dexamethasone treatment leads to a progressive increase of GILZ mRNA expression levels via a GR-dependent mechanism. Subsequently, using chromatin immunoprecipitation assays we show that the two high-affinity GREs are located within the GR-binding regions. Lastly, we demonstrate using multiple tissue in situ hybridization a marked increase in mRNA expression levels in spleen, thymus, heart, lung, liver, muscle, testis, kidney, colon, ileum, as well as in brain and conclude that the GILZ gene can be used to study glucocorticoid effects in many additional rodent tissues.

  4. Identification and characterization of the promoter region of the Nav1.7 voltage-gated sodium channel gene (SCN9A).

    PubMed

    Diss, James K J; Calissano, Mattia; Gascoyne, Duncan; Djamgoz, Mustafa B A; Latchman, David S

    2008-03-01

    The Nav1.7 sodium channel plays an important role in pain and is also upregulated in prostate cancer. To investigate the mechanisms regulating physiological and pathophysiological Nav1.7 expression we identified the core promoter of this gene (SCN9A) in the human genome. In silico genomic analysis revealed a putative SCN9A 5' non-coding exon approximately 64,000 nucleotides from the translation start site, expression of which commenced at three very closely-positioned transcription initiation sites (TISs), as determined by 5' RACE experiments. The genomic region around these TISs possesses numerous core elements of a TATA-less promoter within a well-defined CpG island. Importantly, it acted as a promoter when inserted upstream of luciferase in a fusion construct. Moreover, the activity of the promoter-luciferase construct ostensibly paralleled endogenous Nav1.7 mRNA levels in vitro, with both increased in a quantitatively and qualitatively similar manner by numerous factors (including NGF, phorbol esters, retinoic acid, and Brn-3a transcription factor over-expression).

  5. A polymorphism in the promoter region of the survivin gene is related to hemorrhagic transformation in patients with acute ischemic stroke.

    PubMed

    Mallolas, Judith; Rodríguez, Rocío; Gubern, Carme; Camós, Susanna; Serena, Joaquín; Castellanos, Mar

    2014-12-01

    Hemorrhagic transformation (HT) of cerebral infarction is a common and serious occurrence following acute ischemic stroke. The expression of survivin, a member of the inhibitor of apoptosis protein family, has been shown to increase after cerebral ischemia. This protein has been mainly located at the microvasculature within the infarcted and peri-infarcted area, so we aimed to investigate whether survivin gene polymorphisms, also known as BIRC5 gene, were associated with HT of cerebral infarction. Polymorphism screening of the BIRC5 gene was performed in 107 patients with a hemispheric ischemic stroke and 93 controls by polymerase chain reaction, single-strand conformation polymorphism and sequencing analysis. Genotype-phenotype correlation was performed in patients. MRI was carried out within 12 h of symptoms onset and at 72 ± 12 h. The presence of HT was determined on the second DWI sequence and classified according to ECASS II criteria. MMP-9 levels were analyzed at admission. Forty-nine patients (45.8%) had HT. The -241 C/T (rs17878467) polymorphism was identified in the promoter region of the survivin gene. The prevalence of the mutant allele (T) was similar in patients and controls (14 vs. 16%, respectively; P = 0.37). However, 9 (29%) patients with allele T had HT compared to 40 (52.6%) of wild-type (P = 0.021). Logistic regression analysis showed that the polymorphism was associated with a lower risk of HT (OR 0.16; 95% CI 0.04-0.65; P = 0.01). The -241 C/T polymorphism in the promoter region of the survivin gene is associated with a lower risk of HT in patients with ischemic stroke. It has recently been reported that the -241 C/T polymorphism increases survivin promoter activity, reinforcing the hypothesis that patients with the mutant allele may have increased survivin expression in the brain. Different mechanisms, including BBB protection by the inhibition or activation of different angiogenic growth factors and the inhibition of apoptosis during

  6. Cloning, characterisation and identification of several polymorphisms in the promoter region of the human alpha2B-adrenergic receptor gene.

    PubMed

    Cayla, Cécile; Heinonen, Paula; Viikari, Liisa; Schaak, Stéphane; Snapir, Amir; Bouloumié, Anne; Karvonen, Matti K; Pesonen, Ullamari; Scheinin, Mika; Paris, Hervé

    2004-02-01

    Screening of a foetal brain genomic DNA library allowed to isolate a 10-kb fragment of the gene encoding the human alpha2B-adrenergic receptor, that contained 5.5 kb of the 5'-flanking region, the open reading frame and 2.9 kb of the 3'-flanking region. The 1-kb fragment upstream from the start codon was rich in GC, lacked consensus TATA or CAAT box, but contained several Sp1-binding sites. Other potential cis-regulatory elements found in the 5'-flanking region included AP2, USF, Stat-6, NFkappaB and Olf-1. A single canonical polyadenylation signal (AATAAA) was found at position +3252/+3257 and the polyadenylation site was 3274 nucleotides downstream from ATG. Transfection experiments with chimeric luciferase constructs containing various truncated fragments of the 5'-region showed that the fragment -3160/+3 exhibited promoter activity in all tested cell lines and permitted the definition of a minimal 200-bp promoter (-603/-411) containing three putative Sp1-binding sites and two initiator elements. Transcriptional activity of this region was inhibited by the addition of mithramycin, a specific inhibitor of Sp1 binding to GC-rich sequences. The search for sequence variants within a fragment covering 1.7 kb of 5'-flanking region and the coding region allowed us to identify five novel single nucleotide polymorphisms. Interestingly, the G/C substitution at position -98 relative to the start codon was common and in complete linkage with a previously identified insertion/deletion polymorphism in the coding region which was showed to affect alpha2B-adrenergic receptor function. Based on transfection data and computer-assisted sequence analysis, the -98 G/C single nucleotide polymorphism was located within a portion of the 5'-UTR (-127/+3) affecting luciferase activity and it created additional putative binding site for Sp1. However, G/C substitution had no significant incidence on promoter activity in BHK-21 or HeLa cells.

  7. Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes.

    PubMed

    Grec, Sébastien; Vanham, Delphine; de Ribaucourt, Jeoffrey Christyn; Purnelle, Bénédicte; Boutry, Marc

    2003-07-01

    Expression of NpABC1, a gene encoding a plasma membrane ATP binding cassette (ABC) transporter in Nicotiana plumbaginifolia, is induced by sclareol, an antifungal diterpene produced at the leaf surface, as well as by sclareolide, a close analog. A genomic fragment including the 1282-bp region upstream of the NpABC1 transcription start was fused to the reporter beta-glucuronidase (gus) gene and introduced into N. tabacum BY2 cells for stable transformation. A 25-fold increase in gus expression was observed when cells were treated with sclareolide and some other terpenes. The combined use of 5'-deletion promoter analysis, gel mobility shift assays, DNase I footprinting, and site-directed mutagenesis allowed us to identify three cis-elements (sclareol box 1 (SB1), SB2, and SB3) located, respectively, within nucleotides -827 to -802, -278 to -243, and -216 to -190 upstream of the NpABC1 transcription start. In vivo evaluation of these elements on sclareolide-induced expression showed that mutation of SB1 reduced expression by twofold, while that of SB2 had no effect. On the other hand, SB3 had a marked effect as it completely abolished sclareolide-mediated expression. NpABC1-gus expression was not induced by the stress signals, salicylic acid and ethylene, but was mediated, to some extent, by methyl jasmonate, which is known to promote diterpene synthesis.

  8. Firefly luciferase gene contains a cryptic promoter

    PubMed Central

    Vopálenský, Václav; Mašek, Tomáš; Horváth, Ondřej; Vicenová, Blanka; Mokrejš, Martin; Pospíšek, Martin

    2008-01-01

    A firefly luciferase (FLuc) counts among the most popular reporters of present-day molecular and cellular biology. In this study, we report a cryptic promoter activity in the luc+ gene, which is the most frequently used version of the firefly luciferase. The FLuc coding region displays cryptic promoter activity both in mammalian and yeast cells. In human CCL13 and Huh7 cells, cryptic transcription from the luc+ gene is 10–16 times weaker in comparison to the strong immediate-early cytomegalovirus promoter. Additionally, we discuss a possible impact of the FLuc gene cryptic promoter on experimental results especially in some fields of the RNA-oriented research, for example, in analysis of translation initiation or analysis of miRNA/siRNA function. Specifically, we propose how this newly described cryptic promoter activity within the FLuc gene might contribute to the previous determination of the strength of the cryptic promoter found in the cDNA corresponding to the hepatitis C virus internal ribosome entry site. Our findings should appeal to the researchers to be more careful when designing firefly luciferase-based assays as well as open the possibility of performing some experiments with the hepatitis C virus internal ribosome entry site, which could not be considered until now. PMID:18697919

  9. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads.

    PubMed

    Lendez, Pamela Anahi; Passucci, Juan Antonio; Poli, Mario Andres; Gutierrez, Silvina Elena; Dolcini, Guillermina Laura; Ceriani, Maria Carolina

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine involved in the immune response against viral and other infections. Its expression levels are affected by a polymorphism in the promoter region of the gene. Bovine leukemia virus is a retrovirus that infects cattle and develops two different infection profiles in the host. One profile is characterized by a high number of proviral copies integrated into the host genome and a strong immune response against the virus, while the most relevant property of the other profile is that the number of copies integrated into the host genome is almost undetectable and the immune response is very weak. We selected a population of cattle sufficiently large for statistical analysis and classified them according to whether they had a high or low proviral load (HPL or LPL). Polymorphisms in the promoter region were identified by PCR-RFLP. The results indicated that, in the HPL group, the three possible genotypes were normally distributed and that, in the LPL group, there was a significant association between the proviral load and a low frequency of the G/G genotype at position -824.

  10. Transcriptional regulation of the apolipoprotein A-IV gene involves synergism between a proximal orphan receptor response element and a distant enhancer located in the upstream promoter region of the apolipoprotein C-III gene.

    PubMed Central

    Ktistaki, E; Lacorte, J M; Katrakili, N; Zannis, V I; Talianidis, I

    1994-01-01

    Apolipoprotein A-IV expression is limited to intestinal and hepatic cells, suggesting a tissue specific transcriptional regulation of its gene. To investigate the mechanism controlling apo A-IV transcription we have analysed its promoter region by in vitro DNA binding and transient transfection experiments. DNase I footprinting analysis of the proximal promoter with rat liver nuclear extracts revealed four protected regions: AIVA (-32 to -22), AIVB (-84 to -42), AIVC (-148 to -92) and AIVD (-274 to -250). Element AIVC which is necessary for maximal promoter activity, binds HNF-4, Arp-1 and Ear-3 with similar affinity in a mutually exclusive manner. HNF-4 transactivated chimeric constructs containing intact AIVC site in the context of either the apo A-IV promoter or the heterologous thymidine kinase minimal promoter, while Arp-1 and Ear-3 repressed this activation. Increasing amounts of HNF-4 alleviated Arp-1 or Ear-3 mediated repression, suggesting that the observed opposing effects is a result of direct competition of these factors for the same recognition site. In transient transfection assays the apo A-IV promoter region (-700 to +10) had a very low activity in cells of hepatic (HepG2) and intestinal (CaCo2) origin. This activity was increased 13 to 18-fold when the upstream elements of the distantly linked apo C-III gene were fused to the proximal promoter. Results obtained with different 5' and 3' deletion constructs indicated that the cis-acting elements F to J between the nucleotides -500 and -890 of the apo C-III promoter were absolutely necessary to drive maximal enhancement in HepG2 and CaCo2 cells. The apo C-III upstream elements enhanced the activity of the minimal AdML promoter or the apo A-IV site C mutant less efficiently than the intact apo A-IV or AdML promoter constructs containing single HNF-4 sites. The findings suggest that the enhancer effect is mediated by synergistic interactions between the trans-acting factors which recognize the apo C

  11. Transcriptional regulation of the apolipoprotein A-IV gene involves synergism between a proximal orphan receptor response element and a distant enhancer located in the upstream promoter region of the apolipoprotein C-III gene.

    PubMed

    Ktistaki, E; Lacorte, J M; Katrakili, N; Zannis, V I; Talianidis, I

    1994-11-11

    Apolipoprotein A-IV expression is limited to intestinal and hepatic cells, suggesting a tissue specific transcriptional regulation of its gene. To investigate the mechanism controlling apo A-IV transcription we have analysed its promoter region by in vitro DNA binding and transient transfection experiments. DNase I footprinting analysis of the proximal promoter with rat liver nuclear extracts revealed four protected regions: AIVA (-32 to -22), AIVB (-84 to -42), AIVC (-148 to -92) and AIVD (-274 to -250). Element AIVC which is necessary for maximal promoter activity, binds HNF-4, Arp-1 and Ear-3 with similar affinity in a mutually exclusive manner. HNF-4 transactivated chimeric constructs containing intact AIVC site in the context of either the apo A-IV promoter or the heterologous thymidine kinase minimal promoter, while Arp-1 and Ear-3 repressed this activation. Increasing amounts of HNF-4 alleviated Arp-1 or Ear-3 mediated repression, suggesting that the observed opposing effects is a result of direct competition of these factors for the same recognition site. In transient transfection assays the apo A-IV promoter region (-700 to +10) had a very low activity in cells of hepatic (HepG2) and intestinal (CaCo2) origin. This activity was increased 13 to 18-fold when the upstream elements of the distantly linked apo C-III gene were fused to the proximal promoter. Results obtained with different 5' and 3' deletion constructs indicated that the cis-acting elements F to J between the nucleotides -500 and -890 of the apo C-III promoter were absolutely necessary to drive maximal enhancement in HepG2 and CaCo2 cells. The apo C-III upstream elements enhanced the activity of the minimal AdML promoter or the apo A-IV site C mutant less efficiently than the intact apo A-IV or AdML promoter constructs containing single HNF-4 sites. The findings suggest that the enhancer effect is mediated by synergistic interactions between the trans-acting factors which recognize the apo C

  12. The rs4844880 polymorphism in the promoter region of the HSD11B1 gene associates with bone mineral density in healthy and postmenopausal osteoporotic women.

    PubMed

    Feldman, Karolina; Szappanos, Agnes; Butz, Henriett; Grolmusz, Vince; Majnik, Judit; Likó, István; Kriszt, Balázs; Lakatos, Péter; Tóth, Miklós; Rácz, Károly; Patócs, Attila

    2012-11-01

    The 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1) plays an important role in the regulation of local glucocorticoid concentration in a tissue specific manner. Previous studies indicated associations between polymorphisms (SNPs) of the HSD11B1 gene and laboratory as well as osteodensitometric parameters of bone metabolism. In our present work we examined whether the tagging HSD11B1 gene polymorphisms could influence bone metabolism in healthy and postmenopausal osteoporotic women. HapMap database was used for identification and selection of SNPs located in the 38kb range of the HSD11B1 gene. Twelve SNPs were selected and genotyped in 209 healthy control women using Taqman SNP assays on Real-Time PCR and direct DNA sequencing. Of these SNPs, the rs4844880 was genotyped in 154 women with postmenopausal osteoporosis. Functional characterization of the rs4844880 was performed by in vitro luciferase assay. One of the 12 HSD11B1 SNPs, the rs4844880 showed a significant association with higher bone mineral density and/or T- and Z-scores at lumbar spine in healthy women. When data from 154 postmenopausal osteoporotic women were compared to those obtained from 101 age-matched postmenopausal healthy women selected from our healthy control group this association was strongly significant at the femoral neck region. In vitro luciferase assay demonstrated that the polymorphic rs4844880 allele inhibited the luciferase activity more significantly than the major allele. The rs4844880 polymorphism in the promoter region of the HSD11B1 gene resulting in a reduced expression of the enzyme may exert a beneficial effect on bone in healthy and postmenopausal osteoporotic women. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Analysis of the rs13306560 functional variant in the promoter region of the MTHFR gene in sporadic Parkinson´s disease.

    PubMed

    García, Silvia; Cano-Martínez, Luis Javier; Coral-Vázquez, Ramón Mauricio; Coronel-Perez, Agustín; Gómez-Díaz, Benjamín; Toledo-Lozano, Christian Gabriel; Gallegos-Arreola, Martha Patricia; Dávila-Maldonado, Luis; Jimenez-Hernández, Dulce Adeí; Alcaraz-Estrada, Sofía Lizeth; López-Hernández, Luz Berenice

    2017-08-05

    Among susceptibility genes for Sporadic Parkinson´s Disease (SPD), the MTHFR gene has been suggested as candidate. The A allele of the functional variant rs13306560 in its promoter region has been liked to decreased transactivation capacity. Therefore, we sought to determine a possible association of the rs13306560 and SPD. In total, 237 individuals were genotyped, 113 patients with SPD diagnosed according to the Queen Square Brain Bank criteria and 124 neurologically healthy controls. Genotyping was performed using TaqMan probes for the rs13306560 and real-time PCR. The A allelle was associated to protection in SPD, under the dominant model, (OR=0.22, C.I.=[0.048-1.080], p=0.04), nevertheless, after logistic regression analysis with adjustment for gender, resulted only in a trend (Exp (β)=0.211, [I.C. 95.0%, 0.042-1.057], p=0.058). Although further studies are needed, our data suggest an important role of the MTHFR gene variants in the fine-tuning regulation of one-carbon metabolism in the brain.

  14. Polymorphisms of Promoter Region of TNF-α Gene in Iranian Azeri Turkish Patients with Behçet’s Disease

    PubMed Central

    2017-01-01

    Behçet’s disease (BD) is a complex chronic relapsing inflammatory disorder of unknown etiology. Alterations of the tumor necrosis factor (TNF) expression related to the polymorphic alleles of TNF gene may implicate a pathogenetic role in increased activity of this cytokine in BD. A current study aimed at investigating the possible association between BD and its clinical features in Iranian Azeri Turks with two functional TNF-α gene polymorphisms (at the positions of -238 and -857). A total number of 166 Iranian subjects were enrolled into two different groups; patients with BD (n = 64), and ethnically matched healthy controls (n = 101). The genotype distributions of BD patients and healthy controls were determined. The frequency of TNF-α -857C allele was significantly higher in Behçet’s patients than that of healthy controls (P = 0.001; odds ratio [OR] = 2.616; 95% confidence interval [CI] = 1.129–6.160), whereas the frequency of TNF-α -238A allele was similar in both groups. The sole TNF-α haplotype-857C-1031C, was associated with an increase in the risk of developing BD. The TNF-α -857C allele was considerably associated with BD in this cohort. The findings of this study, collectively, indicate that TNF-α -857C-1031C haplotype located in the promoter region of the gene could exert major influence on the susceptibility to BD. PMID:27914129

  15. The c.-190 C>A transversion in promoter region of protamine1 gene as a genetic risk factor for idiopathic oligozoospermia.

    PubMed

    Jamali, Shirin; Karimian, Mohammad; Nikzad, Hossein; Aftabi, Younes

    2016-08-01

    The genome condensation in the sperm head is resulted with replacing of histones by protamines during spermatogenesis. It is reported that defects in the protamine 1 (PRM1) and/or 2 (PRM2) genes cause male infertility. Located on chromosome 16 (16p13.2) these genes contain numerous unstudied single nucleotide polymorphisms. This study aimed to investigate the association of c.-190 C>A and g.298 G>C transversions that respectively occur in PRM1 and PRM2 genes with idiopathic oligozoospermia. In a case-control study, we collected blood samples from 130 idiopathic oligozoospermia and 130 fertile men. Detection of c.-190 C>A and g.298 G>C polymorphisms performed by direct sequencing and PCR-RFLP methods respectively. An in silico analysis was performed by ASSP, NetGene 2, and PNImodeler online web servers. Our data revealed that g.298 G>C transversion in PRM2 was not associated with oligozoospermia (P > 0.05). Whereas, -190CA and -190AA genotypes in PRM1 gene were associated significantly with increased risk of oligozoospermia (P = 0.0017 and 0.0103, respectively). Also carriers of A allele (CA+AA) for PRM1 c.-190 C>A were at a high risk for oligozoospermia (OR 3.2440, 95 % CI 1.8060-5.8270, P = 0.0001). Further, in silico analysis revealed that c.-190 C>A transversion may alter transcription factor interactions with the promoter region of PRM1. The results revealed that the c.-190 C>A transversion may involve in the susceptibility for oligozoospermia and could be represented as a noninvasive molecular marker for genetic diagnosis of idiopathic oligozoospermia.

  16. i-motif structures in long cytosine-rich sequences found upstream of the promoter region of the SMARCA4 gene.

    PubMed

    Benabou, Sanae; Aviñó, Anna; Lyonnais, S; González, C; Eritja, Ramon; De Juan, Anna; Gargallo, Raimundo

    2017-09-01

    Cytosine-rich oligonucleotides are capable of forming complex structures known as i-motif with increasingly studied biological properties. The study of sequences prone to form i-motifs located near the promoter region of genes may be difficult because these sequences not only contain repeats of cytosine tracts of disparate length but also these may be separated by loops of varied nature and length. In this work, the formation of intramolecular i-motif structures by a long sequence located upstream of the promoter region of the SMARCA4 gene has been demonstrated. Nuclear Magnetic Resonance, Circular Dichroism, Gel Electrophoresis, Size-Exclusion Chromatography, and multivariate analysis have been used. Not only the wild sequence (5'-TC3T2GCTATC3TGTC2TGC2TCGC3T2G2TCATGA2C4-3') has been studied but also several other truncated and mutated sequences. Despite the apparent complex sequence, the results showed that the wild sequence may form a relatively stable and homogeneous unimolecular i-motif structure, both in terms of pH or temperature. The model ligand TMPyP4 destabilizes the structure, whereas the presence of 20% (w/v) PEG200 stabilized it slightly. This finding opens the door to the study of the interaction of these kind of i-motif structures with stabilizing ligands or proteins. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. An increased frequency of the 5A allele in the promoter region of the MMP3 gene is associated with abdominal aortic aneurysms.

    PubMed

    Deguara, Jean; Burnand, Kevin G; Berg, Jonathan; Green, Peter; Lewis, Cathryn M; Chinien, Ganesh; Waltham, Matthew; Taylor, Peter; Stern, Rowena F; Stern, Rachel F; Solomon, Ellen; Smith, Alberto

    2007-12-15

    Matrix metalloproteinase 3 (MMP3), is over expressed in the wall of abdominal aortic aneurysms (AAA), while inactivation of the gene expressing this enzyme is associated with reduced aneurysm formation in an experimental model. The 5A allele of the 5A/6A polymorphism in the promoter region of the MMP3 gene is associated with enhanced MMP3 expression. This study aimed to determine whether the presence of the 5A allele in the MMP3 promoter is a risk factor for AAA, and if this allele is associated with an increased expression of MMP3 in the aneurysm wall. We compared the frequencies of the 5A and 6A alleles in AAA (n = 405), aortic occlusive disease (AOD) (n = 123) and controls (n = 405). The 5A allele frequency was higher in AAA compared with controls (odds ratio - OR 1.32, P = 0.005) and AOD (OR 1.684, P = 0.0004), but was similar in AOD compared to controls (OR 0.78, P = 0.1). The ORs of the 5A/6A and the 5A/5A genotypes were 1.35 and 1.79, compared with 6A homozygotes. Although wall from 5A homozygotes contained 17% more MMP3 mRNA than homozygotes (P = 0.049) the significance of this was lost when adjusted for age and sex (P = 0.069), and size (P = 0.30). Wall from 5A homozygotes did however contain over 45% more MMP3 protein than heterozygotes (P = 0.009 when corrected for age and sex and P = 0.043 when corrected for aneurysm size). It appears that an abnormality in the MMP3 gene is part of the genetic profile that predisposes to aneurysmal disease.

  18. Alternative promoters of gene MAGE4a

    SciTech Connect

    De Plaen, E.; Naerhuyzen, B.; De Smet, C.

    1997-03-01

    Gene MAGE-4 (HGMW-approved symbol MAGE4) is expressed in several types of tumors, but not in normal tissues, except testis and placenta. The 5{prime} end of this gene contains eight homologous exons spread over a 5.8-kb region. These exons are alternatively spliced to a unique second exon and a unique third exon, which encodes a protein of 317 amino acids. The analysis of transcripts found in testis, placenta, and a sarcoma cell line showed that each of the alternative first exons is used in at least one of these tissues. Various regions of the promoter of the fifth alternative exon (1.5) were cloned in a luciferase reporter plasmid, and the constructs were transfected in a sarcoma cell line that expresses MAGE-4. Two Ets motifs located between positions -70 and -29 relative to the transcription start site were found to drive 55% of the promoter activity. A region containing an Sp1 consensus binding site located upstream of the two Ets motifs was found to be responsible for 44% of the transcriptional activity. MAGE-4a promoters 1.4 and 1.6, which also contain the Sp1 and the two Ets binding motifs, supported a level of transcription comparable to that of promoter 1.5, whereas promoter 1.1, which contains only one Ets binding site, was sixfold less active. In line with observations made with gene MAGE-1 (HGMW-approved symbol MAGE1), we found that promoter 1.5 stimulated a high level of transcription in a melanoma cell line that does not express MAGE-4. This suggests that the tumor-specific expression of MAGE genes is not determined by the presence of specific transcription factors. 26 refs., 7 figs., 2 tabs.

  19. Human histamine N-methyltransferase pharmacogenetics: gene resequencing, promoter characterization, and functional studies of a common 5'-flanking region single nucleotide polymorphism (SNP).

    PubMed

    Wang, Liewei; Thomae, Bianca; Eckloff, Bruce; Wieben, Eric; Weinshilboum, Richard

    2002-08-15

    Histamine N-methyltransferase (HNMT) catalyzes one of two major metabolic pathways for histamine. The levels of HNMT activity and immunoreactive protein in human tissues are regulated primarily by inheritance. Previous studies of HNMT identified two common single nucleotide polymorphisms (SNPs), including a functionally significant nonsynonymous coding SNP (cSNP), (C314T, Thr105Ile), but that polymorphism did not explain all of the phenotypic variation. In the present study, a genotype-to-phenotype strategy was used to search for additional genetic factors that might contribute to the regulation of human HNMT activity. Specifically, we began by resequencing the human HNMT gene using 90 ethnically anonymous DNA samples from the Coriell Cell Repository and identified a total of eight SNPs, including the two that had been reported previously. No new nonsynonymous cSNPs were observed, but three of the six novel SNPs were located in the 5'-flanking region (5'-FR) of the gene-including a third common polymorphism with a frequency of 0.367 (36.7%). That observation directed our attention to possible genetic effects on HNMT transcription. As a first step in testing that possibility, we created and studied a series of reporter gene constructs for the initial 1kb of the HNMT 5'-FR. The core promoter and possible regulatory regions were identified and verified by electrophoresis mobility shift assays. We then studied the possible functional implications of the new common HNMT 5'-FR SNP. However, on the basis of reporter gene studies, that SNP appeared to have little effect on transcription. Phenotype-genotype correlation analysis performed with 112 human kidney biopsy samples that had been phenotyped for their level of HNMT activity confirmed that the common 5'-FR SNP was not associated with the level of HNMT activity in vivo. In summary, this series of experiments resulted in the identification of several novel HNMT polymorphisms, identification of the HNMT core promoter

  20. Single Nucleotide Polymorphisms in the Tumor Necrosis Factor-Alpha Gene Promoter Region Alter the Risk of Psoriasis Vulgaris and Psoriatic Arthritis: A Meta-Analysis

    PubMed Central

    Zhu, Junqing; Qu, Hongda; Chen, Xiaoguang; Wang, Hao; Li, Juan

    2013-01-01

    Background It has been confirmed that tumor necrosis factor-alpha (TNFα), a macrophage-derived pro-inflammatory cytokine, plays an important role in the pathogenesis of psoriasis vulgaris and psoriatic arthritis (PsV&PsA). In contrast, the reported association of TNFα gene promoter region single nucleotide polymorphisms (SNPs) and PsV&PsA has remained controversial. Accordingly, we performed a meta-analysis to provide new evidence that SNPs in the TNFα gene promoter region alter not only the risk of psoriasis vulgaris (PsV) or psoriatic arthritis (PsA) but also of PsV&PsA. Methods Interrelated literature dated to October 2012 was acquired from the PubMed, ScienceDirect, and SpringerLink databases. The number of the genotypes and/or alleles for the TNFα promoter in the PsV and PsA and control subjects was obtained. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to calculate the risk of PsV and/or PsA with TNFα promoter SNPs. Results A total of 26 papers of 2159 for PsV (2129 normal controls) and 2360 for PsA (2997 normal controls) were included in our meta-analysis. The results showed that the variant genotype and allele of TNFα -308A/G was protective in pooled groups of patients with PsV&PsA (OR = 0.682, 0.750; 95% CI, 0.596-0.779, 0.653-0.861). However, the variant genotypes and alleles of TNFα -238A/G and -857T/C had an increased risk of PsV&PsA (OR = 2.493, 2.228, 1.536, 1.486, 95% CI, 1.777-3.498, 1.628-3.049, 1.336-1.767, 1.309-1.685). Moreover, the meta-analysis revealed a significant association between TNFα -238A/G and -857T/C polymorphism and PsA susceptibility (OR = 2.242, 2.052, 1.419, 1.465; 95% CI, 1.710-2.941, 1.614-2.610, 1.214-1.658, 1.277-1.681). In contrast, the variant genotypes and alleles of TNFα -308A/G proved to be protective against PsV (OR = 0.574, 0.650, 95% CI, 0.478-0.690, 0.556-0.759), whereas TNFα -238A/G was found to have a risk association (OR = 2.636, 2.223, 95% CI, 1.523-4.561, 1

  1. Polymorphisms in the promoter region of the human class II alcohol dehydrogenase (ADH4) gene affect both transcriptional activity and ethanol metabolism in Japanese subjects.

    PubMed

    Kimura, Yukiko; Nishimura, Fusae T; Abe, Shuntaro; Fukunaga, Tatsushige; Tanii, Hideji; Saijoh, Kiyofumi

    2009-02-01

    Class II alcohol dehydrogenase (pi-ADH), encoded by alcohol dehydrogenase (ADH4), is considered to contribute to ethanol (EtOH) oxidation in the liver at high concentration. Four single nucleotide polymorphisms (SNPs) were found in the promoter region of this gene. Analysis of genotype distribution in 102 unrelated Japanese subjects revealed that four loci were in strong linkage disequilibrium and could be classified into three haplotypes. The effects of these polymorphisms on transcriptional activity were investigated in HepG2 cells. Transcriptional activity was significantly higher in cells with the -136A allele than in those with the -136C allele. To investigate whether this difference in transcriptional activity caused a difference in EtOH elimination, previous data on blood EtOH changes after 0.4 g/kg body weight alcohol ingestion were analyzed. When analyzed based on aldehyde dehydrogenase-2 gene (ALDH2) (487)Glu/Lys genotype, the significantly lower level of EtOH at peak in subjects with -136C/A and -136A/A genotype compared with subjects with -136C/C genotype indicated that -136 bp was a suggestive locus for differences in EtOH oxidation. This effect was observed only in subjects with ALDH2 (487)Glu/Glu. These results suggested that the SNP at -136bp in the ADH4 promoter had an effect on transcriptional regulation, and that the higher activity of the -136A allele compared with the -136C allele caused a lower level of blood EtOH after alcohol ingestion; that is, individuals with the -136A allele may consume more EtOH and might have a higher risk for development of alcohol dependence than those without the -136A allele.

  2. Activation of the 2'-N-acetyltransferase gene [aac(2')-Ia] in Providencia stuartii by an interaction of AarP with the promoter region.

