Sample records for gene repression based

  1. The base pairing RNA Spot 42 participates in a multi-output feedforward loop to help enact catabolite repression in Escherichia coli

    PubMed Central

    Beisel, Chase L.; Storz, Gisela

    2011-01-01

    SUMMARY Bacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression. PMID:21292161

  2. Kinetically-Defined Component Actions in Gene Repression

    PubMed Central

    Chow, Carson C.; Finn, Kelsey K.; Storchan, Geoffery B.; Lu, Xinping; Sheng, Xiaoyan; Simons, S. Stoney

    2015-01-01

    Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression. PMID:25816223

  3. Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum.

    PubMed

    Xu, Tao; Li, Yongchao; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong

    2017-01-01

    Essential gene functions remain largely underexplored in bacteria. Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing; however, its genetic manipulation to reduce the formation of less-valuable acetate is technically challenging due to the essentiality of acetate-producing genes. Here we developed a Cas9 nickase-assisted chromosome-based RNA repression to stably manipulate essential genes in C. cellulolyticum . Our plasmid-based expression of antisense RNA (asRNA) molecules targeting the phosphotransacetylase ( pta ) gene successfully reduced the enzymatic activity by 35% in cellobiose-grown cells, metabolically decreased the acetate titer by 15 and 52% in wildtype transformants on cellulose and xylan, respectively. To control both acetate and lactate simultaneously, we transformed the repression plasmid into lactate production-deficient mutant and found the plasmid delivery reduced acetate titer by more than 33%, concomitant with negligible lactate formation. The strains with pta gene repression generally diverted more carbon into ethanol. However, further testing on chromosomal integrants that were created by double-crossover recombination exhibited only very weak repression because DNA integration dramatically lessened gene dosage. With the design of a tandem repetitive promoter-driven asRNA module and the use of a new Cas9 nickase genome editing tool, a chromosomal integrant (LM3P) was generated in a single step and successfully enhanced RNA repression, with a 27% decrease in acetate titer on cellulose in antibiotic-free medium. These results indicate the effectiveness of tandem promoter-driven RNA repression modules in promoting gene repression in chromosomal integrants. Our combinatorial method using a Cas9 nickase genome editing tool to integrate the gene repression module demonstrates easy-to-use and high-efficiency advantages, paving the way for stably manipulating genes, even essential ones, for functional characterization and microbial engineering.

  4. Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum

    PubMed Central

    Xu, Tao; Li, Yongchao; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2017-01-01

    Essential gene functions remain largely underexplored in bacteria. Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing; however, its genetic manipulation to reduce the formation of less-valuable acetate is technically challenging due to the essentiality of acetate-producing genes. Here we developed a Cas9 nickase-assisted chromosome-based RNA repression to stably manipulate essential genes in C. cellulolyticum. Our plasmid-based expression of antisense RNA (asRNA) molecules targeting the phosphotransacetylase (pta) gene successfully reduced the enzymatic activity by 35% in cellobiose-grown cells, metabolically decreased the acetate titer by 15 and 52% in wildtype transformants on cellulose and xylan, respectively. To control both acetate and lactate simultaneously, we transformed the repression plasmid into lactate production-deficient mutant and found the plasmid delivery reduced acetate titer by more than 33%, concomitant with negligible lactate formation. The strains with pta gene repression generally diverted more carbon into ethanol. However, further testing on chromosomal integrants that were created by double-crossover recombination exhibited only very weak repression because DNA integration dramatically lessened gene dosage. With the design of a tandem repetitive promoter-driven asRNA module and the use of a new Cas9 nickase genome editing tool, a chromosomal integrant (LM3P) was generated in a single step and successfully enhanced RNA repression, with a 27% decrease in acetate titer on cellulose in antibiotic-free medium. These results indicate the effectiveness of tandem promoter-driven RNA repression modules in promoting gene repression in chromosomal integrants. Our combinatorial method using a Cas9 nickase genome editing tool to integrate the gene repression module demonstrates easy-to-use and high-efficiency advantages, paving the way for stably manipulating genes, even essential ones, for functional characterization and microbial engineering. PMID:28936208

  5. The transcription factor p53: Not a repressor, solely an activator

    PubMed Central

    Fischer, Martin; Steiner, Lydia; Engeland, Kurt

    2014-01-01

    The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway. PMID:25486564

  6. Gene repression via multiplex gRNA strategy in Y. lipolytica.

    PubMed

    Zhang, Jin-Lai; Peng, Yang-Zi; Liu, Duo; Liu, Hong; Cao, Ying-Xiu; Li, Bing-Zhi; Li, Chun; Yuan, Ying-Jin

    2018-04-20

    The oleaginous yeast Yarrowia lipolytica is a promising microbial cell factory due to their biochemical characteristics and native capacity to accumulate lipid-based chemicals. To create heterogenous biosynthesis pathway and manipulate metabolic flux in Y. lipolytica, numerous studies have been done for developing synthetic biology tools for gene regulation. CRISPR interference (CRISPRi), as an emerging technology, has been applied for specifically repressing genes of interest. In this study, we established CRISPRi systems in Y. lipolytica based on four different repressors, that was DNase-deactivated Cpf1 (dCpf1) from Francisella novicida, deactivated Cas9 (dCas9) from Streptococcus pyogenes, and two fusion proteins (dCpf1-KRAB and dCas9-KRAB). Ten gRNAs that bound to different regions of gfp gene were designed and the results indicated that there was no clear correlation between the repression efficiency and targeting sites no matter which repressor protein was used. In order to rapidly yield strong gene repression, a multiplex gRNAs strategy based on one-step Golden-brick assembly technology was developed. High repression efficiency 85% (dCpf1) and 92% (dCas9) were achieved in a short time by making three different gRNAs towards gfp gene simultaneously, which avoided the need of screening effective gRNA loci in advance. Moreover, two genes interference including gfp and vioE and three genes repression including vioA, vioB and vioE in protodeoxy-violaceinic acid pathway were also realized. Taken together, successful CRISPRi-mediated regulation of gene expression via four different repressors dCpf1, dCas9, dCpf1-KRAB and dCas9-KRAB in Y. lipolytica is achieved. And we demonstrate a multiplexed gRNA targeting strategy can efficiently achieve transcriptional simultaneous repression of several targeted genes and different sites of one gene using the one-step Golden-brick assembly. This timesaving method promised to be a potent transformative tool valuable for metabolic engineering, synthetic biology, and functional genomic studies of Y. lipolytica.

  7. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  8. p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes

    PubMed Central

    Ferrándiz, Nuria; Caraballo, Juan M.; García-Gutierrez, Lucía; Devgan, Vikram; Rodriguez-Paredes, Manuel; Lafita, M. Carmen; Bretones, Gabriel; Quintanilla, Andrea; Muñoz-Alonso, M. Jose; Blanco, Rosa; Reyes, Jose C.; Agell, Neus; Delgado, M. Dolores; Dotto, G. Paolo; León, Javier

    2012-01-01

    It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes. PMID:22662213

  9. Carbon repression of cellobiose dehydrogenase production in the white rot fungus Trametes versicolor is mediated at the level of gene transcription.

    PubMed

    Stapleton, P C; Dobson, A D W

    2003-04-25

    Cellobiose dehydrogenase (CDH) production in Trametes versicolor is induced in the presence of cellulose, but decreases when additional carbon sources such as glucose and maltose are added to the fungal cultures. Using T. versicolor-specific cdh primers in a reverse transcription-polymerase chain reaction-based approach, it appears that this repression in CDH production is being mediated at the level of gene transcription. When a 1.6-kb upstream region of the T. versicolor cdh gene was cloned and sequenced, a number of putative CreA-like binding sites were observed. We propose that these sites may be involved in mediating this repressive effect, based on their similarity to the consensus [5'-SYGGRGG-3'] site for binding of the CreA and Cre1 repressor proteins.

  10. Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis

    PubMed Central

    Marques Howarth, Michelle; Simpson, David; Ngok, Siu P.; Nieves, Bethsaida; Chen, Ron; Siprashvili, Zurab; Vaka, Dedeepya; Breese, Marcus R.; Crompton, Brian D.; Alexe, Gabriela; Hawkins, Doug S.; Jacobson, Damon; Brunner, Alayne L.; West, Robert; Mora, Jaume; Stegmaier, Kimberly; Khavari, Paul; Sweet-Cordero, E. Alejandro

    2014-01-01

    Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma–associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes. PMID:25401475

  11. Glucocorticoid Repression of Inflammatory Gene Expression Shows Differential Responsiveness by Transactivation- and Transrepression-Dependent Mechanisms

    PubMed Central

    King, Elizabeth M.; Chivers, Joanna E.; Rider, Christopher F.; Minnich, Anne; Giembycz, Mark A.; Newton, Robert

    2013-01-01

    Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes. PMID:23349769

  12. The Sin3p PAH Domains Provide Separate Functions Repressing Meiotic Gene Transcription in Saccharomyces cerevisiae ▿

    PubMed Central

    Mallory, Michael J.; Law, Michael J.; Buckingham, Lela E.; Strich, Randy

    2010-01-01

    Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains. PMID:20971827

  13. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  14. Testis development requires the repression of Wnt4 by Fgf signaling

    PubMed Central

    Jameson, Samantha A.; Lin, Yi-Tzu; Capel, Blanche

    2013-01-01

    The bipotential gonad expresses genes associated with both the male and female pathways. Adoption of the male testicular fate is associated with the repression of many female genes including Wnt4. However, the importance of repression of Wnt4 to the establishment of male development was not previously determined. Deletion of either Fgf9 or Fgfr2 in an XY gonad resulted in up-regulation of Wnt4 and male-to-female sex reversal. We investigated whether the deletion if Wnt4 could rescue sex reversal in Fgf9 and Fgfr2 mutants. XY Fgf9/Wnt4 and Fgfr2/Wnt4 double mutants developed testes with male somatic and germ cells present, suggesting that the primary role of Fgf signaling is the repression of female-promoting genes. Thus, the decision to adopt the male fate is based not only on whether male genes, such as Sox9, are expressed, but also on the active repression of female genes, such as Wnt4. Because loss of Wnt4 results in the up-regulation of Fgf9, we also tested the possibility that derepression of Fgf9 was responsible for the aspects of male development observed in XX Wnt4 mutants. However, we found that the relationship between these two signaling factors is not symmetric: loss of Fgf9 in XX Wnt4−/− gonads does not rescue their partial female-to-male sex-reversal. PMID:22705479

  15. The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor

    PubMed Central

    Alenghat, Theresa; Yu, Jiujiu; Lazar, Mitchell A

    2006-01-01

    Unliganded thyroid hormone receptor (TR) actively represses transcription via the nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex. Although transcriptional activation by liganded receptors involves chromatin remodeling, the role of ATP-dependent remodeling in receptor-mediated repression is unknown. Here we report that SNF2H, the mammalian ISWI chromatin remodeling ATPase, is critical for repression of a genomically integrated, TR-regulated reporter gene. N-CoR and HDAC3 are both required for recruitment of SNF2H to the repressed gene. SNF2H does not interact directly with the N-CoR/HDAC3 complex, but binds to unacetylated histone H4 tails, suggesting that deacetylase activity of the corepressor complex is critical to SNF2H function. Indeed, HDAC3 as well as SNF2H are required for nucleosomal organization on the TR target gene. Consistent with these findings, reduction of SNF2H induces expression of an endogenous TR-regulated gene, dio1, in liver cells. Thus, although not apparent from studies of transiently transfected reporter genes, gene repression by TR involves the targeting of chromatin remodeling factors to repressed genes by the HDAC activity of nuclear receptor corepressors. PMID:16917504

  16. Differential Responses of Soleus and Plantaris Muscle Fibers to Overloading

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Shibaguchi, Tsubasa; Ohira, Takashi; Nakai, Naoya; Ohira, Yoshinobu

    2013-02-01

    Responses of slow and fast fibers in soleus and plantaris muscles of adult rats to overloading by the tendon transection of synergists were studied. Overloading-related hypertrophy was noted in the slow fibers of plantaris and soleus, although the magnitude was greater in plantaris. Five genes with minor expression in slow soleus muscle were identified by microarray analysis. Base-line expressions of these genes in slow fibers of plantaris were also low. Further, repressive effects of overloading on these genes were seen in some fast fibers of plantaris, not in whole plantaris and soleus. The data suggested that the repression of particular genes might be related to the pronounced morphological response of fibers expressing type II, including I+II, myosin heavy chain (MyHC), although these genes with lower base-line expression in slow fibers did not respond to overloading.

  17. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  18. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  19. Adenovirus Small E1A Employs the Lysine Acetylases p300/CBP and Tumor Suppressor Rb to Repress Select Host Genes and Promote Productive Virus Infection

    PubMed Central

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A.; Nava, Miguel; Su, Trent; Yousef, Ahmed F.; Zemke, Nathan R.; Pellegrini, Matteo; Kurdistani, Siavash K.; Berk, Arnold J.

    2015-01-01

    SUMMARY Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGFβ-, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. PMID:25525796

  20. Integrated analysis of miRNA and mRNA expression data identifies multiple miRNAs regulatory networks for the tumorigenesis of colorectal cancer.

    PubMed

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-06-15

    Investigating the potential biological function of differential changed genes through integrating multiple omics data including miRNA and mRNA expression profiles, is always hot topic. However, how to evaluate the repression effect on target genes integrating miRNA and mRNA expression profiles are not fully solved. In this study, we provide an analyzing method by integrating both miRNAs and mRNAs expression data simultaneously. Difference analysis was adopted based on the repression score, then significantly repressed mRNAs were screened out by DEGseq. Pathway analysis for the significantly repressed mRNAs shows that multiple pathways such as MAPK signaling pathway, TGF-beta signaling pathway and so on, may correlated to the colorectal cancer(CRC). Focusing on the MAPK signaling pathway, a miRNA-mRNA network that centering the cell fate genes was constructed. Finally, the miRNA-mRNAs that potentially important in the CRC carcinogenesis were screened out and scored by impact index. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Influence of gene dosage and autoregulation of the regulatory genes INO2 and INO4 on inositol/choline-repressible gene transcription in the yeast Saccharomyces cerevisiae.

    PubMed

    Schwank, S; Hoffmann, B; Sch-uller, H J

    1997-06-01

    Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.

  2. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    PubMed Central

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  3. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0314 TITLE: Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis ...19 Sep 2015 4. TITLE AND SUBTITLE Glucocorticoid Receptor-Mediated Repression of Pro- Inflammatory Genes in Rheumatoid Arthritis 5a. CONTRACT NUMBER...SUBJECT TERMS Rheumatoid arthritis , inflammation and autoimmunity, macrophages, glucocorticoid receptor, transcriptional regulation, coactivators and

  4. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection.

    PubMed

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A; Nava, Miguel; Su, Trent; Yousef, Ahmed F; Zemke, Nathan R; Pellegrini, Matteo; Kurdistani, Siavash K; Berk, Arnold J

    2014-11-12

    Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    PubMed

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    PubMed Central

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  7. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells.

    PubMed

    Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells.

  8. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  9. Roles for the Mitogen-activated Protein Kinase (MAPK) Phosphatase, DUSP1, in Feedback Control of Inflammatory Gene Expression and Repression by Dexamethasone*

    PubMed Central

    Shah, Suharsh; King, Elizabeth M.; Chandrasekhar, Ambika; Newton, Robert

    2014-01-01

    Glucocorticoids act on the glucocorticoid receptor (NR3C1) to repress inflammatory gene expression. This is central to their anti-inflammatory effectiveness and rational improvements in therapeutic index depend on understanding the mechanism. Human pulmonary epithelial A549 cells were used to study the role of the mitogen-activated protein kinase (MAPK) phosphatase, dual-specificity phosphatase 1 (DUSP1), in the dexamethasone repression of 11 inflammatory genes induced, in a MAPK-dependent manner, by interleukin-1β (IL1B). Adenoviral over-expression of DUSP1 inactivated MAPK pathways and reduced expression of all 11 inflammatory genes. IL1B rapidly induced DUSP1 expression and RNA silencing revealed a transient role in feedback inhibition of MAPKs and inflammatory gene expression. With dexamethasone, which induced DUSP1 expression, plus IL1B (co-treatment), DUSP1 expression was further enhanced. At 1 h, this was responsible for the dexamethasone inhibition of IL1B-induced MAPK activation and CXCL1 and CXCL2 mRNA expression, with a similar trend for CSF2. Whereas, CCL20 mRNA was not repressed by dexamethasone at 1 h, repression of CCL2, CXCL3, IL6, and IL8 was unaffected, and PTGS2 repression was partially affected by DUSP1 knockdown. At later times, dexamethasone repression of MAPKs was unaffected by DUSP1 silencing. Likewise, 6 h post-IL1B, dexamethasone repression of all 11 mRNAs was essentially unaffected by DUSP1 knockdown. Qualitatively similar data were obtained for CSF2, CXCL1, IL6, and IL8 release. Thus, despite general roles in feedback inhibition, DUSP1 plays a transient, often partial, role in the dexamethasone-dependent repression of certain inflammatory genes. Therefore this also illustrates key roles for DUSP1-independent effectors in mediating glucocorticoid-dependent repression. PMID:24692548

  10. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.

    PubMed

    Moreno, Ana M; Fu, Xin; Zhu, Jie; Katrekar, Dhruva; Shih, Yu-Ru V; Marlett, John; Cabotaje, Jessica; Tat, Jasmine; Naughton, John; Lisowski, Leszek; Varghese, Shyni; Zhang, Kang; Mali, Prashant

    2018-04-25

    Development of efficacious in vivo delivery platforms for CRISPR-Cas9-based epigenome engineering will be critical to enable the ability to target human diseases without permanent modification of the genome. Toward this, we utilized split-Cas9 systems to develop a modular adeno-associated viral (AAV) vector platform for CRISPR-Cas9 delivery to enable the full spectrum of targeted in situ gene regulation functionalities, demonstrating robust transcriptional repression (up to 80%) and activation (up to 6-fold) of target genes in cell culture and mice. We also applied our platform for targeted in vivo gene-repression-mediated gene therapy for retinitis pigmentosa. Specifically, we engineered targeted repression of Nrl, a master regulator of rod photoreceptor determination, and demonstrated Nrl knockdown mediates in situ reprogramming of rod cells into cone-like cells that are resistant to retinitis pigmentosa-specific mutations, with concomitant prevention of secondary cone loss. Furthermore, we benchmarked our results from Nrl knockdown with those from in vivo Nrl knockout via gene editing. Taken together, our AAV-CRISPR-Cas9 platform for in vivo epigenome engineering enables a robust approach to target disease in a genomically scarless and potentially reversible manner. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast.

    PubMed

    Jesch, Stephen A; Zhao, Xin; Wells, Martin T; Henry, Susan A

    2005-03-11

    In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.

  12. Genome Wide Analysis Reveals Inositol, not Choline, as the Major Effector of Ino2p-Ino4p and Unfolded Protein Response Target Gene Expression in Yeast

    PubMed Central

    Jesch, Stephen A.; Zhao, Xin; Wells, Martin T.; Henry, Susan A.

    2005-01-01

    SUMMARY In the yeast Saccharomyces cerevisiae the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was utilized to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination inositol and choline increased the number of repressed genes compared to inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another non-overlapping set of genes were coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but were not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, while choline plays a minor role. PMID:15611057

  13. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    PubMed

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  14. Spot 42 Small RNA Regulates Arabinose-Inducible araBAD Promoter Activity by Repressing Synthesis of the High-Affinity Low-Capacity Arabinose Transporter

    PubMed Central

    Chen, Jiandong

    2016-01-01

    ABSTRACT The l-arabinose-inducible araBAD promoter (PBAD) enables tightly controlled and tunable expression of genes of interest in a broad range of bacterial species. It has been used successfully to study bacterial sRNA regulation, where PBAD drives expression of target mRNA translational fusions. Here we report that in Escherichia coli, Spot 42 sRNA regulates PBAD promoter activity by affecting arabinose uptake. We demonstrate that Spot 42 sRNA represses araF, a gene encoding the AraF subunit of the high-affinity low-capacity arabinose transporter AraFGH, through direct base-pairing interactions. We further show that endogenous Spot 42 sRNA is sufficient to repress araF expression under various growth conditions. Finally, we demonstrate this posttranscriptional repression has a biological consequence, decreasing the induction of PBAD at low levels of arabinose. This problem can be circumvented using strategies reported previously for avoiding all-or-none induction behavior, such as through constitutive expression of the low-affinity high-capacity arabinose transporter AraE or induction with a higher concentration of inducers. This work adds araF to the set of Spot 42-regulated genes, in agreement with previous studies suggesting that Spot 42, itself negatively regulated by the cyclic AMP (cAMP) receptor protein-cAMP complex, reinforces the catabolite repression network. IMPORTANCE The bacterial arabinose-inducible system is widely used for titratable control of gene expression. We demonstrate here that a posttranscriptional mechanism mediated by Spot 42 sRNA contributes to the functionality of the PBAD system at subsaturating inducer concentrations by affecting inducer uptake. Our finding extends the inputs into the known transcriptional control for the PBAD system and has implications for improving its usage for tunable gene expression. PMID:27849174

  15. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression

    PubMed Central

    Megger, Dominik A.; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko

    2017-01-01

    Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus. PMID:28959263

  16. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression.

    PubMed

    Megger, Dominik A; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko

    2017-01-01

    Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  17. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, Flora Aparecida; Genomic Medicine, Houston Methodist Research Institute, Houston, TX; Cvoro, Aleksandra

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1more » adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.« less

  18. Silencers, silencing, and heritable transcriptional states.

    PubMed Central

    Laurenson, P; Rine, J

    1992-01-01

    Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes. PMID:1480108

  19. Combined SOM-portrayal of gene expression and DNA methylation landscapes disentangles modes of epigenetic regulation in glioblastoma.

    PubMed

    Hopp, Lydia; Löffler-Wirth, Henry; Galle, Jörg; Binder, Hans

    2018-06-11

    We present here a novel method that enables unraveling the interplay between gene expression and DNA methylation in complex diseases such as cancer. The method is based on self-organizing maps and allows for analysis of data landscapes from 'governed by methylation' to 'governed by expression'. We identified regulatory modules of coexpressed and comethylated genes in high-grade gliomas: two modes are governed by genes hypermethylated and underexpressed in IDH-mutated cases, while two other modes reflect immune and stromal signatures in the classical and mesenchymal subtypes. A fifth mode with proneural characteristics comprises genes of repressed and poised chromatin states active in healthy brain. Two additional modes enrich genes either in active or repressed chromatin states. The method disentangles the interplay between gene expression and methylation. It has the potential to integrate also mutation and copy number data and to apply to large sample cohorts.

  20. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors.

    PubMed

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-11-28

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression.

  1. Multiple histone deacetylases are recruited by corepressor Sin3 and contribute to gene repression mediated by Opi1 regulator of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Grigat, Mathias; Jäschke, Yvonne; Kliewe, Felix; Pfeifer, Matthias; Walz, Susanne; Schüller, Hans-Joachim

    2012-06-01

    Yeast genes of phospholipid biosynthesis are negatively regulated by repressor protein Opi1 when precursor molecules inositol and choline (IC) are available. Opi1-triggered gene repression is mediated by recruitment of the Sin3 corepressor complex. In this study, we systematically investigated the regulatory contribution of subunits of Sin3 complexes and identified Pho23 as important for IC-dependent gene repression. Two non-overlapping regions within Pho23 mediate its direct interaction with Sin3. Previous work has shown that Sin3 recruits the histone deacetylase (HDAC) Rpd3 to execute gene repression. While deletion of SIN3 strongly alleviates gene repression by IC, an rpd3 null mutant shows almost normal regulation. We thus hypothesized that various HDACs may contribute to Sin3-mediated repression of IC-regulated genes. Indeed, a triple mutant lacking HDACs, Rpd3, Hda1 and Hos1, could phenocopy a sin3 single mutant. We show that these proteins are able to contact Sin3 in vitro and in vivo and mapped three distinct HDAC interaction domains, designated HID1, HID2 and HID3. HID3, which is identical to the previously described structural motif PAH4 (paired amphipathic helix), can bind all HDACs tested. Chromatin immunoprecipitation studies finally confirmed that Hda1 and Hos1 are recruited to promoters of phospholipid biosynthetic genes INO1 and CHO2.

  2. Yeast carbon catabolite repression.

    PubMed

    Gancedo, J M

    1998-06-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.

  3. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression

    DTIC Science & Technology

    1998-05-01

    Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method...termed subtractive display. The subtractive display screen identified 42 monoterpene -induced genes comprising 9 known genes and 33 unidentified genes...as well as 58 monoterpene -repressed genes comprising 1 known gene and 57 unidentified genes. Several of the identified differentially expressed

  4. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  5. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages

    PubMed Central

    Sacta, Maria A; Tharmalingam, Bowranigan; Coppo, Maddalena; Rollins, David A; Deochand, Dinesh K; Benjamin, Bradley; Yu, Li; Zhang, Bin; Hu, Xiaoyu; Li, Rong; Chinenov, Yurii

    2018-01-01

    The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery. PMID:29424686

  6. Highly repressible expression system for cloning genes that specify potentially toxic proteins.

    PubMed Central

    O'Connor, C D; Timmis, K N

    1987-01-01

    A highly repressible expression vector system that allows the cloning of potentially deleterious genes has been constructed. Undesired expression of a cloned gene was prevented (i) at the level of initiation of transcription, by the presence of the strong but highly repressible leftward promoter of bacteriophage lambda, lambda pL, and (ii) at the level of transcript elongation or translation, through synthesis of antisense RNA complementary to the mRNA of the cloned gene. The system was tested by measuring the inhibition of expression of traT, the gene for the TraT major outer membrane lipoprotein. Direct detection and functional assays indicated that an essentially complete inhibition of traT expression was obtained. As a further test of the system, the gene encoding the EcoRI restriction endonuclease was cloned in the absence of the gene of the corresponding protective EcoRI modification methylase. Transformants harboring this construct were only viable when both repression controls were operational. Images PMID:2443481

  7. Mechanism of repression of the inhibin alpha-subunit gene by inducible 3',5'-cyclic adenosine monophosphate early repressor.

    PubMed

    Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E

    2006-03-01

    The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.

  8. Genome engineering using a synthetic gene circuit in Bacillus subtilis.

    PubMed

    Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun

    2015-03-31

    Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus.

    PubMed

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A

    2017-05-31

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus . Two primordial germ cell (PGC) marker genes, nanos and dead end , were targeted for knockdown, and an off-target gene, vasa , was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos , full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P₁ fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P₁ fish, most F₁ individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F₂ or F₃ are needed for evaluation.

  10. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    PubMed Central

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  11. Yeast Carbon Catabolite Repression†

    PubMed Central

    Gancedo, Juana M.

    1998-01-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated. PMID:9618445

  12. Dopamine Signaling Leads to Loss of Polycomb Repression and Aberrant Gene Activation in Experimental Parkinsonism

    PubMed Central

    Lerdrup, Mads; Gomes, Ana-Luisa; Kryh, Hanna; Spigolon, Giada; Caboche, Jocelyne; Fisone, Gilberto; Hansen, Klaus

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease. PMID:25254549

  13. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  14. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  15. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.