    PubMed

    Macinga, D R; Paradise, M R; Parojcic, M M; Rather, P N

    1999-07-01

    The aac(2')-Ia gene in Providencia stuartii encodes a 2'-N-acetyltransferase capable of acetylating both peptidoglycan and certain aminoglycoside antibiotics. Regulation of the aac(2')-Ia gene is influenced in a positive manner by the product of the aarP gene, which encodes a small transcriptional activator of the AraC (XylS) family. In this study, we demonstrate the sequence requirements at the aac(2')-Ia promoter for AarP binding and activation.

  3. [Cloning of the promoter region of the trehalose-6-phosphate synthase gene TPS1 of the self-flocculating yeast and exploration of the promoter activity on ethanol stress].

    PubMed

    Lin, Bei; Zhao, Xinqing; Zhang, Qiumei; Ma, Liming; Bai, Fengwu

    2010-07-01

    Improving stress tolerance of the microbial producers is of great importance for the process economy and efficiency of bioenergy production. Key genes influencing ethanol tolerance of brewing yeast can be revealed by studies on the molecular mechanisms which can lead to the further metabolic engineering manipulations for the improvement of ethanol tolerance and ethanol productivity. Trahalose shows protective effect on the cell viability of yeast against multiple environmental stress factors, however, further research is needed for the exploration of the underlying molecular mechanisms. In this study, the promoter region of the trehalose-6-phosphate synthase gene TPS1 was cloned from the self-flocculating yeast Saccharomyces cerevisiae flo, and a reporter plasmid based on the expression vector pYES2.0 on which the green fluorescence protein EGFP was directed by the TPS1 promoter was constructed and transformed to industrial yeast strain Saccharomyces cerevisiae ATCC4126. Analysis of the EGFP expression of the yeast transformants in presence of 7% and 10% ethanol revealed that the P(TPS1) activity was strongly induced by 7% ethanol, showing specific response to ethanol stress. The results of this study indicate that trehalose biosynthesis in self-flocculating yeast is a protective response against ethanol stress.

  4. Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases.

    PubMed

    Inoue, N; Watanabe, M; Morita, M; Tatusmi, K; Hidaka, Y; Akamizu, T; Iwatani, Y

    2011-03-01

    To clarify the association of genetic producibility of interleukin (IL)-5, IL-6 and IL-13, which are secreted by T helper type 2 (Th2), with the development and prognosis of autoimmune thyroid disease (AITD), we genotyped IL5-746C/T, IL6-572C/G and IL13-1112C/T polymorphisms, which are functional polymorphisms in the promoter regions of the genes regulating these cytokines. Fifty-seven patients with intractable Graves' disease (GD), 52 with GD in remission, 52 with severe Hashimoto's disease (HD), 56 with mild HD and 91 healthy controls were examined in this study. The IL13-1112T allele, which correlates with higher producibility of IL-13, was more frequent in patients with GD in remission than in those with intractable GD [P=0·009, odds ratio (OR)=3·52]. The IL5-746T allele, which may correlate with lower levels of IL-5, was more frequent in patients with GD in remission than controls (P=0·029, OR=2·00). The IL6-572G allele carriers (CG and GG genotypes), which have higher producibility of IL-6, were more frequent in AITD patients (P=0·033, OR=1·75), especially in GD in remission (P=0·031, OR=2·16) and severe HD (P=0·031, OR=2·16) than in controls. Interestingly, both allele and genotype frequencies of Th2 cytokine genes were similar between GD and HD patients. In conclusion, functional polymorphisms in the genes encoding Th2 cytokines are associated differently with the development and prognosis of AITD from each other.

  5. Tissue-, sex- and age-specific DNA methylation of rat glucocorticoid receptor gene promoter and insulin like growth factor 2 imprinting control region.

    PubMed

    Agba, Ogechukwu Brenda; Lausser, Ludwig; Huse, Klaus; Bergmeier, Christoph; Jahn, Niels; Groth, Marco; Bens, Martin; Sahm, Arne; Gall, Maria; Witte, Otto W; Kestler, Hans A; Schwab, Matthias; Platzer, Matthias

    2017-09-15

    Tissue-, sex- and age-specific epigenetic modifications such as DNA methylation are largely unknown. Changes in DNA methylation of the glucocorticoid receptor gene (NR3C1) and imprinting control region (ICR) of IGF2 and H19 genes during the lifespan are particularly interesting since these genes are susceptible to epigenetic modifications by prenatal stress or malnutrition. They are important regulators of development and aging. Methylation changes of NR3C1 affect glucocorticoid receptor expression, which is associated with stress sensitivity and stress-related diseases predominantly occurring during aging. Methylation changes of IGF2/H19 affect growth trajectory and nutrient use with risk of metabolic syndrome. Using a locus-specific approach, we characterized DNA methylation patterns of different Nr3c1 promoters and Igf2/H19 ICR in seven tissues of rats at 3, 9 and 24 months of age. We found a complex pattern of locus-, tissue-, sex- and age-specific DNA methylation. Tissue-specific methylation was most prominent at the shores of the Nr3c1 CpG island (CGI). Sex-specific differences in methylation peaked at 9 months. During aging, Nr3c1 predominantly displayed hypomethylation mainly in females and at shores, whereas hypermethylation occurred within the CGI. Igf2/H19 ICR exhibited age-related hypomethylation occurring mainly in males. Methylation patterns of Nr3c1 in the skin correlated with those in the cortex, hippocampus and hypothalamus. Skin may serve as proxy for methylation changes in central parts of the hypothalamic-pituitary-adrenal axis and hence for vulnerability to stress- and age-associated diseases. Thus, we provide in-depth insight into the complex DNA methylation changes of rat Nr3c1 and Igf2/H19 during aging that are tissue- and sex-specific. Copyright © 2017, Physiological Genomics.

  6. PTSD and DNA Methylation in Select Immune Function Gene Promoter Regions: A Repeated Measures Case-Control Study of U.S. Military Service Members

    PubMed Central

    Rusiecki, Jennifer A.; Byrne, Celia; Galdzicki, Zygmunt; Srikantan, Vasantha; Chen, Ligong; Poulin, Matthew; Yan, Liying; Baccarelli, Andrea

    2013-01-01

    Background: The underlying molecular mechanisms of PTSD are largely unknown. Distinct expression signatures for PTSD have been found, in particular for immune activation transcripts. DNA methylation may be significant in the pathophysiology of PTSD, since the process is intrinsically linked to gene expression. We evaluated temporal changes in DNA methylation in select promoter regions of immune system-related genes in U.S. military service members with a PTSD diagnosis, pre- and post-diagnosis, and in controls. Methods: Cases (n = 75) had a post-deployment diagnosis of PTSD in their medical record. Controls (n = 75) were randomly selected service members with no PTSD diagnosis. DNA was extracted from pre- and post-deployment sera. DNA methylation (%5-mC) was quantified at specific CpG sites in promoter regions of insulin-like growth factor 2 (IGF2), long non-coding RNA transcript H19, interleukin-8 (IL8), IL16, and IL18 via pyrosequencing. We used multivariate analysis of variance and generalized linear models to calculate adjusted means (adjusted for age, gender, and race) to make temporal comparisons of %5-mC for cases (pre- to post-deployment) versus controls (pre- to post-deployment). Results: There were significant differences in the change of %5-mC pre- to post-deployment between cases and controls for H19 (cases: +0.57%, controls: −1.97%; p = 0.04) and IL18 (cases: +1.39%, controls: −3.83%; p = 0.01). For H19 the difference was driven by a significant reduction in %5-mC among controls; for IL18 the difference was driven by both a reduction in %5-mC among controls and an increase in %5-mC among cases. Stratified analyses revealed more pronounced differences in the adjusted means of pre-post H19 and IL18 methylation differences for cases versus controls among older service members, males, service members of white race, and those with shorter deployments (6–12 months). Conclusion: In the study of deployed personnel, those who did not

  7. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region.

    PubMed

    Muterko, Alexandr; Kalendar, Ruslan; Salina, Elena

    2016-01-27

    In wheat, the vernalization requirement is mainly controlled by the VRN genes. Different species of hexaploid and tetraploid wheat are widely used as genetic source for new mutant variants and alleles for fundamental investigations and practical breeding programs. In this study, VRN-A1 and VRN-B1 were analysed for 178 accessions representing six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and five hexaploid species (T. compactum, T. sphaerococcum, T. spelta, T. macha, T. vavilovii). Novel allelic variants in the promoter region of VRN-A1 and VRN-B1 were identified based on the change in curvature and flexibility of the DNA molecules. The new variants of VRN-A1 (designated as Vrn-A1a.2, Vrn-A1b.2 - Vrn-A1b.6 and Vrn-A1i) were found to be widely distributed in hexaploid and tetraploid wheat, and in fact were predominant over the known VRN-A1 alleles. The greatest diversity of the new variants of VRN-B1 (designated as VRN-B1.f, VRN-B1.s and VRN-B1.m) was found in the tetraploid and some hexaploid wheat species. For the first time, minor differences within the sequence motif known as the VRN-box of VRN1 were correlated with wheat growth habit. Thus, vrn-A1b.3 and vrn-A1b.4 were revealed in winter wheat in contrast to Vrn-A1b.2, Vrn-A1b.5, Vrn-A1b.6 and Vrn-A1i. It was found that single nucleotide mutation in the VRN-box can influence the vernalization requirement and growth habit of wheat. Our data suggest that both the A-tract and C-rich segment within the VRN-box contribute to its functionality, and provide a new view of the hypothesised role of the VRN-box in regulating transcription of the VRN1 genes. Specifically, it is proposed that combination of mutations in this region can modulate vernalization sensitivity and flowering time of wheat. New allelic variants of the VRN-A1 and VRN-B1 genes were identified in hexaploid and tetraploid wheat. Mutations in A-tract and C-rich segments within the VRN

  8. Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation.

    PubMed Central

    Vuillaumier, S; Dixmeras, I; Messaï, H; Lapouméroulie, C; Lallemand, D; Gekas, J; Chehab, F F; Perret, C; Elion, J; Denamur, E

    1997-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene is highly conserved within vertebrate species. Its pattern of expression in vivo seems to be tightly regulated both developmentally and in a tissue-specific manner, but shows differences with species. To identify transcriptional regulatory elements in the CFTR promoter region, we have used a combined approach based both on the analysis of the chromatin structure in vivo in rat tissues and on evolutionary clues (i.e. phylogenetic footprinting). In CFTR-expressing tissues, 15 DNase I-hypersensitive sites were identified within a 36 kb region encompassing exon 1. Eleven of them are clustered in a 3.5 kb region that exhibits eleven phylogenetic footprints observed when comparing sequences from eight mammalian species representing four orders (Primates, Artiodactylia, Lagomorpha and Rodentia). Comparison of the two sets of data allows the identification of two types of regulatory elements. Some are conserved between species, such as a non-consensus cAMP response element (CRE) and a PMA-responsive element (TRE) located respectively at positions -0.1 and -1.3 kb relative to ATG. Some are species-specific elements such as a 300 bp purine.pyrimidine (Pu.Py) stretch that is present only in rodents. Analysis of protein/DNA interactions in vitro with rat tissue protein extracts on the conserved elements revealed that the TRE site binds a specific heterodimeric complex composed of Fra-2, Jun D and a protein immunologically related to Jun/CRE-binding protein in the duodenum, whereas the CRE-like site binds ATF-1 ubiquitously. Functional analysis in Caco-2 cells showed that the CRE-like site supports a high basal transcriptional activity but is not able by itself to induce a response to cAMP, whereas the TRE site acts as a weak transactivator stimulated by PMA. Lastly, we found that the rodent-specific Pu.Py stretch confers nuclease S1 hypersensitivity under conditions of acidic pH and supercoiling. This

  9. Associations between genetic variants in the promoter region of the insulin-like growth factor-1 (IGF1) gene and blood serum IGF1 concentration in Hanwoo cattle.

    PubMed

    Chung, H Y; Choi, Y J; Park, H N; Davis, M E

    2015-04-10

    In this study, we investigated the associations between genetic variants in the promoter region of the insulin-like growth factor-1 (IGF1) gene and blood serum IGF1 concentration in Hanwoo cattle. Polymerase chain reaction primers were based on GenBank accession No. AF404761 and amplified approximately 533-bp segments. Newly identified sequences were submitted to GenBank (accession No. DQ267493). Sequence analysis revealed that genetic variants were located at a nucleotide position 323 for the nucleotide substitution C/A that was first reported in this study and positions 326-349 for a repeat motif (CA10-11). The allele frequencies of g.323C>A were 0.264 (C) and 0.736 (A) without significant deviation from Hardy-Weinberg equilibrium. Frequencies of the repeat motif CA(10) and CA(11) were 0.604 and 0.396, respectively. Statistical analysis revealed that the genetic variation g.323C>A was significantly associated with blood serum IGF1 concentrations with significant additive genetic effects, whereas no associations were found for the repeat motif. IGF1 concentrations were positively (r = 0.453) and negatively (r = -0.445) correlated with weights in the growing stages (16-21 months) and late fattening stages (22-30 months), respectively. The results of the present study and future genotypic data for Hanwoo beef cattle based on the robust genetic variation of IGF1 will provide critical information for genetic improvement and will have a large impact on commercial markets.

  10. Molecular and functional analysis of the large 5' promoter region of CFTR gene revealed pathogenic mutations in CF and CFTR-related disorders.

    PubMed

    Giordano, Sonia; Amato, Felice; Elce, Ausilia; Monti, Maria; Iannone, Carla; Pucci, Pietro; Seia, Manuela; Angioni, Adriano; Zarrilli, Federica; Castaldo, Giuseppe; Tomaiuolo, Rossella

    2013-05-01

    Patients with cystic fibrosis (CF) manifest a multisystemic disease due to mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR); despite extensive testing of coding regions, a proportion of CF alleles remains unidentified. We studied 118 patients with CF and CFTR-related disorders, most with one or both unknown mutations after the scanning of CFTR coding regions, and a non-CF control group (n = 75) by sequencing the 6000-bp region at the 5' of the CFTR gene. We identified 23 mutations, of which 9 were novel. We expressed such mutations in vitro using four cell systems to explore their functional effect, relating the data to the clinical expression of each patient. Some mutations reduced expression of the gene reporter firefly luciferase in various cell lines and may act as disease-causing mutations. Other mutations caused an increase in luciferase expression in some cell lines. One mutation had a different effect in different cells. For other mutations, the expression assay excluded a functional role. Gene variants in the large 5' region may cause altered regulation of CFTR gene expression, acting as disease-causing mutations or modifiers of its clinical phenotype. Studies of in vitro expression in different cell systems may help reveal the effect of such mutations.

  11. Influence of A-21T and C-262T genetic polymorphisms at the promoter region of the catalase (CAT) on gene expression.

    PubMed

    Saify, Khyber; Saadat, Iraj; Saadat, Mostafa

    2016-09-01

    Catalase (CAT, OMIM: 115500) is one of the major antioxidant enzymes, which plays an important role in the clearance of reactive oxygen species. Three genetic polymorphisms of A-21T (rs7943316), C-262T (rs1001179), and C-844T (rs769214) in the promoter region of the CAT have been reported. It has been suggested that these polymorphisms may alter the recognition sites of transcriptional factors, therefore it might be concluded that these polymorphisms may alter the expression levels of the gene. The aim of the present study is to evaluate the associations between these genetic variations and the CAT mRNA levels in human peripheral blood cells. The present study consisted of 47 healthy students of Shiraz University (south-west Iran). Genotypes of the CAT polymorphisms were determined by PCR based method. The quantitative CAT mRNA expression levels were investigated using quantitative real-time PCR. Analysis of variance revealed significant differences between the study genotypes (For A-21T polymorphism: F = 7.45; df = 2, 44; P = 0.002; For C-262T polymorphism: F = 15.17; df = 2, 44; P < 0.001). The studied polymorphisms showed linkage disequilibrium (D' = 1.0, r (2) = 0.1813, χ (2) = 17.03, P < 0.0001). The mRNA levels of CAT in the AC/TT, TC/TC, TC/TT, and TC/TC diplotypes significantly were higher than the mRNA levels in AC/AC diplotype. There was a significant difference between the study genotypes (F = 9.24; df = 5, 41; P < 0.001). The TC/TC and TT/TT diplotypes showed about 2 and 4 folds CAT mRNA levels compared with the AC/AC diplotype. The present findings indicated that these polymorphisms were significantly associated with the gene expression.

  12. Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study.

    PubMed

    Martín-Núñez, Gracia María; Cabrera-Mulero, Rebeca; Rubio-Martín, Elehazara; Rojo-Martínez, Gemma; Olveira, Gabriel; Valdés, Sergio; Soriguer, Federico; Castaño, Luis; Morcillo, Sonsoles

    2014-07-01

    Epigenetic processes may be affected by environmental factors. DNA methylation measured in LINE-1 elements (LINE-1, long interspersed nucleotide element-1) correlates with LINE-1 DNA methylation. Variations in stearoyl CoA desaturase (SCD) activity (a key enzyme in the fatty acid metabolism) may be involved in various processes that can lead to diseases such as obesity. We evaluated whether changes in diet after a nutritional intervention would be associated with changes in LINE-1 DNA methylation and/or specific methylation of SCD1 gene promoter. Prospective cohort intervention study with a control group. We recorded phenotypic, anthropometric, biochemical, and nutritional information at baseline and 1 year later. DNA methylation was quantified by pyrosequencing. LINE-1 DNA methylation and SCD1 gene promoter methylation levels were similar at the beginning of the study in both populations, whereas after a year these levels were higher in the control group (p < 0.001). In the intervention group, those subjects who lost weight showed higher levels of SCD1 gene promoter methylation after the intervention. Subjects with lower adherence to a Mediterranean diet experienced larger changes in LINE-1 methylation. DNA methylation levels were associated with weight change and with adherence to a Mediterranean diet. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation.

    PubMed

    Gunbin, Konstantin V; Ponomarenko, Mikhail P; Suslov, Valentin V; Gusev, Fedor; Fedonin, Gennady G; Rogaev, Evgeny I

    2017-02-24

    Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.

  14. Molecular organization of the human Raf-1 promoter region.

    PubMed Central

    Beck, T W; Brennscheidt, U; Sithanandam, G; Cleveland, J; Rapp, U R

    1990-01-01

    A genomic DNA fragment containing the Raf-1 promoter region was isolated by using a cDNA extension clone. Nucleotide sequencing of genomic DNA clones, primer extension, and S1 nuclease assays have been used to identify the 5' ends of Raf-1 RNAs. Consistent with its ubiquitous expression, the Raf-1 promoter region had features of a housekeeping gene in that it was GC-rich (HTF-like), lacked TATA and CAAT boxes, and contained heterogeneous RNA start sites and four potential binding sites for the transcription factor SP1. In addition, an octamer motif (ATTTCAT), a potential binding site for the octamer family of transcription factors, was located at -734 base pairs. The Raf-1 promoter region drove reporter gene expression 30-fold over the promoterless reporter in Cos 7 cells. Images PMID:1694010

  15. Characterization of the human p53 gene promoter

    SciTech Connect

    Tuck, S.P.; Crawford, L.

    1989-05-01

    Transcriptional deregulation of the p53 gene may play an important part in the genesis of some tumors. The authors report here an accurate determination of the transcriptional start sites of the human p53 gene and show that the majority of p53 mRNA molecules do not contain a postulated stem-loop structure at their 5' ends. Recombinant plasmids of the human p53 promoter-leader region fused to the bacterial chloramphenicol acetyltransferase gene (cat) were constructed. After transfection into rodent or human cells, a 350-base-pair fragment spanning the promoter region conferred 4% of the CAT activity mediated by the simian virus 40 early promoter/enhancer. They monitored the efficiency with which 15 3' and 5' promoter deletion constructs initiated transcription. Their results show that an 85-base-pair fragment, previously thought to have resided in exon 1, is that is required for full promoter activity.

  16. Comparative analysis of the nonA region in Drosophila identifies a highly diverged 5' gene that may constrain nonA promoter evolution.

    PubMed Central

    Campesan, S; Chalmers, D; Sandrelli, F; Megighian, A; Peixoto, A A; Costa, R; Kyriacou, C P

    2001-01-01

    A genomic fragment from Drosophila virilis that contained all the no-on-transientA (nonA) coding information, plus several kilobases of upstream material, was identified. Comparisons of nonA sequences and the gene nonA-like in D. melanogaster, a processed duplication of nonA, suggest that it arose before the split between D. melanogaster and D. virilis. In both species, another gene that lies <350 bp upstream from the nonA transcription starts, and that probably corresponds to the lethal gene l(1)i19, was identified. This gene encodes a protein that shows similarities to GPI1, which is required for the biosynthesis of glycosylphosphatidylinositol (GPI), a component for anchoring eukaryotic proteins to membranes, and so we have named it dGpi1. The molecular evolution of nonA and dGpi1 sequences show remarkable differences, with the latter revealing a level of amino acid divergence that is as high as that of transformer and with extremely low levels of codon bias. Nevertheless, in D. melanogaster hosts, the D. virilis fragment rescues the lethality associated with a mutation of l(1)i19e, as well as the viability and visual defects produced by deletion of nonA(-). The presence of dGpi1 sequences so close to nonA appears to have constrained the evolution of the nonA promoter. PMID:11156994

  17. Sequence-specific binding of protein factors to two independent promoter regions of the acidic tobacco pathogenesis-related-1 protein gene (PR-1).

    PubMed

    Hagiwara, H; Matsuoka, M; Ohshima, M; Watanabe, M; Hosokawa, D; Ohashi, Y

    1993-08-01

    Gel shift mobility analysis, using the proximal 0.3 kb fragment of the tobacco pathogenesis-related protein 1a gene (PR-1a) and nuclear extracts from healthy Samsun NN tobacco leaves, which do not produce PR-1 proteins, showed a broad shifted signal with low mobility. This signal was not detected with nuclear proteins from the interspecific hybrid of Nicotiana glutinosa x Nicotiana debneyi, which constitutively produces the PR-1a protein. Similar shifted signals were detected with both proximal and distal regions of the 0.3 kb fragment using nuclear proteins from healthy Samsun NN tobacco, but not with proteins from the interspecific hybrid. Further experiments, performed using 5' or 3' truncated fragments of the 0.3 kb fragment, identified two independent binding sites: a distal site between -179 and -168 bp from the transcription start site, and a proximal site between -61 and -37 bp. Footprint analysis revealed two protected sequences, a distal region between -184 and -172 bp, and a proximal region between -68 and -51 bp. These results indicate the presence of regulatory factor(s) for expression of the acidic PR-1a gene. The possibility of negative regulation of the gene is discussed.

  18. Two SNPs in the promoter region of Toll-like receptor 4 gene are not associated with smoking in Saudi Arabia.

    PubMed

    Kohailan, Muhammad; Alanazi, Mohammad; Rouabhia, Mahmoud; Al Amri, Abdullah; Parine, Narasimha Reddy; Semlali, Abdelhabib

    2017-01-01

    Defects in the innate immune system, particularly in Toll-like receptors (TLRs), have been reported in several cigarette smoke-promoted diseases. The aim of this study was to examine the impact of tobacco smoke on allelic frequencies of TLR4 single-nucleotide polymorphisms (SNPs) and to compare the genotypic distribution of these SNPs in a Saudi Arabian population with that in previously studied populations. DNA was extracted from 303 saliva samples collected from smokers and nonsmokers. Two transitional SNPs in the promoter region of TLR4 were selected, rs2770150 (T/C) and rs10759931 (G/A). Genotype frequencies were determined using quantitative polymerase chain reaction. Our results showed a slight effect of smoking on the distribution of rs2770150 and rs10759931. However, the differences were not significant. Thus, we conclude that the SNPs selected for this study were independent of smoking and may not be related to smoking-induced diseases.

  19. Two SNPs in the promoter region of Toll-like receptor 4 gene are not associated with smoking in Saudi Arabia

    PubMed Central

    Kohailan, Muhammad; Alanazi, Mohammad; Rouabhia, Mahmoud; Al Amri, Abdullah; Parine, Narasimha Reddy; Semlali, Abdelhabib

    2017-01-01

    Defects in the innate immune system, particularly in Toll-like receptors (TLRs), have been reported in several cigarette smoke-promoted diseases. The aim of this study was to examine the impact of tobacco smoke on allelic frequencies of TLR4 single-nucleotide polymorphisms (SNPs) and to compare the genotypic distribution of these SNPs in a Saudi Arabian population with that in previously studied populations. DNA was extracted from 303 saliva samples collected from smokers and nonsmokers. Two transitional SNPs in the promoter region of TLR4 were selected, rs2770150 (T/C) and rs10759931 (G/A). Genotype frequencies were determined using quantitative polymerase chain reaction. Our results showed a slight effect of smoking on the distribution of rs2770150 and rs10759931. However, the differences were not significant. Thus, we conclude that the SNPs selected for this study were independent of smoking and may not be related to smoking-induced diseases. PMID:28223830

  20. Gene Regions Responding to Skeletal Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Booth, Frank W.

    1997-01-01

    Our stated specific aims for this project were: 1) Identify the region(s) of the mouse IIb myosin heavy chain (MHC) promoter necessary for in vivo expression in mouse fast-twitch muscle, and 2) Identify the region(s) of the mouse IIb MHC promoter responsive to immobilization in mouse slow-twitch muscle in vivo. We sought to address these specific aims by introducing various MHC IIb promoter/reporter gene constructs directly into the tibialis anterior and gastrocnemius muscles of living mice. Although the method of somatic gene transfer into skeletal muscle by direct injection has been successfully used in our laboratory to study the regulation of the skeletal alpha actin gene in chicken skeletal muscle, we had many difficulties utilizing this procedure in the mouse. Because of the small size of the mouse soleus and the difficulty in obtaining consistent results, we elected not to study this muscle as first proposed. Rather, our MHC IIb promoter deletion experiments were performed in the gastrocnemius. Further, we decided to use hindlimb unloading via tail suspension to induce an upregulation of the MHC IIb gene, rather than immobilization of the hindlimbs via plaster casts. This change was made because tail suspension more closely mimics spaceflight, and this procedure in our lab results in a smaller loss of overall body mass than the mouse hindlimb immobilization procedure. This suggests that the stress level during tail suspension is less than during immobilization. This research has provided an important beginning point towards understanding the molecular regulation of the MHC lIb gene in response to unweighting of skeletal muscle Future work will focus on the regulation of MHC IIb mRNA stability in response to altered loading of skeletal muscle

  1. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant.

    PubMed

    Hu, Ye-Qin; Liu, Sheng; Yuan, Hong-Mei; Li, Jing; Yan, Da-Wei; Zhang, Jian-Feng; Lu, Ying-Tang

    2010-10-01

    Photorespiration-associated production of H(2) O(2) accounts for the majority of total H(2) O(2) in leaves of C(3) plants and is mainly eliminated by catalases. In Arabidopsis, lack of CAT2, but not CAT1 or CAT3, results in growth suppression and a marked accumulation of H(2) O(2) in leaves. To evaluate the contribution of individual catalase genes and their promoters to catalase function, we investigated the growth suppression and H(2) O(2) accumulation phenotypes of Arabidopsis derivatives expressing catalase genes from heterologous CAT promoters in a cat2 mutant background. The expression of CAT2 from the CAT2 promoter restored the wild-type phenotype in a cat2-1 mutant, while CAT1 and CAT3 promoter-driven expression of CAT2 did not. Ectopic expression of CAT3 from the CAT2 promoter also restored the normal phenotype, unlike that of CAT1 which required replacement of the CAT1 3'-untranslated region (UTR) with that of CAT2. These results demonstrated that the photorespiratory role of CAT2 is determined mainly by the regulation of its promoter activity. The 3'-UTR of CAT2 was vital for controlling CAT2 protein levels under photorespiratory conditions. Identification of component of heterotetramers catalase isoforms suggested that there is some functional redundancy between CAT2 and CAT1 and CAT3. © 2010 Blackwell Publishing Ltd.

  2. Characterization of human TCR Vbeta gene promoter. Role of the dodecamer motif in promoter activity.

    PubMed

    Deng, X; Sun, G R; Zheng, Q; Li, Y

    1998-09-11

    During T-lymphocyte development, the T-cell antigen receptor (TCR) gene expression is controlled by its promoter and enhancer elements and regulated in tissue- and development stage-specific manner. To uncover the promoter function and to define positive and negative regulatory elements in TCR gene promoters, the promoter activities from 13 human TCR Vbeta genes were determined by the transient transfection system and luciferase reporter assay. Although most of the TCR Vbeta gene promoters that we tested are inactive by themselves, some promoters were found to be constitutively strong. Among them, Vbeta6.7 is the strongest. 5'-Deletion and fragmentation experiments have narrowed the full promoter activity of Vbeta6.7 to a fragment of 147 base pairs immediately 5' to the transcription initiation site. A decanucleotide motif with the consensus sequence AGTGAYRTCA has been found to be conserved in most TCR Vbeta gene promoters. There are three such decamer motifs in the promoter region of Vbeta6.7, and the contribution of each such motif to the promoter activity has been examined. Further site-directed mutagenesis analyses showed that: 1) when two Ts in the decamer were mutated, the promoter activity was totally abolished; 2) when two additional nucleotides 3' to the end of decamer were mutated, the promoter activity was decreased to two-thirds of the full level; and 3) when the element with the sequence AGTGATGTCACT was inserted into other promoters, the original weak promoters become very strong. Taken together, our data suggest that the positive regulatory element in Vbeta6.7 should be considered a dodecamer rather than a decamer and that it confers strong basal transcriptional activity on TCR Vbeta genes.

  3. Identification of a Novel Rat NR2B Subunit Gene Promoter Region Variant and Its Association with Microwave-Induced Neuron Impairment.

    PubMed

    Wang, Li-Feng; Tian, Da-Wei; Li, Hai-Juan; Gao, Ya-Bing; Wang, Chang-Zhen; Zhao, Li; Zuo, Hong-Yan; Dong, Ji; Qiao, Si-Mo; Zou, Yong; Xiong, Lu; Zhou, Hong-Mei; Yang, Yue-Feng; Peng, Rui-Yun; Hu, Xiang-Jun

    2016-05-01

    Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.

  4. DNA Methylation in Promoter Region as Biomarkers in Prostate Cancer

    PubMed Central

    Yang, Mihi; Park, Jong Y.

    2013-01-01

    The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use. PMID:22359288

  5. A 252 bp upstream region of the rat spermatocyte-specific hst70 gene is sufficient to promote expression of the hst70-CAT hybrid gene in testis and brain of transgenic mice.

    PubMed

    Widłak, W; Markkula, M; Krawczyk, Z; Kananen, K; Huhtaniemi, I

    1995-11-07

    The rat hst70 gene belongs to a heat shock hsp70 multigene family and its expression has been detected so far solely in spermatocytes. To investigate the cis-elements responsible for testis-specific expression of the hst70 gene we produced several lines of transgenic mice carrying fragments of the 5'-flanking regions of the hst70 gene fused to the chloramphenicol acetyltransferase (CAT) reporter gene. Hybrid genes of series B were constructed such that, besides the 780 bp, 343 bp and 163 bp 5'-flanking region these plasmids contained no other sequences of the hst70 gene. In hybrid genes of series D the CAT gene was ligated to 343 bp and 252 bp 5'-flanking regions together with the 57 bp of the 5'-end nontranslated (leader) sequences of the hst70 gene. We found that in 780/B, 343/B, 343/D and 252/D adult mice the transgene was specifically and highly expressed in testes. In developing testes the high CAT activity appeared in transgenic mice aged 3 weeks and older. None of the three 163/B transgenic lines exhibited CAT activity in any tissue analyzed. In all CAT expressing lines a weak but significant CAT activity (up to 5% of that in testis) was detected also in the brain. RNase protection assay confirmed that the endogenous hst70 gene transcripts are present in testis as well as in brain of nontransgenic rats and mice. Our data show that the cis-regulatory sequences responsible for testis-specific and developmentally regulated expression of the hst70 gene are localized within the 252 bp region 5' to the gene and neither the 5'-end nor 3'-end nontranslated sequences of the gene are important for this specificity.

  6. Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region

    PubMed Central

    Englert, Neal A.; Turesky, Robert J.; Han, Weiguo; Bessette, Erin E.; Spivack, Simon D.; Caggana, Michele; Spink, David C.; Spink, Barbara C.

    2014-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)n repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)n was n = 4>5≫6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis. PMID:22728919

  7. Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region.

    PubMed

    Englert, Neal A; Turesky, Robert J; Han, Weiguo; Bessette, Erin E; Spivack, Simon D; Caggana, Michele; Spink, David C; Spink, Barbara C

    2012-09-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)(n) repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)(n) was n = 4 > 5 ≫ 6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis.

  8. Repetitive Sequence Variations in the Promoter Region of the Adhesin-Encoding Gene sabA of Helicobacter pylori Affect Transcription

    PubMed Central

    Harvey, Vivian C.; Acio, Catherine R.; Bredehoft, Amy K.; Zhu, Laurence; Hallinger, Daniel R.; Quinlivan-Repasi, Vanessa; Harvey, Samuel E.

    2014-01-01

    The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract −50 to −33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry −20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection. PMID:25022855

  9. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu(2+) and Cd(2+) treatments.

    PubMed

    Nikolić, Dragana B; Samardzić, Jelena T; Bratić, Ana M; Radin, Ivan P; Gavrilović, Srdjan P; Rausch, Thomas; Maksimović, Vesna R

    2010-03-24

    The protective role in vivo of buckwheat metallothionein type 3 (FeMT3) during metal stress and the responsiveness of its promoter to metal ions were examined. Increased tolerance to heavy metals of FeMT3 producing Escherichia coli and cup1(Delta) yeast cells was detected. The defensive ability of buckwheat MT3 during Cd and Cu stresses was also demonstrated in Nicotiana debneyii leaves transiently expressing FeMT3. In contrast to phytochelatins, the cytoplasmatic localization of FeMT3 was not altered under heavy metal stress. Functional analysis of the corresponding promoter region revealed extremely high inducibility upon Cu(2+) and Cd(2+) treatments. The confirmed defense ability of FeMT3 protein in vivo and the great responsiveness of its promoter during heavy metal exposure make this gene a suitable candidate for biotechnological applications.

  10. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants.

    PubMed

    Podevin, Nancy; du Jardin, Patrick

    2012-01-01

    Multiple variants of the Cauliflower mosaic virus 35S promoter (P35S) are used to drive the expression of transgenes in genetically modified plants, for both research purposes and commercial applications. The genetic organization of the densely packed genome of this virus results in sequence overlap between P35S and viral gene VI, encoding the multifunctional P6 protein. The present paper investigates whether introduction of P35S variants by genetic transformation is likely to result in the expression of functional domains of the P6 protein and in potential impacts in transgenic plants. A bioinformatic analysis was performed to assess the safety for human and animal health of putative translation products of gene VI overlapping P35S. No relevant similarity was identified between the putative peptides and known allergens and toxins, using different databases. From a literature study it became clear that long variants of the P35S do contain an open reading frame, when expressed, might result in unintended phenotypic changes. A flowchart is proposed to evaluate possible unintended effects in plant transformants, based on the DNA sequence actually introduced and on the plant phenotype, taking into account the known effects of ectopically expressed P6 domains in model plants.

  11. Identification of a new haplotype within the promoter region of the MSTN gene in horses from five of the most common breeds in Poland.

    PubMed

    Stefaniuk, Monika; Kaczor, Urszula; Augustyn, Romana; Gurgul, Artur; Kulisa, Maria; Podstawski, Zenon

    2014-01-01

    Myostatin (GDF-8) encoded by the MSTN gene is a negative regulator of muscle growth and development and belongs to the TGF-β superfamily of secreted growth and differentiation factors. In Thoroughbred horses, an MSTN sequence polymorphism (g.66493737C>T) is associated with optimum race distance. In the present study, a genetic polymorphism of a predicted promoter of the MSTN gene was investigated in 451 horses belonging to five different breeds: Arabian, Thoroughbred, Polish Konik, Hucul and Polish Heavy Draft. Two SNPs located at g.66495826T>C and g.66495696T>C (chr;18 EquCab 2.0) showed three haplotypes previously described: [g.66495826:T, g.66495696:T], [g.66495826:T, g.66495696:C], [g.66495826:C, g.66495696:T] with frequencies 0.877; 0.101; 0.005; respectively. Analysis performed on Polish Heavy Draft indicated the occurrence of a new haplotype [g.6649582626:C, g.66495696:C] with frequency 0.016.

  12. Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti--a combined molecular biology and force spectroscopy investigation.

    PubMed

    Bartels, Frank Wilco; Baumgarth, Birgit; Anselmetti, Dario; Ros, Robert; Becker, Anke

    2003-08-01

    Specific protein-DNA interaction is fundamental for all aspects of gene transcription. We focus on a regulatory DNA-binding protein in the Gram-negative soil bacterium Sinorhizobium meliloti 2011, which is capable of fixing molecular nitrogen in a symbiotic interaction with alfalfa plants. The ExpG protein plays a central role in regulation of the biosynthesis of the exopolysaccharide galactoglucan, which promotes the establishment of symbiosis. ExpG is a transcriptional activator of exp gene expression. We investigated the molecular mechanism of binding of ExpG to three associated target sequences in the exp gene cluster with standard biochemical methods and single molecule force spectroscopy based on the atomic force microscope (AFM). Binding of ExpG to expA1, expG-expD1, and expE1 promoter fragments in a sequence specific manner was demonstrated, and a 28 bp conserved region was found. AFM force spectroscopy experiments confirmed the specific binding of ExpG to the promoter regions, with unbinding forces ranging from 50 to 165 pN in a logarithmic dependence from the loading rates of 70-79000 pN/s. Two different regimes of loading rate-dependent behaviour were identified. Thermal off-rates in the range of k(off)=(1.2+/-1.0) x 10(-3)s(-1) were derived from the lower loading rate regime for all promoter regions. In the upper loading rate regime, however, these fragments exhibited distinct differences which are attributed to the molecular binding mechanism.

  13. A Functional Insertion/Deletion Polymorphism in the Promoter Region of the NFKB1 Gene Increases the Risk of Papillary Thyroid Carcinoma

    PubMed Central

    Wang, Xunli; Peng, Hong; Liang, Yundan; Sun, Ruifen; Wei, Tao; Li, Zhihui; Gong, Yanping; Gong, Rixiang; Liu, Feng; Zhang, Lin

    2015-01-01

    This study aimed to assess whether an insertion/deletion polymorphic variation rs28362491 in the NFKB1 promoter region was related to the risk of papillary thyroid carcinoma (PTC). Genomic DNA was extracted from the peripheral venous blood of 352 patients with PTC and 459 controls. The NFKB1 rs28362491 polymorphism was genotyped by using a polymerase chain reaction assay. We found that the frequency of the heterozygous genotype ATTG1/ATTG2 was significantly higher in the cases compared to the controls (odds ratios [OR]=1.44, 95% confidence intervals [CI]=1.05–1.96, p=0.02). Moreover, the frequency of ATTG1/ATTG2+ATTG1/ATTG1 genotypes was significantly elevated in the cases compared to the controls (OR=1.38, 95% CI=1.03–1.85, p=0.03). These findings suggest that the −94 insertion/deletion ATTG polymorphism in the NFKB1 promoter might be associated with an increased risk of PTC. PMID:25692306

  14. Molecular cloning and analysis of the Catsper1 gene promoter.

    PubMed

    Mata-Rocha, Minerva; Alvarado-Cuevas, Edith; Hernández-Sánchez, Javier; Cerecedo, Doris; Felix, Ricardo; Hernández-Reyes, Adriana; Tesoro-Cruz, Emiliano; Oviedo, Norma

    2013-05-01

    CatSper channels are essential for hyperactivity of sperm flagellum, progesterone-mediated chemotaxis and oocyte fertilization. Catsper genes are exclusively expressed in the testis during spermatogenesis, but the function and regulation of the corresponding promoter regions are unknown. Here, we report the cloning and characterization of the promoter regions in the human and murine Catsper1 genes. These promoter regions were identified and isolated from genomic DNA, and transcriptional activities were tested in vitro after transfection into human embryonic kidney 293, mouse Sertoli cells 1 and GC-1spg cell lines as well as by injecting plasmids directly into mouse testes. Although the human and murine Catsper1 promoters lacked a TATA box, a well-conserved CRE site was identified. Both sequences may be considered as TATAless promoters because their transcriptional activity was not affected after deletion of TATA box-like sites. Several transcription initiation sites were revealed by RNA ligase-mediated rapid amplification of the cDNA 5'-ends. We also found that the immediate upstream region and the first exon in the human CATSPER1 gene negatively regulate transcriptional activity. In the murine Catsper1 promoter, binding sites for transcription factors SRY, SOX9 and CREB were protected by the presence of nuclear testis proteins in DNAse degradation assays. Likewise, the mouse Catsper1 promoter exhibited transcriptional activity in both orientations and displayed significant expression levels in mouse testis in vivo, whereas the suppression of transcription signals in the promoter resulted in low expression levels. This study, thus, represents the first identification of the transcriptional control regions in the genes encoding the human and murine CatSper channels.

  15. The 5' flanking region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumour promoter (TPA), the c-Ha-ras oncoprotein and the c-jun protein.

    PubMed Central

    Nunez, A M; Berry, M; Imler, J L; Chambon, P

    1989-01-01

    Expression of the pS2 gene which is transcriptionally controlled by oestrogens in the breast cancer cell line MCF-7 is oestrogen independent in stomach mucosa. We show here that the level of MCF-7 cell pS2 mRNA can also be increased by the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). We further demonstrate, using transient transfection assays, that the -428 to -332 5' flanking sequence of the pS2 gene contains DNA enhancer elements responsive to oestrogens, TPA, EGF, the c-Ha-ras oncoprotein and the c-jun protein. Images PMID:2498085

  16. The β-globin locus control region in combination with the EF1α short promoter allows enhanced lentiviral vector-mediated erythroid gene expression with conserved multilineage activity.

    PubMed

    Montiel-Equihua, Claudia A; Zhang, Lin; Knight, Sean; Saadeh, Heba; Scholz, Simone; Carmo, Marlene; Alonso-Ferrero, Maria E; Blundell, Michael P; Monkeviciute, Aiste; Schulz, Reiner; Collins, Mary; Takeuchi, Yasuhiro; Schmidt, Manfred; Fairbanks, Lynette; Antoniou, Michael; Thrasher, Adrian J; Gaspar, H Bobby

    2012-07-01

    Some gene therapy strategies are compromised by the levels of gene expression required for therapeutic benefit, and also by the breadth of cell types that require correction. We designed a lentiviral vector system in which a transgene is under the transcriptional control of the short form of constitutively acting elongation factor 1α promoter (EFS) combined with essential elements of the locus control region of the β-globin gene (β-LCR). We show that the β-LCR can upregulate EFS activity specifically in erythroid cells but does not alter EFS activity in myeloid or lymphoid cells. Experiments using the green fluorescent protein (GFP) reporter or the human adenosine deaminase (ADA) gene demonstrate 3-7 times upregulation in vitro but >20 times erythroid-specific upregulation in vivo, the effects of which were sustained for 1 year. The addition of the β-LCR did not alter the mutagenic potential of the vector in in vitro mutagenesis (IM) assays although microarray analysis showed that the β-LCR upregulates ~9% of neighboring genes. This vector design therefore combines the benefits of multilineage gene expression with high-level erythroid expression, and has considerable potential for correction of multisystem diseases including certain lysosomal storage diseases through a hematopoietic stem cell (HSC) gene therapy approach.

  17. Promoter region of the bovine growth hormone receptor gene: single nucleotide polymorphism discovery in cattle and association with performance in Brangus bulls.

    PubMed

    Garrett, A J; Rincon, G; Medrano, J F; Elzo, M A; Silver, G A; Thomas, M G

    2008-12-01

    Expression of the GH receptor (GHR) gene and its binding with GH is essential for growth and fat metabolism. A GT microsatellite exists in the promoter of bovine GHR segregating short (11 bp) and long (16 to 20 bp) allele sequences. To detect SNP and complete an association study of genotype to phenotype, we resequenced a 1,195-bp fragment of DNA including the GT microsatellite and exon 1A. Resequencing was completed in 48 familialy unrelated Holstein, Jersey, Brown Swiss, Simmental, Angus, Brahman, and Brangus cattle. Nine SNP were identified. Phylogeny analyses revealed minor distance (i.e., <5%) in DNA sequence among the 5 Bos taurus breeds; however, sequence from Brahman cattle averaged 27.4 +/- 0.07% divergence from the Bos taurus breeds, whereas divergence of Brangus was intermediate. An association study of genotype to phenotype was completed with data from growing Brangus bulls (n = 553 from 96 sires) and data from 4 of the SNP flanking the GT microsatellite. These SNP were found to be in Hardy-Weinberg equilibrium and in phase based on linkage disequilibrium analyses (r(2) = 0.84 and D'= 0.92). An A/G tag SNP was identified (ss86273136) and was located in exon 1A, which began 88 bp downstream from the GT microsatellite. Minor allele frequency of the tag SNP was greater than 10%, and Mendelian segregation was verified in 3 generation pedigrees. The A allele was derived from Brahman, and the G allele was derived from Angus. This tag SNP genotype was a significant effect in analyses of rib fat data collected with ultrasound when bulls were ~365 d of age. Specifically, bulls of the GG genotype had 6.1% more (P = 0.0204) rib fat than bulls of the AA and AG genotypes, respectively. Tag SNP (ss86273136), located in the promoter of GHR, appears to be associated with a measure of corporal fat in Bos taurus x Bos indicus composite cattle.

  18. Interaction of two sequence-specific single-stranded DNA-binding proteins with an essential region of the beta-casein gene promoter is regulated by lactogenic hormones.

    PubMed Central

    Altiok, S; Groner, B

    1993-01-01

    Transcription of the beta-casein gene in mammary epithelial cells is regulated by the lactogenic hormones insulin, glucocorticoids, and prolactin. The DNA sequence elements in the promoter which confer the action of the hormones on the transcriptional machinery and the nuclear proteins binding to this region have been investigated. We found that 221 nucleotides of promoter sequence 5' of the RNA start site are sufficient to mediate the induction of a chloramphenicol acetyltransferase reporter gene in transfected HC11 mammary epithelial cells. Deletion of 5' sequences to position -183 results in a construct with enhanced basal activity which still retains inducibility. A -170 beta-casein promoter-chloramphenicol acetyltransferase construct has very low transcriptional activity, which indicates the presence of a negative regulatory in the region between -221 and -183 and a positive regulatory element between -183 and -170. Band shift analysis showed that the promoter region between -194 and -163 specifically binds two nuclear proteins. The proteins are sequence-specific, single-stranded DNA-binding proteins which exclusively recognize the upper DNA strand and most likely play a repressing role in transcription. DNA binding activity of these nuclear proteins was observed only in nuclear extracts from mammary glands of mice in late pregnancy and postlactation, not during lactation. Hormonal control of the DNA binding activity of these proteins was also observed in the mammary epithelial cell line HC11. Mixing experiments showed that extracts from mammary tissue of lactating mice and from lactogenic hormone-treated HC11 cells contain an activity which can suppress the DNA binding of the single-stranded DNA-binding proteins.2+ identical specificity to the single-stranded DNA. Images PMID:8246951

  19. Cloning and analysis of rat osteoclast inhibitory lectin gene promoter.

    PubMed

    Quan, Jin-Xing; Zheng, Fang; Li, Xiao-Xia; Hu, Li-Ling; Sun, Zi-Yang; Jiao, Yan-Li; Wang, Bao-Li

    2009-03-01

    Osteoclast inhibitory lectin (OCIL) is a novel regulator of bone remodeling, however, little is known concerning how OCIL is regulated to date. In this study, approximately 4.4 kb of the 5'-flanking sequence of rat OCIL gene was cloned into the promoter-less reporter vector pGL3-basic and transiently transfected into three different cell lines. The differences in the levels of luciferase activity paralleled well with the levels of OCIL mRNA expression in these cells, suggesting that the regulation of rat OCIL gene expression occurs mainly at the transcriptional level. Additional luciferase assays using a series of constructs containing unidirectionally deleted fragments showed that the construct-1819/pGL3 (-1819 to +118) exhibited the highest luciferase activity, suggesting the presence of functional promoter in this region. The region from -4370 to -2805 might contain negative regulatory elements, while the region from -1819 to -1336 might have important positive regulatory elements that enhance OCIL transcription. Sequence analysis of the promoter revealed the absence of both TATA and CAAT boxes. However, in the proximal promoter region (-81 to +118), several potential transcription factor binding sites that may be responsible for the basal transcriptional activity of rat OCIL promoter were observed. The promoter contains several potential Sp1 binding sites, and cotransfection of a shRNA expression plasmid that knockdowns Sp1 significantly reduced OCIL promoter activity and endogenous gene expression and moreover, overexpressing Sp7, a Sp1 family member that also binds to Sp1 binding sequence, increased OCIL promoter activity and gene expression, suggesting a role of Sp1 family proteins in regulation of OCIL transcription.

  20. SRSF1-3 contributes to diversification of the immunoglobulin variable region gene by promoting accumulation of AID in the nucleus.

    PubMed

    Kawaguchi, Yuka; Nariki, Hiroaki; Kawamoto, Naoko; Kanehiro, Yuichi; Miyazaki, Satoshi; Suzuki, Mari; Magari, Masaki; Tokumitsu, Hiroshi; Kanayama, Naoki

    2017-04-01

    Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cloning, characterization and promoter analysis of S-RNase gene promoter from Chinese pear (Pyrus pyrifolia).

    PubMed

    Liu, Xue-ying; Wuyun, Ta-na; Zeng, Hong-yan

    2012-09-01

    The 5'-flanking region of the S(12)-, S(13)-, S(21)-RNase with a length of 854 bp, 1448 bp and 1137 bp were successfully isolated by TAIL-PCR from genomic DNA from 'Jinhua', 'Maogong' (Pyrus pyrifolia) and 'Yali' (Pyrus bretschneideri) genomic DNA. Sequence alignment and analysis of S(13)-, S(12)-, S(21)-RNase gene promoter sequences with S(2)-, S(3)-, S(4)-, S(5)-RNase 5'-flanking sequences indicated that a homology region of about 240 bp exists in the regions just upstream of the putative TATA boxes of the seven Chinese/Japanese pear S-RNase genes. Phylogenetic tree suggests that the homology region between the Chinese/Japanese pear and apple S-RNase gene promoter regions reflects the divergence of S-RNase gene was formed before the differentiation of subfamilies. Full length and a series of 5'-deletion fragments-GUS fusions were constructed and introduced into Arabidopsis thaliana plants. GUS activity were detected in S(12)-pro-(1 to 5)-GUS-pBll01.2 transgenic pistils and progressively decreased from S(12)-pro-1-GUS-pBI l01.2 to S(12)-pro-5-GUS-pBll01.2. No GUS activity was detected in S(12)-pro-6-GUS-pBll01.2 transgenic pistil and other tissues of non-transformants and all transgenic plants. The result suggested S(12)-RNase promoter is pistil specific expression promoter.

  2. Isolation and Characterization of the Promoter and Partial Enhancer Region of the Porcine Inter-α-Trypsin Inhibitor Heavy Chain 4 Gene

    PubMed Central

    Harraghy, Niamh; Mitchell, Timothy J.

    2005-01-01

    A porcine genomic library was screened for clones containing the promoter of the major acute-phase protein in pigs, inter-α-trypsin heavy chain 4 (ITIH4). Following isolation of the promoter, a functional analysis was performed with Hep3B cells. The promoter was induced by interleukin-6 (IL-6) but not by IL-1β. However, IL-1β was shown to inhibit the IL-6-induced activation of the porcine ITIH4 promoter. PMID:16275952

  3. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions.

    PubMed

    Apel, Alexander K; Sola-Landa, Alberto; Rodríguez-García, Antonio; Martín, Juan F

    2007-10-01

    Three putative alkaline phosphatase genes, phoA, phoC and phoD, were identified in the genome of Streptomyces coelicolor by homology with the amino acid sequence obtained from the PhoA protein of Streptomyces griseus. PhoA and PhoC correspond to broad-spectrum alkaline phosphatases whereas PhoD is similar to a Ca(2+)-dependent phospholipase D of Streptomyces chromofuscus. The phoA and phoD genes were efficiently expressed in R5 medium under phosphate-limited conditions, as shown by studies using the xylE reporter gene, whereas phoC was poorly transcribed under the same conditions. Expression of phoA was clearly PhoP-dependent since it was not transcribed in the S. coelicolor DeltaphoP mutant and was strongly activated under low phosphate concentrations. Similarly, expression of phoD was PhoP-dependent and highly sensitive to phosphate availability. By contrast, expression of phoC was not PhoP-dependent. Electrophoretic mobility shift assays showed that PhoP binds to the phoA and phoD promoters, but not to that of phoC. Footprinting studies with GST-PhoP revealed the presence of a PHO box (two direct 11 nt repeats) in the phoA promoter and two PHO boxes in the promoter of phoD. The transcription start points of the three promoters were identified by primer extension. The transcription start point of phoD coincides with the G of its translation start codon, indicating that this gene is transcribed as a leaderless mRNA. The deduced -10 and -35 regions of phoD (but not those of phoA) overlapped with the PHO boxes in this promoter, suggesting that an excess of PhoP interferes with binding of the RNA polymerase to this promoter. In summary, the three promoters showed clear differences in the modulation of their expression by PhoP.

  4. Automated liquid culture system misses isoniazid heteroresistance in Mycobacterium tuberculosis isolates with mutations in the promoter region of the inhA gene.

    PubMed

    Zhang, Z; Lu, J; Wang, Y; Pang, Y; Zhao, Y

    2015-03-01

    Heteroresistance in Mycobacterium tuberculosis isolates remains the major challenge for phenotypic drug susceptibility testing (DST) methods to detect drug resistance. The aim of this study was to investigate the abilities of phenotypic DST methods to identify the isoniazid (INH) heteroresistance in M. tuberculosis. We found that the broth dilution method was able to detect INH resistance if 0.5 % resistant bacteria with mutations in the katG and oxyR-ahpC regions were present, while the detection limit ranged from 1 to 10 % for the INH-resistant strains harboring inhA mutations, which was associated with the different mutant types. Additionally, MGIT DST was able to find the recommended 1 % INH resistance due to katG mutations. In contrast, MGIT DST detected resistance in suspensions with 20 % resistant bacteria with inhA mutations. Statistical analysis revealed that the ability of the broth dilution method to detect heteroresistance was better than that of the MGIT DST (p = 0.004). When we further pairwise compared the two methods for detecting heteroresistance according to different mutant loci, the broth dilution method found more heteroresistance due to inhA mutations than MGIT DST (p = 0.001), while the differences for katG and oxyR-ahpC mutations were both not statistically significant (p > 0.05). In conclusion, our findings demonstrate that MGIT DST fails to detect INH heteroresistance in M. tuberculosis isolates with mutations in the promoter region of inhA. In addition, the broth dilution method is more sensitive than MGIT DST in finding INH heteroresistance, indicating that this method may serve as an alternative method to detect the heteroresistance of M. tuberculosis.

  5. Leucine residues in conserved region of 33K protein of bovine adenovirus - 3 are important for binding to major late promoter and activation of late gene expression.

    PubMed

    Kulshreshtha, Vikas; Islam, Azharul; Ayalew, Lisanework E; Tikoo, Suresh K

    2015-09-01

    The L6 region of bovine adenovirus 3 (BAdV-3) encode 33K (spliced) and 22K (unspliced) proteins. Earlier, anti-33K serum detected five major and three minor proteins in BAdV-3 infected cells. Here, we demonstrate that anti-sera raised against L6-22K protein detected two proteins of 42 and 37 kDa in BAdV-3 infected cells and one protein of 42 kDa in transfected cells expressing splice-site variant 22K protein (pC.22K containing substituted splice acceptor/donor sequence). Unlike 22K, 33K stimulated the transcription from the major late promoter (MLP) by binding to the downstream sequence elements (DE). Analysis of the variant proteins demonstrated that amino acids 201-240 of the conserved C-terminus of 33K containing the potential leucine zipper and RS repeat are required for the activation of MLP. Furthermore, amino acid substitution analysis demonstrated that unlike arginine residues of RS repeat, the leucine residues (217, 224, 232 and 240) of the conserved leucine zipper appear required for the binding of 33K to the MLP.

  6. Universal light-switchable gene promoter system

    DOEpatents

    Quail, Peter H.; Huq, Enamul; Tepperman, James; Sato, Sae

    2005-02-22

    An artificial promoter system that can be fused upstream of any desired gene enabling reversible induction or repression of the expression of the gene at will in any suitable host cell or organisms by light is described. The design of the system is such that a molecule of the plant photoreceptor phytochrome is targeted to the specific DNA binding site in the promoter by a protein domain that is fused to the phytochrome and that specifically recognizes this binding site. This bound phytochrome, upon activation by light, recruits a second fusion protein consisting of a protein that binds to phytochrome only upon light activation and a transcriptional activation domain that activates expression of the gene downstream of the promoter.

  7. Characterization of a barley Rubisco activase gene promoter

    SciTech Connect

    Strickland, J.A.; Rundle, S.J.; Zielinski, R. )

    1990-05-01

    Barley Rubisco Activase (Rca) is a nuclear encoded chloroplast enzyme that activates Rubisco to catalytic competence. Rca mRNA accumulation in barley is light-regulated; the 5{prime}-flanking region of a highly expressed barley Rca gene (HvRca-1) contains several sequence motifs similar to those found in the promoter of other light-regulated, nuclear genes. We have characterized the cis-acting regulatory regions of HvRca-1 by deletion analysis of the 5{prime} flanking region of a cloned gene. These constructs have been assayed in vitro by gel mobility shift assays, as well as by DNA footprinting. Putative regulatory sequences detected in vitro have also been tested in vivo by constructing chimeric genes consisting of deletion mutant promoters fused to a promoterless {beta}-glucuronidase reporter gene. Comparison of results obtained from complimentary parallel in vitro and in vivo assays of identical promoter deletions have provided information on cis-acting regulatory regions of HvRca-1.

  8. Structural Properties of Prokaryotic Promoter Regions Correlate with Functional Features

    PubMed Central

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties. PMID:24516674

  9. Structural properties of prokaryotic promoter regions correlate with functional features.

    PubMed

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  10. Opioid gene expression changes and post-translational histone modifications at promoter regions in the rat nucleus accumbens after acute and repeated 3,4-methylenedioxy-methamphetamine (MDMA) exposure.

    PubMed

    Caputi, Francesca Felicia; Palmisano, Martina; Carboni, Lucia; Candeletti, Sanzio; Romualdi, Patrizia

    2016-12-01

    The recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has been shown to produce neurotoxic damage and long-lasting changes in several brain areas. In addition to the involvement of serotoninergic and dopaminergic systems, little information exists about the contribution of nociceptin/orphaninFQ (N/OFQ)-NOP and dynorphin (DYN)-KOP systems in neuronal adaptations evoked by MDMA. Here we investigated the behavioral and molecular effects induced by acute (8mg/kg) or repeated (8mg/kg twice daily for seven days) MDMA exposure. MDMA exposure affected body weight gain and induced hyperlocomotion; this latter effect progressively decreased after repeated administration. Gene expression analysis indicated a down-regulation of the N/OFQ system and an up-regulation of the DYN system in the nucleus accumbens (NAc), highlighting an opposite systems regulation in response to MDMA exposure. Since histone modifications have been strongly associated to the addiction-related maladaptive changes, we examined two permissive (acH3K9 and me3H3K4) and two repressive transcription marks (me3H3K27 and me2H3K9) at the pertinent opioid gene promoter regions. Chromatin immunoprecipitation assays revealed that acute MDMA increased me3H3K4 at the pN/OFQ, pDYN and NOP promoters. Following acute and repeated treatment a significant decrease of acH3K9 at the pN/OFQ promoter was observed, which correlated with gene expression results. Acute treatment caused an acH3K9 increase and a me2H3K9 decrease at the pDYN promoter which matched its mRNA up-regulation. Our data indicate that the activation of the DYNergic stress system together with the inactivation of the N/OFQergic anti-stress system contribute to the neuroadaptive actions of MDMA and offer novel epigenetic information associated with MDMA abuse.

  11. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  12. Study of polymorphisms in the promoter region of ovine β-lactoglobulin gene and phylogenetic analysis among the Valle del Belice breed and other sheep breeds considered as ancestors.

    PubMed

    Mastrangelo, S; Sardina, M T; Riggio, V; Portolano, B

    2012-01-01

    The aim of this work was to sequence the promoter region of β-lactoglobulin (BLG) gene in four sheep breeds, in order to identify polymorphisms, infer and analyze haplotypes, and phylogenetic relationship among the Valle del Belice breed and the other three breeds considered as ancestors. Sequencing analysis and alignment of the obtained sequences showed the presence of 36 single nucleotide polymorphisms (SNPs) and one deletion. A total of 22 haplotypes found in "best" reconstruction were inferred considering the 37 polymorphic sites identified. Haplotypes were used for the reconstruction of a phylogenetic tree using the Neighbor-Joining algorithm. The number of polymorphisms identified showed high variability within breeds. Analysis of genetic diversity indexes showed that the Sarda breed presented the lowest nucleotide diversity, whereas the Comisana breed presented the highest one. Comparing the nucleotide diversity among breeds, the highest value was obtained between Valle del Belice and Pinzirita breeds, whereas the lowest one was between Valle del Belice and Sarda breeds. Considering that polymorphisms in the promoter region of BLG gene could have a functional role associated with milk composition, the lowest value of nucleotide diversity between Valle del Belice and Sarda breeds may be related to a higher similarity of milk composition of these two breeds compared to the others. Further analyses will be conducted in order to evaluate the possible correlation between the genetic diversity indexes and the BLG content in milk of our breeds.

  13. Promoter polymorphism T-786C, 894G→T at exon 7 of endothelial nitric oxide synthase gene are associated with risk of osteoporosis in Sichuan region male residents

    PubMed Central

    Gu, Zuchao; Zhang, Yu; Qiu, Guixing

    2015-01-01

    Objective: To investigate the association between genetic polymorphism of T-786C in promoter region, 894G→T at exon 7 of endothelial nitric oxide synthase (eNOS) gene and osteoporosis (OP) disease. Method: The genotypes of 350 patients with osteoporosis and 350 healthy controls were detected by polymerase chain reaction (PCR) and DNA sequencing. The allele ratios and genotype distributions in the patients and controls were assessed using the Pearson χ2-test. Odds ratios (OR) with two tailed P-values and 95% confidence intervals (CI) were calculated as a measure of the association of the eNOS genotypes with OP. Result: the C allele distribution frequency of T-786C eNOS gene in OP group (8.5%) was significantly higher than that in control group (3.9%), relative risk (OR) of OP associated with the CC genotype was 2.68 (95% CI, 0.92 to 1.37). The T allele frequency of 894G→T at exon 7 in eNOS gene in OP group (11.5%) was also significantly higher than that in control group (5.2%), OR of OP associated with the TT genotype was 2.60 (all P<0.05). Conclusion: The analysis results indicated that both T-786C in promoter region and 894G→T at exon 7 of eNOS gene might be genetic predisposal factors of OP, these polymorphisms may be independently or synergic with other loci to have an impact on the incidence of OP. PMID:26823879

  14. Development of a novel microarray methodology for the study of SNPs in the promoter region of the TNF-alpha gene: their association with obstructive pulmonary disease in Greek patients.