    PubMed

    Lin, Xue; Yu, Ai-Qun; Zhang, Cui-Ying; Pi, Li; Bai, Xiao-Wen; Xiao, Dong-Guang

    2017-11-09

    Tup1 is a general transcriptional repressor of diverse gene families coordinately controlled by glucose repression, mating type, and other mechanisms in Saccharomyces cerevisiae. Several functional domains of Tup1 have been identified, each of which has differing effects on transcriptional repression. In this study, we aim to investigate the role of Tup1 and its domains in maltose metabolism of industrial baker's yeast. To this end, a battery of in-frame truncations in the TUP1 gene coding region were performed in the industrial baker's yeasts with different genetic background, and the maltose metabolism, leavening ability, MAL gene expression levels, and growth characteristics were investigated. The results suggest that the TUP1 gene is essential to maltose metabolism in industrial baker's yeast. Importantly, different domains of Tup1 play different roles in glucose repression and maltose metabolism of industrial baker's yeast cells. The Ssn6 interaction, N-terminal repression and C-terminal repression domains might play roles in the regulation of MAL transcription by Tup1 for maltose metabolism of baker's yeast. The WD region lacking the first repeat could influence the regulation of maltose metabolism directly, rather than indirectly through glucose repression. These findings lay a foundation for the optimization of industrial baker's yeast strains for accelerated maltose metabolism and facilitate future research on glucose repression in other sugar metabolism.

  16. Regulation of mRNA translation during mitosis.

    PubMed

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  17. Cryptochrome and Phytochrome Cooperatively but Independently Reduce Active Gibberellin Content in Rice Seedlings under Light Irradiation

    PubMed Central

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-01-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4–OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants. PMID:22764280

  18. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation.

    PubMed

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-09-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.

  19. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.

    PubMed

    Dombek, Kenneth M; Kacherovsky, Nataly; Young, Elton T

    2004-09-10

    In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly increasing the level of Adr1 protein, the major activator of ADH2 expression. Adr1 and Bcy1, the regulatory subunit of cAMP-dependent protein kinase, are both required for this effect indicating that constitutive expression in Deltabmh1Deltabmh2 cells uses the same activation pathway that operates in Deltareg1 cells. Deletion of both BMH genes and REG1 causes a synergistic relief from repression, suggesting that Bmh proteins also act independently of Reg1 during glucose repression. A two-hybrid interaction with the Bmh proteins was mapped to amino acids 187-232, a region of Reg1 that is conserved in different classes of fungi. Deleting this region partially releases SUC2 from glucose repression. This indicates a role for the Reg1-Bmh interaction in glucose repression and also suggests a broad role for Bmh proteins in this process. An in vivo Reg1-Bmh interaction was confirmed by copurification of Bmh proteins with HA(3)-TAP-tagged Reg1. The nonconventional heat shock proteins Ssb1 and Ssb2 are also copurified with HA(3)-TAP-tagged Reg1. Deletion of both SSB genes modestly decreases repression of ADH2 expression in the presence of glucose, suggesting that Ssb proteins, perhaps through their interaction with Reg1, play a minor role in glucose repression.

  20. Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus.

    PubMed

    Shevelyov, Y Y; Ulianov, S V

    2018-04-01

    Nuclear lamina is a protein meshwork composed of lamins and lamin-associated proteins that lines the nuclear envelope from the inside and forms repressive transcription compartment. The review presents current data on the contribution of nuclear lamina to the repression of genes located in this compartment and on the mechanisms of chromatin attachment to the nuclear envelope.

  1. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus

    PubMed Central

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A.; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A.

    2017-01-01

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown, and an off-target gene, vasa, was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5′ end (N1) or 3′ end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P1 fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P1 fish, most F1 individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F2 or F3 are needed for evaluation. PMID:28561774

  2. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com; School of Life Sciences, Södertörn Högskola, Huddinge 141-89; Djupedal, Ingela

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its rolemore » in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.« less

  3. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  4. Bordetella pertussis risA, but Not risS, Is Required for Maximal Expression of Bvg-Repressed Genes

    PubMed Central

    Stenson, Trevor H.; Allen, Andrew G.; al-Meer, Jehan A.; Maskell, Duncan; Peppler, Mark S.

    2005-01-01

    Expression of virulence determinants by Bordetella pertussis, the primary etiological agent of whooping cough, is regulated by the BvgAS two-component regulatory system. The role of a second two-component regulatory system, encoded by risAS, in this process is not defined. Here, we show that mutation of B. pertussis risA does not affect Bvg-activated genes or proteins. However, mutation of risA resulted in greatly diminished expression of Bvg-repressed antigens and decreased transcription of Bvg-repressed genes. In contrast, mutation of risS had no effect on the expression of Bvg-regulated molecules. Mutation of risA also resulted in decreased bacterial invasion in a HeLa cell model. However, decreased invasion could not be attributed to the decreased expression of Bvg-repressed products, suggesting that mutation of risA may affect the expression of a variety of genes. Unlike the risAS operons in B. parapertussis and B. bronchiseptica, B. pertussis risS is a pseudogene that encodes a truncated RisS sensor. Deletion of the intact part of the B. pertussis risS gene does not affect the expression of risA-dependent, Bvg-repressed genes. These observations suggest that RisA activation occurs through cross-regulation by a heterologous system. PMID:16113320

  5. CRISPR-mediated HDAC2 disruption identifies two distinct classes of target genes in human cells.

    PubMed

    Somanath, Priyanka; Herndon Klein, Rachel; Knoepfler, Paul S

    2017-01-01

    The transcriptional functions of the class I histone deacetylases (HDACs) HDAC1 and HDAC2 are mainly viewed as both repressive and redundant based on murine knockout studies, but they may have additional independent roles and their physiological functions in human cells are not as clearly defined. To address the individual epigenomic functions of HDAC2, here we utilized CRISPR-Cas9 to disrupt HDAC2 in human cells. We find that while HDAC2 null cells exhibited signs of cross-regulation between HDAC1 and HDAC2, specific epigenomic phenotypes were still apparent using RNA-seq and ChIP assays. We identified specific targets of HDAC2 repression, and defined a novel class of genes that are actively expressed in a partially HDAC2-dependent manner. While HDAC2 was required for the recruitment of HDAC1 to repressed HDAC2-gene targets, HDAC2 was dispensable for HDAC1 binding to HDAC2-activated targets, supporting the notion of distinct classes of targets. Both active and repressed classes of gene targets demonstrated enhanced histone acetylation and methylation in HDAC2-null cells. Binding of the HDAC1/2-associated SIN3A corepressor was altered at most HDAC2-targets, but without a clear pattern. Overall, our study defines two classes of HDAC2 targets in human cells, with a dependence of HDAC1 on HDAC2 at one class of targets, and distinguishes unique functions for HDAC2.

  6. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.

    PubMed

    Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R

    2006-11-01

    The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.

  7. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeastY. lipolyticato determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method.« less

  8. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete.

    PubMed

    Grove, Arianna P; Liveris, Dionysios; Iyer, Radha; Petzke, Mary; Rudman, Joseph; Caimano, Melissa J; Radolf, Justin D; Schwartz, Ira

    2017-08-22

    The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi , the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing σ 70 -dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP) transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB , the glp operon, and bba74 As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB - and glp-gfp constructs containing only the minimal (-35/-10) σ 70 promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37°C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between -165 and -82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence elements near the core promoter, while the other (e.g., bba74 ) involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential "gatekeeper" role of RpoS throughout the B. burgdorferi enzootic cycle. IMPORTANCE Borrelia burgdorferi , the Lyme disease spirochete, modulates gene expression to adapt to the distinctive environments of its mammalian host and arthropod vector during its enzootic cycle. The alternative sigma factor RpoS has been referred to as a "gatekeeper" due to its central role in regulating the reciprocal expression of mammalian host- and tick-phase genes. While RpoS-dependent transcription has been studied extensively, little is known regarding the mechanism(s) of RpoS-mediated repression. We employed a combination of green fluorescent protein transcriptional reporters along with an in vivo model to define cis regulatory sequences responsible for RpoS-mediated repression of prototypical tick-phase genes. Repression of ospAB and the glp operon requires only sequences near their core promoters, whereas modulation of bba74 expression involves a putative RpoS-dependent repressor that binds upstream of the core promoter. Thus, Lyme disease spirochetes employ at least two different RpoS-dependent mechanisms to repress tick-phase genes within the mammal. Copyright © 2017 Grove et al.

  9. Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation

    PubMed Central

    Jaiswal, Deepika; Jezek, Meagan; Quijote, Jeremiah; Lum, Joanna; Choi, Grace; Kulkarni, Rushmie; Park, DoHwan; Green, Erin M.

    2017-01-01

    The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1. Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation. PMID:29066473

  10. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

    PubMed

    Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred

    2015-02-01

    Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage

    PubMed Central

    Gebauer, Mathias; Saas, Joachim; Haag, Jochen; Dietz, Uwe; Takigawa, Masaharu; Bartnik, Eckart; Aigner, Thomas

    2005-01-01

    Osteoarthritis is the most common degenerative disorder of the modern world. However, many basic cellular features and molecular processes of the disease are poorly understood. In the present study we used oligonucleotide-based microarray analysis of genes of known or assumed relevance to the cellular phenotype to screen for relevant differences in gene expression between normal and osteoarthritic chondrocytes. Custom made oligonucleotide DNA arrays were used to screen for differentially expressed genes in normal (n = 9) and osteoarthritic (n = 10) cartilage samples. Real-time polymerase chain reaction (PCR) with gene-specific primers was used for quantification. Primary human adult articular chondrocytes and chondrosarcoma cell line HCS-2/8 were used to study changes in gene expression levels after stimulation with interleukin-1β and bone morphogenetic protein, as well as the dependence on cell differentiation. In situ hybridization with a gene-specific probe was applied to detect mRNA expression levels in fetal growth plate cartilage. Overall, more than 200 significantly regulated genes were detected between normal and osteoarthritic cartilage (P < 0.01). One of the significantly repressed genes, Tob1, encodes a protein belonging to a family involved in silencing cells in terms of proliferation and functional activity. The repression of Tob1 was confirmed by quantitative PCR and correlated to markers of chondrocyte activity and proliferation in vivo. Tob1 expression was also detected at a decreased level in isolated chondrocytes and in the chondrosarcoma cell line HCS-2/8. Again, in these cells it was negatively correlated with proliferative activity and positively with cellular differentiation. Altogether, the downregulation of the expression of Tob1 in osteoarthritic chondrocytes might be an important aspect of the cellular processes taking place during osteoarthritic cartilage degeneration. Activation, the reinitiation of proliferative activity and the loss of a stable phenotype are three major changes in osteoarthritic chondrocytes that are highly significantly correlated with the repression of Tob1 expression. PMID:15743474

  12. An Unsolved Mystery: The Target-Recognizing RNA Species of MicroRNA Genes

    PubMed Central

    Chen, Chang-Zheng

    2013-01-01

    MicroRNAs (miRNAs) are an abundant class of endogenous ~ 21-nucleotide (nt) RNAs. These small RNAs are produced from long primary miRNA transcripts — pri-miRNAs — through sequential endonucleolytic maturation steps that yield precursor miRNA (pre-miRNA) intermediates and then the mature miRNAs. The mature miRNAs are loaded into the RNA-induced silencing complexes (RISC), and guide RISC to target mRNAs for cleavage and/or translational repression. This paradigm, which represents one of major discoveries of modern molecular biology, is built on the assumption that mature miRNAs are the only species produced from miRNA genes that recognize targets. This assumption has guided the miRNA field for more than a decade and has led to our current understanding of the mechanisms of target recognition and repression by miRNAs. Although progress has been made, fundamental questions remain unanswered with regard to the principles of target recognition and mechanisms of repression. Here I raise questions about the assumption that mature miRNAs are the only target-recognizing species produced from miRNA genes and discuss the consequences of working under an incomplete or incorrect assumption. Moreover, I present evolution-based and experimental evidence that support the roles of pri-/pre-miRNAs in target recognition and repression. Finally, I propose a conceptual framework that integrates the functions of pri-/pre-miRNAs and mature miRNAs in target recognition and repression. The integrated framework opens experimental enquiry and permits interpretation of fundamental problems that have so far been precluded. PMID:23685275

  13. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose.

    PubMed

    Ammar, Ehab M; Wang, Xiaoyi; Rao, Christopher V

    2018-01-12

    Catabolite repression refers to the process where the metabolism of one sugar represses the genes involved in metabolizing another sugar. While glucose provides the canonical example, many other sugars are also known to induce catabolite repression. However, less is known about the mechanism for catabolite repression by these non-glucose sugars. In this work, we investigated the mechanism of catabolite repression in the bacterium Escherichia coli during growth on lactose, L-arabinose, and D-xylose. The metabolism of these sugars is regulated in a hierarchical manner, where lactose is the preferred sugar, followed by L-arabinose, and then D-xylose. Previously, the preferential utilization of L-arabinose over D-xylose was found to result from transcriptional crosstalk. However, others have proposed that cAMP governs the hierarchical regulation of many non-glucose sugars. We investigated whether lactose-induced repression of L-arabinose and D-xylose gene expression is due to transcriptional crosstalk or cAMP. Our results demonstrate that it is due to cAMP and not transcriptional crosstalk. In addition, we found that repression is reciprocal, where both L-arabinose and D-xylose also repress the lactose gene expression, albeit to a lesser extent and also through a mechanism involving cAMP. Collectively, the results further our understanding of metabolism during growth on multiple sugars.

  14. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes

    PubMed Central

    McClelland, Shawn; Brennan, Gary P; Dubé, Celine; Rajpara, Seeta; Iyer, Shruti; Richichi, Cristina; Bernard, Christophe; Baram, Tallie Z

    2014-01-01

    The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts. DOI: http://dx.doi.org/10.7554/eLife.01267.001 PMID:25117540

  15. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes.

    PubMed

    Robbez-Masson, Luisa; Tie, Christopher H C; Conde, Lucia; Tunbak, Hale; Husovsky, Connor; Tchasovnikarova, Iva A; Timms, Richard T; Herrero, Javier; Lehner, Paul J; Rowe, Helen M

    2018-05-04

    Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which provides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is necessary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of a SVA retrotransposon reporter. By using naïve vs. primed mouse pluripotent stem cells, we reveal a critical role for the HUSH complex in naïve cells, implicating it in programming epigenetic marks in development. While the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages less than 5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s and display evidence for regulation through LTR promoters. Finally, we demonstrate that the HUSH complex is also required to repress L1 elements in human cells. Overall, these data indicate that the HUSH complex and TRIM28 co-repress young retrotransposons and new genes rewired by retrotransposon non-coding DNA. Published by Cold Spring Harbor Laboratory Press.

  16. Sulfate-Dependent Repression of Genes That Function in Organosulfur Metabolism in Bacillus subtilis Requires Spx

    PubMed Central

    Erwin, Kyle N.; Nakano, Shunji; Zuber, Peter

    2005-01-01

    Oxidative stress in Bacillus subtilis results in the accumulation of Spx protein, which exerts both positive and negative transcriptional control over a genome-wide scale through its interaction with the RNA polymerase α subunit. Previous microarray transcriptome studies uncovered a unique class of genes that are controlled by Spx-RNA polymerase interaction under normal growth conditions that do not promote Spx overproduction. These genes were repressed by Spx when sulfate was present as a sole sulfur source. The genes include those of the ytmI, yxeI, and ssu operons, which encode products resembling proteins that function in the uptake and desulfurization of organic sulfur compounds. Primer extension and analysis of operon-lacZ fusion expression revealed that the operons are repressed by sulfate and cysteine; however, Spx functioned only in sulfate-dependent repression. Both the ytmI operon and the divergently transcribed ytlI, encoding a LysR-type regulator that positively controls ytmI operon transcription, are repressed by Spx in sulfate-containing media. The CXXC motif of Spx, which is necessary for redox sensitive control of Spx activity in response to oxidative stress, is not required for sulfate-dependent repression. The yxeL-lacZ and ssu-lacZ fusions were also repressed in an Spx-dependent manner in media containing sulfate as the sole sulfur source. This work uncovers a new role for Spx in the control of sulfur metabolism in a gram-positive bacterium under nonstressful growth conditions. PMID:15937167

  17. Two Distinct Repressive Mechanisms for Histone 3 Lysine 4 Methylation through Promoting 3′-End Antisense Transcription

    PubMed Central

    Margaritis, Thanasis; Oreal, Vincent; Brabers, Nathalie; Maestroni, Laetitia; Vitaliano-Prunier, Adeline; Benschop, Joris J.; van Hooff, Sander; van Leenen, Dik

    2012-01-01

    Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3′-end, indicating that repression is coupled to 3′-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3′-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3′-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3′-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3′-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3′-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms. PMID:23028359

  18. Msn2p and Msn4p Control a Large Number of Genes Induced at the Diauxic Transition Which Are Repressed by Cyclic AMP in Saccharomyces cerevisiae

    PubMed Central

    Boy-Marcotte, Emmanuelle; Perrot, Michel; Bussereau, Françoise; Boucherie, Hélian; Jacquet, Michel

    1998-01-01

    The multicopy suppressors of the snf1 defect, Msn2p and Msn4p transcription factors (Msn2/4p), activate genes through the stress-responsive cis element (CCCCT) in response to various stresses. This cis element is also the target for repression by the cyclic AMP (cAMP)-signaling pathway. We analyzed the two-dimensional gel electrophoresis pattern of protein synthesis of the msn2 msn4 double mutant and compared it with that of the wild-type strain during exponential growth phase and at the diauxic transition. Thirty-nine gene products (including those of ALD3, GDH3, GLK1, GPP2, HSP104, HXK1, PGM2, SOD2, SSA3, SSA4, TKL2, TPS1, and YBR149W) are dependent upon Msn2/4p for their induction at the diauxic transition. The expression of all these genes is repressed by cAMP. Thirty other genes identified during this study are still inducible in the mutant. A subset of these genes were found to be superinduced at the diauxic transition, and others were subject to cAMP repression (including ACH1, ADH2, ALD6, ATP2, GPD1, ICL1, and KGD2). We conclude from this analysis that Msn2/4p control a large number of genes induced at the diauxic transition but that other, as-yet-uncharacterized regulators, also contribute to this response. In addition, we show here that cAMP repression applies to both Msn2/4p-dependent and -independent control of gene expression at the diauxic shift. Furthermore, the fact that all the Msn2/4p gene targets are subject to cAMP repression suggests that these regulators could be targets for the cAMP-signaling pathway. PMID:9495741

  19. The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae

    PubMed Central

    Zhao, Xinrui; Zou, Huijun; Chen, Jian; Du, Guocheng; Zhou, Jingwen

    2016-01-01

    In Saccharomyces cerevisiae, when preferred nitrogen sources are present, the metabolism of non-preferred nitrogen is repressed. Previous work showed that this metabolic regulation is primarily controlled by nitrogen catabolite repression (NCR) related regulators. Among these regulators, two positive regulators (Gln3p and Gat1p) could be phosphorylated and sequestered in the cytoplasm leading to the transcription of non-preferred nitrogen metabolic genes being repressed. The nuclear localization signals (NLSs) and nuclear localization regulatory signals (NLRSs) in Gln3p and Gat1p play essential roles in the regulation of their localization in cells. However, compared with Gln3p, the information of NLS and NLRS for Gat1p remains unknown. In this study, residues 348–375 and 366–510 were identified as the NLS and NLRS of Gat1p firstly. In addition, the modifications of Gat1p (mutations on the NLS and truncation on the NLRS) were attempted to enhance the transcription of non-preferred nitrogen metabolic genes. Quantitative real-time PCR showed that the transcriptional levels of 15 non-preferred nitrogen metabolic genes increased. Furthermore, during the shaking-flask culture tests, the utilization of urea, proline and allantoine was significantly increased. Based on these results, the genetic engineering on Gat1p has a great potential in enhancing non-preferred nitrogen metabolism in S. cerevisiae. PMID:26899143

  20. Primetime for Learning Genes.

    PubMed

    Keifer, Joyce

    2017-02-11

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene ( BDNF ), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  1. Transcriptional Activity, Chromosomal Distribution and Expression Effects of Transposable Elements in Coffea Genomes

    PubMed Central

    da Silva, Carlos R. M.; Andrade, Alan C.; Marraccini, Pierre; Teixeira, João B.; Carazzolle, Marcelo F.; Pereira, Gonçalo A. G.; Pereira, Luiz Filipe P.; Vanzela, André L. L.; Wang, Lu; Jordan, I. King; Carareto, Claudia M. A.

    2013-01-01

    Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences. PMID:24244387

  2. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae.

    PubMed

    de Groot, E; Bebelman, J P; Mager, W H; Planta, R J

    2000-02-01

    Changing the growth mode of Saccharomyces cerevisiae by adding fermentable amounts of glucose to cells growing on a non-fermentable carbon source leads to rapid repression of general stress-responsive genes like HSP12. Remarkably, glucose repression of HSP12 appeared to occur even at very low glucose concentrations, down to 0.005%. Although these low levels of glucose do not induce fermentative growth, they do act as a growth signal, since upon addition of glucose to a concentration of 0.02%, growth rate increased and ribosomal protein gene transcription was up-regulated. In an attempt to elucidate how this type of glucose signalling may operate, several signalling mutants were examined. Consistent with the low amounts of glucose that elicit HSP12 repression, neither the main glucose-repression pathway nor cAMP-dependent activation of protein kinase A appeared to play a role in this regulation. Using mutants involved in glucose metabolism, evidence was obtained suggesting that glucose 6-phosphate serves as a signalling molecule. To identify the target for glucose repression on the promoter of the HSP12 gene, a promoter deletion series was used. The major transcription factors governing (stress-induced) transcriptional activation of HSP12 are Msn2p and Msn4p, binding to the general stress-responsive promoter elements (STREs). Surprisingly, glucose repression of HSP12 appeared to be independent of Msn2/4p: HSP12 transcription in glycerol-grown cells was unaffected in a deltamsn2deltamsn4 strain. Nevertheless, evidence was obtained that STRE-mediated transcription is the target of repression by low amounts of glucose. These data suggest that an as yet unidentified factor is involved in STRE-mediated transcriptional regulation of HSP12.

  3. Regulation of mRNA translation during mitosis

    PubMed Central

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-01-01

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ∼200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. DOI: http://dx.doi.org/10.7554/eLife.07957.001 PMID:26305499

  4. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.

    PubMed

    Maurer, Lisa M; Yohannes, Elizabeth; Bondurant, Sandra S; Radmacher, Michael; Slonczewski, Joan L

    2005-01-01

    Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an alpha level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid consumption and proton export, while coinducing oxidative stress and heat shock regulons; (ii) high pH accelerates proton import, while repressing the energy-expensive flagellar and chemotaxis regulons; and (iii) pH differentially regulates a large number of periplasmic and envelope proteins.

  5. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction

    PubMed Central

    Ni, Xiangyang; Westpheling, Janet

    1997-01-01

    The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression. PMID:9371809

  6. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.

    PubMed

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-31

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.

  7. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  8. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  9. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit

    PubMed Central

    Lang, Zhaobo; Wang, Yihai; Tang, Kai; Tang, Dengguo; Datsenka, Tatsiana; Cheng, Jingfei; Zhang, Yijing; Handa, Avtar K.

    2017-01-01

    DNA methylation is a conserved epigenetic mark important for genome integrity, development, and environmental responses in plants and mammals. Active DNA demethylation in plants is initiated by a family of 5-mC DNA glycosylases/lyases (i.e., DNA demethylases). Recent reports suggested a role of active DNA demethylation in fruit ripening in tomato. In this study, we generated loss-of-function mutant alleles of a tomato gene, SlDML2, which is a close homolog of the Arabidopsis DNA demethylase gene ROS1. In the fruits of the tomato mutants, increased DNA methylation was found in thousands of genes. These genes included not only hundreds of ripening-induced genes but also many ripening-repressed genes. Our results show that SlDML2 is critical for tomato fruit ripening and suggest that active DNA demethylation is required for both the activation of ripening-induced genes and the inhibition of ripening-repressed genes. PMID:28507144

  10. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms.

    PubMed

    Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K

    2012-04-02

    Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.

  11. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands

    PubMed Central

    Farcas, Anca M; Blackledge, Neil P; Sudbery, Ian; Long, Hannah K; McGouran, Joanna F; Rose, Nathan R; Lee, Sheena; Sims, David; Cerase, Andrea; Sheahan, Thomas W; Koseki, Haruhiko; Brockdorff, Neil; Ponting, Chris P; Kessler, Benedikt M; Klose, Robert J

    2012-01-01

    CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs. DOI: http://dx.doi.org/10.7554/eLife.00205.001 PMID:23256043

  12. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition.

    PubMed

    Wang, Miranda; Ly, Michael; Lugowski, Andrew; Laver, John D; Lipshitz, Howard D; Smibert, Craig A; Rissland, Olivia S

    2017-09-06

    In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.

  13. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    PubMed

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  14. batman Interacts with Polycomb and trithorax Group Genes and Encodes a BTB/POZ Protein That Is Included in a Complex Containing GAGA Factor

    PubMed Central

    Faucheux, M.; Roignant, J.-Y.; Netter, S.; Charollais, J.; Antoniewski, C.; Théodore, L.

    2003-01-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes. PMID:12556479

  15. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, R.D. Jr.; Wessler, S.R.

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open readingmore » frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.« less

  16. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator

    PubMed Central

    Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin

    2016-01-01

    An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position–function relations were quantified for the terminator tR2 in Escherichia coli. The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE–distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. PMID:26602687

  17. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacentmore » to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.« less

  18. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

    PubMed Central

    Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.

    2014-01-01

    MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477

  19. PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings[W][OA

    PubMed Central

    Liu, Xuncheng; Chen, Chia-Yang; Wang, Ko-Ching; Luo, Ming; Tai, Ready; Yuan, Lianyu; Zhao, Minglei; Yang, Songguang; Tian, Gang; Cui, Yuhai; Hsieh, Hsu-Liang; Wu, Keqiang

    2013-01-01

    PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II–associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings. PMID:23548744

  20. 3'-UTR-located inverted Alu repeats facilitate mRNA translational repression and stress granule accumulation

    PubMed Central

    Fitzpatrick, Terry; Huang, Sui

    2012-01-01

    Alu repeats within human genes may potentially alter gene expression. Here, we show that 3′-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3′-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3′-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3′-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules. PMID:22688648

  1. Repression of the Low Affinity Iron Transporter Gene FET4

    PubMed Central

    Caetano, Soraia M.; Menezes, Regina; Amaral, Catarina; Rodrigues-Pousada, Claudina; Pimentel, Catarina

    2015-01-01

    Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake. PMID:26063801

  2. Bmi1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor

    PubMed Central

    Biehs, Brian; Hu, Jimmy Kuang-Hsien; Strauli, Nicolas B.; Sangiorgi, Eugenio; Jung, Heekyung; Heber, Ralf-Peter; Ho, Sunita; Goodwin, Alice F.; Dasen, Jeremy S.; Capecchi, Mario R.; Klein, Ophir D.

    2013-01-01

    The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs1, 2. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell cycle inhibitors p16ink4a and p19Arf3. However, deletion of Ink4a/Arf only partially rescues Bmi1 null phenotypes4, indicating that other important targets of BMI1 exist. Here, using the continuously-growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression, and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated1, 2, 5–7, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation. PMID:23728424

  3. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    PubMed

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  4. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...

    2017-02-15

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  5. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  6. On the presence and role of human gene-body DNA methylation

    PubMed Central

    Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King

    2012-01-01

    DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155

  7. Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development

    PubMed Central

    Xie, Huimin; Cherrington, Brian D.; Meadows, Jason D.; Witham, Emily A.

    2013-01-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at −114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program. PMID:23371388

  8. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development.

    PubMed

    Xie, Huimin; Cherrington, Brian D; Meadows, Jason D; Witham, Emily A; Mellon, Pamela L

    2013-03-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.