    PubMed

    Papatheodorou, Athanasios; Latsi, Panagiota; Vrettou, Christina; Dimakou, Aikaterini; Chroneou, Alexia; Makrythanasis, Periklis; Kaliakatsos, Marios; Orfanidou, Dora; Roussos, Charis; Kanavakis, Emmanuel; Tzetis, Maria

    2007-08-01

    Polymorphisms in promoter region of TNF-alpha gene were shown to interfere with the transcriptional activity of the gene resulting in the production of different levels of TNF-alpha product suggesting their involvement in susceptibility or severity of many inflammatory diseases. We set up a case-control study consisting of 117 COPD (Chronic Obstructive Pulmonary Disease), 62 DB (bronchiectasis) patients and two control groups (109 smokers without COPD-healthy smokers control group and 212 general population subjects) to evaluate involvement of TNF-alpha gene polymorphisms in the abovementioned diseases in a homogeneous population. The novel methodology of the NanoChip Molecular Biology Workstation (MBW Nanogen http://www.nanogen.com) was employed to genotype the 5 promoter SNPs. Genotype frequencies of the 5 SNPs showed no significant difference between the COPD and DB patient groups and the healthy smokers group. Statistical difference (p=0.043) was only revealed between the haplotype frequencies in COPD patients compared to the general population control group. The NanoChip MBW is an accurate method for SNP screening.

  15. Cloning of penaeidin gene promoter in tiger shrimp (Penaeus monodon).

    PubMed

    Ho, Shih-Hu; Song, Yen-Ling

    2009-07-01

    Penaeidins belong to a family of antimicrobial peptides that are expressed in the hemocytes of penaeid shrimps. Using an extender PCR method and a nested PCR, we cloned two types of genomic fragment flanking the 5' end of penaeidin gene in tiger shrimp (Penaeus monodon): Type536 and Type411 sequences. Both fragments contained TATA box, GATA, dorsal and AP-1 motifs and were ligated to an expression vector with a luciferase reporter gene. The constructs were then delivered into Drosophila S2 cell line. The promoter functions of the two fragments were determined using a luciferase expression assay. The study demonstrated that Type411 sequence performed higher transcriptional activity than Type536. Alignment of the upstream sequences of penaeidin genes in P. monodon and Litopenaeus vannamei showed that the promoter regions were obviously more diverse than the 5'UTRs. Phylogenetic analysis indicated the presence of two types of promoters that are not species-specific in the two shrimps.

  16. PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES

    PubMed Central

    Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.

    2008-01-01

    Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195

  17. Sequence polymorphism in the HLA-B promoter region

    SciTech Connect

    Yao, Z.; Volgger, A.; Scholz, S.

    1995-04-01

    Transcription of major histocompatibility complex class I genes is controlled by the class I regulatory complex in the 5{prime} flanked region. To investigate the molecular basis of this region, we studied the polymorphism of the promoter of the HLA-B locus extending from the ATG transcription initiation signal to -284 base pairs (bp) which includes a number of cis-acting elements: interferon response sequence (IRS), enhancer A and enhancer B. Genomic DNA from 35 homozygous cell lines from the 10th International Histocompatibility Workshop and from eight heterozygous panel members was amplified using two primers designed to specifically amplify the HLA-B locus. The double-stranded polymerase chain reaction products were sequenced using the cycle sequencing technique and an ABI 373A automatic sequencer. Promoter sequences of thirty-one different HLA-B alleles were determined in this study. Within the 284 bp upstream of the ATG signal, base substitutions were observed in 23 different nucleotide positions. Our study shows a high degree of polymorphism of the HLA-B promoter region, but conserved sequences of the known cis-acting elements with the exception of enhancer B in which there are two base substitutions for B7 and B42 (position -93 and position -95). The 23 polymorphic sites can be grouped into 12 different HLA-B promoter types (groups A to M) for 31 HLA-B locus alleles. Some of the groups of alleles sharing the same promoter sequence such as, for example, group A with B51, B52, B53, and B35, might have been predicted on the basis of serological similarity and/or exon 2,3 sequence. In other groups, such as G (B18, B37, B27), it could not have been anticipated from serological experience that B18 and B27 carry the same promoter. Several sequencing errors were detected in the HLA-B promoter sequences published previously. 32 refs., 4 tabs.

  18. Functional analysis of the Myostatin gene promoter in sheep.

    PubMed

    Du, Rong; An, XiaoRong; Chen, YongFu; Qin, Jian

    2007-10-01

    Compared with the understanding for the functional mechanism of the myostatin gene, little is known about the regulatory mechanism of the myostatin gene transcription and expression. To better understand the function of the myostatin gene promoter (MSTNpro) in the transcriptional regulation of the myostatin gene and to further investigate the transcriptional regulation mechanism of the myostatin gene, the promoter region of the myostatin gene in sheep has been cloned in our recent study (AY918121). In this study, the wild (W) type MSTNPro(W)-EGFP vectors and E-box (E) (CANNTG) mutant (M) type MSTNPro(E(3+5+7)M)-EGFP vectors were constructed and the transcriptional regulation activities were compared by detecting the fluorescent strength of EGFP (enhanced green fluorescent protein) in C2C12 myoblasts (or myotubes) and sheep fibroblasts transfected with the vectors. Results showed that the 0.3-1.2 kb sheep myostatin promoter could activate the transcription and expression of EGFP gene in C2C12 myoblasts to different extent and the 1.2 kb promoter was the strongest. However, fluorescence was not observed in the sheep fibroblasts transfected with the 1.2 kb sheep myostatin promoter. These results suggested that the specific nature of the myostatin gene expression in skeletal muscle was attributed to the specific nature of the myostatin promoter activity. The increasing growth density of C2C12 myoblasts inhibited the transcriptional regulation activity of the wild type sheep myostatin promoter by a mechanism of feedback. The transcriptional regulation activity of the 1.2 kb wild type sheep myostatin promoter increased significantly after C2C12 myoblasts were differentiated, while the activity of 1.2 kb E(3+5+7)-mutant type myostatin promoter had no obvious change. This result suggested that MyoD may be responsible for the difference of the myostatin gene transcription and expression between growing and differentiating conditions by binding to E-box of the myostatin

  19. Cyclooxygenase-2 directly regulates gene expression of P450 Cyp19 aromatase promoter regions pII, pI.3 and pI.7 and estradiol production in human breast tumor cells.

    PubMed

    Prosperi, Jenifer R; Robertson, Fredika M

    2006-10-01

    The present studies evaluated the direct effects of the presence of human cyclooxygenase-2 (Cox-2) on gene expression of specific promoter regions of the P450 Cyp19 enzyme aromatase enzyme and its product, estradiol, in Cox-2 null estrogen-dependent MCF-7 breast tumor cells and in a stable clone of MCF-7 cells containing transfected Cox-2 cDNA, designated as MCF-7/Cox-2 Clone 10. Clone 10 human breast tumor cells have significantly increased gene expression of total mRNA of the P450 Cyp19 enzyme aromatase, with high levels of gene expression of specific aromatase promoter (p) regions pII, pI.3, and p1.7, with no significant change in mRNA levels of p1.4. Clone 10 human breast tumor cells produced significantly increased amounts of both prostaglandin E2 (PGE2) derived from Cox-2 enzyme activity and estradiol derived from aromatase enzyme activity (p<0.01), compared to MCF-7/vector control cells. The greatest inhibition of PGE2 or estradiol production was observed by the combination of the selective Cox-2 inhibitor celecoxib (25 microM) and the aromatase inhibitor, formestane (10nM) (p<0.01). The greatest anti-proliferative effect in Cox-2 null MCF-7/vector control cells was observed with the combination of 25 microM celecoxib and 10nM formestane but not with 10 microM celecoxib, suggesting that there are Cox-2-independent mechanisms involved in the anti-proliferative effect of this agent at doses greater than 10 microM. Celecoxib (25 microM) also significantly inhibited proliferation of MCF-7/Cox-2 Clone 10 human breast tumor cells, with no further anti-proliferative activity with the addition of 10 nM formestane observed at either 24 or 48 h of treatment. These studies demonstrate that Cox-2 directly regulates gene expression of specific aromatase promoter regions and regulates aromatase enzyme activity. Agents that inhibit Cox-2 or block the biological effects of PGE2 may be useful in significantly limiting aromatase activity and proliferation of human breast

  20. Characterization of late gene promoters of Chlamydia trachomatis.

    PubMed Central

    Fahr, M J; Douglas, A L; Xia, W; Hatch, T P

    1995-01-01

    Chlamydiae possess an intracellular developmental cycle defined by the orderly interconversion of infectious, metabolically inactive elementary bodies and noninfectious, dividing reticulate bodies. Only a few stage-specific genes have been cloned and sequenced, including the late-stage cysteine-rich protein operon and two late-stage genes encoding histone-like proteins. The aims of this study were to identify additional late-stage genes of Chlamydia trachomatis, analyze the upstream DNA sequence of late genes, and determine the sigma factor requirement of late genes. Stage-specific RNA, made by chlamydiae isolated from host cells, was used to probe C. trachomatis genomic libraries. Two new late genes, designated ltuA and ltuB, were identified, cloned, and sequenced. The predicted peptides encoded by ltuA and ltuB do not bear strong homology to known proteins, and the function of the new late genes is not known. The 5' ends of the transcripts of ltuA, ltuB, the cysteine-rich protein operon, and the two histone-like genes (hctA and hctB) were mapped, and a consensus -10 promoter region of TATAAT was derived from their upstream DNA sequences. In vitro transcription from templates encoding the promoter regions of ltuA, ltuB, and hctA cloned into the transcription assay vector pUC19-spf was found to be strongly stimulated by the addition of recombinant chlamydial sigma 66, while transcription from the putative hctB promoter region cloned in pUC19-spf was not detected in either the presence or absence of added sigma 66. These results suggest that the transcription of at least some chlamydial late-stage genes is dependent on sigma 66, which is homologous to the major sigma factors of other eubacteria. PMID:7543468

  1. Cloning of a marine cyanobacterial promoter for foreign gene expression using a promoter probe vector

    SciTech Connect

    Sode, Koji; Hatano, Naoaki; Tatara, Masahiro

    1996-06-01

    A marine cyanobacterial promoter was cloned to allow efficient foreign gene expression. This was carried out using chloramphenicol acetyl transferase (CAT) as a marker protein. For rapid and simple measurement of CAT activity, a method based on a fluorescently labeled substrate was improved by utilizing HPLC equipped with a flow-through fluorescent spectrophotometer. This method was used in conjunction with a newly constructed promoter probe vector. Cyanobacterial transformants, harboring plasmid containing a cloned 2-kbp marine cyanobacterial genomic fragment, showed a 10-fold higher CAT activity, compared with that achieved using the kanamycin-resistant gene promoter. From the sequence analysis of the cloned fragment, a putative promoter region was found. 20 refs., 7 figs., 2 tabs.

  2. Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene.

    PubMed Central

    van Tunen, A J; Mur, L A; Brouns, G S; Rienstra, J D; Koes, R E; Mol, J N

    1990-01-01

    We have analyzed the spatial and temporal activities of chalcone flavanone isomerase (chi) A and B gene promoters from petunia. To study the tandem promoter regulation of chiA, various chiA promoter fragments were fused with the beta-glucuronidase (GUS) reporter gene. Analysis of transgenic plants containing these chimeric genes provided definitive proof that the chiA coding region is regulated by two distinct promoters (designated PA1 and PA2). We also showed that both promoters can function independently and that the chiA PA1 promoter is expressed in limb (epidermal and parenchyma cells), tube (inner epidermal and parenchyma cells), seed (seed coat, endosperm, and embryo), sepal, leaf, and stem. The use of chiA and chiB promoters in the regulation of anther- and pollen-specific gene expression has been studied. By analyzing transgenic plants containing chimeric genes consisting of chiA and B promoter fragments and the GUS reporter gene, we were able to identify a 0.44-kilobase chiA PA2 promoter fragment that drives pollen-specific gene expression and a 1.75-kilobase chiB PB promoter fragment that confers anther-specific (pollen and tapetum cells) expression to the GUS gene. PMID:2152165

  3. Leptin gene promoter DNA methylation in WNIN obese mutant rats.

    PubMed

    Kalashikam, Rajender Rao; Inagadapa, Padmavathi J N; Thomas, Anju Elizabeth; Jeyapal, Sugeetha; Giridharan, Nappan Veettil; Raghunath, Manchala

    2014-02-05

    Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains.

  4. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    SciTech Connect

    Storbeck, C.J.; Sabourin, L.; Baird, S.

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMK only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.

  5. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription.

    PubMed

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-08-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5'-CACGTG-3') at -2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions.

  6. Promoter regions of Plasmodium vivax are poorly or not recognized by Plasmodium falciparum

    PubMed Central

    Azevedo, Mauro F; del Portillo, Hernando A

    2007-01-01

    Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements. PMID:17313673

  7. Construction and application of a promoter-trapping vector with methyl parathion hydrolase gene mpd as the reporter.

    PubMed

    Cui, Zhong-Li; Zhang, Xiao-Zhou; Zhang, Zhong-Hui; Li, Shun-Peng

    2004-07-01

    A facilitative and efficient promoter-trapping vector, pUC-mpd, was constructed with the promoterless methyl parathion hydrolase gene as the reporter. This reporter gene is easily used to clone promoters with different promoting strength on selective plates. Promoter regions of the ytkA and ywoF genes with strong promoting and signal peptide functions were cloned from the Bacillus subtilis 168 genomic promoter library with this vector.

  8. Amy as a reporter gene for promoter activity in Nocardia lactamdurans: comparison of promoters of the cephamycin cluster.

    PubMed Central

    Chary, V K; de la Fuente, J L; Liras, P; Martin, J F

    1997-01-01

    Promoter probe vectors containing the pA origin of replication and the Streptomyces griseus promoterless amy gene (encoding alpha-amylase) as reporter have been constructed to study transcription initiation regions in Nocardia lactamdurans. In some of the promoter probe vectors the phage fd terminator has been introduced to avoid readthrough expression from upstream sequences. By using these vectors, four different transcription initiation regions of the cephamycin gene cluster have been studied in N. lactamdurans. The bla gene encoding a beta-lactamase has a relatively strong promoter. Two other separate promoters corresponding to the lat and cefD genes (encoding, respectively, lysine-6-aminotransferase and isopenicillin N-epimerase) showed weak transcription initiation ability. These two promoters are arranged in a bidirectional transcription initiation region located in the center of the cephamycin gene cluster. The cmcH gene (encoding 3-hydroxymethylcephem carbamoyltransferase) upstream region did not contain a functional promoter, suggesting that cmcH is transcribed as a part of a polycistronic mRNA. The native amy promoter is used very efficiently in N. lactamdurans, resulting in secretion of high levels of extracellular alpha-amylase. PMID:9251185

  9. Hypermethylation of the caveolin-1 gene promoter in prostate cancer.

    PubMed

    Cui, J; Rohr, L R; Swanson, G; Speights, V O; Maxwell, T; Brothman, A R

    2001-02-15

    Hypermethylation of CpG islands in the promoter regions of tumor suppressor genes is one mechanism of tumorigenesis. Caveolin-1 (Cav-1), a gene coding for the structural component of cellular caveolae, is involved in cell signaling and has been proposed to be a tumor suppressor gene in several malignancies. This gene maps to 7q31.1, a site known to be deleted in some prostate tumors. We chose to examine the methylation status of the promoter region of Cav-1 to determine whether this gene could function as a tumor suppressor in prostate cancer Genomic DNA from both tumor and normal prostate epithelial cells was obtained from paraffin-embedded prostate sections by laser capture microdissection (LCM). The methylation status of 24 CpG sites at the 5' promoter region of Cav-1 was analyzed by bisulfite-direct-sequencing after amplification by PCR using primers specific for bisulfate modified DNA. Immunohistochemistry staining with a cav-1-specific antibody was also performed to evaluate the expression of the gene Twenty of the 22 (90.9%) informative cases showed promoter hypermethylation in the tumor cell population when compared with adjacent normal prostate cells with an average Methylation Index (potential frequency of total possible methylated Cs) from tumor cells equal to 0.426 vs. 0.186 for normal cells (P = 0.001). While no association with Gleason grade was found, overall increased methylation correlated with PSA failure (P = 0.016), suggestive of clinical recurrence. Elevated immunoreactivity with a Cav-1 antibody was observed in tumor cells from 7 of 26 prostate samples tested; this was associated with a Gleason score but not correlated with PSA failure or Methylation Index CpG sites at the 5' promoter of Cav-1 are more methylated in tumor than in adjacent normal prostate cells. Hypermethylation of the Cav-1 promoter supports the notion that Cav-1 may function as a tumor suppressor gene in prostate cancer and evidence is presented suggesting that methylation

  10. Functional characterisation of the bovine neuropeptide Y gene promoter and evaluation of the transcriptional activities of promoter haplotypes.

    PubMed

    Alam, Tanweer; Bahar, Bojlul; Waters, Sinéad M; McGee, Mark; O'Doherty, John V; Sweeney, Torres

    2012-02-01

    Neuropeptide Y (NPY) is a potent orexigenic agent. The molecular mechanisms underlying the regulation of bovine NPY gene expression by its promoter region is currently unknown. The objectives of this research were to: (i) identify the SNPs in the promoter region of the bovine NPY gene, (ii) investigate the effects of these SNPs by measuring promoter transcriptional activities of different bovine NPY promoter haplotypes and; (iii) identify the minimal promoter region (MPR) required for basal activity of the NPY gene in vitro. Seventeen SNPs were identified in the promoter region. Of these, 14 affected putative transcription factors binding motifs including a TATA binding protein factor at -20, GC-Box factors SP1 at -170 and GATA binding motifs at -120 and -347. The SNPs were assigned to five major haplotypes (BtNPY_H1-5), of which BtNPY_H5 had maximum transcriptional activity. The region extending to -134 nt was identified as the MPR. This MPR was confirmed by the identification of a putative TATA box (-29 nt) and two SP1/GC binding sites (-94 and -118 nt), within this region. However, promoter expression was significantly enhanced when the construct contained the -614 to -1019 nt region. In conclusion, a number of SNPs characterised in the bovine NPY promoter especially those affecting the transcription factor binding sites, enhancer and repressor regions have the potential to affect NPY gene expression. Natural variation exists in the promoter region of the bovine NPY gene, which should be further explored for selection of energetic efficiency in cattle.

  11. Characterizations of Hirudo medicinalis DNA promoters for targeted gene expression.

    PubMed

    Baker, Michael W; Macagno, Eduardo R

    2006-09-30

    The expression of exogenous genes in neurons and other cells has become a powerful means for studying the function of encoded proteins. We report here on the isolation and functional analysis of three Hirudo medicinalis actin gene promoters and the 5' UTR of a leech elongation factor-1alpha (HmEF-1alpha) gene. In situ hybridization labeling revealed that the EF-1alpha gene and one of the actins had pan-neuronal expression, whereas, the other two actin genes were expressed by the embryo's body wall musculature. Comparative analysis shows that they all display many features typical of actin and EF-1alpha promoters from other species, including canonical TATA box sequences and predicted general transcription factor binding sites (such as CCATT, CarB boxes and CG-rich regions). The ability of these 5' UTR sequences to drive expression of the enhanced green fluorescent protein (EGFP), leech cytoplasmic actin and leech synaptobrevin was examined. Direct intracellular nuclear, but not cytoplasmic, microinjection of each of the promoter sequences was found to produce reliably cellular expression of the reporter construct in both neuronal and muscle cells. These results introduce reliable and effective methods to selectively express genes in individual cells of the leech in vivo during embryonic development.

  12. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli.

    PubMed

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-06-20

    The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  13. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    PubMed Central

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-01-01

    Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms. PMID:15967027

  14. Consensus sequence for Escherichia coli heat shock gene promoters.

    PubMed Central

    Cowing, D W; Bardwell, J C; Craig, E A; Woolford, C; Hendrix, R W; Gross, C A

    1985-01-01

    We have identified promoters for the Escherichia coli heat shock operons dnaK and groE and the gene encoding heat shock protein C62.5. Transcription from each promoter is heat-inducible in vivo, and each is recognized in vitro by RNA polymerase containing sigma 32, the sigma factor encoded by rpoH (htpR) but not by RNA polymerase containing sigma 70. We compared the sequences of the heat shock promoters and propose a consensus promoter sequence, having T-N-t-C-N-C-c-C-T-T-G-A-A in the -35 region and C-C-C-C-A-T-t-T-a in the -10 region. These sequences differ from the consensus sequence recognized by holoenzyme containing sigma 70, the major sigma in E. coli. We suggest that the accumulated consensus sequences of promoters recognized by alternate forms of holoenzyme are compatible with a model in which sigma recognizes only the -10 region of the promoter. Images PMID:3887408

  15. The Paired-box Homeodomain Transcription Factor Pax6 Binds to the Upstream Region of the TRAP Gene Promoter and Suppresses Receptor Activator of NF-κB Ligand (RANKL)-induced Osteoclast Differentiation*

    PubMed Central

    Kogawa, Masakazu; Hisatake, Koji; Atkins, Gerald J.; Findlay, David M.; Enoki, Yuichiro; Sato, Tsuyoshi; Gray, Peter C.; Kanesaki-Yatsuka, Yukiko; Anderson, Paul H.; Wada, Seiki; Kato, Naoki; Fukuda, Aya; Katayama, Shigehiro; Tsujimoto, Masafumi; Yoda, Tetsuya; Suda, Tatsuo; Okazaki, Yasushi; Matsumoto, Masahito

    2013-01-01

    Osteoclast formation is regulated by balancing between the receptor activator of nuclear factor-κB ligand (RANKL) expressed in osteoblasts and extracellular negative regulatory cytokines such as interferon-γ (IFN-γ) and interferon-β (IFN-β), which can suppress excessive bone destruction. However, relatively little is known about intrinsic negative regulatory factors in RANKL-mediated osteoclast differentiation. Here, we show the paired-box homeodomain transcription factor Pax6 acts as a negative regulator of RANKL-mediated osteoclast differentiation. Electrophoretic mobility shift and reporter assays found that Pax6 binds endogenously to the proximal region of the tartrate acid phosphatase (TRAP) gene promoter and suppresses nuclear factor of activated T cells c1 (NFATc1)-induced TRAP gene expression. Introduction of Pax6 retrovirally into bone marrow macrophages attenuates RANKL-induced osteoclast formation. Moreover, we found that the Groucho family member co-repressor Grg6 contributes to Pax6-mediated suppression of the TRAP gene expression induced by NFATc1. These results suggest that Pax6 interferes with RANKL-mediated osteoclast differentiation together with Grg6. Our results demonstrate that the Pax6 pathway constitutes a new aspect of the negative regulatory circuit of RANKL-RANK signaling in osteoclastogenesis and that the augmentation of Pax6 might therefore represent a novel target to block pathological bone resorption. PMID:23990468

  16. Promoter Nucleosome Organization Shapes the Evolution of Gene Expression

    PubMed Central

    Rosin, Dalia; Hornung, Gil; Tirosh, Itay; Gispan, Ariel; Barkai, Naama

    2012-01-01

    Understanding why genes evolve at different rates is fundamental to evolutionary thinking. In species of the budding yeast, the rate at which genes diverge in expression correlates with the organization of their promoter nucleosomes: genes lacking a nucleosome-free region (denoted OPN for “Occupied Proximal Nucleosomes”) vary widely between the species, while the expression of those containing NFR (denoted DPN for “Depleted Proximal Nucleosomes”) remains largely conserved. To examine if early evolutionary dynamics contributes to this difference in divergence, we artificially selected for high expression of GFP–fused proteins. Surprisingly, selection was equally successful for OPN and DPN genes, with ∼80% of genes in each group stably increasing in expression by a similar amount. Notably, the two groups adapted by distinct mechanisms: DPN–selected strains duplicated large genomic regions, while OPN–selected strains favored trans mutations not involving duplications. When selection was removed, DPN (but not OPN) genes reverted rapidly to wild-type expression levels, consistent with their lower diversity between species. Our results suggest that promoter organization constrains the early evolutionary dynamics and in this way biases the path of long-term evolution. PMID:22438828

  17. Single nucleotide polymorphisms in cytokine MIF gene promoter region are closely associated with human susceptibility to tuberculosis in a southwestern province of China.

    PubMed

    Liu, Aihua; Li, Jing; Bao, Fukai; Zhu, Ziwei; Feng, Shi; Yang, Jiaru; Wang, Lin; Shi, Mei; Wen, Xia; Zhao, Hua; Voravuthikunchai, Supayang P

    2016-04-01

    The gene encoding macrophage migration inhibitory factor (MIF) has been proposed as candidate tuberculosis (TB) susceptibility gene. In order to elucidate whether MIF gene variants are associated with susceptibility to retreatment cases of TB, and prevent drug-resistant TB prevalence, we conducted a study based on paired human population data. MIF -173 G/C single nucleotide polymorphisms (rs755622) were genotyped using polymerase chain reaction-restriction fragment length polymorphism. MIF levels were detected with enzyme-linked immunosorbent assay. Association analysis of polymorphism to TB showed that distribution of MIF -173 genotypes (GC+CC) was significantly higher in total cases of TB than in the controls. Statistically significant differences of frequencies for MIF -173 (GG vs. GC+CC) were demonstrated when comparing total cases of TB, new cases of TB, and retreatment cases of TB to controls, respectively. In contrast, the frequencies of MIF -173 (GG vs. GC+CC) demonstrated no difference between new cases of TB and retreatment cases of TB. Association analysis of MIF protein concentrations to TB indicated that MIF concentration is significantly higher in total cases of TB, new cases of TB, and retreatment cases of TB than in controls (P<0.01). In summary, our results demonstrated that MIF gene -173 G/C single nucleotide polymorphisms implicate in genetic susceptibility to TB, and GC+CC of MIF -173 site increases the risk of TB. We also found that no correlation between -173 G/C single nucleotide polymorphism and retreatment cases of TB in Yunnan Province population of China.

  18. Recurrent epimutations activate gene body promoters in primary glioblastoma.

    PubMed

    Nagarajan, Raman P; Zhang, Bo; Bell, Robert J A; Johnson, Brett E; Olshen, Adam B; Sundaram, Vasavi; Li, Daofeng; Graham, Ashley E; Diaz, Aaron; Fouse, Shaun D; Smirnov, Ivan; Song, Jun; Paris, Pamela L; Wang, Ting; Costello, Joseph F

    2014-05-01

    Aberrant DNA hypomethylation may play an important role in the growth rate of glioblastoma (GBM), but the functional impact on transcription remains poorly understood. We assayed the GBM methylome with MeDIP-seq and MRE-seq, adjusting for copy number differences, in a small set of non-glioma CpG island methylator phenotype (non-G-CIMP) primary tumors. Recurrent hypomethylated loci were enriched within a region of chromosome 5p15 that is specified as a cancer amplicon and also encompasses TERT, encoding telomerase reverse transcriptase, which plays a critical role in tumorigenesis. Overall, 76 gene body promoters were recurrently hypomethylated, including TERT and the oncogenes GLI3 and TP73. Recurring hypomethylation also affected previously unannotated alternative promoters, and luciferase reporter assays for three of four of these promoters confirmed strong promoter activity in GBM cells. Histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq on tissue from the GBMs uncovered peaks that coincide precisely with tumor-specific decrease of DNA methylation at 200 loci, 133 of which are in gene bodies. Detailed investigation of TP73 and TERT gene body hypomethylation demonstrated increased expression of corresponding alternate transcripts, which in TP73 encodes a truncated p73 protein with oncogenic function and in TERT encodes a putative reverse transcriptase-null protein. Our findings suggest that recurring gene body promoter hypomethylation events, along with histone H3K4 trimethylation, alter the transcriptional landscape of GBM through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein.

  19. Association Study Between Metabolic Syndrome and rs8066560 Polymorphism in the Promoter Region of Sterol Regulatory Element-binding Transcription Factor 1 Gene in Iranian Children and Adolescents

    PubMed Central

    Miranzadeh-Mahabadi, Hajar; Emadi-Baygi, Modjtaba; Nikpour, Parvaneh; Kelishadi, Roya

    2016-01-01

    Background: Metabolic syndrome (MetS) is a prevalent disorder in pediatric age groups, described by a combination of genetic and environmental factors. Sterol regulatory element-binding transcription factor 1 (SREBF-1) induces the expression of a family of genes involved in fatty acid synthesis. Moreover, dysregulation of miR-33b, which is located within the intron 17 of the SREBF-1 gene, disrupts fatty acid oxidation and insulin signaling, thus leading to MetS. The aim of the present study was to investigate the association between SREBF-1 rs8066560 polymorphism and MetS in Iranian children and adolescents. Methods: This study includes 100 MetS and 100 normal individuals aged 9–19 years. Anthropological and biochemical indexes were measured. The -1099G > A polymorphism was genotyped by TaqMan real-time polymerase chain reaction. Results: Significant differences were observed in anthropometric measurements and lipid profiles between MetS and normal children. There were no differences in the genotype frequencies or allele distribution for -1099G > A polymorphism between MetS and control groups. High-density lipoprotein cholesterol levels were significantly higher in the MetS GG group than in the A allele carrier group. The genotype AA controls had significantly increased cholesterol and low-density lipoprotein cholesterol levels than AG genotypes. By logistic regression using different genetic models, no significant association was observed between SREBF-1 rs8066560 polymorphism and the risk of MetS. Conclusions: We conclude that the -1099G > A variant on SREBF-1 gene associated with serum lipid profiles, however, it may not be a major risk factor for the MetS in Iranian children and adolescents. PMID:27076879

  20. Molecular characterization and identification of a novel polymorphism of 200 bp indel associated with age at first egg of the promoter region in chicken follicle-stimulating hormone receptor (FSHR) gene.

    PubMed

    Kang, Li; Zhang, Ningbo; Zhang, Yujie; Yan, Huaxiang; Tang, Hui; Yang, Changsuo; Wang, Hui; Jiang, Yunliang

    2012-03-01

    Follicle-stimulating hormone receptor (FSHR) plays an important role in animal follicular development. Polymorphisms in FSHR promoter region likely impact transcription and follicle growth and maturation. In this study, a fragment of ~1.9 kb of cFSHR promoter for Zang, Xianju, Lohmann Brown, Jining Bairi and Wenchang breeds (line) was obtained. Totally 49 variations were revealed, of which 39 are single nucleotide substitutions, one is nucleotide substitution of (TTG) to (CAC) and nine are indels. Polymorphism at -874 site (a 200 bp indel mutation) was identified, and their effects on egg production traits as well as gene expression were analyzed. At this site, allele I(+) was dominant in Lohmann Brown and Xinyang Brown (a synthetic egg-laying line) lines, but very rare in three Chinese indigenous chicken breeds, namely Jining Bairi, Wenchang, Zang and one synthetic boiler line (Luqin). In Xinyang Brown population, the polymorphism was associated with age at first egg (AFE) (P < 0.05) and its effect on egg number at 37 weeks of age (E37) and egg number at 57 weeks of age (E57) was not significantly different (P > 0.05). The cFSHR mRNA level was not significantly different between three genotypes in small white and small yellow follicles of Xinyang Brown hens, however, allele I(+) tends to increase cFSHR transcription.