  9. Expression and regulation of the penicillin G acylase gene from Proteus rettgeri cloned in Escherichia coli.

    PubMed

    Daumy, G O; Williams, J A; McColl, A S; Zuzel, T J; Danley, D

    1986-10-01

    The penicillin G acylase genes from the Proteus rettgeri wild type and from a hyperproducing mutant which is resistant to succinate repression were cloned in Escherichia coli K-12. Expression of both wild-type and mutant P. rettgeri acylase genes in E. coli K-12 was independent of orientation in the cloning vehicle and apparently resulted from recognition in E. coli of the P. rettgeri promoter sequences. The P. rettgeri acylase was secreted into the E. coli periplasmic space and was composed of subunits electrophoretically identical to those made in P. rettgeri. Expression of these genes in E. coli K-12 was not repressed by succinate as it is in P. rettgeri. Instead, expression of the enzymes was regulated by glucose catabolite repression.

  10. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  11. Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants.

    PubMed

    Vozárová, Z; Žilová, M; Šubr, Z

    2015-12-01

    Viruses use both material and energy sources of their hosts and redirect the production of disposable compounds in order to make viral replication more efficient. Metabolism of infected organisms is modified by these enhanced requirements as well by their own defense response. Resulting complex story consists of many regulation events on various gene expression levels. Elucidating these processes may contribute to the knowledge on virus-host interactions and to evolving new antiviral strategies. In our work we applied a subtractive cloning technique to compare the transcriptomes of healthy and plum pox virus (PPV)-infected Nicotiana benthamiana plants. Several genes were found to be induced or repressed by the PPV infection. The induced genes were mainly related to general stress response or photosynthesis, several repressed genes could be connected with growth defects evoked by the infection. Interestingly, some genes usually up-regulated by fungal or bacterial infection were found repressed in PPV-infected plants. Potential involvement of particular differently expressed genes in the process of PPV infection is discussed.

  12. Herpes Simplex Virus Is Equipped with RNA- and Protein-Based Mechanisms To Repress Expression of ATRX, an Effector of Intrinsic Immunity

    PubMed Central

    Jurak, Igor; Silverstein, Leah B.; Sharma, Mayuri

    2012-01-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3′ untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection. PMID:22787211

  13. Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity.

    PubMed

    Jurak, Igor; Silverstein, Leah B; Sharma, Mayuri; Coen, Donald M

    2012-09-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.

  14. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression

    PubMed Central

    Luo, Michelle L.; Mullis, Adam S.; Leenay, Ryan T.; Beisel, Chase L.

    2015-01-01

    CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing and transcriptional regulation. Because these RNA-directed immune systems are found in most prokaryotes, an opportunity exists to harness the endogenous systems as convenient tools in these organisms. Here, we report that the Type I-E CRISPR-Cas system in Escherichia coli can be co-opted for programmable transcriptional repression. We found that deletion of the signature cas3 gene converted this immune system into a programmable gene regulator capable of reversible gene silencing of heterologous and endogenous genes. Targeting promoter regions yielded the strongest repression, whereas targeting coding regions showed consistent strand bias. Furthermore, multi-targeting CRISPR arrays could generate complex phenotypes. This strategy offers a simple approach to convert many endogenous Type I systems into transcriptional regulators, thereby expanding the available toolkit for CRISPR-mediated genetic control while creating new opportunities for genome-wide screens and pathway engineering. PMID:25326321

  15. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer.

    PubMed

    Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin

    2013-01-01

    The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.

  16. Opi1 mediates repression of phospholipid biosynthesis by phosphate limitation in the yeast Saccharomyces cerevisiae.

    PubMed

    Kliewe, Felix; Kumme, Jacqueline; Grigat, Mathias; Hintze, Stefan; Schüller, Hans-Joachim

    2017-02-01

    Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are transcribed when precursor molecules inositol and choline (IC) are limiting. Gene expression is stimulated by the heterodimeric activator Ino2/Ino4, which binds to ICRE (inositol/choline-responsive element) promoter sequences. Activation is prevented by repressor Opi1, counteracting Ino2 when high concentrations of IC are available. Here we show that ICRE-dependent gene activation is repressed not only by an excess of IC but also under conditions of phosphate starvation. While PHO5 is activated by phosphate limitation, INO1 expression is repressed about 10-fold. Repression of ICRE-dependent genes by low phosphate is no longer observed in an opi1 mutant while repression is still effective in mutants of the PHO regulon (pho4, pho80, pho81 and pho85). In contrast, gene expression with high phosphate is reduced in the absence of pleiotropic sensor protein kinase Pho85. We could demonstrate that Pho85 binds to Opi1 in vitro and in vivo and that this interaction is increased in the presence of high concentrations of phosphate. Interestingly, Pho85 binds to two separate domains of Opi1 which have been previously shown to recruit pleiotropic corepressor Sin3 and activator Ino2, respectively. We postulate that Pho85 positively influences ICRE-dependent gene expression by phosphorylation-dependent weakening of Opi1 repressor, affecting its functional domains required for promoter recruitment and corepressor interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Fine Time Course Expression Analysis Identifies Cascades of Activation and Repression and Maps a Putative Regulator of Mammalian Sex Determination

    PubMed Central

    Looger, Loren L.; Ohler, Uwe; Capel, Blanche

    2013-01-01

    In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E) 11.0–E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6) XY gonads showed a consistent ∼5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs) mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4) is a novel regulator of sex determination upstream of SF1 (Nr5a1), Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems. PMID:23874228

  18. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification.

    PubMed

    Gherardi, Samuele; Ripoche, Doriane; Mikaelian, Ivan; Chanal, Marie; Teinturier, Romain; Goehrig, Delphine; Cordier-Bussat, Martine; Zhang, Chang X; Hennino, Ana; Bertolino, Philippe

    2017-04-01

    Although Men1 is a well-known tumour suppressor gene, little is known about the functions of Menin, the protein it encodes for. Since few years, numerous publications support a major role of Menin in the control of epigenetics gene regulation. While Menin interaction with MLL complex favours transcriptional activation of target genes through H3K4me3 marks, Menin also represses gene expression via mechanisms involving the Polycomb repressing complex (PRC). Interestingly, Ezh2, the PRC-methyltransferase that catalyses H3K27me3 repressive marks and Menin have been shown to co-occupy a large number of promoters. However, lack of binding between Menin and Ezh2 suggests that another member of the PRC complex is mediating this indirect interaction. Having found that ActivinB - a TGFβ superfamily member encoded by the Inhbb gene - is upregulated in insulinoma tumours caused by Men1 invalidation, we hypothesize that Menin could directly participate in the epigenetic-repression of Inhbb gene expression. Using Animal model and cell lines, we report that loss of Menin is directly associated with ActivinB-induced expression both in vivo and in vitro. Our work further reveals that ActivinB expression is mediated through a direct modulation of H3K27me3 marks on the Inhbb locus in Menin-KO cell lines. More importantly, we show that Menin binds on the promoter of Inhbb gene where it favours the recruitment of Ezh2 via an indirect mechanism involving Akt-phosphorylation. Our data suggests therefore that Menin could take an important part to the Ezh2-epigenetic repressive landscape in many cells and tissues through its capacity to modulate Akt phosphorylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Polycomb Group Repression Reduces DNA Accessibility

    PubMed Central

    Fitzgerald, Daniel P.; Bender, Welcome

    2001-01-01

    The Polycomb group proteins are responsible for long-term repression of a number of genes in Drosophila melanogaster, including the homeotic genes of the bithorax complex. The Polycomb protein is thought to alter the chromatin structure of its target genes, but there has been little direct evidence for this model. In this study, the chromatin structure of the bithorax complex was probed with three separate assays for DNA accessibility: (i) activation of polymerase II (Pol II) transcription by Gal4, (ii) transcription by the bacteriophage T7 RNA polymerase (T7RNAP), and (iii) FLP-mediated site-specific recombination. All three processes are restricted or blocked in Polycomb-repressed segments. In contrast, control test sites outside of the bithorax complex permitted Gal4, T7RNAP, and FLP activities throughout the embryo. Several P insertions in the bithorax complex were tested, providing evidence that the Polycomb-induced effect is widespread over target genes. This accessibility effect is similar to that seen for SIR silencing in Saccharomyces cerevisiae. In contrast to SIR silencing, however, episomes excised from Polycomb-repressed chromosomal sites do not show an altered superhelix density. PMID:11533246

  20. Pax6 Exerts Regional Control of Cortical Progenitor Proliferation via Direct Repression of Cdk6 and Hypophosphorylation of pRb

    PubMed Central

    Mi, Da; Carr, Catherine B.; Georgala, Petrina A.; Huang, Yu-Ting; Manuel, Martine N.; Jeanes, Emily; Niisato, Emi; Sansom, Stephen N.; Livesey, Frederick J.; Theil, Thomas; Hasenpusch-Theil, Kerstin; Simpson, T. Ian; Mason, John O.; Price, David J.

    2013-01-01

    Summary The mechanisms by which early spatiotemporal expression patterns of transcription factors such as Pax6 regulate cortical progenitors in a region-specific manner are poorly understood. Pax6 is expressed in a gradient across the developing cortex and is essential for normal corticogenesis. We found that constitutive or conditional loss of Pax6 increases cortical progenitor proliferation by amounts that vary regionally with normal Pax6 levels. We compared the gene expression profiles of equivalent Pax6-expressing progenitors isolated from Pax6+/+ and Pax6−/− cortices and identified many negatively regulated cell-cycle genes, including Cyclins and Cdks. Biochemical assays indicated that Pax6 directly represses Cdk6 expression. Cyclin/Cdk repression inhibits retinoblastoma protein (pRb) phosphorylation, thereby limiting the transcription of genes that directly promote the mechanics of the cell cycle, and we found that Pax6 inhibits pRb phosphorylation and represses genes involved in DNA replication. Our results indicate that Pax6’s modulation of cortical progenitor cell cycles is regional and direct. PMID:23622063

  1. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  2. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance

    PubMed Central

    Shah, Suharsh; Altonsy, Mohammed O.; Gerber, Antony N.

    2017-01-01

    Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. PMID:28283576

  3. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants.

    PubMed Central

    Tsai, F Y; Coruzzi, G

    1991-01-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a "normal" light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic in nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants. Images PMID:1681424

  4. L-rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake.

    PubMed

    Tamayo-Ramos, Juan A; Flipphi, Michel; Pardo, Ester; Manzanares, Paloma; Orejas, Margarita

    2012-02-21

    Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE) encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA). Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE). The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a novel CreA-independent mechanism. The identification of rhaE and the characterization of its regulation will facilitate the design of strategies to overproduce the encoded enzyme - or homologs from other fungi - for industrial applications. Moreover, A. nidulans α-L-rhamnosidase encoding genes could serve as prototypes for fungal genes coding for plant cell wall degrading enzymes regulated by a novel mechanism of CCR.

  5. L-Rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake

    PubMed Central

    2012-01-01

    Background Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE) encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA). Results Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE). The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. Conclusions The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a novel CreA-independent mechanism. The identification of rhaE and the characterization of its regulation will facilitate the design of strategies to overproduce the encoded enzyme - or homologs from other fungi - for industrial applications. Moreover, A. nidulans α-L-rhamnosidase encoding genes could serve as prototypes for fungal genes coding for plant cell wall degrading enzymes regulated by a novel mechanism of CCR. PMID:22353731

  6. Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor gamma transactivation.

    PubMed

    Xie, Yuan-Bin; Park, Jeong-Hoh; Kim, Don-Kyu; Hwang, Jung Hwan; Oh, Sangmi; Park, Seung Bum; Shong, Minho; Lee, In-Kyu; Choi, Hueng-Sik

    2009-10-16

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4alpha. Here we show that SMILE also represses estrogen receptor-related receptor gamma (ERRgamma) transactivation. Knockdown of SMILE gene expression increases ERRgamma activity. SMILE directly interacts with ERRgamma in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRgamma. SMILE represses ERRgamma transactivation partially through competition with coactivators PGC-1alpha, PGC-1beta, and GRIP1. Interestingly, the repression of SMILE on ERRgamma is released by SIRT1 inhibitors, a catalytically inactive SIRT1 mutant, and SIRT1 small interfering RNA but not by histone protein deacetylase inhibitor. In vivo glutathione S-transferase pulldown and coimmunoprecipitation assays validated that SMILE physically interacts with SIRT1. Furthermore, the ERRgamma inverse agonist GSK5182 enhances the interaction of SMILE with ERRgamma and SMILE-mediated repression. Knockdown of SMILE or SIRT1 blocks the repressive effect of GSK5182. Moreover, chromatin immunoprecipitation assays revealed that GSK5182 augments the association of SMILE and SIRT1 on the promoter of the ERRgamma target PDK4. GSK5182 and adenoviral overexpression of SMILE cooperate to repress ERRgamma-induced PDK4 gene expression, and this repression is released by overexpression of a catalytically defective SIRT1 mutant. Finally, we demonstrated that ERRgamma regulates SMILE gene expression, which in turn inhibits ERRgamma. Overall, these findings implicate SMILE as a novel corepressor of ERRgamma and recruitment of SIRT1 as a novel repressive mechanism for SMILE and ERRgamma inverse agonist.

  7. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    PubMed

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  8. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process.

    PubMed

    Zimmermann, F K; Kaufmann, I; Rasenberger, H; Haubetamann, P

    1977-02-28

    A recessive mutant cat1-1, wild type CAT1, was isolated in Saccharomyces cerevisiae. It did not grow on glycerol nor ferment maltose even with fully constitutive, glucose resistant maltase synthesis. It prevented derepression of isocitrate lyase, fructose-1,6-diphosphatase and maltase in a constitutive but glucose sensitive maltase mutant. Derepression of malate dehydrogenase was retarded and slowed down. Sucrose fermentation and invertase synthesis was not affected. Respiration was normal. From this mutant, two reverse mutants were isolated. One was recessive, acted as a suppressor of cat1-1 and was called cat2-1, wild type CAT2; the other was dominant and allelic to CAT1 and designated CAT1-2d and cat2-1 caused an earlier derepression of enzymes studied but did not affect the repressed nor the fully derepressed enzyme levels. CAT1-2d and cat2-1 did not show any additive effects. It is proposed that carbon catabolite repression acts in two ways. The direct way represses synthesis of sensitive enzymes, during growth on repressing carbon sources whereas the other way regulates the derepression process. After alleviation of carbon catabolite repression, gene CAT1 becomes active and prevents the activity of CAT2 which functions as a repressor of sensitive enzyme synthesis. The CAT2 gene product has to be eliminated before derepression can actually occur. The time required for this causes a delay in derepression after the depletion of a repressible carbon source. cat1-1 cannot block CAT2 activity and therefore, derepression is blocked. cat2-1 is inactive and derepression can start after carbon catabolite repression has ceased. CAT1-2d permanently active as a repressor of CAT2 and eliminates the delay in derepression.

  9. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    PubMed

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.

  10. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription

    PubMed Central

    Baribault, Carl; Ehrlich, Kenneth C.; Ponnaluri, V. K. Chaithanya; Pradhan, Sriharsa; Lacey, Michelle; Ehrlich, Melanie

    2018-01-01

    ABSTRACT DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development. PMID:29498561

  11. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator.

    PubMed

    Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin

    2016-04-07

    An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position-function relations were quantified for the terminator tR2 in Escherichia coli The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE-distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE PAGES

    Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...

    2017-01-17

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  13. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yan; Richardson, Sarah; Yan, Jingwei

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  14. Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p.

    PubMed

    Santiago, Teresa C; Mamoun, Choukri Ben

    2003-10-03

    In Saccharomyces cerevisiae, genes encoding phospholipid-synthesizing enzymes are regulated by inositol and choline (IC). The current model suggests that when these precursors become limiting, the transcriptional complex Ino2p-Ino4p activates the expression of these genes, whereas repression requires Opi1p and occurs when IC are available. In this study, microarray-based expression analysis was performed to assess the global transcriptional response to IC in a wild-type strain and in the opi1delta, ino2delta, and ino4delta null mutant strains. Fifty genes were either activated or repressed by IC in the wild-type strain, including three already known IC-repressed genes. We demonstrated that the IC response was not limited to genes involved in membrane biogenesis, but encompassed various metabolic pathways such as biotin synthesis, one-carbon compound metabolism, nitrogen-containing compound transport and degradation, cell wall organization and biogenesis, and acetyl-CoA metabolism. The expression of a large number of IC-regulated genes did not change in the opi1delta, ino2delta, and ino4delta strains, thus implicating new regulatory elements in the IC response. Our studies revealed that Opi1p, Ino2p, and Ino4p have dual regulatory activities, acting in both positive and negative transcriptional regulation of a large number of genes, most of which are not regulated by IC and only a subset of which is involved in membrane biogenesis. These data provide the first global response profile of yeast to IC and reveal novel regulatory mechanisms by these precursors.

  15. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    PubMed Central

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2015-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336

  16. Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo

    PubMed Central

    Yallowitz, Alisha R.; Gong, Ke-Qin; Swinehart, Ilea T.; Nelson, Lisa T.; Wellik, Deneen M.

    2009-01-01

    Summary Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity is poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins. PMID:19716816

  17. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis

    PubMed Central

    Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei

    2016-01-01

    The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403

  18. Repression by Homeoprotein Pitx1 of Virus-Induced Interferon A Promoters Is Mediated by Physical Interaction and trans Repression of IRF3 and IRF7

    PubMed Central

    Island, Marie-Laure; Mesplede, Thibault; Darracq, Nicole; Bandu, Marie-Thérèse; Christeff, Nicolas; Djian, Philippe; Drouin, Jacques; Navarro, Sébastien

    2002-01-01

    Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases. On the other hand, Pitx1 inhibits the IRF3 and IRF7 transcriptional activity of the IFN-A11 and IFN-A5 promoters and interacts physically with IRF3 and IRF7. Pitx1 trans-repression activity maps to specific C-terminal domains, and the Pitx1 homeodomain is involved in physical interaction with IRF3 or IRF7. IRF3 is able to bind to the antisilencer region of the IFN-A4 promoter, which overrides the repressive activity of Pitx1. These results indicate that interaction between the Pitx1 homeodomain and IRF3 or IRF7 and the ability of the Pitx1 C-terminal repressor domains to block IFN-A11 and IFN-A5 but not IFN-A4 promoter activities may contribute to our understanding of the complex differential transcriptional activation, repression, and antirepression of the IFN-A genes. PMID:12242290

  19. Epigenetic regulation of oligodendrocyte identity

    PubMed Central

    Liu, Jia; Casaccia, Patrizia

    2010-01-01

    The interplay of transcription factors and epigenetic modifiers, including histone modifications, DNA methylation and microRNAs during development is essential for the acquisition of specific cell fates. Here we review the epigenetic “programming” of stem cells into oligodendrocytes, by analyzing three sequential stages of lineage progression. The first transition from pluripotent stem cell to neural precursor is characterized by repression of pluripotency genes and restriction of the lineage potential to the neural fate. The second transition from multipotential precursor to oligodendrocyte progenitor is associated with the progressive loss of plasticity and the repression of neuronal and astrocytic genes. The last step of differentiation of oligodendrocyte progenitors into myelin-forming cells is defined by a model of de-repression of myelin genes. PMID:20227775

  20. A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression.

    PubMed

    Kutney, Sara N; Hong, Rui; Macfarlan, Todd; Chakravarti, Debabrata

    2004-07-16

    Various post-translational modifications of histones significantly influence gene transcription. Although un- or hypoacetylated histones are tightly linked to transcriptional repression, the mechanisms and identities of chromatin signal transducer proteins integrating histone hypoacetylation into repression in humans have remained largely unknown. Here we show that the mammalian histone-binding proteins and inhibitor of acetyltransferases (INHAT) complex subunits, Set/template-activating factor-Ibeta (TAF-Ibeta) and pp32, specifically bind to unacetylated, hypoacetylated, and repressively marked histones but not to hyperacetylated histones. Additionally, Set/TAF-Ibeta and pp32 associate with histone deacetylases in vitro and in vivo and repress transcription from a chromatin-integrated template in vivo. Finally, Set/TAF-Ibeta and pp32 associate with an endogenous estrogen receptor-regulated gene, EB1, in the hypoacetylated transcriptionally inactive state but not with the hyperacetylated transcriptionally active form. Together, these data define a novel in vivo mechanistic role for the mammalian Set/TAF-Ibeta and pp32 proteins as transducers of chromatin signaling by integrating chromatin hypoacetylation and transcriptional repression.

  1. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance.

    PubMed

    Newton, Robert; Shah, Suharsh; Altonsy, Mohammed O; Gerber, Antony N

    2017-04-28

    Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression.

    PubMed

    Khadjeh, Sara; Turetzek, Natascha; Pechmann, Matthias; Schwager, Evelyn E; Wimmer, Ernst A; Damen, Wim G M; Prpic, Nikola-Michael

    2012-03-27

    Evolution often results in morphologically similar solutions in different organisms, a phenomenon known as convergence. However, there is little knowledge of the processes that lead to convergence at the genetic level. The genes of the Hox cluster control morphology in animals. They may also be central to the convergence of morphological traits, but whether morphological similarities also require similar changes in Hox gene function is disputed. In arthropods, body subdivision into a region with locomotory appendages ("thorax") and a region with reduced appendages ("abdomen") has evolved convergently in several groups, e.g., spiders and insects. In insects, legs develop in the expression domain of the Hox gene Antennapedia (Antp), whereas the Hox genes Ultrabithorax (Ubx) and abdominal-A mediate leg repression in the abdomen. Here, we show that, unlike Antp in insects, the Antp gene in the spider Achaearanea tepidariorum represses legs in the first segment of the abdomen (opisthosoma), and that Antp and Ubx are redundant in the following segment. The down-regulation of Antp in A. tepidariorum leads to a striking 10-legged phenotype. We present evidence from ectopic expression of the spider Antp gene in Drosophila embryos and imaginal tissue that this unique function of Antp is not due to changes in the Antp protein, but likely due to divergent evolution of cofactors, Hox collaborators or target genes in spiders and flies. Our results illustrate an interesting example of convergent evolution of abdominal leg repression in arthropods by altering the role of distinct Hox genes at different levels of their action.

  3. The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation.

    PubMed

    Huang, Daosheng; Guo, Guoji; Yuan, Ping; Ralston, Amy; Sun, Lingang; Huss, Mikael; Mistri, Tapan; Pinello, Luca; Ng, Huck Hui; Yuan, Guocheng; Ji, Junfeng; Rossant, Janet; Robson, Paul; Han, Xiaoping

    2017-12-07

    The first cellular differentiation event in mouse development leads to the formation of the blastocyst consisting of the inner cell mass (ICM) and trophectoderm (TE). The transcription factor CDX2 is required for proper TE specification, where it promotes expression of TE genes, and represses expression of Pou5f1 (OCT4). However its downstream network in the developing embryo is not fully characterized. Here, we performed high-throughput single embryo qPCR analysis in Cdx2 null embryos to identify CDX2-regulated targets in vivo. To identify genes likely to be regulated by CDX2 directly, we performed CDX2 ChIP-Seq on trophoblast stem (TS) cells. In addition, we examined the dynamics of gene expression changes using inducible CDX2 embryonic stem (ES) cells, so that we could predict which CDX2-bound genes are activated or repressed by CDX2 binding. By integrating these data with observations of chromatin modifications, we identify putative novel regulatory elements that repress gene expression in a lineage-specific manner. Interestingly, we found CDX2 binding sites within regulatory elements of key pluripotent genes such as Pou5f1 and Nanog, pointing to the existence of a novel mechanism by which CDX2 maintains repression of OCT4 in trophoblast. Our study proposes a general mechanism in regulating lineage segregation during mammalian development.

  4. The Arabidopsis BRAHMA Chromatin-Remodeling ATPase Is Involved in Repression of Seed Maturation Genes in Leaves1[W][OA

    PubMed Central

    Tang, Xurong; Hou, Anfu; Babu, Mohan; Nguyen, Vi; Hurtado, Lidia; Lu, Qing; Reyes, Jose C.; Wang, Aiming; Keller, Wilfred A.; Harada, John J.; Tsang, Edward W.T.; Cui, Yuhai

    2008-01-01

    Synthesis and accumulation of seed storage proteins (SSPs) is an important aspect of the seed maturation program. Genes encoding SSPs are specifically and highly expressed in the seed during maturation. However, the mechanisms that repress the expression of these genes in leaf tissue are not well understood. To gain insight into the repression mechanisms, we performed a genetic screen for mutants that express SSPs in leaves. Here, we show that mutations affecting BRAHMA (BRM), a SNF2 chromatin-remodeling ATPase, cause ectopic expression of a subset of SSPs and other embryogenesis-related genes in leaf tissue. Consistent with the notion that such SNF2-like ATPases form protein complexes in vivo, we observed similar phenotypes for mutations of AtSWI3C, a BRM-interacting partner, and BSH, a SNF5 homolog and essential SWI/SNF subunit. Chromatin immunoprecipitation experiments show that BRM is recruited to the promoters of a number of embryogenesis genes in wild-type leaves, including the 2S genes, expressed in brm leaves. Consistent with its role in nucleosome remodeling, BRM appears to affect the chromatin structure of the At2S2 promoter. Thus, the BRM-containing chromatin-remodeling ATPase complex involved in many aspects of plant development mediates the repression of SSPs in leaf tissue. PMID:18508955

  5. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  6. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  7. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  8. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae

    PubMed Central

    Salusjärvi, Laura; Kankainen, Matti; Soliymani, Rabah; Pitkänen, Juha-Pekka; Penttilä, Merja; Ruohonen, Laura

    2008-01-01

    Background Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose. Results Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells. Conclusion The results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains. Phosphorylation of different isoforms of glycolytic enzymes suggests that regulation of glycolysis also occurred at a post-translational level, supporting prior findings. PMID:18533012

  9. Cyclic di-GMP regulation of the bvg-repressed genes and the orphan response regulator RisA in Bordetella pertussis

    USDA-ARS?s Scientific Manuscript database

    Expression of Bordetella pertussis virulence factors is activated by the BvgAS two-component system. Under modulating growth conditions BvgAS indirectly represses another set of genes through the action of BvgR, a bvg-activated protein. BvgR blocks activation of the response regulator RisA which is ...

  10. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently ofmore » its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.« less

  11. Epimutation and cancer: A new carcinogenic mechanism of Lynch syndrome

    PubMed Central

    BANNO, KOUJI; KISU, IORI; YANOKURA, MEGUMI; TSUJI, KOSUKE; MASUDA, KENTA; UEKI, ARISA; KOBAYASHI, YUSUKE; YAMAGAMI, WATARU; NOMURA, HIROYUKI; TOMINAGA, EIICHIRO; SUSUMU, NOBUYUKI; AOKI, DAISUKE

    2012-01-01

    Epimutation is defined as abnormal transcriptional repression of active genes and/or abnormal activation of usually repressed genes caused by errors in epigenetic gene repression. Epimutation arises in somatic cells and the germline, and constitutional epimutation may also occur. Epimutation is the first step of tumorigenesis and can be a direct cause of carcinogenesis. Cancers associated with epimutation include Lynch syndrome (hereditary non-polyposis colorectal cancer, HNPCC), chronic lymphocytic leukemia, breast cancer and ovarian cancer. Epimutation has been shown for many tumor suppressor genes, including RB, VHL, hMLH1, APC and BRCA1, in sporadic cancers. Methylation has recently been shown in DNA from normal tissues and peripheral blood in cases of sporadic colorectal cancer and many studies show constitutive epimutation in cancers. Epimutation of DNA mismatch repair (MMR) genes (BRCA1, hMLH1 and hMSH2) involved in development familial cancers has also been found. These results have led to a focus on epimutation as a novel oncogenic mechanism. PMID:22735547

  12. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    PubMed

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Specific repression of β-globin promoter activity by nuclear ferritin

    PubMed Central

    Broyles, Robert H.; Belegu, Visar; DeWitt, Christina R.; Shah, Sandeep N.; Stewart, Charles A.; Pye, Quentin N.; Floyd, Robert A.