  1. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  2. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  3. Altered promoter nucleosome positioning is an early event in gene silencing.

    PubMed

    Hesson, Luke B; Sloane, Mathew A; Wong, Jason Wh; Nunez, Andrea C; Srivastava, Sameer; Ng, Benedict; Hawkins, Nicholas J; Bourke, Michael J; Ward, Robyn L

    2014-10-01

    Gene silencing in cancer frequently involves hypermethylation and dense nucleosome occupancy across promoter regions. How a promoter transitions to this silent state is unclear. Using colorectal adenomas, we investigated nucleosome positioning, DNA methylation, and gene expression in the early stages of gene silencing. Genome-wide gene expression correlated with highly positioned nucleosomes upstream and downstream of a nucleosome-depleted transcription start site (TSS). Hypermethylated promoters displayed increased nucleosome occupancy, specifically at the TSS. We investigated 2 genes, CDH1 and CDKN2B, which were silenced in adenomas but lacked promoter hypermethylation. Instead, silencing correlated with loss of nucleosomes from the -2 position upstream of the TSS relative to normal mucosa. In contrast, permanent CDH1 silencing in carcinoma cells was characterized by promoter hypermethylation and dense nucleosome occupancy. Our findings suggest that silenced genes transition through an intermediary stage involving altered promoter nucleosome positioning, before permanent silencing by hypermethylation and dense nucleosome occupancy.

  4. Polymorphism of tumor necrosis factor-α and interleukin-10 gene promoter region in chronic hepatitis C virus patients and their effect on pegylated interferon-α therapy response.

    PubMed

    Dogra, Gaurav; Chakravarti, Anita; Kar, Premashish; Chawla, Yogesh Kumar

    2011-10-01

    The development and resolution of an inflammatory process is regulated by a complex interplay among cytokines that have pro- and anti-inflammatory effects. Regulatory mechanisms that control the production of cytokines include genetic polymorphism in particular promoter/leader region. Polymorphisms may directly or indirectly affect the binding of transcriptional factors, consequently increasing or decreasing the production of mRNA, thus regulating cytokine production. A total of 70 hepatitis C virus (HCV) RNA-positive patients and 70 healthy control subjects were included in the present study, who were attending the medical outpatient department (OPD) and wards of a tertiary care hospital in New Delhi during 2006-2008. This study was designed to determine the polymorphism of tumor necrosis factor-α and interleukin-10 genes in patients with chronic HCV infection patients and their effect on pegylated interferon-α therapy response. Polymorphism in the tumor necrosis factor-α G/G, G/A, and A/A genotype was significant between HCV patients and healthy controls. Interleukin-10 variants (G/G, G/A) were nonsignificant among HCV patients compared with healthy controls. As this is a preliminary study on small sample size, we believe that our findings may stimulate further studies on larger number of patients from this geographic region.

  5. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini.

    PubMed

    Kalbitzer, Urs; Roos, Christian; Kopp, Gisela H; Butynski, Thomas M; Knauf, Sascha; Zinner, Dietmar; Fischer, Julia

    2016-06-10

    Aggressive behaviors are an integral part of competitive interactions. There is considerable variation in aggressiveness among individuals both within and among species. Aggressiveness is a quantitative trait that is highly heritable. In modern humans and macaques (Macaca spp.), variation in aggressiveness among individuals is associated with polymorphisms in the serotonergic (5-HT) neurotransmitter system. To further investigate the genetics underlying interspecific variation in aggressiveness, 123 wild individuals from five baboon species (Papio papio, P. hamadryas, P. anubis, P. cynocephalus, and P. ursinus) were screened for two polymorphisms in promoter regions of genes relevant for the 5-HT system (5-HTTLPR and MAOALPR). Surprisingly, despite considerable interspecific variation in aggressiveness, baboons are monomorphic in 5-HTTLPR, except for P. hamadryas, which carries one additional allele. Accordingly, this locus cannot be linked to behavioral variation among species. A comparison among 19 papionin species, including nine species of macaques, shows that the most common baboon allele is similar to the one described for Barbary macaques (Macaca sylvanus), probably representing the ancestral allele in this tribe. It should be noted that (almost) all baboons live in Africa, but within Macaca only M. sylvanus lives on this continent. Baboons are, however, highly polymorphic in the so-called 'warrior gene' MAOALPR, carrying three alleles. Due to considerable variation in allele frequencies among populations of the same species, this genotype cannot be invoked to explain variation in aggressiveness at the species level. This study provides another indication that 5-HTTLPR is not related to aggressiveness in primates per se, but may have been under differential selective pressures among taxa and potentially among populations in different geographic regions. The results on MAOALPR alleles in Papio indicate that variation in the metabolism of monoamine

  6. Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter.

    PubMed

    Reddy, S V; Hundley, J E; Windle, J J; Alcantara, O; Linn, R; Leach, R J; Boldt, D H; Roodman, G D

    1995-04-01

    Tartrate-resistant acid phosphatase (TRAP) is an iron-binding protein that is highly expressed in osteoclasts. To characterize the regulation of TRAP gene expression, progressive 5' and 3' deletions of a 1.8 kb fragment containing the 5'-flanking sequence were fused to a luciferase reporter gene. Two nonoverlapping regions of this 1.8 kb fragment had promoter activity. The upstream promoter (P1) was located within the region from -881 bp to -463 bp relative to the ATG, while the downstream promoter (P2) was located between -363 bp to -1 bp in a region we have previously shown to be an intron in transcripts originating from the upstream promoter. A putative repressor region for the P2 promoter at -1846 bp to -1240 bp and a putative enhancer region at -962 bp to -881 bp relative to the ATG were identified. PCR analysis of promoter-specific transcription of the TRAP gene in various murine tissues showed that both promoters were active in several tissues. Transferrin-bound iron increased P1 promoter activity 2.5-fold and hemin decreased P1 promoter activity, but neither had any effect on P2 activity. These data show that the transcriptional regulation of the TRAP gene is complex and that iron may play a key role in TRAP gene regulation.

  7. Interferon gamma rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc gamma receptor.

    PubMed Central

    Wilson, K C; Finbloom, D S

    1992-01-01

    Interferon gamma (IFN-gamma) transcriptionally activates several early-response genes in monocytes that are important for the ultimate phenotype of the activated macrophage. One of these genes is the high-affinity Fc receptor for IgG (Fc gamma RI). Recently, Pearse et al. [Pearse, R.N., Feinman, R. & Ravetch, J. V. (1991) Proc. Natl. Acad. Sci. USA 88, 11305-11309] defined within the promoter region of the Fc gamma RI gene an element, the gamma response region, which was necessary for IFN-gamma-induced enhancement of Fc gamma RI. In this report we describe the induction by IFN-gamma of a DNA-binding factor, FcRF gamma (Fc gamma RI DNA-binding factor, IFN-gamma induced), that specifically recognizes the gamma response region element. Electrophoretic mobility shift assays (EMSAs) demonstrated the presence of FcRF gamma in human monocytes within 1 min after exposure to IFN-gamma. On EMSA, FcRF gamma consisted of two complexes termed FcRF gamma 1 and FcRF gamma 2. The nuclear concentration of FcRF gamma rapidly increased, peaked at 15 min, and then fell after 1-2 hr. Dose-response studies revealed (i) as little as 0.05 ng of IFN-gamma per ml induced FcRF gamma, (ii) maximum activation occurred at 1 ng/ml, and (iii) steady-state levels of Fc gamma RI mRNA closely paralleled that of FcRF gamma. Since FcRF gamma was activated in cells normally not expressing Fc gamma RI RNA, other regulatory mechanisms must control Fc gamma RI-restricted tissue expression. Activation of FcRF gamma by IFN-gamma was inhibited by pretreatment with 500 nM staurosporin and 25 microM phenyl arsine oxide. These data suggest that a kinase and possibly a phosphatase activity are required for IFN-gamma-induced signaling of FcRF gamma in monocytes. Images PMID:1334553

  8. Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5' promoter region of the caveolin-1 gene in human breast cancer cell lines.

    PubMed

    Engelman, J A; Zhang, X L; Lisanti, M P

    1999-04-09

    The CA microsatellite repeat marker, D7S522, is located at the center of a approximately 1000 kb smallest common deleted region that is lost in many forms of human cancer. It has been proposed that a putative tumor suppressor gene lies in close proximity to D7S522, within this smallest common deleted region. However, the genes located in proximity to D7S522 have remained elusive. Recently, we identified five independent BAC clones (approximately 100-200 kb) containing D7S522 and the human genes encoding caveolins 1 and 2. Here, we present the detailed organization of the caveolin locus and its relationship to D7S522, as deduced using a shot-gun sequencing approach. We derived two adjacent contigs for a total coverage of approximately 250 kb. Analysis of these contigs reveals that D7S522 is located approximately 67 kb upstream of the caveolin-2 gene and that the caveolin-2 gene is located approximately 19 kb upstream of the caveolin-1 gene, providing for the first time a detailed genetic map of this region. Further sequence analysis reveals many interesting features of the caveolin genes; these include the intron-exon boundaries and several previously unrecognized CA repeats that lie within or in close proximity to the caveolin genes. The first and second exons of both caveolin genes are embedded within CpG islands. These results suggest that regulation of caveolin gene expression may be controlled, in part, by methylation of these CpG regions. In support of this notion, we show here that the CGs in the 5' promoter region of the caveolin-1 gene are functionally methylated in two human breast cancer cell lines (MCF7 and T-47D) that fail to express the caveolin-1 protein. In contrast, the same CGs in cultured normal human mammary epithelial cells (NHMECs) are non-methylated and these cells express high levels of the caveolin-1 protein. Comparison of the human locus with the same locus in the pufferfish Fugu rubripes reveals that the overall organization of the

  9. Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation.

    PubMed

    Wu, Wangjun; Ren, Zhuqing; Liu, Honglin; Wang, Linjie; Huang, Ruihua; Chen, Jie; Zhang, Lin; Li, Pinghua; Xiong, Yuanzhu

    2013-10-25

    Six1, an evolutionary conserved transcription factor, has been shown to play an important role in organogenesis and diseases. However, no reports were shown to investigate its transcriptional regulatory mechanisms. In the present study, we first identified porcine Six1 gene core promoter region (+170/-360) using luciferase reporter assay system and found that promoter activities were significantly higher in the mouse myoblast C2C12 cells than that in the mouse fibroblast C3H10T1/2 cells, implying that Six1 promoter could possess muscle-specific characteristics. Moreover, our results showed that promoter activities of Six1 were decreased as induction of differentiation of C2C12 cells, which was accompanied by the down-regulation of mRNA expression of Six1 gene. In addition, we found that the DNA methylation of Six1 promoters in vitro obviously influences the promoter activities and the DNA methylation level of Six1 promoter core region was negatively correlated to Six1 gene expression in vivo. Taken together, we preliminarily clarified transcriptional regulatory mechanisms of Six1 gene, which should be useful for investigating its subtle transcriptional regulatory mechanisms in the future. On the other hand, based on Six1 involved in tumorigenesis, our data also provide a genetic foundation to control the generation of diseases via pursuing Six1 as therapeutic target gene.

  10. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation

    PubMed Central

    Lü, M; Tian, H; Cao, Y-x; He, X; Chen, L; Song, X; Ping, P; Huang, H; Sun, F

    2015-01-01

    Long non-coding RNAs (lncRNAs), which are extensively transcribed from the genome, have been proposed to be key regulators of diverse biological processes. However, little is known about the role of lncRNAs in regulating spermatogenesis in human males. Here, using microarray technology, we show altered expression of lncRNAs in the testes of infertile men with maturation arrest (MA) or hypospermatogenesis (Hypo), with 757 and 2370 differentially down-regulated and 475 and 163 up-regulated lncRNAs in MA and Hypo, respectively. These findings were confirmed by quantitative real-time PCR (qRT-PCR) assays on select lncRNAs, including HOTTIP, imsrna320, imsrna292 and NLC1-C (narcolepsy candidate-region 1 genes). Interestingly, NLC1-C, also known as long intergenic non-protein-coding RNA162 (LINC00162), was down-regulated in the cytoplasm and accumulated in the nucleus of spermatogonia and primary spermatocytes in the testes of infertile men with mixed patterns of MA compared with normal control. The accumulation of NLC1-C in the nucleus repressed miR-320a and miR-383 transcript and promoted testicular embryonal carcinoma cell proliferation by binding to Nucleolin. Here, we define a novel mechanism by which lncRNAs modulate miRNA expression at the transcriptional level by binding to RNA-binding proteins to regulate human spermatogenesis. PMID:26539909

  11. Cell-type preference of immunoglobulin kappa and lambda gene promoters.

    PubMed Central

    Picard, D; Schaffner, W

    1985-01-01

    Immunoglobulin gene constant regions are known to be associated with strictly tissue-specific enhancer elements. Until recently the promoter of the variable region, which becomes linked to the constant region by somatic rearrangement, could have been viewed as a passive recipient of the enhancer stimulus. Here we show that the promoters of the immunoglobulin kappa and lambda light chain genes are approximately 20-30 times more active in lymphoid cells than in non-lymphoid cells. To avoid the problem of differential mRNA stability upon transfection of immunoglobulin genes into non-lymphoid cells we have constructed chimeric genes. All kappa mRNA sequences were progressively deleted to fuse the kappa gene promoter to a globin gene coding body. A similar chimeric gene was constructed with the promoter of the lambda gene. The cell-type preference of the promoter may be exploited during B-lymphocyte differentiation to regulate the immunoglobulin gene promoter independently from the enhancer. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. PMID:2998757

  12. Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma.

    PubMed

    Margetts, Caroline D E; Morris, Mark; Astuti, Dewi; Gentle, Dean C; Cascon, Alberto; McRonald, Fiona E; Catchpoole, Daniel; Robledo, Mercedes; Neumann, Hartmut P H; Latif, Farida; Maher, Eamonn R

    2008-09-01

    The molecular genetics of inherited phaeochromocytoma have received considerable attention, but the somatic genetic and epigenetic events that characterise tumourigenesis in sporadic phaeochromocytomas are less well defined. Previously, we found considerable overlap between patterns of promoter region tumour suppressor gene (TSG) hypermethylation in two neural crest tumours, neuroblastoma and phaeochromocytoma. In order to identify candidate biomarkers and epigenetically inactivated TSGs in phaeochromocytoma and neuroblastoma, we characterised changes in gene expression in three neuroblastoma cell lines after treatment with the demethylating agent 5-azacytidine. Promoter region methylation status was then determined for 28 genes that demonstrated increased expression after demethylation. Three genes HSP47, homeobox A9 (HOXA9) and opioid binding protein (OPCML) were methylated in >10% of phaeochromocytomas (52, 17 and 12% respectively). Two of the genes, epithelial membrane protein 3 (EMP3) and HSP47, demonstrated significantly more frequent methylation in neuroblastoma than phaeochromocytoma. These findings extend epigenotype of phaeochromocytoma and identify candidate genes implicated in sporadic phaeochromocytoma tumourigenesis.

  13. Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma

    PubMed Central

    Margetts, Caroline D E; Morris, Mark; Astuti, Dewi; Gentle, Dean C; Cascon, Alberto; McRonald, Fiona E; Catchpoole, Daniel; Robledo, Mercedes; Neumann, Hartmut P H; Latif, Farida; Maher, Eamonn R

    2008-01-01

    The molecular genetics of inherited phaeochromocytoma have received considerable attention, but the somatic genetic and epigenetic events that characterise tumourigenesis in sporadic phaeochromocytomas are less well defined. Previously, we found considerable overlap between patterns of promoter region tumour suppressor gene (TSG) hypermethylation in two neural crest tumours, neuroblastoma and phaeochromocytoma. In order to identify candidate biomarkers and epigenetically inactivated TSGs in phaeochromocytoma and neuroblastoma, we characterised changes in gene expression in three neuroblastoma cell lines after treatment with the demethylating agent 5-azacytidine. Promoter region methylation status was then determined for 28 genes that demonstrated increased expression after demethylation. Three genes HSP47, homeobox A9 (HOXA9) and opioid binding protein (OPCML) were methylated in >10% of phaeochromocytomas (52, 17 and 12% respectively). Two of the genes, epithelial membrane protein 3 (EMP3) and HSP47, demonstrated significantly more frequent methylation in neuroblastoma than phaeochromocytoma. These findings extend epigenotype of phaeochromocytoma and identify candidate genes implicated in sporadic phaeochromocytoma tumourigenesis. PMID:18499731

  14. Polymorphisms in the leptin gene promoter in Brazilian beef herds.

    PubMed

    Guimarães, R C; Azevedo, J S N; Corrêa, S C; Campelo, J E G; Barbosa, E M; Gonçalves, E C; Silva Filho, E

    2016-12-02

    Brazil is the world's largest producer of beef cattle; however, the quality of its herds needs to be improved. The use of molecular markers as auxiliary tools in selecting animals for reproduction with high pattern for beef production would significantly improve the quality of the final beef product in Brazil. The leptin gene has been demonstrated to be an excellent candidate gene for bovine breeding. The objective of this study was to sequence and compare the leptin gene promoter of Brazil's important cattle breeds in order to identify polymorphisms in it. Blood samples of the Nellore, Guzerat, Tabapuã, and Senepol breeds were collected for genomic DNA extraction. The genomic DNA was used as a template for polymerase chain reaction (PCR) to amplify a 1575-bp fragment, which in turn was sequenced, aligned, and compared between animals of different breeds. Twenty-three single nucleotide polymorphic sites, including transitions and transversions, were detected at positions -1457, -1452, -1446, -1397, -1392, -1361, -1238, -963,-901, -578, -516, -483, -478, -470, -432, -430, -292, -282, -272, -211, -202, -170, and -147. Additionally, two insertion sites at positions -680 and -416 and two deletion sites at positions -1255 and -1059 were detected. As the promoter region of the leptin gene has been demonstrated to vary among breeds, these variations must be tested for their use as potential molecular markers for artificial selection of animals for enhanced beef production in different systems of bovine production in Brazil.

  15. Putative promoter region of rRNA operon from archaebacterium Halobacterium halobium.

    PubMed Central

    Mankin, A S; Teterina, N L; Rubtsov, P M; Baratova, L A; Kagramanova, V K

    1984-01-01

    The 100 bp sequence from the beginning of the 16S rRNA gene of archaebacterium Halobacterium halobium and the adjacent 800 bp upstream sequence were determined. Four long (80 bp) direct repeats were found in the region preceeding the structural gene of the 16S rRNA. These repeats are proposed to constitute the promoter region of the rRNA operon of H. halobium. PMID:6089119

  16. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma.

    PubMed

    Bhatia, Vikram; Goel, Madhu Mati; Makker, Annu; Tewari, Shikha; Yadu, Alka; Shilpi, Priyanka; Kumar, Sandeep; Agarwal, S P; Goel, Sudhir K

    2014-01-01

    Promoter methylation and relative gene expression of O(6)-methyguanine-DNA-methyltransferase (MGMT) and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC). Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P = 0.0010) and 57% (P = 0.0016) of tissue samples, respectively, and 39% (P = 0.0135) and 33% (P = 0.0074) of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P = 0.0001) and 82% (P = 0.0001) in tissue and 57% (P = 0.0002) and 70% (P = 0.0001) in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC.

  17. Promoter Region Hypermethylation and mRNA Expression of MGMT and p16 Genes in Tissue and Blood Samples of Human Premalignant Oral Lesions and Oral Squamous Cell Carcinoma

    PubMed Central

    Bhatia, Vikram; Makker, Annu; Tewari, Shikha; Yadu, Alka; Shilpi, Priyanka; Kumar, Sandeep; Agarwal, S. P.; Goel, Sudhir K.

    2014-01-01

    Promoter methylation and relative gene expression of O6-methyguanine-DNA-methyltransferase (MGMT) and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC). Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P = 0.0010) and 57% (P = 0.0016) of tissue samples, respectively, and 39% (P = 0.0135) and 33% (P = 0.0074) of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P = 0.0001) and 82% (P = 0.0001) in tissue and 57% (P = 0.0002) and 70% (P = 0.0001) in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC. PMID:24991542

  18. Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene.

    PubMed

    Masura, Subhi Siti; Parveez, Ghulam Kadir Ahmad; Ismail, Ismanizan

    2010-09-30

    The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.

  19. Functional analysis of BADH gene promoter from Suaeda liaotungensis K.

    PubMed

    Zhang, Yi; Yin, Hui; Li, Dan; Zhu, Weiwei; Li, Qiuli

    2008-03-01

    A 1,993 bp region upstream of the gene encoding the betaine aldehyde dehydrogenase (BADH) was isolated from Suaeda liaotungensis K., and the analysis of the promoter sequence has revealed the existence of several putative cis-elements by the PLACE database. In this study, according to the characteristic of the BADH promoter, five chimeric constructs varied in the length of promoter fragments from -1,993, -1,466, -1,084, -573 and -300 to +62 bp relative to the transcriptional start site were placed to the upstream of the beta-glucuronidase (GUS) coding region and transferred to Nicotiana tabacum L.cv.89 by Agrobacterium tumefaciens-mediated leaf-disc transformation. The functional properties of each promoter fragment were examined by GUS histochemical staining and fluorescence quantitative analyses in the transgenic tobacco leaves treated with different NaCl concentrations for 48 h. The results show that healthy transgenic plants had decreased GUS activity in leaves, whereas a higher GUS activity was observed when the transgenic plants were challenged with sodium chloride (NaCl). Induction levels were proportional to the concentration of NaCl treatment, allowing fine-tuning of protein expression. GUS enzyme activity was enhanced 6.3-fold in transgenic tobacco leaves containing -300 bp promoter fragment in the presence of 400 mmol/l NaCl compared to the noninductive leaves. This suggests that the smallest promoter fragment (-300 to +62 bp) possesses all the essential cis-acting elements and is sufficient for NaCl induction.

  20. Tissue-specific activity of the pro-opiomelanocortin gene promoter

    SciTech Connect

    Jeannotte, L.; Trifiro, M.A.; Plante, R.K.; Chamberland, M.; Drouin, J.

    1987-11-01

    The pro-opiomelanocortin (POMC) gene is specifically expressed in corticotroph cells of the anterior pituitary. To define the POMC promoter sequences responsible for tissue-specific expression, we assessed POMC promoter activity by gene transfer into POMC-expressing pituitary tumor cells (AtT-20) and fibroblast L cells. The rat POMC promoter was only efficiently utilized and correctly transcribed in AtT-20 cells. 5'-End deletion analysis revealed two promoter regions for activity in AtT-20 cells. When tested by fusion to a heterologuous promoter, DNA fragments corresponding to both regions exhibited tissue-specific activity, suggesting the presence of at least two tissue-specific DNA sequence elements within the promoter. In summary, POMC promoter sequences from -480 to -34 base pairs appear sufficient to mimic the specificity of anterior pituitary expression.

  1. Characterization of the human lipoprotein lipase (LPL) promoter: Evidence of two cis-regulatory regions, LP-[alpha] and LP-[beta] of importance for the differentation-linked induction of the LPL gene during adipogenesis

    SciTech Connect

    Enerbaeck, S.; Ohlsson, B.G.; Samuelsson, L.; Bjursell, G. )

    1992-10-01

    When preadipocytes differentiate into adipocytes, several differentiation-linked genes are activated. Lipo-protein lipase (LPL) is one of the first genes induced during this process. To investigate early events in adipocyte development, we have focused on the transcriptional activation of the LPL gene. For this purpose, we have cloned and fused different parts of intragenic and flanking sequences with a chloramphenicol acetyltransferase reporter gene. Transient transfection experiments and DNase I hypersensitivity assays indicate that several positive as well as negative elements contribute to transcriptional regulation of the LPL gene. When reporter gene constructs were stably introduced into preadipocytes, we were able to monitor and compare the activation patterns of different promoter deletion mutants at selected time points representing the process of adipocyte development. We could delimit two cis-regulatory elements important for gradual activation of the LPL gene during adipocyte development in vitro. These elements, LP-[alpha] (-702 to -666) and LP-[beta] (-468 to -430), contain a striking similarity to a consensus sequence known to bind the transcription factors HNF-3 and fork head. Results of gel mobility shift assays and DNase I and exonuclease III in vitro protection assays indicate that factors with DNA-binding properties similar to those of the HNF-3/fork head family of transcription factors are present in adipocytes and interact with LP-[alpha] and LP-[beta]. We also demonstrate that LP-[alpha] and LP-[beta] were both capable of conferring a differentiation-linked expression pattern to a heterolog promoter, thus mimicking the expression of the endogenous LPL gene during adipocyte differentiation. These findings indicate that interactions with LP-[alpha] and LP-[beta] could be a part of a differentiation switch governing induction of the LPL gene during adipocyte differentiation. 48 refs., 11 figs.

  2. Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-alpha and LP-beta, of importance for the differentiation-linked induction of the LPL gene during adipogenesis.

    PubMed Central

    Enerbäck, S; Ohlsson, B G; Samuelsson, L; Bjursell, G

    1992-01-01

    When preadipocytes differentiate into adipocytes, several differentiation-linked genes are activated. Lipoprotein lipase (LPL) is one of the first genes induced during this process. To investigate early events in adipocyte development, we have focused on the transcriptional activation of the LPL gene. For this purpose, we have cloned and fused different parts of intragenic and flanking sequences with a chloramphenicol acetyltransferase reporter gene. Transient transfection experiments and DNase I hypersensitivity assays indicate that several positive as well as negative elements contribute to transcriptional regulation of the LPL gene. When reporter gene constructs were stably introduced into preadipocytes, we were able to monitor and compare the activation patterns of different promoter deletion mutants at selected time points representing the process of adipocyte development. We could delimit two cis-regulatory elements important for gradual activation of the LPL gene during adipocyte development in vitro. These elements, LP-alpha (-702 to -666) and LP-beta (-468 to -430), contain a striking similarity to a consensus sequence known to bind the transcription factors HNF-3 and fork head. Results of gel mobility shift assays and DNase I and exonuclease III in vitro protection assays indicate that factors with DNA-binding properties similar to those of the HNF-3/fork head family of transcription factors are present in adipocytes and interact with LP-alpha and LP-beta. We also demonstrate that LP-alpha and LP-beta were both capable of conferring a differentiation-linked expression pattern to a heterolog promoter, thus mimicking the expression of the endogenous LPL gene during adipocyte differentiation. These findings indicate that interactions with LP-alpha and LP-beta could be a part of a differentiation switch governing induction of the LPL gene during adipocyte differentiation. Images PMID:1406652

  3. Structure of the BoLA-DRB3 gene and promoter.

    PubMed

    Russell, G C; Smith, J A; Oliver, R A

    2004-06-01

    The cattle major histocompatibility complex (MHC) class II DR gene product is a heterodimer encoded by the BoLA-DRA and -DRB3 genes. Several groups have isolated cDNA and genomic clones for these genes, but their full genomic organization has not been described. We used a combination of long-range polymerase chain reaction (PCR), cloning and sequencing to define the organization of the DRB3 gene on existing genomic clones and in genomic DNA. We estimate the size of the coding region to be 11.4 kbp. Sequencing of full-length PCR clones from two different haplotypes confirmed that they carried complete DRB3 genes and allowed the design of probes and primers to isolate and characterize the DRB3 promoter and 3' end. Fragments carrying the 5' end of the DRB3 gene and its promoter were identified on bacterial artificial chromosome (BAC) clones carrying the BoLA-DR genes. A 10-kbp promoter fragment was subcloned from one clone and a 1.7-kbp region including exon 1 and the promoter was sequenced. A 3-kbp fragment encoding exons 4-6 and the entire 3' untranslated region of the DRB3 gene was isolated from lambda clone A1 and sequenced. This provides us with improved characterization of the DRB3*0101 and DRB3*2002 alleles, and also subcloned 5' and 3' flanking regions of the polymorphic DRB3 gene for use in functional studies.

  4. The Interferon Stimulated Gene 54 Promotes Apoptosis*

    PubMed Central

    Stawowczyk, Marcin; Van Scoy, Sarah; Kumar, K. Prasanna; Reich, Nancy C.

    2011-01-01

    The ability of interferons (IFNs) to inhibit viral replication and cellular proliferation is well established, but the specific contribution of each IFN-stimulated gene (ISG) to these biological responses remains to be completely understood. In this report we demonstrate that ISG54, also known as IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), is a mediator of apoptosis. Expression of ISG54, independent of IFN stimulation, elicits apoptotic cell death. Cell death and apoptosis were quantified by propidium iodide uptake and annexin-V staining, respectively. The activation of caspase-3, a key mediator of the execution phase of apoptosis, was clearly apparent in cells expressing ISG54. The anti-apoptotic B cell lymphoma-xl (Bcl-xl) protein inhibited the apoptotic effects of ISG54 as did the anti-apoptotic adenoviral E1B-19K protein. In addition, ISG54 was not able to promote cell death in the absence of pro-apoptotic Bcl family members, Bax and Bak. Analyses of binding partners of ISG54 revealed association with two homologous proteins, ISG56/IFIT1 and ISG60/IFIT3. In addition, ISG60 binding negatively regulates the apoptotic effects of ISG54. The results reveal a previously unidentified role of ISG54 in the induction of apoptosis via a mitochondrial pathway and shed new light on the mechanism by which IFN elicits anti-viral and anti-cancer effects. PMID:21190939

  5. T-cell functional regions of the human IL-3 proximal promoter.

    PubMed

    Ryan, G R; Vadas, M A; Shannon, M F

    1994-10-01

    The human interleukin-3 (IL-3) gene is expressed almost exclusively in activated T cells. Its expression is regulated at both the transcriptional and post-transcriptional level. We have previously shown that treatment of Jurkat T cells with phytohemaglutinin (PHA) and the phorbol ester, PMA, activated transcription initiation from the IL-3 gene. To define the regions of the gene required for transcription activation, we generated a series of reporter constructs containing different regions of the IL-3 gene 5' and 3' flanking sequences. Both positive and negative regulatory elements were identified in the proximal 5' flanking region of the IL-3 gene. The promoter region between -173 and -60 contained the strongest activating elements. The transcription factor AP-1 could bind to this positive activator region of the promoter. We also examined the function of the IL-3 CK-1/CK-2 elements that are present in many cytokine genes and found that they acted as a repressor of basal level expression when cloned upstream of a heterologous promoter but were also inducible by PMA/PHA.

  6. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    NASA Astrophysics Data System (ADS)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  7. [Cloning and analysis of promoter of pig copper zinc superoxide dismutase gene (CuZnSOD)].

    PubMed

    Shi, Yuan; Chen, Wei; Zeng, Yongqing; Zhu, Honglei; Xu, Zhenggang; Zhang, Zhe; Yang, Yun; Zhang, Tianyang

    2014-02-01

    Pig copper zinc superoxide dismutase (CuZnSOD) is an important antioxidant enzyme. Some studies focused on the function of CuZnSOD gene, but the transcriptional regulation of the CuZnSOD gene is not yet fully elucidated. Therefore, the aims of the study were to determine the core promoter region and to explore its mechanism of transcriptional regulation. The 853 bp DNA sequence of 5'-flanking promoter was amplified by performing PCR. A series of CuZnSOD promoter fragments with gradually truncated 5'-end were produced by nested PCR and inserted into pGL3-Basic vector. The activities of the promoters were measured by the dual-luciferase assay system after transient transfection into the NIH/3T3 cells. The results demonstrated that there were 2 potential transcription start sites in the regions from initiation codon to -87 bp and -266 bp, respectively. The region from -383 bp to +67 bp in CuZnSOD gene promoter showed higher activity than other regions, and further deletion analysis demonstrated that the region from -75 bp to -32 bp contained an essential promoter sequence for pig CuZnSOD gene transcription. In addition, several potential transcription factor binding sites were predicted with bioinformatics method. These results suggest that these transcription factor binding sites may be involved in the transcriptional regulation of CuZnSOD gene.

  8. An unmethylated 3' promoter-proximal region is required for efficient transcription initiation.

    PubMed

    Appanah, Ruth; Dickerson, David R; Goyal, Preeti; Groudine, Mark; Lorincz, Matthew C

    2007-02-16

    The promoter regions of approximately 40% of genes in the human genome are embedded in CpG islands, CpG-rich regions that frequently extend on the order of one kb 3' of the transcription start site (TSS) region. CpGs 3' of the TSS of actively transcribed CpG island promoters typically remain methylation-free, indicating that maintaining promoter-proximal CpGs in an unmethylated state may be important for efficient transcription. Here we utilize recombinase-mediated cassette exchange to introduce a Moloney Murine Leukemia Virus (MoMuLV)-based reporter, in vitro methylated 1 kb downstream of the TSS, into a defined genomic site. In a subset of clones, methylation spreads to within approximately 320 bp of the TSS, yielding a dramatic decrease in transcript level, even though the promoter/TSS region remains unmethylated. Chromatin immunoprecipitation analyses reveal that such promoter-proximal methylation results in loss of RNA polymerase II and TATA-box-binding protein (TBP) binding in the promoter region, suggesting that repression occurs at the level of transcription initiation. While DNA methylation-dependent trimethylation of H3 lysine (K)9 is confined to the intragenic methylated region, the promoter and downstream regions are hypo-acetylated on H3K9/K14. Furthermore, DNase I hypersensitivity and methylase-based single promoter analysis (M-SPA) experiments reveal that a nucleosome is positioned over the unmethylated TATA-box in these clones, indicating that dense DNA methylation downstream of the promoter region is sufficient to alter the chromatin structure of an unmethylated promoter. Based on these observations, we propose that a DNA methylation-free region extending several hundred bases downstream of the TSS may be a prerequisite for efficient transcription initiation. This model provides a biochemical explanation for the typical positioning of TSSs well upstream of the 3' end of the CpG islands in which they are embedded.

  9. Evaluation of three different promoters driving gene expression in developing chicken embryo by using in vivo electroporation.

    PubMed

    Yang, C Q; Li, X Y; Li, Q; Fu, S L; Li, H; Guo, Z K; Lin, J T; Zhao, S T

    2014-02-27

    To investigate the variance of exogenous gene expression driven by different promoters by in vivo electroporation, 3 plasmid vectors carrying different promoters were selected, and their driving strength was compared in developing chicken embryos. The 3 promoters included: 1) the CAG promoter (containing the cytomegalovirus (CMV) immediate early enhancer and the chicken β-actin promoter), 2) the CMV promoter (the human CMV immediate early region enhancer), and 3) the SV40 promoter (Simian virus 40). The intensity of GFP expression driven by the 3 promoters was detected by fluorescence microscopy. The results clearly showed that the expression intensity of the reporter gene differed significantly among the 3 promoters. Chicken β-actin promoter induced the highest intensity of GFP expression, while SV40 promoter induced the lowest intensity. Our results indicate that plasmids with appropriate promoters should be carefully selected to obtain strong exogenous gene expression by in vivo electroporation.

  10. Interactions of Drosophila Ultrabithorax Regulatory Regions with Native and Foreign Promoters

    PubMed Central

    Casares, F.; Bender, W.; Merriam, J.; Sanchez-Herrero, E.

    1997-01-01

    The Ultrabithorax (Ubx) gene of the Drosophila bithorax complex is required to specify parasegments 5 and 6. Two P-element ``enhancer traps'' have been recovered within the locus that contain the bacterial lacZ gene under the control of the P-element promoter. The P insertion that is closer to the Ubx promoter expresses lacZ in a pattern similar to that of the normal Ubx gene, but also in parasegment 4 during embryonic development. Two deletions have been recovered that remove the normal Ubx promoter plus several kilobases on either side, but retain the lacZ reporter gene. The lacZ patterns from the deletion derivatives closely match the normal pattern of Ubx expression in late embryos and imaginal discs. The lacZ genes in the deletion derivatives are also negatively regulated by Ubx and activated in trans by Contrabithorax mutations, again like the normal Ubx gene. Thus, the deleted regions, including several kilobases around the Ubx promoter, are not required for long range interactions with Ubx regulatory regions. The deletion derivatives also stimulate transvection, a pairing-dependent interaction with the Ubx promoter on the homologous chromosome. PMID:9017395

  11. Precise Regulation of Gene Expression Dynamics Favors Complex Promoter Architectures

    PubMed Central

    Müller, Dirk; Stelling, Jörg

    2009-01-01

    Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure. PMID:19180182

  12. Analysis of cytosine-adenine repeats in P1 promoter region of IGF-1 gene in peripheral blood cells and cervical tissue samples of females with cervical intraepithelial lesions and squamous cervical cancer.

    PubMed

    Kwasniewski, Wojciech; Gozdzicka-Jozefiak, Anna; Kotarska, Maria; Polak, Grzegorz; Barczynski, Bartlomiej; Broniarczyk, Justyna; Nowak, Witold; Wolun-Cholewa, Maria; Kwasniewska, Anna; Kotarski, Jan

    2015-02-01

    High oncogenic risk human papillomaviruses (HPVs) are closely associated with cancer of the cervix. However, HPV infection alone may not be sufficient to cause cervical cancer, and other factors or cofactors may have a cumulative effect on the risk of progression from cervical HPV infection to cancer. The present study investigates the cytosine‑adenine (CA) repeat polymorphism in the P1 promoter region of the insulin‑like growth factor‑1 (IGF‑1) gene among cervical precancerous and cancer patients and healthy control females. The association between these polymorphisms, tissue and blood serum levels of IGF‑1, and cervical cancer risk and progression is evaluated. The material for analysis consisted of blood cells and postoperative tissues from patients diagnosed with low‑grade squamous intraepithelial lesions (L‑SILs), high‑grade squamous intraepithelial lesions (H‑SILs) and invasive cervical cancer (ICC). A polymerase chain reaction amplification and the sequencing of DNA were used for the identification of (CA)n repeats in the IGF‑1 P1 region and detection of HPV DNA. The blood serum concentration of IGF was determined by enzyme‑linked immunosorbent assay. The identification of the IGF‑1 protein in the cervical tissues was performed by immunohistochemical analysis. The range of the length of the CA repeats in the study DNA was 11 to 21. However, the most common allele length and genotype in the control and study patients from serum and tissues was 19 CA repeats and a homozygous genotype of CA19/19. Statistically significant differences in the concentration of IGF‑1 in the blood serum were observed between H‑SILs and controls, only (p=0.047). However, the concentration of IGF‑1 in the group of females with CA19/19, CA19<19 and CA19>19 was significantly higher in the group of patients with H‑SIL (P=0.041) and ICC (P=0.048) in comparison with the control group. An association was detected between CA repeat length <19 and/or >19, IGF

  13. Analysis of cytosine-adenine repeats in P1 promoter region of IGF-1 gene in peripheral blood cells and cervical tissue samples of females with cervical intraepithelial lesions and squamous cervical cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; KOTARSKA, MARIA; POLAK, GRZEGORZ; BARCZYNSKI, BARTLOMIEJ; BRONIARCZYK, JUSTYNA; NOWAK, WITOLD; WOLUN-CHOLEWA, MARIA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2015-01-01

    High oncogenic risk human papillomaviruses (HPVs) are closely associated with cancer of the cervix. However, HPV infection alone may not be sufficient to cause cervical cancer, and other factors or cofactors may have a cumulative effect on the risk of progression from cervical HPV infection to cancer. The present study investigates the cytosine-adenine (CA) repeat polymorphism in the P1 promoter region of the insulin-like growth factor-1 (IGF-1) gene among cervical precancerous and cancer patients and healthy control females. The association between these polymorphisms, tissue and blood serum levels of IGF-1, and cervical cancer risk and progression is evaluated. The material for analysis consisted of blood cells and postoperative tissues from patients diagnosed with low-grade squamous intraepithelial lesions (L-SILs), high-grade squamous intraepithelial lesions (H-SILs) and invasive cervical cancer (ICC). A polymerase chain reaction amplification and the sequencing of DNA were used for the identification of (CA)n repeats in the IGF-1 P1 region and detection of HPV DNA. The blood serum concentration of IGF was determined by enzyme-linked immunosorbent assay. The identification of the IGF-1 protein in the cervical tissues was performed by immunohistochemical analysis. The range of the length of the CA repeats in the study DNA was 11 to 21. However, the most common allele length and genotype in the control and study patients from serum and tissues was 19 CA repeats and a homozygous genotype of CA19/19. Statistically significant differences in the concentration of IGF-1 in the blood serum were observed between H-SILs and controls, only (p=0.047). However, the concentration of IGF-1 in the group of females with CA19/19, CA19<19 and CA19>19 was significantly higher in the group of patients with H-SIL (P=0.041) and ICC (P=0.048) in comparison with the control group. An association was detected between CA repeat length <19 and/or >19, IGF concentration in blood serum and

  14. The core promoter: At the heart of gene expression.

    PubMed

    Danino, Yehuda M; Even, Dan; Ideses, Diana; Juven-Gershon, Tamar

    2015-08-01

    The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.

  15. [Health-Promoting Schools Regional Initiative of the Americas].

    PubMed

    Ippolito-Shepherd, Josefa; Cerqueira, Maria Teresa; Ortega, Diana Patricia

    2005-01-01

    In Latin America, comprehensive health promotion programmes and activities are being implemented in the school setting, which take into account the conceptual framework of the Health-Promoting Schools Regional Initiative of the Pan American Health Organization, Regional office of the World Health Organization (PAHO/WHO). These programmes help to strengthen the working relationships between the health and education sectors. The Health-Promoting Schools Regional Initiative, officially launched by PAHO/WHO in 1995, aims to form future generations to have the knowledge, abilities, and skills necessary for promoting and caring for their health and that of their family and community, as well as to create and maintain healthy environments and communities. The Initiative focuses on three main components: comprehensive health education, the creation and maintenance of healthy physical and psychosocial environments, and the access to health and nutrition services, mental health, and active life. In 2001, PAHO conducted a survey in 19 Latin American countries to assess the status and trends of Health-Promoting Schools in the Region, for the appropriate regional, subregional, and national planning of pertinent health promotion and health education programmes and activities. The results of this survey provided information about policies and national plans, multisectoral coordination mechanisms for the support of health promotion in the school settings, the formation and participation in national and international networks of Health-Promoting Schools and about the level of dissemination of the strategy. For the successful development of Health-Promoting Schools is essential to involve the society as a whole, in order to mobilise human resources and materials necessary for implementing health promotion in the school settings. Thus, the constitution and consolidation of networks has been a facilitating mechanism for the exchange of ideas, resources and experiences to strengthen

  16. Identification of functional DNA variants in the constitutive promoter region of MDM2.

    PubMed

    Lalonde, Marie-Eve; Ouimet, Manon; Larivière, Mathieu; Kritikou, Ekaterini A; Sinnett, Daniel

    2012-09-01

    Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (-1494 G > A; indel 40 bp; and -182 C > G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  17. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters

    PubMed Central

    2012-01-01

    Background The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? Results In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on comprehensive data from three

  18. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis.

    PubMed

    Geurts, Jeroen; Joosten, Leo A B; Takahashi, Nozomi; Arntz, Onno J; Glück, Anton; Bennink, Miranda B; van den Berg, Wim B; van de Loo, Fons A J

    2009-11-01

    The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define proximal-promoters from a gene expression profiling study of murine experimental arthritis. Synovium expression profiles from progressing stages of collagen-induced arthritis (CIA) were classified into six distinct groups using k-means clustering. Using an algorithm based on local over-representation and comparative genomics, we identified putatively functional transcription factor-binding sites (TFBS) in TATA-dependent proximal-promoters. Applying a filter based on spacing between TATA box and transcription start site (TSS) combined with the presence of over-represented nuclear factor kappaB (NFkappaB), AP-1, or CCAAT/enhancer-binding protein beta (C/EBPbeta) sites, 382 candidate murine and human promoters were reduced to 66, corresponding to 45 genes. In vitro, 9 out of 10 computationally defined promoter regions conferred cytokine-inducible expression in murine cells and human synovial fibroblasts. Under these conditions, the serum amyloid A3 (Saa3) promoter showed the strongest transcriptional induction and strength. We applied this promoter for driving therapeutically efficacious levels of the interleukin-1 receptor antagonist (Il1rn) in a disease-regulated fashion. These results demonstrate the value of bioinformatics for guiding the selection of endogenous promoters for transcriptionally targeted gene therapy.

  19. Tandem promoters determine regulation of the Klebsiella pneumoniae glutamine synthetase (glnA) gene.

    PubMed Central

    Dixon, R

    1984-01-01

    Transcription of the structural gene for glutamine synthetase (glnA) in Klebsiella pneumoniae is controlled by the nitrogen regulatory genes ntrA, ntrB and ntrC. The nucleotide sequence of the regulatory region upstream of the glnA gene is reported here. High resolution S1 mapping of in vivo transcripts indicates that the regulatory region contains tandem promoters separated by 100 nucleotides. Measurements of beta-galactosidase activities determined in vivo from glnA-lac fusions suggest that the upstream promoter (for RNA2) is negatively regulated by the ntrBC gene products whereas transcription from the downstream promoter (for RNA1) is positively activated by the ntrA gene product in the presence of either the ntrBC or the nifA genes. The nucleotide sequence of the upstream promoter resembles the consensus sequence for E. coli promoters, whereas the downstream promoter shows homology with the nitrogen fixation (nif) promoters of K. pneumoniae. Images PMID:6149519

  20. Characterization of the promoter region of the human c-erbB-2 protooncogene.

    PubMed Central

    Ishii, S; Imamoto, F; Yamanashi, Y; Toyoshima, K; Yamamoto, T

    1987-01-01

    Three overlapping genomic clones that contain the 5'-terminal portion of the human c-erbB-2 gene (ERBB2) were isolated. The promoter region was identified by nuclease S1 mapping with c-erbB-2 mRNA. Seven transcriptional start sites were identified. DNA sequence analysis showed that the promoter region contains a "TATA box" and a "CAAT box" about 30 and 80 base pairs (bp), respectively, upstream of the most downstream RNA initiation site. Two putative binding sites for transcription factor Sp1 were identified about 50 and 110 bp upstream of the CAAT box, and six GGA repeats were found between the CAAT box and the TATA box. This region had strong promoter activity when placed upstream of the bacterial chloramphenicol acetyltransferase gene and transfected into monkey CV-1 cells. These data indicate that the promoter of the human c-erbB-2 protooncogene is different from that of the protooncogene c-erbB-1 (epidermal growth factor receptor gene), which does not contain either a TATA box or a CAAT box. Comparison of the promoter sequences and activities of the two protooncogenes should be helpful in analysis of the regulatory mechanism of expression of their gene products, which are growth-factor receptors. Images PMID:2885835

  1. DNA regions essential for the function of a bacteriophage fd promoter.

    PubMed Central

    Okamoto, T; Sugimoto, K; Sugisaki, H; Takanami, M

    1977-01-01

    The promoter for the major coat protein gene of bacteriophage fd contains a unique sequence. TATAAT, in the non-transcribed region corresponding to the Pribnow box. A R-Hha I cleavage site which destroys functions is located five pairs upstream from the TATAAT sequence (fifteen base pairs upstream from the RNA initiation site). The promoter was cleaved into two fragments by R-Hha I and each promoter fragment was joined to DNA fragments derived from other regions. Ligation of the TATAAT-containing fragment to any of the DNA fragments examined resulted in recovery of promoter function. The results suggest for this type of promoter that no unique sequence is necessary upstream from the R-Hha I cleavage site although a contiguous DNA chain must be present in this area. Images PMID:909770

  2. The ribosomal gene spacer region in archaebacteria

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Woese, C. R.

    1988-01-01

    Sequences for the spacer regions that separate the 16S and 23S ribosomal RNA genes have been determined for four more (strategically placed) archaebacteria. These confirm the general rule that methanogens and extreme halophiles have spacers that contain a single tRNAala gene, while tRNA genes are not found in the spacer region of the true extreme thermophiles. The present study also shows that the spacer regions from the sulfate reducing Archaeglobus and the extreme thermophile Thermococcus (both of which cluster phylogenetically with the methanogens and extreme halophiles) contain each a tRNAala gene. Thus, not only all methanogens and extreme halophiles show this characteristic, but all organisms on the "methanogen branch" of the archaebacterial tree appear to do so. The finding of a tRNA gene in the spacer region of the extreme thermophile Thermococcus celer is the first known phenotypic property that links this organism with its phylogenetic counterparts, the methanogens, rather than with its phenotypic counterparts, the sulfur-dependent extreme thermophiles.

  3. Methylation of coding region alone inhibits gene expression in plant protoplasts.

    PubMed Central

    Hohn, T; Corsten, S; Rieke, S; Müller, M; Rothnie, H

    1996-01-01

    Derivatives of the cauliflower mosaic virus 35S promoter lacking CG and CNG methylation targets were constructed and used to direct transcription of reporter gene constructs in transiently transformed protoplasts. Such methylation-target-free (MTF) promoters, although weaker than the 35S promoter, retain significant activity despite mutation of the as-1 element. The effect of methylation on gene expression in MTF- and 35S-promoter driven constructs was examined. Even when the promoter region was free of methylation targets, reporter gene expression was markedly reduced when cytosine residues in CG dinucleotides were methylated in vitro prior to transformation. Mosaic methylation experiments, in which only specific parts of the plasmids were methylated, revealed that methylation of the coding region alone has a negative effect on reporter gene expression. Methylation nearer the 5' end of the coding region was more inhibitory, consistent with inhibition of transcription elongation. Images Fig. 5 PMID:8710871

  4. Nucleotide sequence of the rrnG ribosomal RNA promoter region of Escherichia coli.

    PubMed Central

    Shen, W F; Squires, C; Squires, C L

    1982-01-01

    The primary structure of the promoter region for a ribosomal RNA transcription unit (rrnG) of Escherichia coli K12 has been determined. The sequence was obtained from 1 1.5 kbp EcoRI fragment derived from the hybrid plasmid pLC23-30. This fragment contains 455 bp preceding P1 of the rrnG promoter region and 674 bp of the rrnG 16S RNA gene. The sequence before the rrnG promoter region contains an open reading frame (ORF-BG) followed by a possible hairpin structure that resembles other known transcription terminators. The sequence of the rrnG promoter region is similar but not identical to that of rrnA and rrnB. Several minor differences between the sequences of the 16S RNA genes of rrnG and rrnB were also noted. In addition, sequences were found that could generate special structures involving the promoter regions of rrn loci. Such structures are described and their possible involvement in the regulation of ribosomal RNA synthesis is discussed. PMID:6285294

  5. Lactase gene promoter fragments mediate differential spatial and temporal expression patterns in transgenic mice.

    PubMed

    Wang, Zhi; Maravelias, Charalambos; Sibley, Eric

    2006-04-01

    Lactase gene expression is spatiotemporally regulated during mammalian gut development. We hypothesize that distinct DNA control regions specify appropriate spatial and temporal patterning of lactase gene expression. In order to define regions of the lactase promoter involved in mediating intestine-specific and spatiotemporal restricted expression, transgenic mice harboring 100 bp, 1.3- and 2.0- kb fragments of the 5' flanking region of the rat lactase gene cloned upstream of a luciferase reporter were characterized. The 100-bp lactase promoter-reporter transgenic mouse line expressed maximal luciferase activity in the intestine with a posterior shift in spatial restriction and ectopic expression in the stomach and lung. The temporal pattern of expression mediated by the 1.3-kb promoter?reporter transgene increases with postnatal maturation in contrast with the postnatal decline mediated by the 2.0-kb promoter-reporter transgene and the endogenous lactase gene. The differential transgene expression patterns mediated by the lactase promoter fragments suggests that intestine-specific spatial and temporal control elements reside in distinct regions of the DNA sequences upstream of the lactase gene transcription start-site.

  6. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    USDA-ARS?s Scientific Manuscript database

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  7. Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K.

    PubMed

    Li, Qiuli; Yin, Hui; Li, Dan; Zhu, Hongfei; Zhang, Yi; Zhu, Weiwei

    2007-04-01

    The 5'-flanking proximal region of stress-induced gene encoding choline monooxygenase (CMO) was isolated by Adaptor-PCR and TAIL-PCR from halophyte Suaeda liaotungensis K. A total of 2,204 bp DNA sequence was obtained. The transcription start site, which is located at 128 bp upstream to the start ATG, was predicted by the TSSP-TCM program. The functional elements were analysed by PLACE program. The obtained SlCMO gene promoter contains the basic elements: TATA-box, CAAT-box, and stress-induced elements, for example, salt responsive element (GAAAAA), cold responsive elements (CANNTG), ABA (Abscisic Acid) responsive elements (NAACAA), water stress element (CGGTTG), and WUN responsive elements (GTTAGGTTC). Isolation and analysis of the promoter of the CMO gene from S. liaotungensis lays a foundation for characterising the stress-induced promoter elements, studying the relationship between the structure and function of the promoter, and investigating the molecular mechanism of CMO gene regulation.

  8. Allelic variation at the VRN-1 promoter region in polyploid wheat.

    PubMed

    Yan, L; Helguera, M; Kato, K; Fukuyama, S; Sherman, J; Dubcovsky, J

    2004-11-01

    Vernalization, the requirement of a long exposure to low temperatures to induce flowering, is an essential adaptation of plants to cold winters. We have shown recently that the vernalization gene VRN-1 from diploid wheat Triticum monococcum is the meristem identity gene APETALA1, and that deletions in its promoter were associated with spring growth habit. In this study, we characterized the allelic variation at the VRN-1 promoter region in polyploid wheat. The Vrn-A1a allele has a duplication including the promoter region. Each copy has similar foldback elements inserted at the same location and is flanked by identical host direct duplications (HDD). This allele was found in more than half of the hexaploid varieties but not among the tetraploid lines analyzed here. The Vrn-A1b allele has two mutations in the HDD region and a 20-bp deletion in the 5' UTR compared with the winter allele. The Vrn-A1b allele was found in both tetraploid and hexaploid accessions but at a relatively low frequency. Among the tetraploid wheat accessions, we found two additional alleles with 32 bp and 54 bp deletions that included the HDD region. We found no size polymorphisms in the promoter region among the winter wheat varieties. The dominant Vrn-A1 allele from two spring varieties from Afghanistan and Egypt ( Vrn-A1c allele) and all the dominant Vrn-B1 and Vrn-D1 alleles included in this study showed no differences from their respective recessive alleles in promoter sequences. Based on these results, we concluded that the VRN-1 genes should have additional regulatory sites outside the promoter region studied here.

  9. Characterizing exons 11 and 1 promoters of the mu opioid receptor (Oprm) gene in transgenic mice

    PubMed Central

    Xu, Jin; Xu, Mingming; Pan, Ying-Xian

    2006-01-01

    Background The complexity of the mouse mu opioid receptor (Oprm) gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11) promoter, in the mouse Oprm gene. The E11 promoter is located ~10 kb upstream of the exon 1 (E1) promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model. Results We constructed a ~20 kb transgenic construct in which a 3.7 kb E11 promoter region and an 8.9 kb E1 promoter region controlled expression of tau/LacZ and tau/GFP reporters, respectively. The construct was used to establish a transgenic mouse line. The expression of the reporter mRNAs, determined by a RT-PCR approach, in the transgenic mice during embryonic development displayed a temporal pattern similar to that of the endogenous promoters. X-gal staining for tau/LacZ reporter and GFP imaging for tau/GFP reporter showed that the transgenic E11 and E1 promoters were widely expressed in various regions of the central nervous system (CNS). The distribution of tau/GFP reporter in the CNS was similar to that of MOR-1-like immunoreactivity using an exon 4-specific antibody. However, differential expression of both promoters was observed in some CNS regions such as the hippocampus and substantia nigra, suggesting that the E11 and E1 promoters were regulated differently in these regions. Conclusion We have generated a transgenic mouse line to study the E11 and E1 promoters in vivo using tau/LacZ and tau/GFP reporters. The reasonable relevance of the transgenic model was demonstrated by the temporal and spatial expression of the transgenes as compared to those of the endogenous transcripts. We believe

  10. Construction of gene expression system in hop (Humulus lupulus) lupulin gland using valerophenone synthase promoter.

    PubMed

    Okada, Yukio; Saeki, Kazuo; Inaba, Akira; Suda, Narushi; Kaneko, Takafumi; Ito, Kazutoshi

    2003-09-01

    The promoter region of the valerophenone synthase (VPS) gene was isolated from hop (Humulus lupulus). VPS, a member of the chalcone synthase (CHS) super-family, catalyzes the biosynthesis reaction of the hop resin that significantly accumulates in the cone's secretory gland called the "lupulin gland". The typical H-box and G-box sequences, which exist in many plants' CHS promoters and act as cis-elements for tissue specificity, UV-light induction, etc., were not found in the isolated VPS promoter, although the H-box-like sequence (CCTTACC, CCTAACC) and the core sequence (ACGT) of the G-box were observed. The transformation experiment using the VPS promoter-UIDA gene fusion revealed that the promoter acts not only in the lupulin gland but also in the glands of leaf and stem. On the other hand, the VPS promoter activity was not induced by UV-irradiation.

  11. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters.

    PubMed

    Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter

    2016-11-17

    Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.

  12. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters

    PubMed Central

    Zhang, Ning; McHale, Leah K.; Finer, John J.

    2016-01-01

    Introns, especially the first intron in the 5’ untranslated region (5’UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement. PMID:27806110

  13. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters.

    PubMed

    Zhang, Ning; McHale, Leah K; Finer, John J

    2016-01-01

    Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.

  14. In Silico Promoter Analysis can Predict Genes of Functional Relevance in Cell Proliferation: Validation in a Colon Cancer Model

    PubMed Central

    Moss, Alan C.; Doran, Peter P.; MacMathuna, Padraic

    2007-01-01

    Specific combinations of transcription-factor binding sites in the promoter regions of genes regulate gene expression, and thus key functional processes in cells. Analysis of such promoter regions in specific functional contexts can be used to delineate novel disease-associated genes based on shared phenotypic properties. The aim of this study was to utilize promoter analysis to predict cell proliferation-associated genes and to test this method in colon cancer cell lines. We used freely-available bioinformatic techniques to identify cell-proliferation-associated genes expressed in colon cancer, extract a shared promoter module, and identify novel genes that also contain this module in the human genome. An EGRF/ETSF promoter module was identified as prevalent in proliferation-associated genes from a colon cancer cDNA library. We detected 30 other genes, from the known promoters of the human genome, which contained this proliferation-associated module. This group included known proliferation-associated genes, such as HERG1 and MCM7, and a number of genes not previously implicated in cell proliferation in cancer, such as TSPAN3, Necdin and APLP2. Suppression of TSPAN3 and APLP2 by siRNA was performed and confirmed by RT-PCR. Inhibition of these genes significantly inhibited cell proliferation in colon cancer cell lines. This study demonstrates that promoter analysis can be used to identify novel cancer-associated genes based on shared functional processes. PMID:23641142

  15. Characterization of SSU5C promoter of a rbcS gene from duckweed (Lemna gibba).

    PubMed

    Wang, Youru; Zhang, Yong; Yang, Baoyu; Chen, Shiyun

    2011-04-01

    Photosynthesis-associated nuclear genes are able to respond to multiple environmental and developmental signals. Studies have shown that light signals coordinate with hormone signaling pathways to control photomorphogenesis. A small subunit of ribulose-1,5 bisphosphate carboxylase/oxygenase (rbcS) gene promoter was cloned from duckweed (Lemna gibba). Sequence analysis revealed this promoter is different from the previously reported rbcs promoters and is named SSU5C. Analysis of T1 transgenic tobacco plants with a reporter gene under the control of the SSU5C promoter revealed that this promoter is tissue-specific and is positively regulated by red light. Promoter deletion analysis confirmed a region from position -152 to -49 relative to the start of transcription containing boxes X, Y and Z, and is identified to be critical for phytochrome responses. Further functional analysis of constructs of box-X, Y, Z, which was respectively fused to the basal SSU5C promoter, defined boxes X, Y and Z alone are able to direct phytochrome-regulated expression, indicating that boxes Y and Z are different from those of the SSU5B promoters in L. gibba. This promoter may be used for plant gene expression in a tissue-specific manner.

  16. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  17. Promoter RNA links transcriptional regulation of inflammatory pathway genes

    PubMed Central

    Matsui, Masayuki; Chu, Yongjun; Zhang, Huiying; Gagnon, Keith T.; Shaikh, Sarfraz; Kuchimanchi, Satya; Manoharan, Muthiah; Corey, David R.; Janowski, Bethany A.

    2013-01-01

    Although many long non-coding RNAs (lncRNAs) have been discovered, their function and their association with RNAi factors in the nucleus have remained obscure. Here, we identify RNA transcripts that overlap the cyclooxygenase-2 (COX-2) promoter and contain two adjacent binding sites for an endogenous miRNA, miR-589. We find that miR-589 binds the promoter RNA and activates COX-2 transcription. In addition to miR-589, fully complementary duplex RNAs that target the COX-2 promoter transcript activate COX-2 transcription. Activation by small RNA requires RNAi factors argonaute-2 (AGO2) and GW182, but does not require AGO2-mediated cleavage of the promoter RNA. Instead, the promoter RNA functions as a scaffold. Binding of AGO2 protein/small RNA complexes to the promoter RNA triggers gene activation. Gene looping allows interactions between the promoters of COX-2 and phospholipase A2 (PLA2G4A), an adjacent pro-inflammatory pathway gene that produces arachidonic acid, the substrate for COX-2 protein. miR-589 and fully complementary small RNAs regulate both COX-2 and PLA2G4A gene expression, revealing an unexpected connection between key steps of the eicosanoid signaling pathway. The work demonstrates the potential for RNA to coordinate locus-dependent assembly of related genes to form functional operons through cis-looping. PMID:23999091

  18. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  19. Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach.

    PubMed

    Meyer, Pablo; Siwo, Geoffrey; Zeevi, Danny; Sharon, Eilon; Norel, Raquel; Segal, Eran; Stolovitzky, Gustavo

    2013-11-01

    The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in a previously unknown experimentally generated data set. The challenge was presented to the community in the framework of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same genomic site of yeast Saccharomyces cerevisiae. Twenty-one teams submitted results predicting the expression levels of 53 different promoters from yeast ribosomal protein genes. Analysis of participant predictions shows that accurate values for low-expressed and mutated promoters were difficult to obtain, although in the latter case, only when the mutation induced a large change in promoter activity compared to the wild-type sequence. As in previous DREAM challenges, we found that aggregation of participant predictions provided robust results, but did not fare better than the three best algorithms. Finally, this study not only provides a benchmark for the assessment of methods predicting activity of a specific set of promoters from their sequence, but it also shows that the top performing algorithm, which used machine-learning approaches, can be improved by the addition of biological features such as transcription factor binding sites.