    2001-01-01

    Developmental hemoglobin switching involves sequential globin gene activations and repressions that are incompletely understood. Earlier observations, described herein, led us to hypothesize that nuclear ferritin is a repressor of the adult β-globin gene in embryonic erythroid cells. Our data show that a ferritin-family protein in K562 cell nuclear extracts binds specifically to a highly conserved CAGTGC motif in the β-globin promoter at −153 to −148 bp from the cap site, and mutation of the CAGTGC motif reduces binding 20-fold in competition gel-shift assays. Purified human ferritin that is enriched in ferritin-H chains also binds the CAGTGC promoter segment. Expression clones of ferritin-H markedly repress β-globin promoter-driven reporter gene expression in cotransfected CV-1 cells in which the β-promoter has been stimulated with the transcription activator erythroid Krüppel-like factor (EKLF). We have constructed chloramphenicol acetyltransferase reporter plasmids containing either a wild-type or mutant β-globin promoter for the −150 CAGTGC motif and have compared the constructs for susceptibility to repression by ferritin-H in cotransfection assays. We find that stimulation by cotransfected EKLF is retained with the mutant promoter, whereas repression by ferritin-H is lost. Thus, mutation of the −150 CAGTGC motif not only markedly reduces in vitro binding of nuclear ferritin but also abrogates the ability of expressed ferritin-H to repress this promoter in our cell transfection assay, providing a strong link between DNA binding and function, and strong support for our proposal that nuclear ferritin-H is a repressor of the human β-globin gene. Such a repressor could be helpful in treating sickle cell and other genetic diseases. PMID:11481480

  14. Genome-nuclear lamina interactions and gene regulation.

    PubMed

    Kind, Jop; van Steensel, Bas

    2010-06-01

    The nuclear lamina, a filamentous protein network that coats the inner nuclear membrane, has long been thought to interact with specific genomic loci and regulate their expression. Molecular mapping studies have now identified large genomic domains that are in contact with the lamina. Genes in these domains are typically repressed, and artificial tethering experiments indicate that the lamina can actively contribute to this repression. Furthermore, the lamina indirectly controls gene expression in the nuclear interior by sequestration of certain transcription factors. A variety of DNA-binding and chromatin proteins may anchor specific loci to the lamina, while histone-modifying enzymes partly mediate the local repressive effect of the lamina. Experimental tools are now available to begin to unravel the underlying molecular mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b

    PubMed Central

    Moravec, Cara E.; Samuel, John; Weng, Wei; Wood, Ian C.

    2016-01-01

    During embryonic development, regulation of gene expression is key to creating the many subtypes of cells that an organism needs throughout its lifetime. Recent work has shown that maternal genetics and environmental factors have lifelong consequences on diverse processes ranging from immune function to stress responses. The RE1-silencing transcription factor (Rest) is a transcriptional repressor that interacts with chromatin-modifying complexes to repress transcription of neural-specific genes during early development. Here we show that in zebrafish, maternally supplied rest regulates expression of target genes during larval development and has lifelong impacts on behavior. Larvae deprived of maternal rest are hyperactive and show atypical spatial preferences. Adult male fish deprived of maternal rest present with atypical spatial preferences in a novel environment assay. Transcriptome sequencing revealed 158 genes that are repressed by maternal rest in blastula stage embryos. Furthermore, we found that maternal rest is required for target gene repression until at least 6 dpf. Importantly, disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that recapitulate the hyperactivity phenotype caused by absence of maternal rest. Both maternal rest mutants and snap25a RE1 site mutants have altered primary motor neuron architecture that may account for the enhanced locomotor activity. These results demonstrate that maternal rest represses snap25a/b to modulate larval behavior and that early Rest activity has lifelong behavioral impacts. SIGNIFICANCE STATEMENT Maternal factors deposited in the oocyte have well-established roles during embryonic development. We show that, in zebrafish, maternal rest (RE1-silencing transcription factor) regulates expression of target genes during larval development and has lifelong impacts on behavior. The Rest transcriptional repressor interacts with chromatin-modifying complexes to limit transcription of neural genes. We identify several synaptic genes that are repressed by maternal Rest and demonstrate that snap25a/b are key targets of maternal rest that modulate larval locomotor activity. These results reveal that zygotic rest is unable to compensate for deficits in maternally supplied rest and uncovers novel temporal requirements for Rest activity, which has implications for the broad roles of Rest-mediated repression during neural development and in disease states. PMID:27605615

  16. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression.

    PubMed

    van Steensel, Bas; Belmont, Andrew S

    2017-05-18

    In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63

    PubMed Central

    Testoni, Barbara; Mantovani, Roberto

    2006-01-01

    p63 is a developmentally regulated transcription factor related to p53, which activates and represses specific genes. The human AEC (Ankyloblepharon–Ectodermal dysplasia-Clefting) and EEC (Ectrodactyly–Ectodermal dysplasia–Cleft lip/palate) syndromes are caused by missense mutations of p63, within the DNA-binding domain (EEC) or in the C-terminal sterile alpha motif domain (AEC). We show here that p63 represses transcription of cell-cycle G2/M genes by binding to multiple CCAAT core promoters in immortalized and primary keratinocytes. The CCAAT-activator NF-Y and ΔNp63α are associated in vivo and a conserved α-helix of the NF-YC histone fold is required. p63 AEC mutants, but not an EEC mutant, are incapable to bind NF-Y. ΔNp63α, but not the AEC mutants repress CCAAT-dependent transcription of G2/M genes. Chromatin immunoprecipitation recruitment assays establish that the AEC mutants are not recruited to G2/M promoters, while normally present on 14-3-3σ, which contains a sequence-specific binding site. Surprisingly, the EEC C306R mutant activates transcription. Upon keratinocytes differentiation, NF-Y and p63 remain bound to G2/M promoters, while HDACs are recruited, histones deacetylated, Pol II displaced and transcription repressed. Our data indicate that NF-Y is a molecular target of p63 and that inhibition of growth activating genes upon differentiation is compromised by AEC missense mutations. PMID:16473849

  18. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    PubMed Central

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  19. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa

    PubMed Central

    Wulf, Alexander; Campagne, Sébastien; Pei, Xue-Yuan; Forlani, Giada; Prindl, Konstantin; Abdou, Laetitia; Resch, Armin; Allain, Frederic H -T; Luisi, Ben F; Urlaub, Henning

    2018-01-01

    Abstract In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources. PMID:29244160

  20. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa.

    PubMed

    Sonnleitner, Elisabeth; Wulf, Alexander; Campagne, Sébastien; Pei, Xue-Yuan; Wolfinger, Michael T; Forlani, Giada; Prindl, Konstantin; Abdou, Laetitia; Resch, Armin; Allain, Frederic H-T; Luisi, Ben F; Urlaub, Henning; Bläsi, Udo

    2018-02-16

    In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.

  1. Structure and Function of the Macrolide Biosensor Protein, MphR(A), with and without Erythromycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianting; Sagar, Vatsala; Smolinsky, Adam

    2009-09-02

    The regulatory protein MphR(A) has recently seen extensive use in synthetic biological applications, such as metabolite sensing and exogenous control of gene expression. This protein negatively regulates the expression of a macrolide 2{prime}-phosphotransferase I resistance gene (mphA) via binding to a 35-bp DNA operator upstream of the start codon and is de-repressed by the presence of erythromycin. Here, we present the refined crystal structure of the MphR(A) protein free of erythromycin and that of the MphR(A) protein with bound erythromycin at 2.00- and 1.76-{angstrom} resolutions, respectively. We also studied the DNA binding properties of the protein and identified mutants ofmore » MphR(A) that are defective in gene repression and ligand binding in a cell-based reporter assay. The combination of these two structures illustrates the molecular basis of erythromycin-induced gene expression and provides a framework for additional applied uses of this protein in the isolation and engineered biosynthesis of polyketide natural products.« less

  2. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1

    PubMed Central

    Krishnan, Vaishnav; Stoppel, David C.; Nong, Yi; Johnson, Mark A.; Nadler, Monica J.S.; Ozkaynak, Ekim; Teng, Brian L.; Nagakura, Ikue; Mohammad, Fahim; Silva, Michael A.; Peterson, Sally; Cruz, Tristan J.; Kasper, Ekkehard M.; Arnaout, Ramy; Anderson, Matthew P.

    2017-01-01

    Summary Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant autism linked to increased gene dosages of UBE3A, which both possesses ubiquitin-ligase and transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus down-regulates glutamatergic synapse organizer cerebellin-1 (Cbln1) that is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases of UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA) where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activations of, or Cbln1 restorations in VTA glutamatergic neurons rescues sociability deficits induced by Ube3a and/or seizures. Our results suggest a gene × seizure interaction in VTA glutamatergic neurons that impairs sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes. PMID:28297715

  3. Expression of bvg-repressed genes in Bordetella pertussis is controlled by RisA through a novel c-di-GMP signaling pathway

    USDA-ARS?s Scientific Manuscript database

    The BvgAS two component system of Bordetella pertussis controls virulence factor expression. In addition, BvgAS controls expression of the bvg-repressed genes through the action of the repressor, BvgR. The transcription factor RisA is inhibited by BvgR, and when BvgR is not expressed RisA induces th...

  4. Multiple Genes Repress Motility in Uropathogenic Escherichia coli Constitutively Expressing Type 1 Fimbriae▿ †

    PubMed Central

    Simms, Amy N.; Mobley, Harry L. T.

    2008-01-01

    Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression. PMID:18359812

  5. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    PubMed

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  6. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    PubMed Central

    Battistelli, C; Cicchini, C; Santangelo, L; Tramontano, A; Grassi, L; Gonzalez, F J; de Nonno, V; Grassi, G; Amicone, L; Tripodi, M

    2017-01-01

    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT. PMID:27452518

  7. The Critical, Clinical Role of Interferon-Beta in Regulating Cancer Stem Cell Properties in Triple-Negative Breast Cancer.

    PubMed

    Doherty, Mary R; Jackson, Mark W

    2018-05-11

    Triple-negative breast cancer (TNBC) the deadliest form of this disease currently lacks a targeted therapy and is characterized by increased risk of metastasis and presence of therapeutically resistant cancer stem cells (CSC). Recent evidence has demonstrated that the presence of an interferon (IFN)/signal transducer of activated transcription 1 (STAT1) gene signature correlates with improved therapeutic response and overall survival in TNBC patients. In agreement with these clinical observations, our recent work has demonstrated, in a cell model of TNBC that CSC have intrinsically repressed IFN signaling. Administration of IFN-β represses CSC properties, inducing a less aggressive non-CSC state. Moreover, an elevated IFN-β gene signature correlated with repressed CSC-related genes and an increased presence of tumor-infiltrating lymphocytes in TNBC specimens. We therefore propose that IFN-β be considered as a potential therapeutic option in the treatment of TNBC, to repress the CSC properties responsible for therapy failure. Future studies aim to improve methods to target delivery of IFN-β to tumors, to maximize therapeutic efficacy while minimizing systemic side effects.

  8. Epstein-Barr Virus (EBV) Latent Protein EBNA3A Directly Targets and Silences the STK39 Gene in B Cells Infected by EBV.

    PubMed

    Bazot, Quentin; Paschos, Kostas; Allday, Martin J

    2018-04-01

    Epstein-Barr virus (EBV) establishes latent infection in human B cells and is associated with a wide range of cancers. The EBV nuclear antigen 3 (EBNA3) family proteins are critical for B cell transformation and function as transcriptional regulators. It is well established that EBNA3A and EBNA3C cooperate in the regulation of cellular genes. Here, we demonstrate that the gene STK39 is repressed only by EBNA3A. This is the first example of a gene regulated only by EBNA3A in EBV-transformed lymphoblastoid cell lines (LCLs) without the help of EBNA3C. This was demonstrated using a variety of LCLs carrying either knockout, revertant, or conditional EBNA3 recombinants. Investigating the kinetics of EBNA3A-mediated changes in STK39 expression showed that STK39 becomes derepressed quickly after EBNA3A inactivation. This derepression is reversible as EBNA3A reactivation represses STK39 in the same cells expressing a conditional EBNA3A. STK39 is silenced shortly after primary B cell infection by EBV, and no STK39 -encoded protein (SPAK) is detected 3 weeks postinfection. Chromatin immunoprecipitation (ChIP) analysis indicates that EBNA3A directly binds to a regulatory region downstream of the STK39 transcription start site. For the first time, we demonstrated that the polycomb repressive complex 2 with the deposition of the repressive mark H3K27me3 is not only important for the maintenance of an EBNA3A target gene ( STK39 ) but is also essential for the initial establishment of its silencing. Finally, we showed that DNA methyltransferases are involved in the EBNA3A-mediated repression of STK39 IMPORTANCE EBV is well known for its ability to transform B lymphocytes to continuously proliferating lymphoblastoid cell lines. This is achieved in part by the reprogramming of cellular gene transcription by EBV transcription factors, including the EBNA3 proteins that play a crucial role in this process. In the present study, we found that EBNA3A epigenetically silences STK39 This is the first gene where EBNA3A has been found to exert its repressive role by itself, without needing its coregulators EBNA3B and EBNA3C. Furthermore, we demonstrated that the polycomb repressor complex is essential for EBNA3A-mediated repression of STK39 Findings in this study provide new insights into the regulation of cellular genes by the transcription factor EBNA3A. Copyright © 2018 Bazot et al.

  9. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  10. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation.

    PubMed

    Sun, Guoqiang; Yu, Ruth T; Evans, Ronald M; Shi, Yanhong

    2007-09-25

    TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to TLX residues 359-385, which contains a conserved nuclear receptor-coregulator interaction motif IXXLL. Both HDAC3 and HDAC5 have been shown to be recruited to the promoters of TLX target genes along with TLX in neural stem cells. Recruitment of HDACs led to transcriptional repression of TLX target genes, the cyclin-dependent kinase inhibitor, p21(CIP1/WAF1)(p21), and the tumor suppressor gene, pten. Either inhibition of HDAC activity or knockdown of HDAC expression led to marked induction of p21 and pten gene expression and dramatically reduced neural stem cell proliferation, suggesting that the TLX-interacting HDACs play an important role in neural stem cell proliferation. Moreover, expression of a TLX peptide containing the minimal HDAC5 interaction domain disrupted the TLX-HDAC5 interaction. Disruption of this interaction led to significant induction of p21 and pten gene expression and to dramatic inhibition of neural stem cell proliferation. Taken together, these findings demonstrate a mechanism for neural stem cell proliferation through transcriptional repression of p21 and pten gene expression by TLX-HDAC interactions.

  11. O-GlcNAc cycling: Emerging Roles in Development and Epigenetics

    PubMed Central

    Love, Dona C.; Krause, Michael W.; Hanover, John A.

    2010-01-01

    The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These ‘evo-devo’ relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the ‘vicious cycle’ observed in children of mothers with type-2 diabetes and metabolic disease. PMID:20488252

  12. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei.

    PubMed

    Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A M

    2013-01-01

    Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.

  13. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security1[OPEN

    PubMed Central

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J.

    2016-01-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  14. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security.

    PubMed

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J; Friedman, Haya

    2016-05-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Hidden among the crowd: differential DNA methylation-expression correlations in cancer occur at important oncogenic pathways.

    PubMed

    Mosquera Orgueira, Adrián

    2015-01-01

    DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression.

  16. Counterselection method based on conditional silencing of antitoxin genes in Escherichia coli.

    PubMed

    Tsukuda, Miyuki; Nakashima, Nobutaka; Miyazaki, Kentaro

    2015-11-01

    Counterselection is a genetic engineering technique to eliminate specific genetic fragments containing selectable marker genes. Although the technique is widely used in bacterial genome engineering and plasmid curing experiments, the repertoire of the markers usable in Escherichia coli is limited. Here we developed a novel counterselection method in E. coli based on antisense RNA (asRNA) technology directed against toxin-antitoxin (TA) modules. Under normal conditions, excess antitoxin neutralizes its cognate toxin and thus the module is stably maintained in the genome. We hypothesised that repression of an antitoxin gene would perturb cell growth due to the toxin being released. We designed asRNAs corresponding to all 19 type II antitoxins encoded in the E. coli genome. asRNAs were then conditionally expressed; repression of MqsA in the MqsR/MqsA module had the greatest inhibitory effect, followed by RnlB in the RnlA/RnlB module. The utility of asRNA(MqsA) as a counterselection marker was demonstrated by efficient plasmid curing and strain improvement experiments. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.

    PubMed Central

    Monedero, V; Gosalbes, M J; Pérez-Martínez, G

    1997-01-01

    The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria. PMID:9352913

  18. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    PubMed

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    PubMed

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation. Copyright © 2017 American Society for Microbiology.

  20. An Arabidopsis mutant showing reduced feedback inhibition of photosynthesis.

    PubMed

    Van Oosten, J J; Gerbaud, A; Huijser, C; Dijkwel, P P; Chua, N H; Smeekens, S C

    1997-11-01

    Many plant genes are responsive to sugars but the mechanisms used by plants to sense sugars are unknown. A genetic approach has been used in Arabidopsis to identify genes involved in perception and transduction of sugar signals. For this purpose, an in vivo reporter system was established consisting of the light- and sugar-regulated plastocyanin promoter, fused to the luciferase coding sequence (PC-LUC construct). At the seedling stage, expression of the PC-LUC gene is repressed by sucrose, and a number of sucrose-uncoupled (sun) mutants were selected in which sucrose is unable to repress the activity of the PC promoter. Three mutants have been characterized in more detail. The sugar analog 2-deoxy-D-glucose (2DG) was used to repress whole plant photosynthesis, PC-LUC gene expression and total ribulose-1,5-bisphosphate activity. It was found that the sun6 mutation makes plants unresponsive to these 2DG-induced effects. Moreover, unlike wild-type plants, sun6 mutants are insensitive to elevated levels of glucose in the growth medium. These findings suggest that the SUN6 gene is active in a hexose-activated signal transduction pathway.

  1. Nitrogen Metabolite Repression of Metabolism and Virulence in the Human Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.

    2011-01-01

    Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208

  2. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  3. The Ku Protein Complex Interacts with YY1, Is Up-Regulated in Human Heart Failure, and Represses α Myosin Heavy-Chain Gene Expression

    PubMed Central

    Sucharov, Carmen C.; Helmke, Steve M.; Langer, Stephen J.; Perryman, M. Benjamin; Bristow, Michael; Leinwand, Leslie

    2004-01-01

    Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure. PMID:15367688

  4. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    PubMed

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  5. Presenilins Regulate Neurotrypsin Gene Expression and Neurotrypsin-dependent Agrin Cleavage via Cyclic AMP Response Element-binding Protein (CREB) Modulation*

    PubMed Central

    Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.

    2013-01-01

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027

  6. Role of carbon source in the shift from oxidative to hydrolytic wood decomposition by Postia placenta.

    PubMed

    Zhang, Jiwei; Schilling, Jonathan S

    2017-09-01

    Brown rot fungi initiate wood decay using oxidative pretreatments to improve access for cellulolytic enzymes. These pretreatments are incompatible with enzymes, and we recently showed that Postia placenta overcomes this issue by delaying glycoside hydrolase (GH) gene upregulation briefly (<48h) until expression of oxidoreductases (ORs) is repressed. This implies an inducible cellulase system rather than a constitutive system, as often reported, and it remains unclear what cues this transition. To address this, we grew P. placenta along wood wafers and spatially mapped expression (via quantitative PCR) of twelve ORs and GHs targeted using functional genomics analyses. By layering expression patterns over solubilized sugar data (via HPLC) from wood, we observed solubilization of wood glucose, cellobiose, mannose, and xylose coincident with the OR-GH transition. We then tested effects of these soluble sugars, plus polymeric carbon sources (spruce powder, cellulose), on P. placenta gene expression in liquid cultures. Expression of ORs was strictly (aox1, cro5) or progressively repressed over time (qrd1, lcc1) by all soluble sugars, including cellobiose, but not by polymeric sources. Simple sugars repressed hemicellulase gene expression over time, but these sugars did not repress cellulases. Cellulase genes were upregulated, however, along with hemicellulases in the presence of soluble cellobiose and in the presence of polymeric carbon sources, relative to starvation (carbon-free). This verifies an inducible cellulase system in P. placenta that lacks carbon catabolite repression (CCR), and it suggests that brown rot fungi use soluble sugars, particularly cellobiose, to cue a critical oxidative-hydrolytic transition. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Isolation of the Chlamydomonas Regulatory Gene Nit2 by Transposon Tagging

    PubMed Central

    Schnell, R. A.; Lefebvre, P. A.

    1993-01-01

    Genetic evidence suggests that the NIT2 gene of Chlamydomonas reinhardtii encodes a positive regulator of the nitrate-assimilation pathway. To learn more about the function of the NIT2 gene product, we isolated the gene using a transposon-tagging strategy. A nit2 mutation caused by the insertion of a transposon was identified by testing spontaneous nit2 mutants for the presence of new copies of Gulliver or TOC1, transposable elements that have been identified in Chlamydomonas. In 2 of the 14 different mutants that were analyzed, a Gulliver element was found to be genetically and phenotypically associated with the nit2 mutation. Using the Gulliver element as a probe, one of the transposon-induced nit2 alleles was isolated, and a sequence adjoining the transposon was used to isolate the corresponding wild-type locus. The NIT2 gene was delimited by mapping DNA rearrangements associated with nit2 mutations and mutant rescue by genetic transformation. The NIT2 gene encodes a 6-kb transcript that was not detected in cells grown in the presence of ammonium. Likewise, NIT2-dependent genes are repressed in ammonium-grown cells. These results suggest that repression of the NIT2 gene may mediate metabolite repression of the nitrate assimilation pathway in Chlamydomonas. PMID:8394263

  8. Repressors Nrg1 and Nrg2 Regulate a Set of Stress-Responsive Genes in Saccharomyces cerevisiae§

    PubMed Central

    Vyas, Valmik K.; Berkey, Cristin D.; Miyao, Takenori; Carlson, Marian

    2005-01-01

    The yeast Saccharomyces cerevisiae responds to environmental stress by rapidly altering the expression of large sets of genes. We report evidence that the transcriptional repressors Nrg1 and Nrg2 (Nrg1/Nrg2), which were previously implicated in glucose repression, regulate a set of stress-responsive genes. Genome-wide expression analysis identified 150 genes that were upregulated in nrg1Δ nrg2Δ double mutant cells, relative to wild-type cells, during growth in glucose. We found that many of these genes are regulated by glucose repression. Stress response elements (STREs) and STRE-like elements are overrepresented in the promoters of these genes, and a search of available expression data sets showed that many are regulated in response to a variety of environmental stress signals. In accord with these findings, mutation of NRG1 and NRG2 enhanced the resistance of cells to salt and oxidative stress and decreased tolerance to freezing. We present evidence that Nrg1/Nrg2 not only contribute to repression of target genes in the absence of stress but also limit induction in response to salt stress. We suggest that Nrg1/Nrg2 fine-tune the regulation of a set of stress-responsive genes. PMID:16278455

  9. The nuclear lamina as a gene-silencing hub.

    PubMed

    Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2012-01-01

    There is accumulating evidence that the nuclear periphery is a transcriptionally repressive compartment. A surprisingly large fraction of the genome is either in transient or permanent contact with nuclear envelope, where the majority of genes are maintained in a silent state, waiting to be awakened during cell differentiation. The integrity of the nuclear lamina and the histone deacetylase activity appear to be essential for gene repression at the nuclear periphery. However, the molecular mechanisms of silencing, as well as the events that lead to the activation of lamina-tethered genes, require further elucidation. This review summarizes recent advances in understanding of the mechanisms that link nuclear architecture, local chromatin structure, and gene regulation.

  10. Lithospermum erythrorhizon Root and its Naphthoquinones Repress SREBP1c and Activate PGC1α Through AMPKα.

    PubMed

    Velliquette, Rodney A; Rajgopal, Arun; Rebhun, John; Glynn, Kelly

    2018-01-01

    To examine specific molecular mechanisms involved in modulating hepatic lipogenesis and mitochondria biogenesis signals by Lithospermum erythrorhizon (gromwell) root extract. Stable cell lines with luciferase reporter constructs were generated to examine sterol regulatory element binding protein 1c (SREBP1c) and peroxisome proliferator-activated receptor gamma, coactivator 1 (PGC1) α promoter activity and estrogen-related receptor (ERR) α response element activity. Gene expression of SREBP1c, stearoyl coenzyme A desaturase 1, and PGC1α was measured by using reverse transcription polymerase chain reaction. Lipogenesis was measured in human hepatoma cells with Nile red staining and flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) α was determined by using ELISA and Western blot. Gromwell root extract and its naphthoquinones dose-dependently repressed high glucose and liver X receptor α induction of SREBP1c promoter activity and gene expression. Hepatic lipogenesis was repressed, and PGC1α promoter and gene expression and ERRα response element activity were increased by gromwell root extract. Gromwell root extract, shikonin, and α-methyl-n-butyrylshikonin increased AMPKα phosphorylation, and inhibition of AMPK blunted the repression in SREBP1c promoter activity by gromwell root extract and its naphthoquinones. Data suggest that gromwell root extract and its naphthoquinones repress lipogenesis by increasing the phosphorylated state of AMPKα and stimulating mitochondrial biogenesis signals. © 2017 The Obesity Society.

  11. GRHL3/GET1 and Trithorax Group Members Collaborate to Activate the Epidermal Progenitor Differentiation Program

    PubMed Central

    Hopkin, Amelia Soto; Gordon, William; Klein, Rachel Herndon; Espitia, Francisco; Daily, Kenneth; Zeller, Michael; Baldi, Pierre; Andersen, Bogi

    2012-01-01

    The antagonistic actions of Polycomb and Trithorax are responsible for proper cell fate determination in mammalian tissues. In the epidermis, a self-renewing epithelium, previous work has shown that release from Polycomb repression only partially explains differentiation gene activation. We now show that Trithorax is also a key regulator of epidermal differentiation, not only through activation of genes repressed by Polycomb in progenitor cells, but also through activation of genes independent of regulation by Polycomb. The differentiation associated transcription factor GRHL3/GET1 recruits the ubiquitously expressed Trithorax complex to a subset of differentiation genes. PMID:22829784

  12. Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression.

    PubMed

    Snyder, Martha J; Lau, Alyssa C; Brouhard, Elizabeth A; Davis, Michael B; Jiang, Jianhao; Sifuentes, Margarita H; Csankovszki, Györgyi

    2016-09-01

    Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression.

  13. Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression

    PubMed Central

    Brouhard, Elizabeth A.; Jiang, Jianhao; Sifuentes, Margarita H.