  20. Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach

    PubMed Central

    Meyer, Pablo; Siwo, Geoffrey; Zeevi, Danny; Sharon, Eilon; Norel, Raquel; Segal, Eran; Stolovitzky, Gustavo; Siwo, Geoffrey; Rider, Andrew K.; Tan, Asako; Pinapati, Richard S.; Emrich, Scott; Chawla, Nitesh; Ferdig, Michael T.; Tung, Yi-An; Chen, Yong-Syuan; Chen, Mei-Ju May; Chen, Chien-Yu; Knight, Jason M.; Sahraeian, Sayed Mohammad Ebrahim; Esfahani, Mohammad Shahrokh; Dreos, Rene; Bucher, Philipp; Maier, Ezekiel; Saeys, Yvan; Szczurek, Ewa; Myšičková, Alena; Vingron, Martin; Klein, Holger; Kiełbasa, Szymon M.; Knisley, Jeff; Bonnell, Jeff; Knisley, Debra; Kursa, Miron B.; Rudnicki, Witold R.; Bhattacharjee, Madhuchhanda; Sillanpää, Mikko J.; Yeung, James; Meysman, Pieter; Rodríguez, Aminael Sánchez; Engelen, Kristof; Marchal, Kathleen; Huang, Yezhou; Mordelet, Fantine; Hartemink, Alexander; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in a previously unknown experimentally generated data set. The challenge was presented to the community in the framework of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same genomic site of yeast Saccharomyces cerevisiae. Twenty-one teams submitted results predicting the expression levels of 53 different promoters from yeast ribosomal protein genes. Analysis of participant predictions shows that accurate values for low-expressed and mutated promoters were difficult to obtain, although in the latter case, only when the mutation induced a large change in promoter activity compared to the wild-type sequence. As in previous DREAM challenges, we found that aggregation of participant predictions provided robust results, but did not fare better than the three best algorithms. Finally, this study not only provides a benchmark for the assessment of methods predicting activity of a specific set of promoters from their sequence, but it also shows that the top performing algorithm, which used machine-learning approaches, can be improved by the addition of biological features such as transcription factor binding sites. PMID:23950146

  1. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes.

    PubMed

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-04-25

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.

  2. Characterization of the sporophyte-preferential gene promoter from the red alga Porphyra yezoensis using transient gene expression.

    PubMed

    Uji, Toshiki; Mizuta, Hiroyuki; Saga, Naotsune

    2013-04-01

    The life cycle of plants entails an alternation of generations, the diploid sporophyte and haploid gametophyte stages. There is little information about the characteristics of gene expression during each phase of marine macroalgae. Promoter analysis is a useful method for understanding transcriptional regulation; however, there is no report of promoter analyses in marine macroalgae. In this study, with the aim of elucidating the differences in the transcriptional regulatory mechanisms between the gametophyte and sporophyte stages in the marine red alga Porphyra yezoensis, we isolated the promoter from the sporophyte preferentially expressed gene PyKPA1, which encodes a sodium pump, and analyzed its promoter using a transient gene expression system with a synthetic β-glucuronidase (PyGUS) reporter. The deletion of -1432 to -768 relative to the transcription start site resulted in decreased GUS activity in sporophytes. In contrast, deletion from -767 to -527 increased GUS activity in gametophytes. Gain-of-function analyses showed that the -1432 to -760 region enhanced the GUS activity of a heterologous promoter in sporophytes, whereas the -767 to -510 region repressed it in gametophytes. Further mutation and gain-of-function analyses of the -767 to -510 region revealed that a 20-bp GC-rich sequence (-633 to -614) is responsible for the gametophyte-specific repressed expression. These results showed that the sporophyte-specific positive regulatory region and gametophyte-specific negative regulatory sequence play a crucial role in the preferential expression of PyKPA1 in P. yezoensis sporophytes.

  3. A strong promoter, PMagpd, provides a tool for high gene expression in entomopathogenic fungus, Metarhizium acridum.

    PubMed

    Cao, Yueqing; Jiao, Run; Xia, Yuxian

    2012-03-01

    A glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter (PMagpd) was obtained from Metarhizium acridum and its active region analyzed by 5'-deletion strategy using β-glucuronidase (GUS) as a reporter. Sequence analysis revealed that typical regulatory elements of PMagpd were included in the 1.7 kb region upstream of the start codon of the Magpd gene. Deletion of the region from -1,691 bp to -1,463 bp, where the gpd box is harbored, did not significantly affect the PMagpd activity. Deletions of the regions upstream of -946 bp and upstream of -684 bp caused a major decrease of GUS activity. Compared with PgpdA (2.2 kb) in Aspergillus nidulans, PMagpd (1.4 kb) had a shorter sequence and significantly higher activity in M. acridum. This study provides an applicable promoter for over-expression of target genes in M. acridum.

  4. A Composite Method Based on Formal Grammar and DNA Structural Features in Detecting Human Polymerase II Promoter Region

    PubMed Central

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2013-01-01

    An important step in understanding gene regulation is to identify the promoter regions where the transcription factor binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time. There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still suffering from various shortcomings, a major one being the selection of appropriate features of promoter region distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of the promoter regions. We have shown that a Context Free Grammar (CFG) can formalize the relationships between different primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other promoter prediction techniques. PMID:23437045

  5. The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold.

    PubMed

    Alonso-Peral, Maria M; Oliver, Sandra N; Casao, M Cristina; Greenup, Aaron A; Trevaskis, Ben

    2011-01-01

    The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops.

  6. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.

    PubMed

    He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y

    2013-09-04

    To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.

  7. Identification and structural analysis of a ribosomal RNA gene promoter from Thiobacillus ferrooxidans.

    PubMed

    Takamiya, M; Salazar, O; Vargas, D; Jedlicki, E; Orellana, O

    1990-10-15

    The 5'-terminus of a rRNA operon (rrnT2) from Thiobacillus ferrooxidans was characterized. The rRNA promoters from this microorganism were identified by means of a functional assay in Escherichia coli. DNA sequencing of the promoter region, upstream the 16 S rRNA gene, showed the presence of a consensus sequence for bacterial ribosomal promoters. Other features such as a 'discriminator' sequence, antiterminator elements and an upstream hexanucleotide common to several rRNA operons were also found. Two other putative transcription promoters were also identified.

  8. Promoter Identification and Transcription Analysis of Penicillin-Binding Protein Genes in Streptococcus pneumoniae R6

    PubMed Central

    Peters, Katharina; Pipo, Julia; Schweizer, Inga; Hakenbeck, Regine

    2016-01-01

    Penicillin-binding proteins (PBPs) are membrane-associated enzymes, which are involved in the last two steps of peptidoglycan biosynthesis, and some of them are key players in cell division. Furthermore, they are targets of β-lactams, the most widely used antibiotics. Nevertheless, very little is known about the expression and regulation of PBP genes. Using transcriptional mapping, we now determined the promoter regions of PBP genes from the laboratory strain Streptococcus pneumoniae R6 and examined the expression profile of these six promoters. The extended −10 region is highly conserved and complies with a σA-type promoter consensus sequence. In contrast, the −35 region is poorly conserved, indicating the possibility for differential PBP regulation. All PBP promoters were constitutively expressed and highly active during the exponential and early stationary growth phase. However, the individual expression of PBP promoters varied approximately fourfold, with pbp1a being the highest and pbp3 the lowest. Furthermore, the deletion of one nucleotide in the spacer region of the PBP3 promoter reduced pbp3 expression ∼10-fold. The addition of cefotaxime above the minimal inhibitory concentration (MIC) did not affect PBP expression in the penicillin-sensitive R6 strain. No evidence for regulation of S. pneumoniae PBP genes was obtained. PMID:27409661

  9. Promoter Identification and Transcription Analysis of Penicillin-Binding Protein Genes in Streptococcus pneumoniae R6.

    PubMed

    Peters, Katharina; Pipo, Julia; Schweizer, Inga; Hakenbeck, Regine; Denapaite, Dalia

    2016-09-01

    Penicillin-binding proteins (PBPs) are membrane-associated enzymes, which are involved in the last two steps of peptidoglycan biosynthesis, and some of them are key players in cell division. Furthermore, they are targets of β-lactams, the most widely used antibiotics. Nevertheless, very little is known about the expression and regulation of PBP genes. Using transcriptional mapping, we now determined the promoter regions of PBP genes from the laboratory strain Streptococcus pneumoniae R6 and examined the expression profile of these six promoters. The extended -10 region is highly conserved and complies with a σ(A)-type promoter consensus sequence. In contrast, the -35 region is poorly conserved, indicating the possibility for differential PBP regulation. All PBP promoters were constitutively expressed and highly active during the exponential and early stationary growth phase. However, the individual expression of PBP promoters varied approximately fourfold, with pbp1a being the highest and pbp3 the lowest. Furthermore, the deletion of one nucleotide in the spacer region of the PBP3 promoter reduced pbp3 expression ∼10-fold. The addition of cefotaxime above the minimal inhibitory concentration (MIC) did not affect PBP expression in the penicillin-sensitive R6 strain. No evidence for regulation of S. pneumoniae PBP genes was obtained.

  10. Frequency of 530-bp deletion in Actinobacillus actinomycetemcomitans leukotoxin promoter region.

    PubMed

    Contreras, A; Rusitanonta, T; Chen, C; Wagner, W G; Michalowicz, B S; Slots, J

    2000-10-01

    Actinobacillus actinomycetemcomitans strains showing a 530-bp deletion in the promoter region of the leukotoxin gene operon elaborate high amounts of leukotoxin that may play a role in the pathogenesis of periodontal disease. This study used polymerase chain reaction detection to determine the occurrence of the 530-bp deletion in 94 A. actinomycetemcomitans strains from individuals of various ethnic backgrounds. Eleven blacks and one Hispanic subject but no Caucasian or Asian subjects showed the 530-bp deletion in the leukotoxin promoter region, suggesting that the deletion is mainly a characteristic of individuals of African descent. A. actinomycetemcomitans strains exhibiting a deletion in the leukotoxin promoter region occurred both in individuals having severe periodontitis and in adolescents revealing no evidence of destructive periodontal disease.

  11. Single-nucleotide polymorphism in the promoter region of the osteopontin gene at nucleotide -443 as a marker predicting the efficacy of pegylated interferon/ribavirin-therapy in Egyptians patients with chronic hepatitis C.

    PubMed

    Shaker, Olfat Gamil; Sadik, Nermin A H; El-Dessouki, Abeer

    2012-10-01

    Osteopontin (OPN) is an extracellular matrix glycophosphoprotein produced by several types of cells including the immune system. The present study examined the possibility that single-nucleotide polymorphisms (SNP) in the promoter region of the OPN at nt -443 is a marker predicting the therapeutic efficacy of pegylated interferon (peg-IFN-α2b)-ribavirin combination therapy in Egyptian patients with chronic hepatitis C. Blood was collected from 95 patients with chronic hepatitis C who had received peg-IFN-α2b-ribavirin combination therapy and 100 age and sex matched controls. SNP in OPN at nucleotide (nt) -443 and its serum protein level were analyzed. Sustained virological response (SVR) was higher in patients with T/T at nt -443 than in those with C/C or C/T. A univariate logistic regression analysis showed that fibrosis grade, serum OPN protein level and T/T homozygotes of SNP at -443 were significant predictors for response. Receiver operating characteristics (ROC) analysis revealed the diagnostic and prognostic efficacy of serum OPN. It can be concluded that SNP in the promoter region of OPN at nt -443 and serum OPN protein level are predictors of response to the efficacy of peg-IFN-α2b-ribavirin therapy in Egyptian patients with chronic hepatitis C.

  12. Aberrant promoter hypermethylation of p16 gene in endometrial carcinoma.

    PubMed

    Hu, Zhuo-ying; Tang, Liang-dan; Zhou, Qin; Xiao, Lin; Cao, Yi

    2015-03-01

    Previous studies demonstrated that the loss of function of the p16INK4A gene is mainly caused by the hypermethylation of p16 gene promoter; however, whether or not it is associated with the incidence of endometrial carcinoma (EC) remains unclear. In the current study, we conducted a meta-analysis to investigate the effects of p16 gene promoter hypermethylation on the incidence of EC. Detailed research publications were searched from Embase, PubMed, and ISI Web of Knowledge for composition in English or Chinese. The pooled data were collected and analyzed by Review Manager 5.2. Odds ratios (ORs) were calculated and summarized respectively. Six eligible studies, including 261 patients were selected and analyzed. The pooled OR was 0.42, test for overall effect, Z = 10.19, P < 0.0001, indicating that p16 gene promoter hypermethylation was significantly correlated with the EC patients. The results of our study strongly suggest that p16 gene promoter hypermethylation is correlated with an increased risk of EC. P16 gene promoter hypermethylation plays a critical role in endometrial carcinogenesis.

  13. Regulation of transcription of the adenovirus EII promoter by gene products: Absence of sequence specificity

    SciTech Connect

    Kingston, R.E.; Kaufman, R.J.; Sharp, P.A.

    1984-10-01

    During adenovirus infection, the EII promoter is positively regulated by products of the EIa region. The authors have studied this regulation by fusing a DNA segment containing the adenovirus EII promoter to a dihydrofolate reductase cDNA segment. Expression of this hybrid gene is stimulated in trans when cell lines containing an integrated copy are either transfected with plasmids carrying the EIa region or infected with adenovirus. This suggests that EIa activity regulates transcription of the EII promoter in the absence of other viral proteins and that this stimulation can occur when the EII promoter is organized in cellular chromatin. Transcription from the EII promoter is initiated at two sites in cell lines lacking EIa activity. Introduction of the EIa region preferentially stimulated transcription from one of these two sites. A sensitive, stable cotransfection assay was used to test for specific EII sequences required for stimulation. EIa activity stimulates all mutaant promoters; the most extensive deletion retained only 18 base pairs of sequences upstream of the initiation site. They suggest that regulation of a promoter by the EIa region does not depend on the presence of a set of specific sequences, but instead reflects a characteristic of promoters that have been exogenously introduced into cells. Insertion of the 72-base-pair repeat of simian-virus 40 in cis enhances transcription from the EII promoter. The stimulatory effects of EIa activity and of the simian virus 40 sequence are additive and appear to differ mechanistically.

  14. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  15. Single-nucleotide polymorphisms and activity analysis of the promoter and enhancer of the pig lactase gene.

    PubMed

    Du, Hai-Ting; Zhu, Hong-Yan; Wang, Jia-Mei; Zhao, Wei; Tao, Xiao-Li; Ba, Cai-Feng; Tian, Yu-Min; Su, Yu-Hong

    2014-07-15

    Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: -13,910 C/T. We examined whether SNPs in the 5' flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5' flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (-797 G/A) and two were found in the promoter region (-308G/C and -301 A/G). The promoter C-308,G-301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G-308,A-301(Pro-GA) does not. The enhancer A-797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G-797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A+Pro-GA>Enh-A/G+Pro-CG>Enh-G+Pro-GA. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mutational Analysis of the Myxococcus xanthus Ω4499 Promoter Region Reveals Shared and Unique Properties in Comparison with Other C-Signal-Dependent Promoters

    PubMed Central

    Yoder, Deborah R.; Kroos, Lee

    2004-01-01

    The bacterium Myxococcus xanthus undergoes multicellular development during times of nutritional stress and uses extracellular signals to coordinate cell behavior. C-signal affects gene expression late in development, including that of Ω4499, an operon identified by insertion of Tn5 lac into the M. xanthus chromosome. The Ω4499 promoter region has several sequences in common with those found previously to be important for expression of other C-signal-dependent promoters. To determine if these sequences are important for Ω4499 promoter activity, the effects of mutations on expression of a downstream reporter gene were tested in M. xanthus. Although the promoter resembles those recognized by Escherichia coli σ54, mutational analysis implied that a σ70-type σ factor likely recognizes the promoter. A 7-bp sequence known as a C box and a 5-bp element located 6 bp upstream of the C box have been shown to be important for expression of other C-signal-dependent promoters. The Ω4499 promoter region has C boxes centered at −33 and −55 bp, with 5-bp elements located 7 and 8 bp upstream, respectively. A multiple-base-pair mutation in any of these sequences reduced Ω4499 promoter activity more than twofold. Single base-pair mutations in the C box centered at −33 bp yielded a different pattern of effects on expression than similar mutations in other C boxes, indicating that each functions somewhat differently. An element from about −81 to −77 bp exerted a twofold positive effect on expression but did not appear to be responsible for the C-signal dependence of the Ω4499 promoter. Mutations in sigD and sigE, which are genes that encode σ factors, reduced expression from the Ω4499 promoter. The results provide further insight into the regulation of C-signal-dependent genes, demonstrating both shared and unique properties among the promoter regions so far examined. PMID:15175290

  17. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  18. The -308 polymorphism in the promoter region of the tumor necrosis factor-alpha (TNF-alpha) gene and ex vivo lipopolysaccharide-induced TNF-alpha expression in patients with aggressive periodontitis and/or type 1 diabetes mellitus.

    PubMed

    Pérez, Claudio; González, Fermín E; Pavez, Violeta; Araya, Aida V; Aguirre, Adam; Cruzat, Andrea; Contreras-Levicoy, Juan; Dotte, Andrés; Aravena, Octavio; Salazar, Lorena; Catalán, Diego; Cuenca, Jimena; Ferreira, Arturo; Schiattino, Irene; Aguillón, Juan C

    2004-01-01

    Several single-nucleotide polymorphisms (SNPs) have been identified in the TNF-alpha gene promoter. The transition G-->A at position -308 generates the TNF-alpha1 (G/G) and TNF-alpha2 (G/A or A/A) alleles, where the polymorphic TNF-alpha2 allele is associated with a high, in vitro TNF-alpha expression and an increased susceptibility to diverse illnesses. Here we study the association of the -308 TNF-alpha SNP with the susceptibility for developing aggressive periodontitis (AP), AP combined with type 1 diabetes mellitus (DM) and DM. We also explore the TNF-alpha capability expression and the presence of the -308 polymorphism. For this purpose we recruited 27 individuals with AP (AP+ group), 27 individuals with AP combined with DM (AP+/DM+ group), and 27 individuals with DM without signs of periodontitis upon clinical examination (DM+ group). The control group was comprised of 30 subjects. Genotyping for TNF-alpha promoter was performed by PCR-RFLP analysis. For TNF-alpha expression we used a blood culture system.

  19. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter.

    PubMed Central

    Cogswell, J P; Godlevski, M M; Bonham, M; Bisi, J; Babiss, L

    1995-01-01

    Progression through the somatic cell cycle requires the temporal regulation of cyclin gene expression and cyclin protein turnover. One of the best-characterized examples of this regulation is seen for the B-type cyclins. These cyclins and their catalytic component, cdc2, have been shown to mediate both the entry into and maintenance of mitosis. The cyclin B1 gene has been shown to be expressed between the late S and G2 phases of the cell cycle, while the protein is degraded specifically at interphase via ubiquitination. To understand the molecular basis for transcriptional regulation of the cyclin B1 gene, we cloned the human cyclin B1 gene promoter region. Using a chloramphenicol acetyltransferase reporter system and both stable and transient assays, we have shown that the cyclin B1 gene promoter (extending to -3800 bp relative to the cap site) can confer G2-enhanced promoter activity. Further analysis revealed that an upstream stimulatory factor (USF)-binding site and its cognate transcription factor(s) are critical for expression from the cyclin B1 promoter in cycling HeLa cells. Interestingly, USF DNA-binding activity appears to be regulated in a G2-specific fashion, supporting the idea that USF may play some role in cyclin B1 gene activation. These studies suggest an important link between USF and the cyclin B1 gene, which in part explains how maturation promoting factor complex formation is regulated. PMID:7739559

  20. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas.

    PubMed

    Zhang, Jie; Yang, Jian-Hui; Quan, Jia; Kang, Xing; Wang, Hui-Juan; Dai, Peng-Gao

    2016-10-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation was reported to be an independent prognostic and predictive factor in glioma patients who received temozolomide treatment. However, the predictive value of MGMT methylation was recently questioned by several large clinical studies. The purpose of this study is to identify MGMT gene promoter CpG sites or region whose methylation were closely correlated with its gene expression to elucidate this contradictory clinical observations. The methylation status for all CpG dinucleotides in MGMT promoter and first exon region were determined in 42 Chinese glioma patients, which were then correlated with MGMT gene expression, IDH1 mutation, and tumor grade. In whole 87 CpG dinucleotides analyzed, three distinct CpG regions covering 28 CpG dinucleotides were significantly correlated with MGMT gene expression; 10 CpG dinucleotides were significantly correlated with glioma classification (p < 0.05). Isocitrate dehydrogenase 1 (IDH1) mutation and MGMT gene hypermethylation significantly co-existed, but not for MGMT gene expression. The validation cohort of gliomas treated with standard of care and comparison of the CpGs we identified with the current CpGs used in clinical setting will be very important for gliomas individual medicine in the future.

  1. Aberrant promoter methylation of multiple genes in sputum from individuals exposed to smoky coal emissions

    PubMed Central

    Liu, Yang; Lan, Qing; Shen, Min; Mumford, Judy; Keohavong, Phouthone

    2010-01-01

    Summary Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung cancer but also in sputum of smokers without the disease, suggesting the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. In the present study, we investigated promoter methylation of 4 genes frequently detected in lung tumors, including p16, MGMT, RASSF1A and DAPK genes, in sputum samples obtained from 107 individuals, including 34 never-smoking females and 73 mostly smoking males, who had no evidence of lung cancer but who were exposed to smoky coal emission in Xuan Wei County, China, where lung cancer rate is more than 6 times the Chinese national average rate. Forty nine of the individuals showed evidence of chronic bronchitis while the remaining 58 individuals showed no such a symptom. Promoter methylation of p16, MGMT, RASSF1A and DAPK was detected in 51.4% (55/107), 17.8% (19/107), 29.9% (32/107), and 15.9% (17/107) of the sputum samples from these individuals, respectively. There were no differences in promoter methylation frequencies of any of these genes according to smoking status or gender of the subjects or between individuals with chronic bronchitis and those without evidence of such a symptom. Therefore, individuals exposed to smoky coal emissions in this region harbored in their sputum frequent promoter methylation of these genes that have been previously found in lung tumors and implicated in lung cancer development. PMID:18751376

  2. Isolation and characterization of the chicken vitamin D receptor gene and its promoter.

    PubMed

    Lu, Z; Jehan, F; Zierold, C; DeLuca, H F

    2000-02-01

    The sequences from several independent cDNA clones encoding the chicken vitamin D receptor as well as primer extension assay have clearly delineated the 5' terminus and the transcriptional start site. Screening a chicken genomic library produced genomic clones containing vitamin D receptor (VDR) gene fragments. Restriction map of clone 8 showed that the 18.6-kb chicken VDR fragment has exons 1 and 2, intron 1, part of intron 2, and 7-kb 5' flanking region. Exons 1, 2, and 3 found in the chicken VDR gene shares low homology with its mammalian counterparts (i.e., E1A, E1B, and E1C in human). By contrast, the fourth exon and following exons for the coding region of VDR gene are highly conserved between avian and mammalian species. While the fourth exon bears the ATG sites for translation initiation in mammals, the third exon in birds has two extra ATG sites for leaky translation as determined previously. Thus, the avian VDR has more N-terminal sequence than the mammalian VDR and is found in two distinct forms. The 5' flanking region from genomic clone 8 shares considerable homology in several regions with the human and mouse VDR promoters. Moreover, the 5' flanking region of chicken VDR gene possesses promoter activity, as shown by its ability to drive the luciferase reporter gene in cell transfection assays. Like other steroid receptor promoters, the chicken VDR promoter contains no TATA box but possesses several GC boxes or SP1 sites. A series of deletional promoter constructs established that the proximal GC boxes are the major drivers of gene transcription, while the more upstream sequences have repressive elements. Copyright 2000 Wiley-Liss, Inc.

  3. Comparative structure, proximal promoter elements, and chromosome location of the human eosinophil major basic protein genes.

    PubMed

    Plager, D A; Weiler, D A; Loegering, D A; Johnson, W B; Haley, L; Eddy, R L; Shows, T B; Gleich, G J

    2001-02-01

    Human eosinophil major basic protein (MBP) is strongly implicated as a mediator of disease, especially bronchial asthma. We recently isolated a highly divergent human homologue of MBP (MBPH). Given human MBP's importance in disease and the restricted expression of it and human MBPH, we isolated the 4.6-kb human MBPH gene (HGMW-approved symbol PRG3). Comparisons among the human MBP (PRG2), human MBPH, and murine MBP-1 (mMBP-1; Prg2) genes suggest that the human MBP and mMBP-1 genes are more closely related than either is to the human MBPH gene. Proximal promoters of these three genes show conservation of potential binding sites for IK2 and STAT and of a known GATA site. However, a known C/EBP site is altered in the human MBPH gene's proximal promoter. The human MBP and MBPH genes localized to chromosome 11 in the centromere to 11q12 region. Thus, the human MBP and MBPH genes have diverged considerably, probably following a gene duplication event. Furthermore, the identified conserved and distinct proximal promoter elements likely contribute to the eosinophil-restricted and relatively reduced transcription of the human MBPH gene. Copyright 2001 Academic Press.

  4. Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light.

    PubMed

    Sanz, Catalina; Benito, Ernesto P; Orejas, Margarita; Alvarez, María Isabel; Eslava, Arturo P

    2010-09-01

    Carotene biosynthesis in Phycomyces is photoinducible and carried out by phytoene dehydrogenase (encoded by carB) and a bifunctional enzyme possessing lycopene cyclase and phytoene synthase activities (carRA). A light pulse followed by periods of darkness produced similar biphasic responses in the expression of the carB and carRA genes, indicating their coordinated regulation. Specific binding complexes were formed between the carB-carRA intergenic region and protein extracts from wild type mycelia grown in the dark or 8min after irradiation. These two conditions correspond to the points at which the expression of both genes is minimal, suggesting that these binding complexes are involved in the down-regulation of photocarotenogenesis in Phycomyces. Protein extracts from carotene mutants failed to form the dark retardation complex, suggesting a role of these genes in the regulation of photocarotenogenesis. In contrast, protein extracts from phototropic mutants formed dark retardation complexes identical to that of the wild type. 2010 Elsevier Inc. All rights reserved.

  5. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters.

    PubMed

    Estécio, Marcos R H; Gallegos, Juan; Dekmezian, Mhair; Lu, Yue; Liang, Shoudan; Issa, Jean-Pierre J

    2012-10-01

    Almost half of the human genome and as much as 40% of the mouse genome is composed of repetitive DNA sequences. The majority of these repeats are retrotransposons of the SINE and LINE families, and such repeats are generally repressed by epigenetic mechanisms. It has been proposed that these elements can act as methylation centers from which DNA methylation spreads into gene promoters in cancer. Contradictory to a methylation center function, we have found that retrotransposons are enriched near promoter CpG islands that stay methylation-free in cancer. Clearly, it is important to determine which influence, if any, these repetitive elements have on nearby gene promoters. Using an in vitro system, we confirm here that SINE B1 elements can influence the activity of downstream gene promoters, with acquisition of DNA methylation and loss of activating histone marks, thus resulting in a repressed state. SINE sequences themselves did not immediately acquire DNA methylation but were marked by H3K9me2 and H3K27me3. Moreover, our bisulfite sequencing data did not support that gain of DNA methylation in gene promoters occurred by methylation spreading from SINE B1 repeats. Genome-wide analysis of SINE repeats distribution showed that their enrichment is directly correlated with the presence of USF1, USF2, and CTCF binding, proteins with insulator function. In summary, our work supports the concept that SINE repeats interfere negatively with gene expression and that their presence near gene promoters is counter-selected, except when the promoter is protected by an insulator element.

  6. Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation.

    PubMed

    Yagur-Kroll, Sharon; Bilic, Benny; Belkin, Shimshon

    2010-05-01

    Bioluminescent bacterial sensors are based upon the fusion of bacterial bioluminescence (lux) genes, acting as a reporter element, to selected bacterial stress-response gene promoters. Depending upon the nature of the promoter, the resulting constructs react to diverse types of environmental stress, including the presence of toxic chemicals, by dose-dependant light emission. Two bacterial sensors, harbouring sulA::luxCDABE and grpE::luxCDABE fusions, activated by the model chemicals nalidixic acid (NA) and ethanol, respectively, were subjected to molecular manipulations of the promoter region, in order to enhance the intensity and speed of their response and lower their detection thresholds. By manipulating the length of the promoter-containing segment (both promoters), by introducing random or specific mutations in the promoter sequence or by duplicating the promoter sequence (sulA only), major improvements in sensor performance were obtained. Improvements included significantly enhanced sensitivity, earlier response times and an increase in signal intensity. The general approaches described herein may be of general applicability for optimizing bacterial sensor performance, regardless of the sensing or reporting elements employed.

  7. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter.

    PubMed

    Testut, P; Soubrier, F; Corvol, P; Hubert, C

    1993-08-01

    Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional.

  8. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter.

    PubMed Central

    Testut, P; Soubrier, F; Corvol, P; Hubert, C

    1993-01-01

    Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional. Images Figure 1 Figure 3 PMID:8394696

  9. Transcriptional regulation of teleost aicda genes. Pt 1 suppressors of promiscuous promoters

    USDA-ARS?s Scientific Manuscript database

    In order to better understand antibody affinity maturation in fishes we sought to identify gene regulatory elements that could drive expression of activated B-cell specific fluorescent reporter transgenes in zebrafish. Specifically the promoter and several non-coding regions of the channel catfish (...

  10. Identification of learning and memory genes in canine; promoter investigation and determining the selective pressure.

    PubMed

    Seifi Moroudi, Reihane; Masoudi, Ali Akbar; Vaez Torshizi, Rasoul; Zandi, Mohammad

    2014-12-01

    One of the important behaviors of dogs is trainability which is affected by learning and memory genes. These kinds of the genes have not yet been identified in dogs. In the current research, these genes were found in animal models by mining the biological data and scientific literatures. The proteins of these genes were obtained from the UniProt database in dogs and humans. Not all homologous proteins perform similar functions, thus comparison of these proteins was studied in terms of protein families, domains, biological processes, molecular functions, and cellular location of metabolic pathways in Interpro, KEGG, Quick Go and Psort databases. The results showed that some of these proteins have the same performance in the rat or mouse, dog, and human. It is anticipated that the protein of these genes may be effective in learning and memory in dogs. Then, the expression pattern of the recognized genes was investigated in the dog hippocampus using the existing information in the GEO profile. The results showed that BDNF, TAC1 and CCK genes are expressed in the dog hippocampus, therefore, these genes could be strong candidates associated with learning and memory in dogs. Subsequently, due to the importance of the promoter regions in gene function, this region was investigated in the above genes. Analysis of the promoter indicated that the HNF-4 site of BDNF gene and the transcription start site of CCK gene is exposed to methylation. Phylogenetic analysis of protein sequences of these genes showed high similarity in each of these three genes among the studied species. The dN/dS ratio for BDNF, TAC1 and CCK genes indicates a purifying selection during the evolution of the genes.

  11. Aberrant CBFA2T3B gene promoter methylation in breast tumors

    PubMed Central

    Bais, Anthony J; Gardner, Alison E; McKenzie, Olivia LD; Callen, David F; Sutherland, Grant R; Kremmidiotis, Gabriel

    2004-01-01

    Background The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. Results Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. Conclusion CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology. PMID:15301688

  12. A trypanosome metacyclic VSG gene promoter with two functionally distinct, life cycle stage-specific activities.

    PubMed

    Graham, S V; Wymer, B; Barry, J D

    1998-04-15

    In the mammalian bloodstream, African trypanosomes express the variant surface glycoprotein (VSG), continual switching of which allows evasion of the host immune response. Bloodstream VSG genes are transcribed from polycistronic bloodstream expression sites with promoters which are located 45-60 kb upstream. These promoters are not exclusively stage-regulated, being active in the insect midgut stage where VSG is not expressed. However, the metacyclic VSG (M-VSG) genes, a small subset activated when VSG synthesis begins in the metacyclic stage in the tsetse fly salivary glands, are transcriptionally activated specifically in that stage from promoters <3 kb upstream. Using deletion mapping and transient transfection, we show that the entire 1.22 M-VSG gene promoter region (171 bp) is required for full activity in metacyclic-derived trypanosomes. However, a subsidiary, bloodstream stage-specific activity is present in its 5' half which directs transcription initiation very close to the initiation site used in metacyclic-derived trypanosomes. Our results imply that the M-VSG gene promoter is longer and more complex than other VSG gene promoters.

  13. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter.

    PubMed Central

    Böhm, S K; Gum, J R; Erickson, R H; Hicks, J W; Kim, Y S

    1995-01-01

    The dipeptidyl peptidase IV gene encodes a plasma-membrane exopeptidase that is highly expressed in small intestine, lung and kidney. In order to better understand the mechanisms responsible for this tissue-specific expression we cloned, sequenced and functionally characterized the 5'-flanking region of the human dipeptidyl peptidase IV gene. The first 500 bases of the 5'-flanking sequence constituted an unmethylated CpG island, contained several Sp1-binding sites and lacked a consensus TATA box, all characteristics of gene promoters lacking tissue-specific expression. RNase-protection analysis using both small intestinal and Caco2 cell RNA indicated that the dipeptidyl peptidase IV transcript was initiated from no fewer than six major and 12 minor start sites. The 5'-flanking sequence also exhibited functional promoter activity in transient transfection experiments. Here, various lengths of the sequence were cloned upstream of a luciferase gene and introduced into cultured cells using lipofectin. A region located between bases -150 and -109 relative to the start of translation was found to be important for high-level promoter activity in both Caco2 and HepG2 cells. Moreover, Caco2 cells and HepG2 cells, which express high levels of dipeptidyl peptidase IV activity, exhibited much higher normalized luciferase activity after transfection than did 3T3, Jurkat or COS-7 cells, which have low enzyme levels. Sodium butyrate was found to increase both enzyme activity and normalized luciferase in HepG2 cells. Thus the dipeptidyl peptidase IV promoter possesses the ability to initiate transcription in a tissue-specific fashion in spite of having the sequence characteristics of a housekeeping gene promoter. Images Figure 3 Figure 5 Figure 6 PMID:7487939

  14. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene.

    PubMed Central

    Mavrothalassitis, G J; Watson, D K; Papas, T S

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical "TATA" and "CAAT" elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1400 base pairs (bp) upstream from the first major transcription initiation site. A G + C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long (approximately 250-bp) polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. This region of 159 bp contains putative binding sites for transcription factors Sp1 and AP2 (one for each), the GC element, one small forward repeat, one inverted repeat, and half of the polypurine-pyrimidine tract. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with "TATA-less" promoters. Images PMID:2405393

  15. Influence of estrogen and variations at the BRCA1 promoter region on transcription and translation.

    PubMed

    Fernandes, Lívia R; Costa, Emmerson C B; Vargas, Fernando R; Moreira, Miguel A M

    2014-01-01

    We analyzed wild-type (WT) and four sequence variants of the BRCA1 promoter region-found in patients selected for hereditary breast and ovarian cancer syndrome-in respect to their influence on transcription and translation efficiencies in transient transfection assays in the presence or absence of estrogen. Five types of plasmids containing the EGFP reporter gene proceeded by WT 5'UTR-a, WT 5'UTR-b, and the three 5'UTR-b variants were constructed to evaluate their influence on translation. Plasmids containing the firefly luciferase reporter gene were constructed with the WT BRCA1 promoter region (containing promoter α, 5'UTR-a, promoter β, and 5'UTR-b) and with the four promoter variants for evaluating their influence on transcription and translation. All constructs were transfected in MCF7 cells maintained with and without estrogen. Expression of EGFP plasmids with WT 5'UTR-a was six to sevenfold higher than of plasmids with WT 5'UTR-b, expression of WT and the three variant 5'UTR-b plasmids showed slight differences in EGFP expression, and the presence or absence of estrogen result in non-significant changes in expression. Promoter's constructs that carry the variants WT or g.3988C showed a higher firefly luciferase activity when estrogen is present; conversely, no significant differences were found in the transcription efficiency of the reporter gene indicating that estrogen affect the translation rather than transcription. The presence or absence of estrogen did not affect the activity of firefly luciferase for constructs with the other promoter variants, being the transcription efficiencies equivalent in both conditions.

  16. Galactose-inducible expression systems in Candida maltosa using promoters of newly-isolated GAL1 and GAL10 genes.

    PubMed

    Park, S M; Ohkuma, M; Masuda, Y; Ohta, A; Takagi, M

    1997-01-01

    The GAL1 and GAL10 gene cluster encoding the enzymes of galactose utilization was isolated from an asporogenic yeast, Candida maltosa. The structure of the gene cluster in which both genes were divergently transcribed from the central promoter region resembled those of some other yeasts. The expression of both genes was strongly induced by galactose and repressed by glucose in the medium. Galactose-inducible expression vectors in C. maltosa were constructed on low- and high-copy number plasmids using the promoter regions of both genes. With these vectors and the beta-galactosidase gene from Kluyveromyces lactis as a reporter, galactose-inducible expression was confirmed. Homologous overexpression of members of the cytochrome P-450 gene family in C. maltosa was also successful by using a high-copy-number vector under the control of these promoters.

  17. Evolution of Drosophila ribosomal protein gene core promoters

    PubMed Central

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2011-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module. PMID:19059316

  18. Evolution of Drosophila ribosomal protein gene core promoters.

    PubMed

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  19. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    PubMed

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  20. DNA regions that regulate the ovarian transcriptional specificity of Drosophila yolk protein genes.

    PubMed

    Logan, S K; Garabedian, M J; Wensink, P C

    1989-09-01

    Yolk protein genes 1 and 2 (yp1 and yp2) of Drosophila melanogaster are divergently transcribed neighboring genes. Both are transcribed in only two tissues, the ovarian follicle cells and the fat bodies of adult females. Previous work has identified a yolk protein enhancer between the genes that is sufficient to direct transcription in one of the tissues, female fat bodies. Using germ-line transformation methods, we identify two cis-acting regions with positive effects on transcription in ovaries. One, a 301-bp region located between the genes, influences both genes and is an enhancer determining the stage and cell type specificity of ovarian transcription. The other, a 105-bp region located in the first exon of yp2, acts across the yp2 promoter region to stimulate yp1 transcription in ovaries. Additional observations suggest how a single enhancer influences both promoters.

  1. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    DOE Data Explorer

    Loots, Gabriela G. [LLNL; Ovcharenko, I. [LLNL

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. This database of evolutionary conserved regions (ECRs) in vertebrate genomes features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a comprehensive collection of promoters in all vertebrate genomes generated using multiple sources of gene annotation. The database also contains a collection of annotated transcription factor binding sites (TFBSs) in evolutionary conserved and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and fugu genomes. (taken from paper in Journal: Bioinformatics, November 7, 2006, pp. 122-124

  2. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  3. Characterization of a putative cis-regulatory element that controls transcriptional activity of the pig uroplakin II gene promoter

    SciTech Connect

    Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi; Cho, Ssang-Goo; Park, Chankyu; Oh, Jae-Wook; Song, Hyuk; Kim, Jae-Hwan; Kim, Jin-Hoi

    2011-07-01

    Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, but little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.

  4. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  5. A calcium-sensitive promoter construct for gene therapy.

    PubMed

    Merlet, E; Lipskaia, L; Marchand, A; Hadri, L; Mougenot, N; Atassi, F; Liang, L; Hatem, S N; Hajjar, R J; Lompré, A-M

    2013-03-01

    Targeting diseased cells is a challenging issue in both pharmacological and biological therapeutics. Gene therapy is emerging as a novel approach for treating rare diseases and for illnesses for which there is no other alternative. An important limitation of gene therapy has been the off-target effects and therefore efforts have been focused on increasing the specificity of gene transfer to the targeted organ. Here, we describe a promoter containing six nuclear factor of activated T cells (NFAT) consensus sequences, which is as efficient as the cytomegalovirus (CMV) promoter to drive expression in vascular smooth muscle cells both in vitro and in vivo. In contrast to the CMV promoter it is activated in a Ca(2+)-dependent manner after endoplasmic reticulum depletion and allows the transgene expression only in proliferative/diseased cells. Overexpression of sarco/endoplasmic reticulum (SR/ER) Ca(2+) ATPase 2a under the control of this NFAT promoter inhibits restenosis after angioplasty in rats. In conclusion, this promoter may be useful for gene therapy in vascular proliferative diseases and other diseases involving upregulation of the NFAT pathway.

  6. Organization of human ACAT-2 gene and its cell-type-specific promoter activity.

    PubMed

    Song, B L; Qi, W; Yang, X Y; Chang, C C; Zhu, J Q; Chang, T Y; Li, B L

    2001-03-30

    Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis. Two ACAT genes exist in mammals. We report here the genomic organization of human ACAT-2 gene and analysis of its promoter activity in various cell lines. The human ACAT-2 gene spans over 18 kb and contains 15 exons. Three transcription start sites and one poly(A) site are identified by the 5'/3'-RACE. In addition, the human ACAT-2 gene is linked to the insulin-like growth factor binding protein 6 (IGFBP-6) gene in a head-to-tail manner with a small intergenic region of about 1.2 kb. The 5'-flanking region of human ACAT-2 gene contains many potential cis-acting elements for multiple transcriptional regulatory factors but lacks TATA and CCAAT boxes. Using promoter-luciferase reporter assays, we demonstrate the transcriptional activity of ACAT-2 gene promoter is high in Caco-2 cells, especially after these cells become postconfluent and behave as intestinal enterocytes.

  7. [The association study of the promoter polymorphism -308G>A of tumor necrosis factor gene with the development and severity of acute pancreatitis in Russian population of Kursk region].

    PubMed

    Samgina, T A; Bushueva, O Iu; Ivanov, V P; Solodilova, M A; Nazarenko, P M; Polonikov, A V

    2014-01-01

    The aim of this study was to investigate the relationship between the polymorphism -308G>A of tumor necrosis factor (TNF) gene and the risk and severity of acute pancreatitis (AP) in unrelated Russians from Kursk region. DNA samples were obtained from 190 AP patients and 217 healthy controls for genotyping the polymorphism through a TaqMan allelic discrimination assay. Although -308G>A genotypes did not show a significant association with disease risk, the genotype -308GA was found to be associated only with non-severe type of acute alcohol-related pancreatitis (odds ratio 1.81 (95% CI 1.02-3.23 p=0.04).

  8. Honey bee promoter sequences for targeted gene expression.

    PubMed

    Schulte, C; Leboulle, G; Otte, M; Grünewald, B; Gehne, N; Beye, M

    2013-08-01

    The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue-specific and cold shock-induced gene expression. We identified the promoter sequences of Am-actin5c, elp2l, Am-hsp83 and Am-hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron-specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes. © 2013 Royal Entomological Society.

  9. Analysis of the sericin1 promoter and assisted detection of exogenous gene expression efficiency in the silkworm Bombyx mori L.

    PubMed

    Ye, Lupeng; Qian, Qiujie; Zhang, Yuyu; You, Zhengying; Che, Jiaqian; Song, Jia; Zhong, Boxiong

    2015-02-06

    In genetics, the promoter is one of the most important regulatory elements controlling the spatiotemporal expression of a target gene. However, most studies have focused on core or proximal promoter regions, and information on regions that are more distant from the 5'-flanking region of the proximal promoter is often lacking. Here, approximately 4-kb of the sericin1 (Ser1) promoter was predicted to contain many potential transcriptional factor binding sites (TFBSs). Transgenic experiments have revealed that more TFBSs included in the promoter improved gene transcription. However, multi-copy proximal Ser1 promoter combinations did not improve gene expression at the transcriptional level. Instead, increasing the promoter copy number repressed transcription. Furthermore, a correlation analysis between two contiguous genes, firefly luciferase (FLuc) and EGFP, was conducted at the transcriptional level; a significant correlation was obtained regardless of the insertion site. The ELISA results also revealed a significant correlation between the transcriptional and translational EGFP levels. Therefore, the exogenous gene expression level can be predicted by simply detecting an adjacent EGFP. In conclusion, our results provide important insights for further investigations into the molecular mechanisms underlying promoter function. Additionally, a new approach was developed to quickly screen transgenic strains that highly express exogenous genes.

  10. DNA Methylation Analysis of BRD1 Promoter Regions and the Schizophrenia rs138880 Risk Allele

    PubMed Central

    Dyrvig, Mads; Qvist, Per; Lichota, Jacek; Larsen, Knud; Nyegaard, Mette; Børglum, Anders D.

    2017-01-01

    The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5’ UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically. PMID:28095495

  11. Promoter analysis of mouse Scn3a gene and regulation of the promoter activity by GC box and CpG methylation.

    PubMed

    Deng, Guang-Fei; Qin, Jia-Ming; Sun, Xun-Sha; Kuang, Zu-Ying; Su, Tao; Zhao, Qi-Hua; Shi, Yi-Wu; Liu, Xiao-Rong; Yu, Mei-Juan; Yi, Yong-Hong; Liao, Wei-Ping; Long, Yue-Sheng

    2011-06-01

    Voltage-gated sodium channel α-subunit type III (Na(v)1.3) is mainly expressed in the central nervous system and is associated with neurological disorders. The expression of mouse Scn3a product (Na(v)1.3) mainly occurs in embryonic and early postnatal brain but not in adult brain. Here, we report for the first time the identification and characterization of the mouse Scn3a gene promoter region and regulation of the promoter activity by GC box and CpG methylation. Luciferase assay showed that the promoter region F1.2 (nt -1,049 to +157) had significantly higher activity in PC12 cells, comparing with that in SH-SY5Y cells and HEK293 cells. A stepwise 5' truncation of the promoter region found that the minimal functional promoter located within the region nt -168 to +157. Deletion of a GC box (nt -254 to -258) in the mouse Scn3a promoter decreased the promoter activity. CpG methylation of the F1.2 without the GC box completely repressed the promoter activity, suggesting that the GC box is a critical element in the CpG-methylated Scn3a promoter. These results suggest that the GC box and CpG methylation might play important roles in regulating mouse Scn3a gene expression.

  12. Multiple promoter elements govern expression of the human ornithine decarboxylase gene in colon carcinoma cells.

    PubMed Central

    Moshier, J A; Osborne, D L; Skunca, M; Dosescu, J; Gilbert, J D; Fitzgerald, M C; Polidori, G; Wagner, R L; Friezner Degen, S J; Luk, G D

    1992-01-01

    Overexpression of the ornithine decarboxylase (ODC) gene may be important to the development and maintenance of colonic neoplasms, as well as tumors in general. In this study, we examined the promoter elements governing constitutive expression of the human ODC gene in HCT 116 human colon carcinoma cells and, for comparison, K562 human erythro-leukemia cells. It was determined by functional analysis that the promoter elements responsible reside within the 378 bp immediately upstream from the transcription start site. Within this sequence, there are at least three regions that modulate the efficiency of the ODC promoter cooperatively. Both DNA bandshift and footprint assays demonstrated all three regions to be rich in sites that bind to nuclear proteins isolated from HCT 116 and K562 cells; the protein binding pattern of non-transformed, diploid fibroblasts was found to be much less complex. Several of the protein binding sequences have little or no homology to common regulatory elements. We suggest that the constitutive activity of the ODC gene in HCT 116 colon carcinoma cells, and perhaps transformed cells in general, involves a complex interaction of multiple regulatory sequences and their associated nuclear proteins. Finally, the saturation of the promoter in these transformed cell lines suggests that high levels of protein binding in the ODC promoter may contribute to elevated constitutive expression of this gene. Images PMID:1598217

  13. Functional analysis of the promoter of the heat shock cognate 70 gene of the Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Zhao, Cui; Zhang, Xiaojun; Li, Fuhua; Huan, Pin; Xiang, Jianhai

    2013-01-01

    Current knowledge on cis-regulatory elements of immune genes of the Pacific white shrimp (Litopenaeus vannamei) is poor. In this study, we identified the promoter of the heat shock cognate protein 70 (HSC70) gene of L. vannamei (lvhsc70). The promoter activity of lvhsc70 promoter was analyzed in insect sf9 cell lines. First, the putative promoter sequence was proved to be able to drive the expression of reporter EGFP gene successfully. Then serial deletion experiments were conducted to investigate functional transcription elements in the promoter region. The results revealed that both positive and negative transcription elements existed in this region. These results are quite different from the previous report on the promoter of HSC70 gene in Penaeus monodon (pmhsc70), where only positive transcription elements were indicated. The sequences that are not conserved between the promoters of lvhsc70 and pmhsc70 might contribute to the differences. Finally, we tested the effect of a putative "NF-κb binding site" in the promoter and, surprisingly, found that deletion of this site would result in a significantly enhancement of the expression of reporter genes, while the underlying mechanisms remain unrevealed. Our results would provide supports for future studies to identify the functional transcription elements in the lvhsc70 promoter and to expand our knowledge on regulation of innate immune genes in penaeid shrimp.

  14. Identification of a minimal promoter element of the mouse epidermal growth factor gene.

    PubMed Central

    Pascall, J C; Brown, K D

    1997-01-01

    We have previously generated a transgenic mouse line (EGF/Tag) in which simian virus 40 (SV40) T-antigen expression is directed by the mouse epidermal growth factor (EGF) gene promoter. In these mice, cellular hyperproliferation is observed in the submaxillary gland associated with SV40 T-antigen expression. In addition, SV40 T-antigen-expressing tumours of prostatic origin are seen. We have now derived immortalized cell lines from these tissues and have used the cells to perform a functional analysis of the EGF gene promoter. Cells were transfected with EGF promoter/reporter constructs, and an element located between 51 and 35 bases upstream of the EGF mRNA start site required for basal activity of the promoter was identified. Electrophoretic mobility-shift analysis suggests that three proteins bind to this region, one of which is either Sp1 or a closely related protein. PMID:9210411

  15. Molecular mechanisms underlying the regulation of the MFG-E8 gene promoter activity in physiological and inflammatory conditions

    PubMed Central

    Wang, Xiao; Bu, Heng-Fu; Liu, Shirley XL; De Plaen, Isabelle G.; Tan, Xiao-Di

    2015-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) is expressed by macrophages and plays an important role in attenuating inflammation and maintaining tissue homeostasis. Previously, we and others found that LPS inhibits MFG-E8 gene expression in macrophages. Here, we characterized the 5′-flanking region of the mouse MFG-E8 gene. To functionally analyze the upstream regulatory region of the MFG-E8 gene, a series of luciferase reporter gene constructs containing deleted or mutated regulatory elements were prepared. Using the luciferase assay, we revealed that Sp1 binding motifs within the proximal promoter region were necessary for full activity of the MFG-E8 promoter, whereas AP-1 like binding sequence at −372 played a role in governing the promoter activity at a homeostatic level. With chromatin immunoprecipitation assay, we showed that Sp1 and c-Jun physically interact with the MFG-E8 promoter region in vivo. In addition, Sp1 was found to regulate the MFG-E8 promoter activity positively and c-Jun negatively. Furthermore, we demonstrated that LPS inhibited MFG-E8 promoter activity via targeting Sp1 and AP-1-like motifs in the 5′-flanking region. Collectively, our data indicate that Sp1 and AP-1-related factors are involved in the regulation of MFG-E8 gene transcription by targeting their binding sites in the 5′-flanking region under physiological and inflammatory states. PMID:25711369

  16. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression.

    PubMed

    Yee, Janet; Tang, Anita; Lau, Wei-Ling; Ritter, Heather; Delport, Dewald; Page, Melissa; Adam, Rodney D; Müller, Miklós; Wu, Gang

    2007-04-10

    Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1-27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him) is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.

  17. Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes.

    PubMed Central

    Newton, K J; Winberg, B; Yamato, K; Lupold, S; Stern, D B

    1995-01-01

    We have characterized two promoters of the cytochrome oxidase subunit 2 (cox2) gene in Zea perennis mitochondria present in maize lines. Initiation at a site 907 bases upstream of the start codon results in the major approximately 1900 nt cox2 transcript. A sequence just upstream of this site conforms to the consensus described for maize mitochondrial promoters and its transcription is correctly initiated in a maize mitochondrial in vitro transcription extract. A second transcription initiation site (-347) is used only when the dominant allele of a nuclear gene, Mct, is present and its use results in an additional, shorter major transcript. Sequences flanking the Mct-dependent transcription initiation site, which we have termed the conditional promoter of cox2 (cpc), do not fit the maize mitochondrial promoter consensus and do not function in the maize in vitro transcription extract. The cpc region does not hybridize with mitochondrial, chloroplast or nuclear DNAs from most maize or teosinte lines. However, the cpc sequence is found in the same position upstream of the cox2 gene in Zea diploperennis mtDNA and it has striking similarity to the previously reported 'ORF of unknown origin' fused to the ATPase subunit 6 gene in maize CMS-C mitochondria. cpc appears to represent a new type of mitochondrial promoter. Further analysis of both conditional and constitutive promoters should help us to better understand the control of transcription in plant mitochondria. Images PMID:7859746

  18. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    PubMed Central

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  19. Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula toruloides

    PubMed Central

    Johns, Alexander M. B.; Love, John; Aves, Stephen J.

    2016-01-01

    Rhodotorula (Rhodosporidium) toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70% of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3, and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides. PMID:27818654

  20. Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis.

    PubMed

    Agarwal, Priyanka; Kumar, Rahul; Pareek, Amit; Sharma, Arun K

    2017-02-01

    Isolation and functional characterization of tissue- and stage-specific gene promoters is beneficial for genetic improvement of economically important crops. Here, we have characterized a putative promoter of a ripening-induced gene RIP1 (Ripening induced protein 1) in tomato. Quantification of the transcript level of RIP1 showed that its expression is fruit preferential, with maximum accumulation in red ripe fruits. To test the promoter activity, we made a reporter construct by cloning 1450 bp putative RIP1 promoter driving the GUS (ß-glucuronidase) gene expression and generated stable transgenic lines in tomato and Arabidopsis. Histochemical and fluorometric assays validated the fruit-specific expression of RIP1 as the highest GUS activity was found in red ripe tomatoes. Similarly, we detected high levels of GUS activity in the siliques of Arabidopsis. On the contrary, weak GUS activity was found in the flower buds in both tomato and Arabidopsis. To characterize the specific regions of the RIP1 promoter that might be essential for its maximum activity and specificity in fruits, we made stable transgenic lines of tomato and Arabidopsis with 5'-deletion constructs. Characterization of these transgenic plants showed that the full length promoter is essential for its function. Overall, we report the identification and characterization of a ripening-induced promoter of tomato, which would be useful for the controlled manipulation of the ripening-related agronomic traits in genetic manipulation studies in future.

  1. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.

    PubMed

    Chen, Kaifu; Wilson, Marenda A; Hirsch, Calley; Watson, Anjanette; Liang, Shoudan; Lu, Yue; Li, Wei; Dent, Sharon Y R

    2013-02-01

    The yeast Cyc8 (also known as Ssn6)-Tup1 complex regulates gene expression through a variety of mechanisms, including positioning of nucleosomes over promoters of some target genes to limit accessibility to the transcription machinery. To further define the functions of Cyc8-Tup1 in gene regulation and chromatin remodeling, we performed genome-wide profiling of changes in nucleosome organization and gene expression that occur upon loss of CYC8 or TUP1 and observed extensive nucleosome alterations in both promoters and gene bodies of derepressed genes. Our improved nucleosome profiling and analysis approaches revealed low-occupancy promoter nucleosomes (P nucleosomes) at locations previously defined as nucleosome-free regions. In the absence of CYC8 or TUP1, this P nucleosome is frequently lost, whereas nucleosomes are gained at -1 and +1 positions, accompanying up-regulation of downstream genes. Our analysis of public ChIP-seq data revealed that Cyc8 and Tup1 preferentially bind TATA-containing promoters, which are also enriched in genes derepressed upon loss of CYC8 or TUP1. These results suggest that stabilization of the P nucleosome on TATA-containing promoters may be a central feature of the repressive chromatin architecture created by the Cyc8-Tup1 corepressor, and that releasing the P nucleosome contributes to gene activation.

  2. TGFβ Inducible Early Gene-1 Directly Binds to, and Represses, the OPG Promoter in Osteoblasts

    PubMed Central

    Subramaniam, M.; Hawse, J. R.; Bruinsma, E. S.; Grygo, S. B.; Cicek, M.; Oursler, M. J.; Spelsberg, T. C.

    2010-01-01

    TGFβ Inducible Early Gene-1 (TIEG) is a member of the Krüppel-like family of transcription factors (KLF10) that plays an important role in TGFβ mediated Smad signaling. In order to better understand the role of TIEG in bone, we generated TIEG knockout (KO) mice. Calvarial osteoblasts (OBs) isolated from these mice exhibit a reduced ability to support osteoclastogenesis in vitro. Gene expression studies revealed decreased receptor activator of NF-kB ligand (RANKL) and increased osteoprotegerin (OPG) expression in TIEG KO OBs, suggesting a potential role for TIEG in regulating the expression of these genes. Since OPG and RANKL are two important regulators of osteoclast (OC) differentiation, we sought to determine if TIEG directly regulates their expression. Luciferase constructs, containing fragments of either the mouse OPG promoter (−1486 to +133 bp) or the RANKL promoter (−2000 to +1 bp) were each cloned into the pGL3 basic reporter vector and transiently transfected into TIEG KO calvarial OBs with and without a TIEG expression vector. No significant changes in the activity of the RANKL promoter were detected in the presence of TIEG. However, OPG promoter activity was inhibited in the presence of TIEG protein suggesting that TIEG directly represses the expression of OPG in OBs. In order to determine the region of this promoter through which TIEG acts, sequential 5′-deletion constructs were generated. Transient transfection of these constructs revealed that the TIEG regulatory element(s) reside within a 200 bp region of the OPG promoter. Transient ChIP analyses, using a TIEG-specific antibody, revealed that TIEG binds to this region of the OPG promoter. Since we have previously shown that TIEG regulates target gene expression through Sp-1 sites, we examined this region of the OPG promoter for potential TIEG binding elements and identified four potential Sp-1 binding sites. Site directed mutagenesis was used to determine if TIEG utilizes these Sp-1 elements

  3. Core promoter factor TAF9B regulates neuronal gene expression

    PubMed Central

    Herrera, Francisco J; Yamaguchi, Teppei; Roelink, Henk; Tjian, Robert

    2014-01-01

    Emerging evidence points to an unexpected diversification of core promoter recognition complexes that serve as important regulators of cell-type specific gene transcription. Here, we report that the orphan TBP-associated factor TAF9B is selectively up-regulated upon in vitro motor neuron differentiation, and is required for the transcriptional induction of specific neuronal genes, while dispensable for global gene expression in murine ES cells. TAF9B binds to both promoters and distal enhancers of neuronal genes, partially co-localizing at binding sites of OLIG2, a key activator of motor neuron differentiation. Surprisingly, in this neuronal context TAF9B becomes preferentially associated with PCAF rather than the canonical TFIID complex. Analysis of dissected spinal column from Taf9b KO mice confirmed that TAF9B also regulates neuronal gene transcription in vivo. Our findings suggest that alternative core promoter complexes may provide a key mechanism to lock in and maintain specific transcriptional programs in terminally differentiated cell types. DOI: http://dx.doi.org/10.7554/eLife.02559.001 PMID:25006164

  4. Comparative analysis of ADS gene promoter in seven Artemisia species.

    PubMed

    Ranjbar, Mojtaba; Naghavi, Mohammad Reza; Alizadeh, Hoshang

    2014-12-01

    Artemisinin is the most effective antimalarial drug that is derived from Artemisia annua. Amorpha-4,11-diene synthase (ADS) controls the first committed step in artemisinin biosynthesis. The ADS gene expression is regulated by transcription factors which bind to the cis-acting elements on the ADS promoter and are probably responsible for the ADS gene expression difference in the Artemisia species. To identify the elements that are significantly involved in ADS gene expression, the ADS gene promoter of the seven Artemisia species was isolated and comparative analysis was performed on the ADS promoter sequences of these species. Results revealed that some of the cis-elements were unique or in terms of number were more in the high artemisinin producer species, A. annua, than the other species. We have reported that the light-responsive elements, W-box, CAAT-box, 5'-UTR py-rich stretch, TATA-box sequence and tandem repeat sequences have been identified as important factors in the increased expression of ADS gene.

  5. A detailed mutational analysis of the VSG gene expression site promoter.

    PubMed

    Pham, V P; Qi, C C; Gottesdiener, K M

    1996-01-01

    The African trypanosome Trypanosoma brucei is a protozoan parasite that causes the disease African sleeping sickness. The parasite avoids the host's immune response by the process of antigenic variation, or by sequentially expressing antigenically different cell-surface coat proteins. These proteins, called variant surface glycoproteins (VSGs), are expressed from a specific locus, the VSG gene expression site (ES). In an attempt to understand expression of VSG genes, we expanded on earlier investigations of the promoter that controls the large VSG gene expression site transcription unit. We studied VSG ES promoter function both in transient transfection assays, and after stable integration at a chromosomal locus. Analysis of closely spaced deletion mutants showed that the minimum VSG ES promoter fragment that gives full activity is extremely small, and mapped precisely to a fragment that contains no more than -67 bp 5' to the putative transcription initiation site. The promoter lacked an upstream control element, or UCE, an element found at the PARP promoter, and at most eukaryotic Pol I promoters. Furthermore, linker scanning mutagenesis demonstrated that the VSG ES promoter contains at least two essential regulatory elements, including sequences within the region -67/-60 and the region -35/-20, both numbered relative to the initiation site. An altered promoter with mutated nucleotides surrounding the transcription initiation site still directed wild-type levels of expression. In this study, the results were similar for both insect and bloodstream form trypanosomes, suggesting that the same basic machinery for expression from the VSG ES promoter is found in both stages of the parasite.

  6. Cloning and characterization of the human trefoil factor 3 gene promoter.

    PubMed

    Sun, Yong; Wang, Liangxi; Zhou, Yifang; Mao, Xuefei; Deng, Xiangdong

    2014-01-01

    Human trefoil factor 3 (hTFF3) is a small-molecule peptide with potential medicinal value. Its main pharmacological function is to alleviate gastrointestinal mucosal injuries caused by various factors and promote the repair of damaged mucosa. However, how its transcription is regulated is not yet known. The aim of this study was to clone the hTFF3 gene promoter region, identify the core promoter and any transcription factors that bind to the promoter, and begin to clarify the regulation of its expression. The 5' flanking sequence of the hTFF3 gene was cloned from human whole blood genomic DNA by PCR. Truncated promoter fragments with different were cloned and inserted into the pGL3-Basic vector to determine the position o