    2016-01-01

    Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression. PMID:27690361

  14. Transcriptional repression mediated by repositioning of genes to the nuclear lamina.

    PubMed

    Reddy, K L; Zullo, J M; Bertolino, E; Singh, H

    2008-03-13

    Nuclear compartmentalization seems to have an important role in regulating metazoan genes. Although studies on immunoglobulin and other loci have shown a correlation between positioning at the nuclear lamina and gene repression, the functional consequences of this compartmentalization remain untested. We devised an approach for inducible tethering of genes to the inner nuclear membrane (INM), and tested the consequences of such repositioning on gene activity in mouse fibroblasts. Here, using three-dimensional DNA-immunoFISH, we demonstrate repositioning of chromosomal regions to the nuclear lamina that is dependent on breakdown and reformation of the nuclear envelope during mitosis. Moreover, tethering leads to the accumulation of lamin and INM proteins, but not to association with pericentromeric heterochromatin or nuclear pore complexes. Recruitment of genes to the INM can result in their transcriptional repression. Finally, we use targeted adenine methylation (DamID) to show that, as is the case for our model system, inactive immunoglobulin loci at the nuclear periphery are contacted by INM and lamina proteins. We propose that these molecular interactions may be used to compartmentalize and to limit the accessibility of immunoglobulin loci to transcription and recombination factors.

  15. Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor.

    PubMed Central

    Zamanian, M; La Thangue, N B

    1992-01-01

    The retinoblastoma (Rb) gene product forms a complex with the cellular transcription factor DRTF1, a property assumed to be important for mediating negative growth control because certain viral oncogenes, such as adenovirus E1a, prevent this interaction and mutant Rb alleles, which have lost the capacity to regulate growth, encode proteins that fail to associate with DRTF1. In this study, we show that the wild-type Rb protein can specifically repress transcription from promoters driven by DRTF1 whereas a naturally occurring mutant Rb protein cannot. Furthermore, Rb-mediated transcriptional repression can be overridden by adenovirus E1a; this requires regions in E1a necessary for cellular transformation. The Rb protein therefore acts in trans to repress the transcriptional activity of DRTF1 whereas adenovirus E1a prevents this interaction and thus maintains DRTF1 in a constitutively active state. The Rb protein and adenovirus E1a therefore have opposite effects on the activity of a common molecular target. Transcriptional repression mediated by the Rb protein and inactivation of repression by the E1a protein are likely to play an important role in mediating their biological effects. Images PMID:1385776

  16. Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Drosophila Hematopoietic System

    PubMed Central

    Zhang, Chen U.; Blauwkamp, Timothy A.; Burby, Peter E.; Cadigan, Ken M.

    2014-01-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA. PMID:25144371

  17. Nuclear factor I-A represses expression of the cell adhesion molecule L1

    PubMed Central

    2009-01-01

    Background The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. Results We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. Conclusion Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF). PMID:20003413

  18. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning.

    PubMed

    Jung, Jae-Hoon; Lee, Sangmin; Yun, Ju; Lee, Minyoung; Park, Chung-Mo

    2014-02-01

    microRNA172 (miR172) regulates phase transition and floral patterning in Arabidopsis by repressing targets that encode the APETALA2 (AP2) and AP2-like transcription factors. The miR172-mediated repression of the AP2 gene restricts AGAMOUS (AG) expression. In addition, most miR172 targets, including AP2, redundantly act as floral repressors, and the overexpression of the target genes causes delayed flowering. However, how miR172 targets other than AP2 regulate both of the developmental processes remains unclear. Here, we demonstrate that miR172-mediated repression of the TARGET OF EAT 3 (TOE3) gene is critical for floral patterning in Arabidopsis. Transgenic plants that overexpress a miR172-resistant TOE3 gene (rTOE3-ox) exhibit indeterminate flowers with numerous stamens and carpelloid organs, which is consistent with previous observations in transgenic plants that overexpress a miR172-resistant AP2 gene. TOE3 binds to the second intron of the AG gene. Accordingly, AG expression is significantly reduced in rTOE3-ox plants. TOE3 also interacts with AP2 in the nucleus. Given the major role of AP2 in floral patterning, miR172 likely regulates TOE3 in floral patterning, at least in part via AP2. In addition, a miR156 target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 directly activates TOE3 expression, revealing a novel signaling interaction between miR156 and miR172 in floral patterning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    PubMed

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  20. Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus, by Knockdown of Primordial Germ Cell Genes with Copper-Sensitive Constructs.

    PubMed

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Elaswad, Ahmed; Alsaqufi, Ahmed; Perera, Dayan A; Qin, Zhenkui; Odin, Ramji; Vo, Khoi; Drescher, David; Robinson, Dalton; Dong, Sheng; Zhang, Dan; Shang, Mei; Abass, Nermeen; Das, Sanjay K; Bangs, Max; Dunham, Rex A

    2018-06-01

    Repressible knockdown approaches were investigated to manipulate for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown and an off-target gene, vasa, was monitored. Two potentially copper-sensitive repressible promoters, yeast ctr3 (M) and ctr3-reduced (Mctr), were coupled with four knockdown strategies separately including: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA), and ds-sh RNA-targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with copper sulfate as the repressor compound. Spawning rates of full-sibling P 1 fish exposed or not exposed to the constructs as treated and untreated embryos were 85 and 54%, respectively, indicating potential sterilization of fish and repression of the constructs. In F 1 fish, mRNA expressions of PGC marker genes for most constructs were downregulated in the untreated group and the knockdown was repressed in the treated group. Gonad development in transgenic, untreated F 1 channel catfish was reduced compared to non-transgenic fish for MctrN2, MN1, MN2, and MDND. For 3-year-old adults, gonad size in the transgenic untreated group was 93.4% smaller than the non-transgenic group for females and 92.3% for males. However, mean body weight of transgenic females (781.8 g) and males (883.8 g) was smaller than of non-transgenic counterparts (984.2 and 1254.3 g) at 3 years of age, a 25.8 and 41.9% difference for females and males, respectively. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but negative pleiotropic effects can result.

  1. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation

    PubMed Central

    Sun, GuoQiang; Yu, Ruth T.; Evans, Ronald M.; Shi, Yanhong

    2007-01-01

    TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to TLX residues 359–385, which contains a conserved nuclear receptor–coregulator interaction motif IXXLL. Both HDAC3 and HDAC5 have been shown to be recruited to the promoters of TLX target genes along with TLX in neural stem cells. Recruitment of HDACs led to transcriptional repression of TLX target genes, the cyclin-dependent kinase inhibitor, p21CIP1/WAF1(p21), and the tumor suppressor gene, pten. Either inhibition of HDAC activity or knockdown of HDAC expression led to marked induction of p21 and pten gene expression and dramatically reduced neural stem cell proliferation, suggesting that the TLX-interacting HDACs play an important role in neural stem cell proliferation. Moreover, expression of a TLX peptide containing the minimal HDAC5 interaction domain disrupted the TLX–HDAC5 interaction. Disruption of this interaction led to significant induction of p21 and pten gene expression and to dramatic inhibition of neural stem cell proliferation. Taken together, these findings demonstrate a mechanism for neural stem cell proliferation through transcriptional repression of p21 and pten gene expression by TLX–HDAC interactions. PMID:17873065

  2. Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression

    PubMed Central

    Papadopoulos, Dimitrios K.; Reséndez-Pérez, Diana; Cárdenas-Chávez, Diana L.; Villanueva-Segura, Karina; Canales-del-Castillo, Ricardo; Felix, Daniel A.; Fünfschilling, Raphael; Gehring, Walter J.

    2011-01-01

    Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary—whereas the entire N terminus of the protein is dispensable—for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors. PMID:21712439

  3. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  4. MCM-BP Is Required for Repression of Life-Cycle Specific Genes Transcribed by RNA Polymerase I in the Mammalian Infectious Form of Trypanosoma brucei

    PubMed Central

    Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A. M.

    2013-01-01

    Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei. PMID:23451133

  5. TCF7L1 recruits CtBP and HDAC1 to repress DICKKOPF4 gene expression in human colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshelman, Melanie A.; Shah, Meera; Raup-Konsavage, Wesley M.

    The T-cell factor/Lymphoid enhancer factor (TCF/LEF; hereafter TCF) family of transcription factors are critical regulators of colorectal cancer (CRC) cell growth. Of the four TCF family members, TCF7L1 functions predominantly as a repressor of gene expression. Few studies have addressed the role of TCF7L1 in CRC and only a handful of target genes regulated by this repressor are known. By silencing TCF7L1 expression in HCT116 cells, we show that it promotes cell proliferation and tumorigenesis in vivo by driving cell cycle progression. Microarray analysis of transcripts differentially expressed in control and TCF7L1-silenced CRC cells identified genes that control cell cycle kinetics andmore » cancer pathways. Among these, expression of the Wnt antagonist DICKKOPF4 (DKK4) was upregulated when TCF7L1 levels were reduced. We found that TCF7L1 recruits the C-terminal binding protein (CtBP) and histone deacetylase 1 (HDAC1) to the DKK4 promoter to repress DKK4 gene expression. In the absence of TCF7L1, TCF7L2 and β-catenin occupancy at the DKK4 promoter is stimulated and DKK4 expression is increased. These findings uncover a critical role for TCF7L1 in repressing DKK4 gene expression to promote the oncogenic potential of CRCs. - Highlights: • TCF7L1 promotes colorectal cancer cell proliferation and tumorigenesis. • DICKKOPF4 is directly regulated by TCF7L1. • TCF7L1 recruits CtBP and HDAC1 to repress DKK4 gene expression.« less

  6. Reduction of aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in interaction with Streptomyces.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F

    2015-05-01

    The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression. © 2015 The Authors.

  7. Hidden among the crowd: differential DNA methylation-expression correlations in cancer occur at important oncogenic pathways

    PubMed Central

    Mosquera Orgueira, Adrián

    2015-01-01

    DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression. PMID:26029238

  8. The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules

    PubMed Central

    McArthur, Sarah D; Pulvermacher, Sarah C; Stauffer, George V

    2006-01-01

    Background In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism. Results In this study, we report that the Yersinia pestis KIM6 gcvB gene encodes two small RNAs. Transcription of gcvB is activated by the GcvA protein and repressed by the GcvR protein. The gcvB-encoded RNAs are required for repression of the Y. pestis dppA gene, encoding the periplasmic-binding protein component of the dipeptide transport system, showing that the GcvB RNAs have regulatory activity. A deletion of the gcvB gene from the Y. pestis KIM6 chromosome results in a decrease in the generation time of the organism as well as a change in colony morphology. Conclusion The results of this study indicate that the Y. pestis gcvB gene encodes two small non-coding regulatory RNAs that repress dppA expression. A gcvB deletion is pleiotropic, suggesting that the sRNAs are likely involved in controlling genes in addition to dppA. PMID:16768793

  9. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast.

    PubMed

    Nevers, Alicia; Doyen, Antonia; Malabat, Christophe; Néron, Bertrand; Kergrohen, Thomas; Jacquier, Alain; Badis, Gwenael

    2018-05-18

    Pervasive transcription generates many unstable non-coding transcripts in budding yeast. The transcription of such noncoding RNAs, in particular antisense RNAs (asRNAs), has been shown in a few examples to repress the expression of the associated mRNAs. Yet, such mechanism is not known to commonly contribute to the regulation of a given class of genes. Using a mutant context that stabilized pervasive transcripts, we observed that the least expressed mRNAs during the exponential phase were associated with high levels of asRNAs. These asRNAs also overlapped their corresponding gene promoters with a much higher frequency than average. Interrupting antisense transcription of a subset of genes corresponding to quiescence-enriched mRNAs restored their expression. The underlying mechanism acts in cis and involves several chromatin modifiers. Our results convey that transcription interference represses up to 30% of the 590 least expressed genes, which includes 163 genes with quiescence-enriched mRNAs. We also found that pervasive transcripts constitute a higher fraction of the transcriptome in quiescence relative to the exponential phase, consistent with gene expression itself playing an important role to suppress pervasive transcription. Accordingly, the HIS1 asRNA, normally only present in quiescence, is expressed in exponential phase upon HIS1 mRNA transcription interruption.

  10. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440

    DOE PAGES

    Johnson, Christopher W.; Abraham, Paul E.; Linger, Jeffrey G.; ...

    2017-05-31

    Carbon catabolite repression refers to the preference of microbes to metabolize certain growth substrates over others in response to a variety of regulatory mechanisms. Such preferences are important for the fitness of organisms in their natural environments, but may hinder their performance as domesticated microbial cell factories. In a Pseudomonas putida KT2440 strain engineered to convert lignin-derived aromatic monomers such as p-coumarate and ferulate to muconate, a precursor to bio-based nylon and other chemicals, metabolic intermediates including 4-hydroxybenzoate and vanillate accumulate and subsequently reduce productivity. We hypothesized that these metabolic bottlenecks may be, at least in part, the effect ofmore » carbon catabolite repression caused by glucose or acetate, more preferred substrates that must be provided to the strain for supplementary energy and cell growth. Using mass spectrometry-based proteomics, we have identified the 4-hydroxybenzoate hydroxylase, PobA, and the vanillate demethylase, VanAB, as targets of the Catabolite Repression Control (Crc) protein, a global regulator of carbon catabolite repression. By deleting the gene encoding Crc from this strain, the accumulation of 4-hydroxybenzoate and vanillate are reduced and, as a result, muconate production is enhanced. In cultures grown on glucose, the yield of muconate produced from p-coumarate after 36 h was increased nearly 70% with deletion of the gene encoding Crc (94.6 ± 0.6% vs. 56.0 ± 3.0% (mol/mol)) while the yield from ferulate after 72 h was more than doubled (28.3 ± 3.3% vs. 12.0 ± 2.3% (mol/mol)). The effect of eliminating Crc was similar in cultures grown on acetate, with the yield from p-coumarate just slightly higher in the Crc deletion strain after 24 h (47.7 ± 0.6% vs. 40.7 ± 3.6% (mol/mol)) and the yield from ferulate increased more than 60% after 72 h (16.9 ± 1.4% vs. 10.3 ± 0.1% (mol/mol)). In conclusion, these results are an example of the benefit that reducing carbon catabolite repression can have on conversion of complex feedstocks by microbial cell factories, a concept we posit could be broadly considered as a strategy in metabolic engineering for conversion of renewable feedstocks to value-added chemicals.« less

  11. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christopher W.; Abraham, Paul E.; Linger, Jeffrey G.

    Carbon catabolite repression refers to the preference of microbes to metabolize certain growth substrates over others in response to a variety of regulatory mechanisms. Such preferences are important for the fitness of organisms in their natural environments, but may hinder their performance as domesticated microbial cell factories. In a Pseudomonas putida KT2440 strain engineered to convert lignin-derived aromatic monomers such as p-coumarate and ferulate to muconate, a precursor to bio-based nylon and other chemicals, metabolic intermediates including 4-hydroxybenzoate and vanillate accumulate and subsequently reduce productivity. We hypothesized that these metabolic bottlenecks may be, at least in part, the effect ofmore » carbon catabolite repression caused by glucose or acetate, more preferred substrates that must be provided to the strain for supplementary energy and cell growth. Using mass spectrometry-based proteomics, we have identified the 4-hydroxybenzoate hydroxylase, PobA, and the vanillate demethylase, VanAB, as targets of the Catabolite Repression Control (Crc) protein, a global regulator of carbon catabolite repression. By deleting the gene encoding Crc from this strain, the accumulation of 4-hydroxybenzoate and vanillate are reduced and, as a result, muconate production is enhanced. In cultures grown on glucose, the yield of muconate produced from p-coumarate after 36 h was increased nearly 70% with deletion of the gene encoding Crc (94.6 ± 0.6% vs. 56.0 ± 3.0% (mol/mol)) while the yield from ferulate after 72 h was more than doubled (28.3 ± 3.3% vs. 12.0 ± 2.3% (mol/mol)). The effect of eliminating Crc was similar in cultures grown on acetate, with the yield from p-coumarate just slightly higher in the Crc deletion strain after 24 h (47.7 ± 0.6% vs. 40.7 ± 3.6% (mol/mol)) and the yield from ferulate increased more than 60% after 72 h (16.9 ± 1.4% vs. 10.3 ± 0.1% (mol/mol)). In conclusion, these results are an example of the benefit that reducing carbon catabolite repression can have on conversion of complex feedstocks by microbial cell factories, a concept we posit could be broadly considered as a strategy in metabolic engineering for conversion of renewable feedstocks to value-added chemicals.« less

  12. Escherichia coli mutant with altered respiratory control of the frd operon.

    PubMed Central

    Iuchi, S; Kuritzkes, D R; Lin, E C

    1985-01-01

    In wild-type Escherichia coli, fumarate reductase encoded by the frd operon is inducible by its substrate in the absence of molecular oxygen and nitrate. Synthesis of this enzyme under permissive conditions requires the fnr+ gene product, which is believed to be a pleiotropic regulatory protein that activates transcription. A spontaneous mutant was isolated in which the expression of the frd operon no longer depended on the presence of fumarate or the fnr+ gene product. Aerobic repression of the operon was abolished, but nitrate repression remained intact. Transductional analysis showed that the mutation was closely linked to the frd locus. The mutant phenotype strongly suggests that repression by molecular oxygen and nitrate is mediated by different mechanisms. PMID:3882660

  13. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.

    PubMed

    Lee, T C; Ziff, E B

    1999-01-08

    The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.

  14. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells

    PubMed Central

    Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion

    2016-01-01

    Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682

  15. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes.

    PubMed

    Zhang, Hua; Zhao, Yu; Zhou, Dao-Xiu

    2017-12-01

    Sirtuins, a family of proteins with homology to the yeast silent information regulator 2 (Sir2), are NAD+-dependent histone deacetylases and play crucial roles in energy sensing and regulation in yeast and animal cells. Plants are autotrophic organisms and display distinct features of carbon and energy metabolism. It remains largely unexplored whether and how plant cells sense energy/redox status to control carbon metabolic flux under various growth conditions. In this work, we show that the rice nuclear sirtuin OsSRT1 not only functions as an epigenetic regulator to repress glycolytic genes expression and glycolysis in seedlings, but also inhibits transcriptional activity of glyceraldehyde-3-phosphatedehydrogenase (GAPDH) that is enriched on glycolytic genes promoters and stimulates their expression. We show that OsSRT1 reduces GAPDH lysine acetylation and nuclear accumulation that are enhanced by oxidative stress. Mass spectrometry identified six acetylated lysines regulated by OsSRT1. OsSRT1-dependent lysine deacetylation of OsGAPDH1 represses transcriptional activity of the protein. The results indicate that OsSRT1 represses glycolysis by both regulating epigenetic modification of histone and inhibiting the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes in rice. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    PubMed

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression

    PubMed Central

    He, Xin; Samee, Md. Abul Hassan; Blatti, Charles; Sinha, Saurabh

    2010-01-01

    Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an enhancer's function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously modeling the regulatory activities of a given set of sequences. PMID:20862354

  18. Corticotropin-releasing hormone or dexamethasone regulates rat proopiomelanocortin transcription through Tpit/Pitx-responsive element in its promoter.

    PubMed

    Murakami, Itsuo; Takeuchi, Sakae; Kudo, Toshiyuki; Sutou, Shizuyo; Takahashi, Sumio

    2007-05-01

    Tpit/Pitx-responsive element (Tpit/PitxRE), which binds transcription factors Tpit and Pitx1, confers cell-type specific expression of proopiomelanocortin (POMC) gene in pituitary corticotrops where the gene expression is mainly regulated by corticotropin-releasing hormone (CRH) and glucocorticoids (Gcs). CRH stimulates POMC gene expression, which is mediated by the accumulation of intracellular cAMP and requires binding of Nur factors to Nur-responsive element (NurRE). Gcs antagonize NurRE-dependent POMC gene expression through direct interaction between glucocorticoid receptors and Nur factors. We examined whether Tpit/PitxRE and NurRE are involved in CRH/cAMP-induced activation and Gc-induced repression of POMC gene expression by reporter assay in AtT-20 corticotropic cells. Deletion and mutation of Tpit/PitxRE markedly reduced basal activity of the promoter, and those of NurRE decreased the levels of the CRH/cAMP-induced activation. Nifedipine, KN-62, and W-7, specific inhibitors of the L-type calcium channel, calmodulin-dependent protein kinase II, and calmodulin respectively, attenuated CRH/cAMP-induced activation of promoters with three copies of either Tpit/PitxRE or NurRE, indicating that both Tpit/PitxRE and NurRE mediate CRH-induced activation of POMC gene expression in a calcium-dependent manner. Deletion and mutation of Tpit/PitxRE abolished dexamethasone (DEX)-induced repression of POMC gene expression, while those of NurRE did not, indicating that Tpit/PitxRE predominantly mediates Gc-induced repression of POMC transcription. However, DEX treatment attenuated activities of promoters with three copies of either Tpit/PitxRE or NurRE, suggesting that Gcs act at NurRE as well as Tpit/PitxRE to repress POMC gene expression. We conclude that Tpit/PitxRE is an important element by which CRH and Gcs regulate the POMC gene expression.

  19. Dynamic Repositioning of Dorsal to Two Different κB Motifs Controls Its Autoregulation during Immune Response in Drosophila

    PubMed Central

    Mrinal, Nirotpal; Nagaraju, Javaregowda

    2010-01-01

    Autoregulation is one of the mechanisms of imparting feedback control on gene expression. Positive autoregulatory feedback results in induction of a gene, and negative feedback leads to its suppression. Here, we report an interesting mechanism of autoregulation operating on Drosophila Rel gene dorsal that can activate as well as repress its expression. Using biochemical and genetic approaches, we show that upon immune challenge Dorsal regulates its activation as well as repression by dynamically binding to two different κB motifs, κBI (intronic κB) and κBP (promoter κB), present in the dorsal gene. Although the κBI motif functions as an enhancer, the κBP motif acts as a transcriptional repressor. Interestingly, Dorsal binding to these two motifs is dynamic; immediately upon immune challenge, Dorsal binds to the κBI leading to auto-activation, whereas at the terminal phase of the immune response, it is removed from the κBI and repositioned at the κBP, resulting in its repression. Furthermore, we show that repression of Dorsal as well as its binding to the κBP depends on the transcription factor AP1. Depletion of AP1 by RNA interference resulted in constitutive expression of Dorsal. In conclusion, this study suggests that during acute phase response dorsal is regulated by following two subcircuits: (i) Dl-κBI for activation and (ii) Dl-AP1-κBP for repression. These two subcircuits are temporally delineated and bring about overall regulation of dorsal during immune response. These results suggest the presence of a previously unknown mechanism of Dorsal autoregulation in immune-challenged Drosophila. PMID:20504768

  20. Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells.

    PubMed

    Vélez-Cruz, Renier; Zadorin, Anton S; Coin, Frédéric; Egly, Jean-Marc

    2013-01-15

    Specific mutations in the XPD subunit of transcription factor IIH result in combined xeroderma pigmentosum (XP)/Cockayne syndrome (CS), a severe DNA repair disorder characterized at the cellular level by a transcriptional arrest following UV irradiation. This transcriptional arrest has always been thought to be the result of faulty transcription-coupled repair. In the present study, we showed that, following UV irradiation, XP-D/CS cells displayed a gross transcriptional dysregulation compared with "pure" XP-D cells or WT cells. Furthermore, global RNA-sequencing analysis showed that XP-D/CS cells repressed the majority of genes after UV, whereas pure XP-D cells did not. By using housekeeping genes as a model, we demonstrated that XP-D/CS cells were unable to reassemble these gene promoters and thus to restart transcription after UV irradiation. Furthermore, we found that the repression of these promoters in XP-D/CS cells was not a simple consequence of deficient repair but rather an active heterochromatinization process mediated by the histone deacetylase Sirt1. Indeed, RNA-sequencing analysis showed that inhibition of and/or silencing of Sirt1 changed the chromatin environment at these promoters and restored the transcription of a large portion of the repressed genes in XP-D/CS cells after UV irradiation. Our work demonstrates that a significant part of the transcriptional arrest displayed by XP-D/CS cells arises as a result of an active repression process and not simply as a result of a DNA repair deficiency. This dysregulation of Sirt1 function that results in transcriptional repression may be the cause of various severe clinical features in patients with XP-D/CS that cannot be explained by a DNA repair defect.

  1. An extended model for the repression of photosynthesis genes by the AppA/PpsR system in Rhodobacter sphaeroides.

    PubMed

    Pandey, Rakesh; Flockerzi, Dietrich; Hauser, Marcus J B; Straube, Ronny

    2012-09-01

    Purple bacteria derive energy from aerobic respiration or photosynthesis depending on the availability of oxygen and light. Under aerobic conditions, photosynthesis genes are specifically repressed by the PpsR protein. In Rhodobacter sphaeroides, the repressive action of PpsR is antagonized by the blue-light and redox-sensitive flavoprotein AppA, which sequesters PpsR under anaerobic conditions into transcriptionally inactive complexes. However, under semi-aerobic conditions, blue-light excitation of AppA causes the AppA-PpsR complexes to dissociate, again leading to a repression of photosynthesis genes. We have recently developed a simple mathematical model suggesting that this phenotype arises from the formation of a maximum in the response curve of reduced PpsR at intermediate oxygen concentrations. However, this model focused mainly on the oxygen-dependent interactions whereas light regulation was only implemented in a simplified manner. In the present study, we incorporate a more detailed mechanism for the light-dependent interaction between AppA and PpsR, which now allows for a direct comparison with experiments. Specifically, we take into account that, upon blue-light excitation, AppA undergoes a conformational change, creating a long-lived signalling state causing the dissociation of the AppA-PpsR complexes. The predictions of the extended model are found to be in good agreement with experimental results on the light-dependent repression of photosynthesis genes under semi-aerobic conditions. We also identify the potential kinetic and stoichiometric constraints that the interplay between light and redox regulation imposes on the functionality of the AppA/PpsR system, especially with respect to a possible bistable response. © 2012 The Authors Journal compilation © 2012 FEBS.

  2. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival

    PubMed Central

    Vilaboa, Nuria; Boré, Alba; Martin-Saavedra, Francisco; Bayford, Melanie; Winfield, Natalie; Firth-Clark, Stuart; Kirton, Stewart B.

    2017-01-01

    Abstract Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small molecules and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic analysis of structure–activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA-binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naïve and -depleted cells, our results suggest that a large majority of heat-induced genes is positively regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity. PMID:28369544

  3. Brg1 modulates enhancer activation in mesoderm lineage commitment

    DOE PAGES

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less

  4. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver

    PubMed Central

    2018-01-01

    CTCF and cohesin are key drivers of 3D-nuclear organization, anchoring the megabase-scale Topologically Associating Domains (TADs) that segment the genome. Here, we present and validate a computational method to predict cohesin-and-CTCF binding sites that form intra-TAD DNA loops. The intra-TAD loop anchors identified are structurally indistinguishable from TAD anchors regarding binding partners, sequence conservation, and resistance to cohesin knockdown; further, the intra-TAD loops retain key functional features of TADs, including chromatin contact insulation, blockage of repressive histone mark spread, and ubiquity across tissues. We propose that intra-TAD loops form by the same loop extrusion mechanism as the larger TAD loops, and that their shorter length enables finer regulatory control in restricting enhancer-promoter interactions, which enables selective, high-level expression of gene targets of super-enhancers and genes located within repressive nuclear compartments. These findings elucidate the role of intra-TAD cohesin-and-CTCF binding in nuclear organization associated with widespread insulation of distal enhancer activity. PMID:29757144

  5. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.

    PubMed

    Matthews, Bryan J; Waxman, David J

    2018-05-14

    CTCF and cohesin are key drivers of 3D-nuclear organization, anchoring the megabase-scale Topologically Associating Domains (TADs) that segment the genome. Here, we present and validate a computational method to predict cohesin-and-CTCF binding sites that form intra-TAD DNA loops. The intra-TAD loop anchors identified are structurally indistinguishable from TAD anchors regarding binding partners, sequence conservation, and resistance to cohesin knockdown; further, the intra-TAD loops retain key functional features of TADs, including chromatin contact insulation, blockage of repressive histone mark spread, and ubiquity across tissues. We propose that intra-TAD loops form by the same loop extrusion mechanism as the larger TAD loops, and that their shorter length enables finer regulatory control in restricting enhancer-promoter interactions, which enables selective, high-level expression of gene targets of super-enhancers and genes located within repressive nuclear compartments. These findings elucidate the role of intra-TAD cohesin-and-CTCF binding in nuclear organization associated with widespread insulation of distal enhancer activity. © 2018, Matthews et al.

  6. Epigenetic switch from repressive to permissive chromatin in response to cold stress.

    PubMed

    Park, Junghoon; Lim, Chae Jin; Shen, Mingzhe; Park, Hee Jin; Cha, Joon-Yung; Iniesto, Elisa; Rubio, Vicente; Mengiste, Tesfaye; Zhu, Jian-Kang; Bressan, Ray A; Lee, Sang Yeol; Lee, Byeong-Ha; Jin, Jing Bo; Pardo, Jose M; Kim, Woe-Yeon; Yun, Dae-Jin

    2018-06-05

    Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  7. Epigenetic switch from repressive to permissive chromatin in response to cold stress

    PubMed Central

    Park, Junghoon; Lim, Chae Jin; Shen, Mingzhe; Park, Hee Jin; Cha, Joon-Yung; Iniesto, Elisa; Rubio, Vicente; Mengiste, Tesfaye; Bressan, Ray A.; Lee, Sang Yeol; Lee, Byeong-ha; Kim, Woe-Yeon; Yun, Dae-Jin

    2018-01-01

    Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis. However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47. Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance. PMID:29784800

  8. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    PubMed

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of the inducible vector using the same promoter. Finally, we used gfp as a reporter gene in combination with the two promoters Pgrac01 and Pgrac100 to test the new vector types. The GFP expression levels could be repressed at least 1.5 times for the Pgrac01-gfp+ inducer-free construct in E. coli. The inducer-free constructs Pgrac01-gfp+ and Pgrac100-gfp+ allowed GFP expression at high levels from 23 × 10 4 to 32 × 10 4 RFU units and 9-13% of total intracellular proteins. We could reconfirm the two major advantages of the new inducer-free expression plasmids: (1) Strong repression of the target gene expression in the E. coli cloning strain, and (2) production of the target protein at high levels in B. subtilis in the absence of the inducer. We propose a general strategy to generate inducer-free expression vector by using IPTG-inducible vectors, and more specifically we developed inducer-free expression plasmids using IPTG-inducible promoters in the absence of the LacI repressor. These plasmids could be an excellent choice for high-level production of recombinant proteins in B. subtilis without the addition of inducer and at the same time maintaining a low basal level of the recombinant proteins in E. coli. The repression of the recombinant gene expression would facilitate cloning of genes that potentially inhibit the growth of E. coli cloning strains. The inducer-free expression plasmids will be extended versions of the current available IPTG-inducible expression vectors for B. subtilis, in which all these vectors use the same cognate promoters. These inducer-free and previously developed IPTG-inducible expression plasmids will be a useful cassette to study gene expression at a small scale up to a larger scale up for the production of recombinant proteins.

  9. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis

    PubMed Central

    Deng, Weiwei; Ying, Hua; Helliwell, Chris A.; Taylor, Jennifer M.; Peacock, W. James; Dennis, Elizabeth S.

    2011-01-01

    FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering. We identified 505 FLC binding sites, mostly located in the promoter regions of genes and containing at least one CArG box, the motif known to be associated with MADS-box proteins such as FLC. We examined 40 of the target genes, and 20 showed increased transcript levels in an flc mutant compared with the wild type. Five genes showed decreased expression in the mutant, indicating that FLC binding can result in either transcriptional repression or activation. The genes we identified as FLC targets are involved in developmental pathways throughout the life history of the plant, many of which are associated with reproductive development. FLC is also involved in vegetative development, as evidenced by its binding to SPL15, delaying the progression from juvenile to adult phase. Some of the FLC target genes are also bound by two other MADS-box proteins, AP1 and SEP3, suggesting that MADS-box genes may operate in a network of control at different stages of the life cycle, many ultimately contributing to the development of the reproductive phase of the plant. PMID:21464308

  10. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.

    PubMed

    Deng, Weiwei; Ying, Hua; Helliwell, Chris A; Taylor, Jennifer M; Peacock, W James; Dennis, Elizabeth S

    2011-04-19

    FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering. We identified 505 FLC binding sites, mostly located in the promoter regions of genes and containing at least one CArG box, the motif known to be associated with MADS-box proteins such as FLC. We examined 40 of the target genes, and 20 showed increased transcript levels in an flc mutant compared with the wild type. Five genes showed decreased expression in the mutant, indicating that FLC binding can result in either transcriptional repression or activation. The genes we identified as FLC targets are involved in developmental pathways throughout the life history of the plant, many of which are associated with reproductive development. FLC is also involved in vegetative development, as evidenced by its binding to SPL15, delaying the progression from juvenile to adult phase. Some of the FLC target genes are also bound by two other MADS-box proteins, AP1 and SEP3, suggesting that MADS-box genes may operate in a network of control at different stages of the life cycle, many ultimately contributing to the development of the reproductive phase of the plant.

  11. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression.

    PubMed

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A; Ramaswamy, Suresh; Plant, Tony M; Ojeda, Sergio R

    2015-12-16

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.

  12. Cyclo(valine-valine) inhibits Vibrio cholerae virulence gene expression.

    PubMed

    Vikram, Amit; Ante, Vanessa M; Bina, X Renee; Zhu, Qin; Liu, Xinyu; Bina, James E

    2014-06-01

    Vibrio cholerae has been shown to produce a cyclic dipeptide, cyclo(phenylalanine-proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress V. cholerae virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in V. cholerae. The results revealed that cyclo(valine-valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator aphA. cVV-dependent repression of aphA was found to be independent of known aphA regulatory genes. The results demonstrated that V. cholerae was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment. © 2014 The Authors.

  13. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERαmore » protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.« less

  14. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2017-02-15

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation. © The Author 2016. Published by Oxford University Press.

  15. A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone.

    PubMed

    Garvin, Lindsay M; Chen, Yajun; Damsker, Jesse M; Rose, Mary C

    2016-06-01

    Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. sae is essential for expression of the staphylococcal adhesins Eap and Emp.

    PubMed

    Harraghy, Niamh; Kormanec, Jan; Wolz, Christiane; Homerova, Dagmar; Goerke, Christiane; Ohlsen, Knut; Qazi, Saara; Hill, Philip; Herrmann, Mathias

    2005-06-01

    Eap and Emp are two Staphylococcus aureus adhesins initially described as extracellular matrix binding proteins. Eap has since emerged as being important in adherence to and invasion of eukaryotic cells, as well as being described as an immunomodulator and virulence factor in chronic infections. This paper describes the mapping of the transcription start point of the eap and emp promoters. Moreover, using reporter-gene assays and real-time PCR in defined regulatory mutants, environmental conditions and global regulators affecting expression of eap and emp were investigated. Marked differences were found in expression of eap and emp between strain Newman and the 8325 derivatives SH1000 and 8325-4. Moreover, both genes were repressed in the presence of glucose. Analysis of expression of both genes in various regulatory mutants revealed that sarA and agr were involved in their regulation, but the data suggested that there were additional regulators of both genes. In a sae mutant, expression of both genes was severely repressed. sae expression was also reduced in the presence of glucose, suggesting that repression of eap and emp in glucose-containing medium may, in part, be a consequence of a decrease in expression of sae.

  17. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals

    PubMed Central

    Arenas-Mena, Cesar; Coffman, James A.

    2016-01-01

    Summary It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency. PMID:26173445

  18. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    PubMed

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.

  19. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation

    PubMed Central

    Grimmer, Matthew R.; Stolzenburg, Sabine; Ford, Ethan; Lister, Ryan; Blancafort, Pilar; Farnham, Peggy J.

    2014-01-01

    Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications. PMID:25122745

  20. Different Levels of Catabolite Repression Optimize Growth in Stable and Variable Environments

    PubMed Central

    New, Aaron M.; Cerulus, Bram; Govers, Sander K.; Perez-Samper, Gemma; Zhu, Bo; Boogmans, Sarah; Xavier, Joao B.; Verstrepen, Kevin J.

    2014-01-01

    Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called “lag phase”) and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are “specialist” strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This “generalist” strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow “stochastic sensing” of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth. PMID:24453942

  1. Two cis elements collaborate to spatially repress transcription from a sea urchin promoter

    NASA Technical Reports Server (NTRS)

    Frudakis, T. N.; Wilt, F.

    1995-01-01

    The expression pattern of many territory-specific genes in metazoan embryos is maintained by an active process of negative spatial regulation. However, the mechanism of this strategy of gene regulation is not well understood in any system. Here we show that reporter constructs containing regulatory sequence for the SM30-alpha gene of Stronglyocentrotus purpuratus are expressed in a pattern congruent with that of the endogenous SM30 gene(s), largely as a result of active transcriptional repression in cell lineages in which the gene is not normally expressed. Chloramphenicol acetyl transferase assays of deletion constructs from the 2600-bp upstream region showed that repressive elements were present in the region from -1628 to -300. In situ hybridization analysis showed that the spatial fidelity of expression was severely compromised when the region from -1628 to -300 was deleted. Two highly repetitive sequence motifs, (G/A/C)CCCCT and (T/C)(T/A/C)CTTTT(T/A/C), are present in the -1628 to -300 region. Representatives of these elements were analyzed by gel mobility shift experiments and were found to interact specifically with protein in crude nuclear extracts. When oligonucleotides containing either sequence element were co-injected with a correctly regulated reporter as potential competitors, the reporter was expressed in inappropriate cells. When composite oligonucleotides, containing both sequence elements, were fused to a misregulated reporter, the expression of the reporter in inappropriate cells was suppressed. Comparison of composite oligonucleotides with oligonucleotides containing single constituent elements show that both sequence elements are required for effective spatial regulation. Thus, both individual elements are required, but only a composite element containing both elements is sufficient to function as a tissue-specific repressive element.

  2. Repression of YdaS Toxin Is Mediated by Transcriptional Repressor RacR in the Cryptic rac Prophage of Escherichia coli K-12.

    PubMed

    Krishnamurthi, Revathy; Ghosh, Swagatha; Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2017-01-01

    Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT , which are adjacent to and coded divergently to racR . IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.

  3. The interplay of post-translational modification and gene therapy.

    PubMed

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery.

  4. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  5. A plasmid collection for PCR-based gene targeting in the filamentous ascomycete Ashbya gossypii.

    PubMed

    Kaufmann, Andreas

    2009-08-01

    PCR-based gene targeting with heterologous markers is an efficient method to delete genes, generate gene fusions, and modulate gene expression. For the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, several plasmid collections are available covering a wide range of tags and markers. For several reasons, many of these cassettes cannot be used in the filamentous ascomycete Ashbya gossypii. This article describes the construction of 93 heterologous modules for C- and N-terminal tagging and promoter replacements in A. gossypii. The performance of 12 different fluorescent tags was evaluated by monitoring their brightness, detectability, and photostability when fused to the myosin light-chain protein Mlc2. Furthermore, the thiamine-repressible S. cerevisiae THI13 promoter was established to regulate gene expression in A. gossypii. This collection will help accelerate analysis of gene function in A. gossypii and in other ascomycetes where S. cerevisiae promoter elements are functional.

  6. 3’UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells

    PubMed Central

    Hoffman, Yonit; Bublik, Debora Rosa; P. Ugalde, Alejandro; Elkon, Ran; Biniashvili, Tammy; Agami, Reuven; Oren, Moshe; Pilpel, Yitzhak

    2016-01-01

    Most mammalian genes often feature alternative polyadenylation (APA) sites and hence diverse 3’UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3’UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs) whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3’UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3’UTR might become more active upon 3'UTR shortening. To address this conjecture we performed 3' sequencing to determine the 3' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3’UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes. PMID:26908102

  7. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation

    PubMed Central

    Singh, Ajeet Pratap; Archer, Trevor K.

    2014-01-01

    The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development. PMID:24335282

  8. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells

    PubMed Central

    Patel, Vishal; Carrion, Katrina; Hollands, Andrew; Hinton, Andrew; Gallegos, Thomas; Dyo, Jeffrey; Sasik, Roman; Leire, Emma; Hardiman, Gary; Mohamed, Salah A.; Nigam, Sanjay; King, Charles C.; Nizet, Victor; Nigam, Vishal

    2015-01-01

    Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.—Patel, V., Carrion, K., Hollands, A., Hinton, A., Gallegos, T., Dyo, J., Sasik, R., Leire, E., Hardiman, G., Mohamed, S. A., Nigam, S., King, C. C., Nizet, V., Nigam V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. PMID:25630970

  9. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome

    PubMed Central

    Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.

    2009-01-01

    In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520

  10. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.« less

  11. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.« less

  12. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium. PMID:28596955

  13. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation.

    PubMed

    Zhyvoloup, Alexander; Melamed, Anat; Anderson, Ian; Planas, Delphine; Lee, Chen-Hsuin; Kriston-Vizi, Janos; Ketteler, Robin; Merritt, Andy; Routy, Jean-Pierre; Ancuta, Petronela; Bangham, Charles R M; Fassati, Ariberto

    2017-07-01

    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation.

  14. Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1

    PubMed Central

    Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien

    2000-01-01

    Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649

  15. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging.

    PubMed

    Dosunmu, Remi; Alashwal, Hany; Zawia, Nasser H

    2012-06-01

    In this study, we assessed global gene expression patterns in adolescent mice exposed to lead (Pb) as infants and their aged siblings to identify reprogrammed genes. Global expression on postnatal day 20 and 700 was analyzed and genes that were down- and up-regulated (≥2 fold) were identified, clustered and analyzed for their relationship to DNA methylation. About 150 genes were differentially expressed in old age. In normal aging, we observed an up-regulation of genes related to the immune response, metal-binding, metabolism and transcription/transduction coupling. Prior exposure to Pb revealed a repression in these genes suggesting that disturbances in developmental stages of the brain compromise the ability to defend against age-related stressors, thus promoting the neurodegenerative process. Overexpression and repression of genes corresponded with their DNA methylation profile. Published by Elsevier Ireland Ltd.

  16. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus.

    PubMed

    Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui

    2018-01-01

    Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.

  18. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4.

    PubMed

    Poria, D K; Guha, A; Nandi, I; Ray, P S

    2016-03-31

    Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3'-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3'-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a 'miRNA sponge' to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments.

  19. Molecular characterization of SMILE as a novel corepressor of nuclear receptors.

    PubMed

    Xie, Yuan-Bin; Nedumaran, Balachandar; Choi, Hueng-Sik

    2009-07-01

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a coregulator in ER signaling. In this study, we have examined the effects of SMILE on other NRs (nuclear receptors). SMILE inhibits GR, CAR and HNF4 alpha-mediated transactivation. Knockdown of SMILE gene expression increases the transactivation of the NRs. SMILE interacts with GR, CAR and HNF4 alpha in vitro and in vivo. SMILE and these NRs colocalize in the nucleus. SMILE binds to the ligand-binding domain or AF2 domain of the NRs. Competitions between SMILE and the coactivators GRIP1 or PGC-1 alpha have been demonstrated in vitro and in vivo. Furthermore, an intrinsic repressive activity of SMILE is observed in Gal4-fusion system, and the intrinsic repressive domain is mapped to the C-terminus of SMILE, spanning residues 203-354. Moreover, SMILE interacts with specific HDACs (histone deacetylases) and SMILE-mediated repression is released by HDAC inhibitor trichostatin A, in a NR-specific manner. Finally, ChIP (chromatin immunoprecipitation) assays reveal that SMILE associates with the NRs on the target gene promoters. Adenoviral overexpression of SMILE represses GR-, CAR- and HNF4 alpha-mediated target gene expression. Overall, these results suggest that SMILE functions as a novel corepressor of NRs via competition with coactivators and the recruitment of HDACs.

  20. Polycomb group protein complexes exchange rapidly in living Drosophila.

    PubMed

    Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J

    2005-09-01

    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.

  1. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough.

    PubMed

    Zhang, Cui-Ying; Bai, Xiao-Wen; Lin, Xue; Liu, Xiao-Er; Xiao, Dong-Guang

    2015-12-01

    Maltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression, thereby delaying the dough fermentation. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. The Snf1 protein kinase is well known to be essential for the response to glucose repression and required for transcription of glucose-repressed genes including the maltose-utilization genes (MAL). In this study, the SNF1 overexpression and deletion industrial baker's yeast strains were constructed and characterized in terms of maltose utilization, growth and fermentation characteristics, mRNA levels of MAL genes (MAL62 encoding the maltase and MAL61 encoding the maltose permease) and maltase and maltose permease activities. Our results suggest that overexpression of SNF1 was effective to glucose derepression for enhancing MAL expression levels and enzymes (maltase and maltose permease) activities. These enhancements could result in an 18% increase in maltose metabolism of industrial baker's yeast in LSMLD medium (the low sugar model liquid dough fermentation medium) containing glucose and maltose and a 15% increase in leavening ability in lean dough. These findings provide a valuable insight of breeding industrial baker's yeast for rapid fermentation. © 2015 Institute of Food Technologists®

  2. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting.

    PubMed

    Masuda, Junko; Kawamoto, Hiroshi; Strober, Warren; Takayama, Eiji; Mizutani, Akifumi; Murakami, Hiroshi; Ikawa, Tomokatsu; Kitani, Atsushi; Maeno, Narumi; Shigehiro, Tsukasa; Satoh, Ayano; Seno, Akimasa; Arun, Vaidyanath; Kasai, Tomonari; Fuss, Ivan J; Katsura, Yoshimoto; Seno, Masaharu

    2016-12-01

    Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.

  3. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  4. A Novel Thyroid Hormone Mediated Regulation of HSV-1 Gene Expression and Replication is Specific to Neuronal Cells and Associated with Disruption of Chromatin Condensation

    PubMed Central

    Chen, Feng; Palem, Jay; Balish, Matthew; Figliozzi, Robert; Ajavon, Amakoe; Hsia, S Victor

    2014-01-01

    Previously we showed that thyroid hormone (T3) regulated the Herpes Simplex Virus Type -1 (HSV-1) gene expression and replication through its nuclear receptor TR via histone modification and chromatin remodeling in a neuroblastoma cell line neuro-2a cells (N2a). This observation suggested that T3 regulation may be neuron-specific and have implication in HSV-1 latency and reactivation. In this study, our in vitro latency/reactivation model demonstrated that removal of T3 can de-repress the HSV-1 replication and favor reactivation. Transfection studies and infection assays indicated that HSV-1 thymidine kinase (TK), a key viral gene during reactivation, was repressed by TR/T3 in cells with neuronal origin but not in non-neuronal cells. Additional studies showed that RCC1 (Regulator of Chromosome Condensation 1) was sequestered but efficiently detected upon viral infection in N2a cells. Western blot analyses indicated that addition of T3 repressed the RCC1 expression upon infection. It is likely that diminution of RCC1 upon infection in neuronal cells under the influence of TR/T3 may lead to repression of viral replication/gene expression thus promote latency. Together these results demonstrated that TR/T3 mediated regulation is specific to neuronal cells and differential chromosome condensation may play a critical role in this process. PMID:25346944

  5. Identification of a phorbol ester-repressible v-src-inducible gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, D.L.; Levy, D.B.; Yannoni, Y.

    1989-02-01

    Chicken embryo fibroblasts (CEF) infected with a temperature-sensitive Rous sarcoma virus (RSV) mutant, tsNY72-4, express a set of pp60{sup v-src}-induced RNAs soon after shift to the permissive temperature. By subtractive and differential screening, the authors have cloned 12 of these sequences, 2 of which were c-fos and krox-24. Serum induced all the v-src-inducible genes tested, suggesting that these genes serve roles in normal cell division and are not specific to transformation per se. Significantly, however, v-src produced prolonged, and in some cases kinetically complex, patterns of induction compared to serum. For most of the clones, phorbol 12-tetradecanoate 13-acetate (TPA) inducedmore » mRNAs with kinetics similar to that of serum. However, one clone (CEF-4) was expressed in a biphasic manner. Another (CEF-10) was repressed by TPA at 1 hr, after which this mRNA was permanently induced. The pattern of repression-induction of CEF-10 mRNA is the inverse of protein kinase C (PKC) activity in the cell, suggesting that PKC actively represses this gene. In vivo expression of CEF-10 mRNA is restricted predominantly to the lung. A full-length CEF-10 cDNA encodes a 41-kDa protein that has an amino-terminal signal peptide for secretion, contains a markedly high number of cysteine residues, and shows no sequence similarity to known proteins.« less

  6. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  7. Identification of the gene transcription repressor domain of Gli3.

    PubMed

    Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit

    2009-01-05

    Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.

  8. Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47.

    PubMed

    de Assis, Leandro José; Ulas, Mevlut; Ries, Laure Nicolas Annick; El Ramli, Nadia Ali Mohamed; Sarikaya-Bayram, Ozlem; Braus, Gerhard H; Bayram, Ozgur; Goldman, Gustavo Henrique

    2018-06-19

    The attachment of one or more ubiquitin molecules by SCF ( S kp- C ullin- F -box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans , CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δ fbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications. IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan. Copyright © 2018 de Assis et al.

  9. Interplay between EZH2 and G9a Regulates CXCL10 Gene Repression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Coward, William R; Brand, Oliver J; Pasini, Alice; Jenkins, Gisli; Knox, Alan J; Pang, Linhua

    2018-04-01

    Selective repression of the antifibrotic gene CXCL10 contributes to tissue remodeling in idiopathic pulmonary fibrosis (IPF). We have previously reported that histone deacetylation and histone H3 lysine 9 (H3K9) methylation are involved in CXCL10 repression. In this study, we explored the role of H3K27 methylation and the interplay between the two histone lysine methyltransferases enhancer of zest homolog 2 (EZH2) and G9a in CXCL10 repression in IPF. By applying chromatin immunoprecipitation, Re-ChIP, and proximity ligation assays, we demonstrated that, like G9a-mediated H3K9 methylation, EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3) was significantly enriched at the CXCL10 promoter in fibroblasts from IPF lungs (F-IPF) compared with fibroblasts from nonfibrotic lungs, and we also found that EZH2 and G9a physically interacted with each other. EZH2 knockdown reduced not only EZH2 and H3K27me3 but also G9a and H3K9me3, and G9a knockdown reduced not only G9 and H3K9me3 but also EZH2 and H3K27me3. Depletion and inhibition of EZH2 and G9a also reversed histone deacetylation and restored CXCL10 expression in F-IPF. Furthermore, treatment of fibroblasts from nonfibrotic lungs with the profibrotic cytokine transforming growth factor-β1 increased EZH2, G9a, H3K27me3, H3K9me3, and histone deacetylation at the CXCL10 promoter, similar to that observed in F-IPF, which was correlated with CXCL10 repression and was prevented by EZH2 and G9a knockdown. These findings suggest that a novel and functionally interdependent interplay between EZH2 and G9a regulates histone methylation-mediated epigenetic repression of the antifibrotic CXCL10 gene in IPF. This interdependent interplay may prove to be a target for epigenetic intervention to restore the expression of CXCL10 and other antifibrotic genes in IPF.

  10. Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control.

    PubMed

    Iuchi, S; Cole, S T; Lin, E C

    1990-01-01

    In Escherichia coli, sn-glycerol-3-phosphate can be oxidized by two different flavo-dehydrogenases, an anaerobic enzyme encoded by the glpACB operon and an aerobic enzyme encoded by the glpD operon. These two operons belong to the glp regulon specifying the utilization of glycerol, sn-glycerol-3-phosphate, and glycerophosphodiesters. In glpR mutant cells grown under conditions of low catabolite repression, the glpA operon is best expressed anaerobically with fumarate as the exogenous electron acceptor, whereas the glpD operon is best expressed aerobically. Increased anaerobic expression of glpA is dependent on the fnr product, a pleiotropic activator of genes involved in anaerobic respiration. In this study we found that the expression of a glpA1(Oxr) (oxygen-resistant) mutant operon, selected for increased aerobic expression, became less dependent on the FNR protein but more dependent on the cyclic AMP-catabolite gene activator protein complex mediating catabolite repression. Despite the increased aerobic expression of glpA1(Oxr), a twofold aerobic repressibility persisted. Moreover, anaerobic repression by nitrate respiration remained normal. Thus, there seems to exist a redox control apart from the FNR-mediated one. We also showed that the anaerobic repression of the glpD operon was fully relieved by mutations in either arcA (encoding a presumptive DNA recognition protein) or arcB (encoding a presumptive redox sensor protein). The arc system is known to mediate pleiotropic control of genes of aerobic function.

  11. Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo.

    PubMed

    Hirashima, Kyotaro; Seimiya, Hiroyuki

    2015-02-27

    Telomere erosion causes cell mortality, suggesting that longer telomeres enable more cell divisions. In telomerase-positive human cancer cells, however, telomeres are often kept shorter than those of surrounding normal tissues. Recently, we showed that cancer cell telomere elongation represses innate immune genes and promotes their differentiation in vivo. This implies that short telomeres contribute to cancer malignancy, but it is unclear how such genetic repression is caused by elongated telomeres. Here, we report that telomeric repeat-containing RNA (TERRA) induces a genome-wide alteration of gene expression in telomere-elongated cancer cells. Using three different cell lines, we found that telomere elongation up-regulates TERRA signal and down-regulates innate immune genes such as STAT1, ISG15 and OAS3 in vivo. Ectopic TERRA oligonucleotides repressed these genes even in cells with short telomeres under three-dimensional culture conditions. This appeared to occur from the action of G-quadruplexes (G4) in TERRA, because control oligonucleotides had no effect and a nontelomeric G4-forming oligonucleotide phenocopied the TERRA oligonucleotide. Telomere elongation and G4-forming oligonucleotides showed similar gene expression signatures. Most of the commonly suppressed genes were involved in the innate immune system and were up-regulated in various cancers. We propose that TERRA G4 counteracts cancer malignancy by suppressing innate immune genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation*

    PubMed Central

    Vanacloig-Pedros, Elena; Bets-Plasencia, Carolina; Pascual-Ahuir, Amparo; Proft, Markus

    2015-01-01

    Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and negative control of gene expression upon salt stress. We found that the repression of “housekeeping” genes coincides with the transient activation of defense genes and that the timing of this expression pattern depends on the severity of the stress. Moreover, we identified mutants that caused an alteration in the kinetics of this transcriptional control. Loss of function of the vacuolar H+-ATPase (vma1) or a defect in the biosynthesis of the osmolyte glycerol (gpd1) caused a prolonged repression of housekeeping genes and a delay in gene activation at inducible loci. Both mutants have a defect in the relocation of RNA polymerase II complexes at stress defense genes. Accordingly salt-activated transcription is delayed and less efficient upon partially respiratory growth conditions in which glycerol production is significantly reduced. Furthermore, the loss of Hog1 MAP kinase function aggravates the loss of RNA polymerase II from housekeeping loci, which apparently do not accumulate at inducible genes. Additionally the Def1 RNA polymerase II degradation factor, but not a high pool of nuclear polymerase II complexes, is needed for efficient stress-induced gene activation. The data presented here indicate that the finely tuned transcriptional control upon salt stress is dependent on physiological functions of the cell, such as the intracellular ion balance, the protective accumulation of osmolyte molecules, and the RNA polymerase II turnover. PMID:25745106

  13. Disruption of DNA methylation-dependent long gene repression in Rett syndrome

    PubMed Central

    Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.

    2015-01-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  14. Sumoylation of the net inhibitory domain (NID) is stimulated by PIAS1 and has a negative effect on the transcriptional activity of Net.

    PubMed

    Wasylyk, Christine; Criqui-Filipe, Paola; Wasylyk, Bohdan

    2005-01-27

    Net (Elk-3, Sap-2, Erp) and the related ternary complex factors Elk-1 and Sap-1 are effectors of multiple signalling pathways at the transcriptional level and play a key role in the dynamic regulation of gene expression. Net is distinct from Elk-1 and Sap-1, in that it is a strong repressor of transcription that is converted to an activator by the Ras/Erk signalling pathway. Two autonomous repression domains of Net, the NID and the CID, mediate repression. We have previously shown that the co-repressor CtBP is implicated in repression by the CID. In this report we show that repression by the NID involves a different pathway, sumoylation by Ubc9 and PIAS1. PIAS1 interacts with the NID in the two-hybrid assay and in vitro. Ubc9 and PIAS1 stimulate sumoylation in vivo of lysine 162 in the NID. Sumoylation of lysine 162 increases repression by Net and decreases the positive activity of Net. These results increase our understanding of how one of the ternary complex factors regulates transcription, and contribute to the understanding of how different domains of a transcription factor participate in the complexity of regulation of gene expression.

  15. Control of Transcriptional Repression of the Vitellogenin Receptor Gene in Largemouth Bass (Micropterus Salmoides) by Select Estrogen Receptors Isotypes

    PubMed Central

    Dominguez, Gustavo A.; Bisesi, Joseph H.; Kroll, Kevin J.; Denslow, Nancy D.; Sabo-Attwood, Tara

    2014-01-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5′ regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. PMID:25061109

  16. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8.

    PubMed Central

    Li, M Z; Squires, C H; Monticello, D J; Childs, J D

    1996-01-01

    The dsz gene cluster of Rhodococcus erythropolis IGTS8 comprises three genes, dszA, dszB, and dszC, whose products are involved in the conversion of dibenzothiophene (DBT) to 2-hydroxybiphenyl and sulfite. This organism can use DBT as the sole sulfur source but not as a carbon source. Dsz activity is repressed by methionine, cysteine, Casamino Acids, and sulfate but not by DBT or dimethyl sulfoxide. We cloned 385 bp of the DNA immediately 5' to dszA in front of the reporter gene lacZ of Escherichia coli. We showed that this region contains a Rhodococcus promoter and at least three dsz regulatory regions. After hydrazine mutagenesis of this DNA, colonies that were able to express beta-galactosidase in the presence of Casamino Acids were isolated. Sequencing of these mutants revealed two possible regulatory regions. One is at -263 to -244, and the other is at -93 to -38, where -1 is the base preceding the A of the initiation codon ATG of dszA. An S1 nuclease protection assay showed that the start of the dsz promoter is the G at -46 and that transcription is repressed by sulfate and cysteine but not by dimethyl sulfoxide. The promoter encompasses a region of potential diad symmetry that may contain an operator. Immediately upstream of the promoter is a protein-binding domain between -146 and -121. Deletion of this region did not affect repression, but promoter activity appeared to be reduced by threefold. Thus, it could be an activator binding site or an enhancer region. PMID:8932295

  17. COACTIVATOR ACTIVATOR (CoAA) PREVENTS THE TRANSCRIPTIONAL ACTIVITY OF RUNT DOMAIN TRANSCRIPTION FACTORS

    PubMed Central

    Li, Xiaodong; Hoeppner, Luke H.; Jensen, Eric D.; Gopalakrishnan, Rajaram; Westendorf, Jennifer J.

    2013-01-01

    Runx proteins are essential for a number of developmental processes and are aberrantly expressed in many human cancers. Runx factors bind DNA and co-factors to activate or repress genes crucial for bone formation, hematopoiesis, and neuronal development. Co-activator activator (CoAA) is a nuclear protein that regulates gene expression, RNA splicing and is overexpressed in many human tumors. In this study, we identified CoAA as a Runx2 binding protein. CoAA repressed Runx factor-dependent activation of reporter genes in a histone deacetylase-independent manner. CoAA also blocked Runx2-mediated repression of the Axin2 promoter, a novel Runx target gene. The carboxy-terminus of CoAA is essential for binding the Runt domains of Runx1 and Runx2. In electophoretic mobility shift assays, CoAA inhibited Runx2 interactions with DNA. These data indicate that CoAA is an inhibitor of Runx factors and can negate Runx factor regulation of gene expression. CoAA is expressed at high levels in human fetal osteoblasts and osteosarcoma cell lines. Suppression of CoAA expression by RNA interference reduced osteosarcoma cell viability in vitro, suggesting that it contributes to the proliferation and/or survival of osteoblast lineage cells. PMID:19585539

  18. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis

    PubMed Central

    Fan, Di; Dai, Yan; Wang, Xuncheng; Wang, Zhenjie; He, Hang; Yang, Hongchun; Cao, Ying; Deng, Xing Wang; Ma, Ligeng

    2012-01-01

    Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression. PMID:22772985

  19. BCL6 antagonizes NOTCH2 to maintain survival of human follicular lymphoma cells

    PubMed Central

    Valls, Ester; Lobry, Camille; Geng, Huimin; Wang, Ling; Cardenas, Mariano; Rivas, Martín; Cerchietti, Leandro; Oh, Philmo; Yang, Shao Ning; Oswald, Erin; Graham, Camille W.; Jiang, Yanwen; Hatzi, Katerina; Agirre, Xabier; Perkey, Eric; Li, Zhuoning; Tam, Wayne; Bhatt, Kamala; Leonard, John P.; Zweidler-McKay, Patrick A.; Maillard, Ivan; Elemento, Olivier; Ci, Weimin; Aifantis, Iannis; Melnick, Ari

    2017-01-01

    Summary Although the BCL6 transcriptional repressor is frequently expressed in human follicular lymphomas (FL), its biological role in this disease remains unknown. Herein we comprehensively identify the set of gene promoters directly targeted by BCL6 in primary human FLs. We noted that BCL6 binds and represses NOTCH2 and Notch pathway genes. Moreover, BCL6 and NOTCH2 pathway gene expression is inversely correlated in FL. Notably BCL6 up-regulation is associated with repression of Notch2 and its target genes in primary human and murine germinal center cells. Repression of Notch2 is an essential function of BCL6 in FL and GC B-cells since inducible expression of Notch2 abrogated GC formation in mice and kills FL cells. Indeed BCL6-targeting compounds or gene silencing leads to the induction of NOTCH2 activity and compromises survival of FL cells whereas NOTCH2 depletion or pathway antagonists rescue FL cells from such effects. Moreover, BCL6 inhibitors induced NOTCH2 expression and suppressed growth of human FL xenografts in vivo and primary human FL specimens ex vivo. These studies suggest that established FLs are thus dependent on BCL6 through its suppression of NOTCH2. PMID:28232365

  20. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system

    PubMed Central

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C.; Moon, Tae Seok

    2016-01-01

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA–asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. PMID:26837577

  1. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    PubMed

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Methionine-Mediated Repression in Saccharomyces cerevisiae: a Pleiotropic Regulatory System Involving Methionyl Transfer Ribonucleic Acid and the Product of Gene eth2

    PubMed Central

    Cherest, H.; Surdin-Kerjan, Y.; De Robichon-Szulmajster, H.

    1971-01-01

    Detailed study of methionine-mediated repression of enzymes involved in methionine biosynthesis in Saccharomyces cerevisiae led to classification of these enzymes into two distinct regulatory groups. Group I comprises four enzymes specifically involved in different parts of methionine biosynthesis, namely, homoserine-O-transacetylase, homocysteine synthetase, adenosine triphosphate sulfurylase, and sulfite reductase. Repressibility of these enzymes is greatly decreased in strains carrying a genetically impaired methionyl-transfer ribonucleic acid (tRNA) synthetase (mutation ts− 296). Conditions leading to absence of repression in the mutant strain have been correlated with a sharp decrease in bulk tRNAmet charging, whereas conditions which restore repressibility of group I enzymes also restore tRNAmet charging. These findings implicate methionyl-tRNA in the regulatory process. However, the absence of a correlation in the wild type between methionyl-tRNA charging and the levels of methionine group I enzymes suggests that only a minor iso accepting species of tRNAmet may be devoted with a regulatory function. Repressibility of the same four enzymes (group I) was also decreased in strains carrying the regulatory mutation eth2r. Although structural genes coding for two of these enzymes, as well as mutations ts− 296 and eth2r segregate independently to each other, synthesis of group I enzymes is coordinated. The pleiotropic regulatory system involved seems then to comprise beside a “regulatory methionyl tRNAmet,” another element, product of gene eth2, which might correspond either to an aporepressor protein or to the “regulatory tRNAmet” itself. Regulation of group II enzymes is defined by response to exogenous methionine, absence of response to either mutations ts− 296 and eth2r, and absence of coordinacy with group I enzymes. However, the two enzymes which belong to this group and are both involved in threonine and methionine biosynthesis undergo distinct regulatory patterns. One, aspartokinase, is subject to a bivalent repression exerted by threonine and methionine, and the other, homoserine dehydrogenase, is subject only to methionine-mediated repression. Participation of at least another aporepressor and another corepressor, different from the ones involved in regulation of group I enzymes, is discussed. PMID:5557593

  3. Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements.

    PubMed

    Papantonis, Argyris; Sourmeli, Sissy; Lecanidou, Rena

    2008-05-09

    From the different cis-elements clustered on silkmoth chorion gene promoters, C/EBP binding sites predominate. Their sequence composition and dispersal vary amongst promoters of diverse developmental specificity. Occupancy of these sites by BmC/EBP was examined through Southwestern and ChIP assays modified to suit ovarian follicular cells. For the genes studied, binding of BmC/EBP coincided with the respective stages of transcriptional activation. However, the factor was reloaded on promoter sequences long after individual gene repression. Furthermore, suppression of BmC/EBP transcription in developing follicles resulted in de-regulation of chorion gene expression. A biphasic function of BmC/EBP, according to which it may act as both an activator and a repressor during silkmoth choriogenesis, is considered under the light of the presented data.

  4. Separate necdin domains bind ARNT2 and HIF1{alpha} and repress transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Eitan R.; Fan Chenming

    2007-11-09

    PWS is caused by the loss of expression of a set of maternally imprinted genes including NECDIN (NDN). NDN is expressed in post-mitotic neurons and plays an essential role in PWS as mouse models lacking only the Ndn gene mimic aspects of this disease. Patients haploid for SIM1 develop a PW-like syndrome. Here, we report that NDN directly interacts with ARNT2, a bHLH-PAS protein and dimer partner for SIM1. We also found that NDN can interact with HIF1{alpha}. We showed that NDN can repress transcriptional activation mediated by ARNT2:SIM1 as well as ARNT2:HIF1{alpha}. The N-terminal 115 residues of NDN aremore » sufficient for interaction with the bHLH domains of ARNT2 or HIF1{alpha} but not for transcriptional repression. Using GAL4-NDN fusion proteins, we determined that NDN possesses multiple repression domains. We thus propose that NDN regulates neuronal function and hypoxic response by regulating the activities of the ARNT2:SIM1 and ARNT2:HIF1{alpha} dimers, respectively.« less

  5. A BEN-domain-containing protein associates with heterochromatin and represses transcription.

    PubMed

    Sathyan, Kizhakke M; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2011-09-15

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.

  6. A BEN-domain-containing protein associates with heterochromatin and represses transcription

    PubMed Central

    Sathyan, Kizhakke M.; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2011-01-01

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression. PMID:21914818

  7. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression

    PubMed Central

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A.; Ramaswamy, Suresh; Plant, Tony M.; Ojeda, Sergio R.

    2015-01-01

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty. PMID:26671628

  8. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty.

    PubMed

    Toro, Carlos A; Wright, Hollis; Aylwin, Carlos F; Ojeda, Sergio R; Lomniczi, Alejandro

    2018-01-04

    Polycomb group (PcG) proteins control the timing of puberty by repressing the Kiss1 gene in hypothalamic arcuate nucleus (ARC) neurons. Here we identify two members of the Trithorax group (TrxG) of modifiers, mixed-lineage leukemia 1 (MLL1), and 3 (MLL3), as central components of an activating epigenetic machinery that dynamically counteracts PcG repression. Preceding puberty, MLL1 changes the chromatin configuration at the promoters of Kiss1 and Tac3, two genes required for puberty to occur, from repressive to permissive. Concomitantly, MLL3 institutes a chromatin structure that changes the functional status of a Kiss1 enhancer from poised to active. RNAi-mediated, ARC-specific Mll1 knockdown reduced Kiss1 and Tac3 expression, whereas CRISPR-Cas9-directed epigenome silencing of the Kiss1 enhancer selectively reduced Kiss1 activity. Both interventions delay puberty and disrupt reproductive cyclicity. Our results demonstrate that an epigenetic switch from transcriptional repression to activation is crucial to the regulatory mechanism controlling the timing of mammalian puberty.

  9. Epigenetic Repression of Matrix Metalloproteinases in Myofibroblastic Hepatic Stellate Cells through Histone Deacetylases 4

    PubMed Central

    Qin, Lan; Han, Yuan-Ping

    2010-01-01

    Matrix metalloproteinases (MMPs), which are highly expressed in acute injury, are progressively repressed or silenced in fibrotic liver, favoring extracellular matrix accumulation, while the underlying mechanism is largely unknown. Similarly, normal/quiescent hepatic stellate cells (HSCs) express high levels of MMPs in response to injury signals, such as interleukin-1. After transdifferentiation, the myofibroblastic HSCs are incapable of expressing many MMPs; however, the major signaling pathways required for MMP expression are intact, indicating that repression is at the level of the chromatin. Indeed, both the MMP9 and MMP13 genes are inaccessible to transcription factors and RNA polymerase II, in association with impaired histone acetylation in their promoters. In accordance with impaired histone acetylation at the cellular level, histone deacetylase-4 is accumulated during HSC transdifferentiation. Furthermore, ectopic expression of histone deacetylase-4 in quiescent HSCs results in repression of MMP promoter activities as well as endogenous MMP9 protein expression. Thus, our findings suggest that a histone deacetylase-4-dependent mechanism underlies the epigenetic silencing of MMP genes during tissue fibrogenesis. PMID:20847282

  10. Mitosis-associated repression in development.

    PubMed

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-07-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. © 2016 Esposito et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene.

    PubMed

    Gay, Maresha S; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela; Zhang, Lubo

    2016-08-01

    Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene

    PubMed Central

    Gay, Maresha S.; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela

    2016-01-01

    Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene. PMID:27302109

  13. TET2 functions as a resistance factor against DNA methylation acquisition during Epstein-Barr virus infection.

    PubMed

    Namba-Fukuyo, Hiroe; Funata, Sayaka; Matsusaka, Keisuke; Fukuyo, Masaki; Rahmutulla, Bahityar; Mano, Yasunobu; Fukayama, Masashi; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-12-06

    Extensive DNA methylation is observed in gastric cancer with Epstein-Barr virus (EBV) infection, and EBV infection is the cause to induce this extensive hypermethylaton phenotype in gastric epithelial cells. However, some 5' regions of genes do not undergo de novo methylation, despite the induction of methylation in surrounding regions, suggesting the existence of a resistance factor against DNA methylation acquisition. We conducted an RNA-seq analysis of gastric epithelial cells with and without EBV infection and found that TET family genes, especially TET2, were repressed by EBV infection at both mRNA and protein levels. TET2 was found to be downregulated by EBV transcripts, e.g. BARF0 and LMP2A, and also by seven human miRNAs targeting TET2, e.g., miR-93 and miR-29a, which were upregulated by EBV infection, and transfection of which into gastric cells repressed TET2. Hydroxymethylation target genes by TET2 were detected by hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq) with and without TET2 overexpression, and overlapped significantly with methylation target genes in EBV-infected cells. When TET2 was knocked down by shRNA, EBV infection induced de novo methylation more severely, including even higher methylation in methylation-acquired promoters or de novo methylation acquisition in methylation-protected promoters, leading to gene repression. TET2 knockdown alone without EBV infection did not induce de novo DNA methylation. These data suggested that TET2 functions as a resistance factor against DNA methylation in gastric epithelial cells and repression of TET2 contributes to DNA methylation acquisition during EBV infection.

  14. A Screen in Mice Uncovers Repression of Lipoprotein Lipase by MicroRNA-29a as a Mechanism for Lipid Distribution Away From the Liver

    PubMed Central

    Mattis, Aras N.; Song, Guisheng; Hitchner, Kelly; Kim, Roy Y.; Lee, Andrew Y.; Sharma, Amar D.; Malato, Yann; McManus, Michael T.; Esau, Christine C.; Koller, Erich; Koliwad, Suneil; Lim, Lee P.; Maher, Jacquelyn J.; Raffai, Robert L.; Willenbring, Holger

    2015-01-01

    Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs exist. To identify genes repressed by miRNAs in mature hepatocytes in vivo, we injected adult mice carrying floxed Dicer1 alleles with an adenoassociated viral vector expressing Cre recombinase specifically in hepatocytes. By inactivating Dicer in adult quiescent hepatocytes we avoided the hepatocyte injury and regeneration observed in previous mouse models of global miRNA deficiency in hepatocytes. Next, we combined gene and miRNA expression profiling to identify candidate gene/miRNA interactions involved in hepatic lipid metabolism, and validated their function in vivo using antisense oligonucleotides. A candidate gene that emerged from our screen was lipoprotein lipase (Lpl), which encodes an enzyme that facilitates cellular uptake of lipids from the circulation. Unlike in energy-dependent cells like myocytes, Lpl is normally repressed in adult hepatocytes. We identified miR-29a as the miRNA responsible for repressing Lpl in hepatocytes, and found that decreasing hepatic miR-29a levels causes lipids to accumulate in mouse livers. Conclusion Our screen suggests several new miRNAs are regulators of hepatic lipid metabolism. We show that one of these, miR-29a, contributes to physiological lipid distribution away from the liver and protects hepatocytes from steatosis. Our results, together with miR-29a’s known anti-fibrotic effect, suggest miR-29a is a therapeutic target in fatty liver disease. PMID:25131933

  15. A single residue mutation in Hha preserving structure and binding to H-NS results in loss of H-NS mediated gene repression properties.

    PubMed

    Cordeiro, Tiago N; Garcia, Jesús; Pons, José-Ignacio; Aznar, Sonia; Juárez, Antonio; Pons, Miquel

    2008-09-03

    In this study, we report that a single mutation of cysteine 18 to isoleucine (C18I) in Escherichia coli Hha abolishes the repression of the hemolysin operon observed in the wild-type protein. The phenotype also includes a significant decrease in the growth rate of E. coli cells at low ionic strength. Other substitutions at this position (C18A, C18S) have no observable effects in E. coli growth or hemolysin repression. All mutants are stable and well folded and bind H-NS in vitro with similar affinities suggesting that Cys 18 is not directly involved in H-NS binding but this position is essential for the activity of the H-NS/Hha heterocomplexes in the regulation of gene expression.

  16. Biochemical and Functional Interactions of Human Papillomavirus Proteins with Polycomb Group Proteins

    PubMed Central

    McLaughlin-Drubin, Margaret E.; Munger, Karl

    2013-01-01

    The role of enzymes involved in polycomb repression of gene transcription has been studied extensively in human cancer. Polycomb repressive complexes mediate oncogene-induced senescence, a principal innate cell-intrinsic tumor suppressor pathway that thwarts expansion of cells that have suffered oncogenic hits. Infections with human cancer viruses including human papillomaviruses (HPVs) and Epstein-Barr virus can trigger oncogene-induced senescence, and the viruses have evolved strategies to abrogate this response in order to establish an infection and reprogram their host cells to establish a long-term persistent infection. As a consequence of inhibiting polycomb repression and evading oncogene induced-senescence, HPV infected cells have an altered epigenetic program as evidenced by aberrant homeobox gene expression. Similar alterations are frequently observed in non-virus associated human cancers and may be harnessed for diagnosis and therapy. PMID:23673719

  17. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    PubMed

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites. © 2016 The Royal Entomological Society.

  18. MRG-1, an autosome-associated protein, silences X-linked genes and protects germline immortality in Caenorhabditis elegans

    PubMed Central

    Takasaki, Teruaki; Liu, Zheng; Habara, Yasuaki; Nishiwaki, Kiyoji; Nakayama, Jun-ichi; Inoue, Kunio; Sakamoto, Hiroshi; Strome, Susan

    2008-01-01

    MRG15, a mammalian protein related to the mortality factor MORF4, is required for cell proliferation and embryo survival. Our genetic analysis has revealed that the Caenorhabditis elegans ortholog MRG-1 serves similar roles. Maternal MRG-1 promotes embryo survival and is required for proliferation and immortality of the primordial germ cells (PGCs). As expected of a chromodomain protein, MRG-1 associates with chromatin. Unexpectedly, it is concentrated on the autosomes and not detectable on the X chromosomes. This association is not dependent on the autosome-enriched protein MES-4. Focusing on possible roles of MRG-1 in regulating gene expression, we determined that MRG-1 is required to maintain repression in the maternal germ line of transgenes on extrachromosomal arrays, and of several X-linked genes previously shown to depend on MES-4 for repression. MRG-1 is not required for PGCs to acquire transcriptional competence or for the turn-on of expression of several PGC-expressed genes (pgl-1, glh-1, glh-4 and nos-1). By contrast to this result in PGCs, MRG-1 is required for ectopic expression of those germline genes in somatic cells lacking the NuRD complex component MEP-1. We discuss how an autosome-enriched protein might repress genes on the X chromosome, promote PGC proliferation and survival, and influence the germ versus soma distinction. PMID:17215300

  19. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    PubMed

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  20. Chromatin immunoprecipitation assays: application of ChIP-on-chip for defining dynamic transcriptional mechanisms in bone cells.

    PubMed

    van der Deen, Margaretha; Hassan, Mohammad Q; Pratap, Jitesh; Teplyuk, Nadiya M; Young, Daniel W; Javed, Amjad; Zaidi, Sayyed K; Lian, Jane B; Montecino, Martin; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J

    2008-01-01

    Normal cell growth and differentiation of bone cells requires the sequential expression of cell type specific genes to permit lineage specification and development of cellular phenotypes. Transcriptional activation and repression of distinct sets of genes support the anabolic functions of osteoblasts and the catabolic properties of osteoclasts. Furthermore, metastasis of tumors to the bone environment is controlled by transcriptional mechanisms. Insights into the transcriptional regulation of genes in bone cells may provide a conceptual basis for improved therapeutic approaches to treat bone fractures, genetic osteopathologies, and/or cancer metastases to bone. Chromatin immunoprecipitation (ChIP) is a powerful technique to establish in vivo binding of transcription factors to the promoters of genes that are either activated or repressed in bone cells. Combining ChIP with genomic microarray analysis, colloquially referred to as "ChIP-on-chip," has become a valuable method for analysis of endogenous protein/DNA interactions. This technique permits assessment of chromosomal binding sites for transcription factors or the location of histone modifications at a genomic scale. This chapter discusses protocols for performing chromatin immunoprecipitation experiments, with a focus on ChIP-on-chip analysis. The information presented is based on the authors' experience with defining interactions of Runt-related (RUNX) transcription factors with bone-related genes within the context of the native nucleosomal organization of intact osteoblastic cells.

  1. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transcriptional Repression of ATF4 Gene by CCAAT/Enhancer-binding Protein β (C/EBPβ) Differentially Regulates Integrated Stress Response*

    PubMed Central

    Dey, Souvik; Savant, Sudha; Teske, Brian F.; Hatzoglou, Maria; Calkhoven, Cornelis F.; Wek, Ronald C.

    2012-01-01

    Different environmental stresses induce the phosphorylation of eIF2 (eIF2∼P), repressing global protein synthesis coincident with preferential translation of ATF4. ATF4 is a transcriptional activator of genes involved in metabolism and nutrient uptake, antioxidation, and regulation of apoptosis. Because ATF4 is a common downstream target that integrates signaling from different eIF2 kinases and their respective stress signals, the eIF2∼P/ATF4 pathway is collectively referred to as the integrated stress response. Although eIF2∼P elicits translational control in response to many different stresses, there are selected stresses, such as exposure to UV irradiation, that do not increase ATF4 expression despite robust eIF2∼P. The rationale for this discordant induction of ATF4 expression and eIF2∼P in response to UV irradiation is that transcription of ATF4 is repressed, and therefore ATF4 mRNA is not available for preferential translation. In this study, we show that C/EBPβ is a transcriptional repressor of ATF4 during UV stress. C/EBPβ binds to critical elements in the ATF4 promoter, resulting in its transcriptional repression. Expression of C/EBPβ increases in response to UV stress, and the liver-enriched inhibitory protein (LIP) isoform of C/EBPβ, but not the liver-enriched activating protein (LAP) version, represses ATF4 transcription. Loss of the liver-enriched inhibitory protein isoform results in increased ATF4 mRNA levels in response to UV irradiation and subsequent recovery of ATF4 translation, leading to enhanced expression of its target genes. Together these results illustrate how eIF2∼P and translational control combined with transcription factors regulated by alternative signaling pathways can direct programs of gene expression that are specifically tailored to each environmental stress. PMID:22556424

  3. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes.more » AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.« less

  4. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors.

    PubMed

    Schiessl, Katharina; Muiño, Jose M; Sablowski, Robert

    2014-02-18

    Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.

  5. Analysis of hepatic gene transcription in mice expressing insulin-insensitive GSK3

    PubMed Central

    2005-01-01

    GSK3 (glycogen synthase kinase-3) regulation is proposed to play a key role in the hormonal control of many cellular processes. Inhibition of GSK3 in animal models of diabetes leads to normalization of blood glucose levels, while high GSK3 activity has been reported in Type II diabetes. Insulin inhibits GSK3 by promoting phosphorylation of a serine residue (Ser-21 in GSK3α, Ser-9 in GSK3β), thereby relieving GSK3 inhibition of glycogen synthesis in muscle. GSK3 inhibition in liver reduces expression of the gluconeogenic genes PEPCK (phosphoenolpyruvate carboxykinase), G6Pase (glucose-6-phosphatase), as well as IGFBP1 (insulin-like growth factor binding protein-1). Overexpression of GSK3 in cells antagonizes insulin regulation of these genes. In the present study we demonstrate that regulation of these three genes by feeding is normal in mice that express insulin-insensitive GSK3. Therefore inactivation of GSK3 is not a prerequisite for insulin repression of these genes, despite the previous finding that GSK3 activity is absolutely required for maintaining their expression. Interestingly, insulin injection of wild-type mice, which activates PKB (protein kinase B) and inhibits GSK3 to a greater degree than feeding (50% versus 25%), does not repress these genes. We suggest for the first time that although pharmacological inhibition of GSK3 reduces hepatic glucose production even in insulin-resistant states, feeding can repress the gluconeogenic genes without inhibiting GSK3. PMID:16176184

  6. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation

    PubMed Central

    Planas, Delphine; Merritt, Andy; Routy, Jean-Pierre; Ancuta, Petronela; Bangham, Charles R. M.

    2017-01-01

    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation. PMID:28727807

  7. Antisense Oligonucleotides Modulating Activation of a Nonsense-Mediated RNA Decay Switch Exon in the ATM Gene.

    PubMed

    Kralovicova, Jana; Moreno, Pedro M D; Cross, Nicholas C P; Pêgo, Ana Paula; Vorechovsky, Igor

    2016-12-01

    ATM (ataxia-telangiectasia, mutated) is an important cancer susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. ATM mutations in the germ line result in ataxia-telangiectasia (A-T), a rare genetic syndrome associated with hypersensitivity to double-strand DNA breaks and predisposition to lymphoid malignancies. ATM expression is limited by a tightly regulated nonsense-mediated RNA decay (NMD) switch exon (termed NSE) located in intron 28. In this study, we identify antisense oligonucleotides that modulate NSE inclusion in mature transcripts by systematically targeting the entire 3.1-kb-long intron. Their identification was assisted by a segmental deletion analysis of transposed elements, revealing NSE repression upon removal of a distant antisense Alu and NSE activation upon elimination of a long terminal repeat transposon MER51A. Efficient NSE repression was achieved by delivering optimized splice-switching oligonucleotides to embryonic and lymphoblastoid cells using chitosan-based nanoparticles. Together, these results provide a basis for possible sequence-specific radiosensitization of cancer cells, highlight the power of intronic antisense oligonucleotides to modify gene expression, and demonstrate transposon-mediated regulation of NSEs.

  8. Inhibitors for the Vitamin D Receptor–Coregulator Interaction

    PubMed Central

    Teske, Kelly A.; Yu, Olivia; Arnold, Leggy A.

    2016-01-01

    The vitamin D receptor (VDR) belongs to the superfamily of nuclear receptors and is activated by the endogenous ligand 1,25-dihydroxyvitamin D3. The genomic effects mediated by VDR consist of the activation and repression of gene transcription, which includes the formation of multi-protein complexes with coregulator proteins. Coregulators bind many nuclear receptors and can be categorized according their role as coactivators (gene activation) or corepressors (gene repression). Herein, different approaches to develop compounds that modulate the interaction between VDR and coregulators are summarized. This include coregulator peptides that were identified by creating phage display libraries. Subsequent modification of these peptides including the introduction of a tether or non-hydrolysable bonds resulted in the first direct VDR–coregulator inhibitors. Later, small molecules that inhibit VDR–coregulator inhibitors were identified using rational drug design and high throughput screening. Early on, allosteric inhibition of VDR–coregulator interactions was achieved with VDR antagonists that change the conformation of VDR and modulate the interactions with coregulators. A detailed discussion of their dual agonist/antagonist effects is given as well as a summary of their biological effects in cell-based assays and in vivo studies. PMID:26827948

  9. E. coli and water quality: Reevaluation of mug tests and development of radical new indole test. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, G.W.

    1992-12-01

    The project was undertaken to address the problem of MUG (4-methylumbelliferyl-B-D-glucuronide)-negative E. coli in water testing, and to develop a new, more reliable indole-based test for E. coli. In a study involving 39 healthy human volunteers, it was found that 1/3 of E. coli isolated from fresh human fecal samples tested MUG-negative in lauryl tryptose broth with MUG. It was further discovered: (1) The presence of simple sugars can cause catabolite repression of beta-GUR in a small percentage of E coli. (2) In gene probe studies, almost all E. coli isolates have portions of the uidA (GUR) gene sequence. Basedmore » on these two findings, catabolite repression can only be a partial explanation for the high-rate of GUR-negative E. coli. The authors improved the E. coli confirmatory medium, EC + MUG by removing the lactose, which allows for a stronger MUG test and the inclusion of the more reliable indole test. They called this newly improved medium INDEC, for Indole and EC medium. They later developed Colitag 3, a one-day, single tube indole-based test for E. coli.« less

  10. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.

    PubMed

    Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando

    2015-01-01

    The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.

    PubMed

    Smith, Justin D; Suresh, Sundari; Schlecht, Ulrich; Wu, Manhong; Wagih, Omar; Peltz, Gary; Davis, Ronald W; Steinmetz, Lars M; Parts, Leopold; St Onge, Robert P

    2016-03-08

    Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.

  12. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism

    PubMed Central

    Lakisic, Goran; Wendling, Olivia; Libertini, Emanuele; Radford, Elizabeth J.; Le Guillou, Morwenna; Champy, Marie-France; Wattenhofer-Donzé, Marie; Soubigou, Guillaume; Ait-Si-Ali, Slimane; Feunteun, Jean; Sorg, Tania; Coppée, Jean-Yves; Ferguson-Smith, Anne C.; Cossart, Pascale; Bierne, Hélène

    2016-01-01

    BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases. PMID:26938916

  13. Molecular mechanisms of ribosomal protein gene coregulation

    PubMed Central

    Reja, Rohit; Vinayachandran, Vinesh; Ghosh, Sujana; Pugh, B. Franklin

    2015-01-01

    The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences. PMID:26385964

  14. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

    PubMed

    Warnatz, Hans-Jörg; Schmidt, Dominic; Manke, Thomas; Piccini, Ilaria; Sultan, Marc; Borodina, Tatiana; Balzereit, Daniela; Wruck, Wasco; Soldatov, Alexey; Vingron, Martin; Lehrach, Hans; Yaspo, Marie-Laure

    2011-07-01

    The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.

  15. Polycomb repressive complex 1 modifies transcription of active genes

    PubMed Central

    Pherson, Michelle; Misulovin, Ziva; Gause, Maria; Mihindukulasuriya, Kathie; Swain, Amanda; Dorsett, Dale

    2017-01-01

    This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences. PMID:28782042

  16. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    PubMed

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    PubMed

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  18. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast.

    PubMed Central

    Kuchin, S; Yeghiayan, P; Carlson, M

    1995-01-01

    The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter. Images Fig. 3 Fig. 4 Fig. 5 PMID:7732022

  19. VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function.

    PubMed

    Jin, Honghong; Li, Dan; Wang, Xutong; Jia, Jia; Chen, Yang; Yao, Yapeng; Zhao, Chunlan; Lu, Xiaodan; Zhang, Shujie; Togo, Jacques; Ji, Yan; Zhang, Luqing; Feng, Xuechao; Zheng, Yaowu

    2018-05-01

    Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.

  20. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92

    PubMed Central

    Jin, Hyun Yong; Oda, Hiroyo; Chen, Pengda; Kang, Seung Goo; Valentine, Elizabeth; Liao, Lujian; Zhang, Yaoyang; Gonzalez-Martin, Alicia; Shepherd, Jovan; Head, Steven R.; Kim, Pyeung-Hyeun; Fu, Guo; Liu, Wen-Hsien; Han, Jiahuai

    2017-01-01

    MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. PMID:28241004

  1. Curcumin differentially regulates endoplasmic reticulum stress through transcriptional corepressor SMILE (small heterodimer partner-interacting leucine zipper protein)-mediated inhibition of CREBH (cAMP responsive element-binding protein H).

    PubMed

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-kyu; Li, Tiangang; Koo, Seung-Hoi; Back, Sung-Hoon; Chiang, John Y L; Choi, Hueng-Sik

    2011-12-09

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), is a natural polyphenolic compound. Herein the effect of curcumin on endoplasmic reticulum (ER) stress responsive gene expression was investigated. We report that curcumin induces transcriptional corepressor small heterodimer partner-interacting leucine zipper protein (SMILE) gene expression through liver kinase B1 (LKB1)/adenosine monophosphate-activated kinase (AMPK) signaling pathway and represses ER stress-responsive gene transcription in an ER-bound transcription factor specific manner. cAMP responsive element-binding protein H (CREBH) and activating transcription factor 6 (ATF6) are both ER-bound bZIP family transcription factors that are activated upon ER stress. Of interest, we observed that both curcumin treatment and SMILE overexpression only represses CREBH-mediated transactivation of the target gene but not ATF6-mediated transactivation. Knockdown of endogenous SMILE significantly releases the inhibitory effect of curcumin on CREBH transactivation. Intrinsic repressive activity of SMILE is observed in the Gal4 fusion system, and the intrinsic repressive domain is mapped to the C terminus of SMILE spanning amino acid residues 203-269, corresponding to the basic region leucine zipper (bZIP) domain. In vivo interaction assay revealed that through its bZIP domain, SMILE interacts with CREBH and inhibits its transcriptional activity. Interestingly, we observed that SMILE does not interact with ATF6. Furthermore, competition between SMILE and the coactivator peroxisome proliferator-activated receptor α (PGC-1α) on CREBH transactivation has been demonstrated in vitro and in vivo. Finally, chromatin immunoprecipitation assays revealed that curcumin decreases the binding of PGC-1α and CREBH on target gene promoter in a SMILE-dependent manner. Overall, for the first time we suggest a novel phenomenon that the curcumin/LKB1/AMPK/SMILE/PGC1α pathway differentially regulates ER stress-mediated gene transcription.

  2. Genome wide transcriptional profiling of Herbaspirillum seropedicae SmR1 grown in the presence of naringenin.

    PubMed

    Tadra-Sfeir, Michelle Z; Faoro, Helisson; Camilios-Neto, Doumit; Brusamarello-Santos, Liziane; Balsanelli, Eduardo; Weiss, Vinicius; Baura, Valter A; Wassem, Roseli; Cruz, Leonardo M; De Oliveira Pedrosa, Fábio; Souza, Emanuel M; Monteiro, Rose A

    2015-01-01

    Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived.

  3. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors.

    PubMed

    Thakore, Pratiksha I; Gersbach, Charles A

    2016-01-01

    Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.

  4. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  5. Molecular characterization and expression of microbial inulinase genes.

    PubMed

    Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming

    2013-05-01

    Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.

  6. Development of a promoter shutoff system in Aspergillus oryzae using a sorbitol-sensitive promoter.

    PubMed

    Oda, Ken; Terado, Shiho; Toyoura, Rieko; Fukuda, Hisashi; Kawauchi, Moriyuki; Iwashita, Kazuhiro

    2016-09-01

    Promoter shutoff is a general method for analyzing essential genes, but in the fungus Aspergillus oryzae, no tightly repressed promoters have been reported. To overcome the current limitations of conditional promoters, we examined sorbitol- and galactose-responsive genes using microarrays to identify regulatable genes with only minor physiological and genetic effects. We identified two sorbitol-induced genes (designated as sorA and sorB), cloned their promoters, and built a regulated egfp and brlA expression system. Growth medium-dependent enhanced green fluorescence protein (EGFP) fluorescence and conidiation were confirmed for egfp and brlA under the control of their respective promoters. We also used this shutoff system to regulate the essential rhoA, which demonstrated the expected growth inhibition under repressed growth conditions. Our new sorbitol promoter shutoff system developed can serve as a valuable new tool for essential gene analyses of filamentous fungi.

  7. Chromatin insulator elements: establishing barriers to set heterochromatin boundaries.

    PubMed

    Barkess, Gráinne; West, Adam G

    2012-02-01

    Epigenomic profiling has revealed that substantial portions of genomes in higher eukaryotes are organized into extensive domains of transcriptionally repressive chromatin. The boundaries of repressive chromatin domains can be fixed by DNA elements known as barrier insulators, to both shield neighboring gene expression and to maintain the integrity of chromosomal silencing. Here, we examine the current progress in identifying vertebrate barrier elements and their binding factors. We overview the design of the reporter assays used to define enhancer-blocking and barrier insulators. We look at the mechanisms vertebrate barrier proteins, such as USF1 and VEZF1, employ to counteract Polycomb- and heterochromatin-associated repression. We also undertake a critical analysis of whether CTCF could also act as a barrier protein. There is good evidence that barrier elements in vertebrates can form repressive chromatin domain boundaries. Future studies will determine whether barriers are frequently used to define repressive domain boundaries in vertebrates.

  8. MYC association with cancer risk and a new model of MYC-mediated repression.

    PubMed

    Cole, Michael D

    2014-07-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Molecular architecture of polycomb repressive complexes

    PubMed Central

    Chittock, Emily C.; Latwiel, Sebastian; Miller, Thomas C.R.

    2017-01-01

    The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin. PMID:28202673

  10. DNA methylation and differentiation: HOX genes in muscle cells

    PubMed Central

    2013-01-01

    Background Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. Results In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3′ half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. Conclusions Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5′ promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures. PMID:23916067

  11. Chromatin Redistribution of the DEK Oncoprotein Represses hTERT Transcription in Leukemias12

    PubMed Central

    Karam, Maroun; Thenoz, Morgan; Capraro, Valérie; Robin, Jean-Philippe; Pinatel, Christiane; Lancon, Agnès; Galia, Perrine; Sibon, David; Thomas, Xavier; Ducastelle-Lepretre, Sophie; Nicolini, Franck; El-Hamri, Mohamed; Chelghoun, Youcef; Wattel, Eric; Mortreux, Franck

    2014-01-01

    Although numerous factors have been found to modulate hTERT transcription, the mechanism of its repression in certain leukemias remains unknown. We show here that DEK represses hTERT transcription through its enrichment on the hTERT promoter in cells from chronic and acute myeloid leukemias, chronic lymphocytic leukemia, but not acute lymphocytic leukemias where hTERT is overexpressed. We isolated DEK from the hTERT promoter incubated with nuclear extracts derived from fresh acute myelogenous leukemia (AML) cells and from cells expressing Tax, an hTERT repressor encoded by the human T cell leukemia virus type 1. In addition to the recruitment of DEK, the displacement of two potent known hTERT transactivators from the hTERT promoter characterized both AML cells and Tax-expressing cells. Reporter and chromatin immunoprecipitation assays permitted to map the region that supports the repressive effect of DEK on hTERT transcription, which was proportionate to the level of DEK-promoter association but not with the level of DEK expression. Besides hTERT repression, this context of chromatin redistribution of DEK was found to govern about 40% of overall transcriptional modifications, including those of cancer-prone genes. In conclusion, DEK emerges as an hTERT repressor shared by various leukemia subtypes and seems involved in the deregulation of numerous genes associated with leukemogenesis. PMID:24563617

  12. Dynamic changes in gene expression during human trophoblast differentiation.

    PubMed

    Handwerger, Stuart; Aronow, Bruce

    2003-01-01

    The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotrophoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by "categorical reprogramming" in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category. We also observed categorical reprogramming in human decidual fibroblasts decidualized in vitro in response to progesterone, estradiol, and cyclic AMP. While there was little overlap between genes that are dynamically regulated during trophoblast differentiation versus decidualization, many of the categories in which genes were strongly activated also contained genes whose expression was strongly diminished. Taken together, these findings point to a fundamental role for simultaneous induction and repression of mRNAs that encode functionally related proteins during the differentiation process.

  13. A gene regulatory network armature for T-lymphocyte specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Elizabeth-sharon

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through whichmore » T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.« less

  14. Pod-1/Capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-1.

    PubMed

    Tamura, M; Kanno, Y; Chuma, S; Saito, T; Nakatsuji, N

    2001-04-01

    Mammalian sex-determination and differentiation are controlled by several genes, such as Sry, Sox-9, Dax-1 and Mullerian inhibiting substance (MIS), but their upstream and downstream genes are largely unknown. Ad4BP/SF-1, encoding a zinc finger transcription factor, plays important roles in gonadogenesis. Disruption of this gene caused disappearance of the urogenital system including the gonad. Ad4BP/SF-1, however, is also involved in the sex differentiation of the gonad at later stages, such as the regulation of steroid hormones and MIS. Pod-1/Capsulin, a member of basic helix-loop-helix transcription factors, is expressed in a pattern closely related but mostly complimentary to that of the Ad4BP/SF-1 expression in the developing gonad. In the co-transfection experiment using cultured cells, overexpression of Pod-1/Capsulin repressed expression of a reporter gene that carried the upstream regulatory region of the Ad4BP/SF-1 gene. Furthermore, forced expression of Pod-1/Capsulin repressed expression of Ad4BP/SF-1 in the Leydig cell-derived I-10 cells. These results suggest that Pod-1/Capsulin may play important roles in the development and sex differentiation of the mammalian gonad via transcriptional regulation of Ad4BP/SF-1.

  15. Sall1 Maintains Nephron Progenitors and Nascent Nephrons by Acting as Both an Activator and a Repressor

    PubMed Central

    Kanda, Shoichiro; Tanigawa, Shunsuke; Ohmori, Tomoko; Taguchi, Atsuhiro; Kudo, Kuniko; Suzuki, Yutaka; Sato, Yuki; Hino, Shinjiro; Sander, Maike; Perantoni, Alan O.; Sugano, Sumio; Nakao, Mitsuyoshi

    2014-01-01

    The balanced self-renewal and differentiation of nephron progenitors are critical for kidney development and controlled, in part, by the transcription factor Six2, which antagonizes canonical Wnt signaling-mediated differentiation. A nuclear factor, Sall1, is expressed in Six2-positive progenitors as well as differentiating nascent nephrons, and it is essential for kidney formation. However, the molecular functions and targets of Sall1, especially the functions and targets in the nephron progenitors, remain unknown. Here, we report that Sall1 deletion in Six2-positive nephron progenitors results in severe progenitor depletion and apoptosis of the differentiating nephrons in mice. Analysis of mice with an inducible Sall1 deletion revealed that Sall1 activates genes expressed in progenitors while repressing genes expressed in differentiating nephrons. Sall1 and Six2 co-occupied many progenitor-related gene loci, and Sall1 bound to Six2 biochemically. In contrast, Sall1 did not bind to the Wnt4 locus suppressed by Six2. Sall1-mediated repression was also independent of its binding to DNA. Thus, Sall1 maintains nephron progenitors and their derivatives by a unique mechanism, which partly overlaps but is distinct from that of Six2: Sall1 activates progenitor-related genes in Six2-positive nephron progenitors and represses gene expression in Six2-negative differentiating nascent nephrons. PMID:24744442

  16. Thyroid Hormone Receptor β Suppression of RUNX2 is Mediated by Brahma Related Gene 1 Dependent Chromatin Remodeling.

    PubMed

    Gillis, Noelle E; Taber, Thomas H; Bolf, Eric L; Beaudet, Caitlin M; Tomczak, Jennifer A; White, Jeffrey H; Stein, Janet L; Stein, Gary S; Lian, Jane B; Frietze, Seth; Carr, Frances E

    2018-05-09

    Thyroid hormone receptor beta (TRβ) suppresses tumor growth through regulation of gene expression, yet the associated TRβ-mediated changes in chromatin assembly are not known. The chromatin ATPase Brahma Related Gene 1 (BRG1, SMARCA4), a key component of chromatin remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRβ-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRβ. Here we report differential expression of BRG1 in non-malignant and malignant thyroid cells concordant with TRβ. BRG1 and TRβ have similar nuclear distribution patterns and significant co-localization. BRG1 interacts with TRβ and together are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels whereas re-introduction of TRβ and BRG1 synergistically decrease RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity ncreased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a novel mechanism of TRβ repression of oncogenic gene expression: TRβ recruitment of BRG1 to induce chromatin compaction and diminished RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRβ transcriptional repression and tumor suppressor function in thyroid tumorigenesis.

  17. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum

    PubMed Central

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder

    2011-01-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044

  18. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    PubMed

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  19. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system.

    PubMed

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C; Moon, Tae Seok

    2016-03-18

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. [Construction of screening system for mutation of negative regulatory genes in Streptomyces].

    PubMed

    Zhu, Yu; Feng, Chi; Tan, Huarong; Tian, Yuqing

    2013-10-04

    We aimed to create a novel report system for screening the mutation of the negative regulatory genes, especially for those repressing the expression of cryptic antibiotics clusters. We used marker-free gene disruption strategy, which combines with the "REDIRECT (Rapid Efficient Directed Recombination Time Saving)" technology and in vivo site-specific recombination by Streptomyces phage phiBT1 integrase, to construct a scbR2/inoA double mutant strain of S. coelicolor M145. This strain was used as the host of the report system. For the construction of the reporter plasmid, the ScbR2 repressed promoter of cpkO from CPK (cryptic polyketide) cluster was used to drive the expression of a promoterless conserved gene inoA of S. coelicolor. Then the reporter plasmid was introduced into the host strain described above to test the availability of inoA as a reporter gene in this system. The scbR2/inoA double mutant strain gave rise to a bald pheno type on MM medium in the absence of inositol, and produced yellow pigmented secondary metabolite by the disruption of scbR2 to release the repression of cpkO, a pathway specific activator gene situated in CPK cluster. After introducing the reporter plasmid into this test stain, the resulting strain recovered the phenotype as wild-type strain, indicating that the promoter of cpkO can drive the expression of inoA in scbR2 mutant and consequently restore the biosynthesis of inositol. Our results indicated that inoA can be used as a novel reporter gene for Streptomyces, especially for detecting the activation of the "silent" promoter. This report system might be available for screening the mutation of the negative regulatory genes for the cryptic secondary metabolic gene clusters.

  1. Stage-specific control of early B cell development by the transcription factor Ikaros

    PubMed Central

    Gültekin, Sinan; Dakic, Aleksandar; Axelsson, Elin; Minnich, Martina; Ebert, Anja; Werner, Barbara; Roth, Mareike; Cimmino, Luisa; Dickins, Ross A.; Zuber, Johannes; Jaritz, Markus; Busslinger, Meinrad

    2018-01-01

    Ikaros is an essential regulator of lymphopoiesis. Here, we studied the B-cell-specific function of Ikaros by conditional Ikzf1 inactivation in pro-B cells. B-cell development was arrested at an aberrant ‘pro-B’ cell stage characterized by increased cell adhesion and loss of pre-B cell receptor signaling. Ikaros was found to activate genes coding for pre-BCR signal transducers and to repress genes involved in the downregulation of pre-BCR signaling and upregulation of the integrin signaling pathway. Unexpectedly, derepression of Aiolos expression could not compensate for the loss of Ikaros in pro-B cells. Ikaros induced or suppressed active chromatin at regulatory elements of activated or repressed target genes. Notably, Ikaros binding and target gene expression was dynamically regulated at distinct stages of early B-lymphopoiesis. PMID:24509509

  2. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery.

    PubMed

    Mandin, Pierre; Chareyre, Sylvia; Barras, Frédéric

    2016-09-20

    Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. Regulatory small RNAs (sRNAs) have emerged as major actors in the control of gene expression in the last few decades. Relatively little is known about how these regulators interact with classical transcription factors to coordinate genetic responses. We show here how an sRNA, RyhB, and a transcription factor, IscR, regulate expression of an essential gene, erpA, in the bacterium E. coli ErpA is involved in the biogenesis of Fe-S clusters, an important class of cofactors involved in a plethora of cellular reactions. Interestingly, we show that RyhB and IscR repress expression of erpA under opposite conditions in regard to iron concentration, forming a regulatory circuit called an "incoherent network." This incoherent network serves to maximize expression of erpA at iron concentrations where it is most needed. Altogether, our study paves the way for a better understanding of mixed regulatory networks composed of RNAs and transcription factors. Copyright © 2016 Mandin et al.

  4. Targeted Repression of Essential Genes To Arrest Growth and Increase Carbon Partitioning and Biofuel Titers in Cyanobacteria.

    PubMed

    Shabestary, Kiyan; Anfelt, Josefine; Ljungqvist, Emil; Jahn, Michael; Yao, Lun; Hudson, Elton P

    2018-06-08

    Photoautotrophic production of fuels and chemicals by cyanobacteria typically gives lower volumetric productivities and titers than heterotrophic production. Cyanobacteria cultures become light limited above an optimal cell density, so that this substrate is not supplied to all cells sufficiently. Here, we investigate genetic strategies for a two-phase cultivation, where biofuel-producing Synechocystis cultures are limited to an optimal cell density through inducible CRISPR interference (CRISPRi) repression of cell growth. Fixed CO 2 is diverted to ethanol or n-butanol. Among the most successful strategies was partial repression of citrate synthase gltA. Strong repression (>90%) of gltA at low culture densities increased carbon partitioning to n-butanol 5-fold relative to a nonrepression strain, but sacrificed volumetric productivity due to severe growth restriction. CO 2 fixation continued for at least 3 days after growth was arrested. By targeting sgRNAs to different regions of the gltA gene, we could modulate GltA expression and carbon partitioning between growth and product to increase both specific and volumetric productivity. These growth arrest strategies can be useful for improving performance of other photoautotrophic processes.

  5. The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing.

    PubMed

    Mao, Y; Tamura, T; Yuki, Y; Abe, D; Tamada, Y; Imoto, S; Tanaka, H; Homma, H; Tagawa, K; Miyano, S; Okazawa, H

    2016-04-28

    In this study, we identify signaling network of necrotic cell death induced by transcriptional repression (TRIAD) by α-amanitin (AMA), the selective RNA polymerase II inhibitor, as a model of neurodegenerative cell death. We performed genetic screen of a knockdown (KD) fly library by measuring the ratio of transformation from pupa to larva (PL ratio) under TRIAD, and selected the cell death-promoting genes. Systems biology analysis of the positive genes mapped on protein-protein interaction databases predicted the signaling network of TRIAD and the core pathway including heterogeneous nuclear ribonucleoproteins (hnRNPs) and huntingtin (Htt). RNA sequencing revealed that AMA impaired transcription and RNA splicing of Htt, which is known as an endoplasmic reticulum (ER)-stabilizing molecule. The impairment in RNA splicing and PL ratio was rescued by overexpresion of hnRNP that had been also affected by transcriptional repression. Fly genetics with suppressor or expresser of Htt and hnRNP worsened or ameliorated the decreased PL ratio by AMA, respectively. Collectively, these results suggested involvement of RNA splicing and a regulatory role of the hnRNP-Htt axis in the process of the transcriptional repression-induced necrosis.

  6. Achieving large dynamic range control of gene expression with a compact RNA transcription–translation regulator

    PubMed Central

    2017-01-01

    Abstract RNA transcriptional regulators are emerging as versatile components for genetic network construction. However, these regulators suffer from incomplete repression in their OFF state, making their dynamic range less than that of their protein counterparts. This incomplete repression causes expression leak, which impedes the construction of larger synthetic regulatory networks as leak propagation can interfere with desired network function. To address this, we demonstrate how naturally derived antisense RNA-mediated transcriptional regulators can be configured to regulate both transcription and translation in a single compact RNA mechanism that functions in Escherichia coli. Using in vivo gene expression assays, we show that a combination of transcriptional termination and ribosome binding site sequestration increases repression from 85% to 98%, or activation from 10-fold to over 900-fold, in response to cognate antisense RNAs. We also show that orthogonal repressive versions of this mechanism can be created through engineering minimal antisense RNAs. Finally, to demonstrate the utility of this mechanism, we use it to reduce network leak in an RNA-only cascade. We anticipate these regulators will find broad use as synthetic biology moves beyond parts engineering to the design and construction of more sophisticated regulatory networks. PMID:28387839

  7. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila

    PubMed Central

    Xiong, Xiao-Peng; Chang, Kung-Yen; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M.; Zhou, Rui

    2016-01-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity. PMID:27893816

  8. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila.

    PubMed

    Xiong, Xiao-Peng; Kurthkoti, Krishna; Chang, Kung-Yen; Li, Jian-Liang; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M; Zhou, Rui

    2016-11-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity.

  9. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis.

    PubMed

    Zhou, Yue; Wang, Yuejun; Krause, Kristin; Yang, Tingting; Dongus, Joram A; Zhang, Yijing; Turck, Franziska

    2018-05-01

    Polycomb repressive complexes (PRCs) control organismic development in higher eukaryotes through epigenetic gene repression 1-4 . PRC proteins do not contain DNA-binding domains, thus prompting questions regarding how PRCs find their target loci 5 . Here we present genome-wide evidence of PRC2 recruitment by telomere-repeat-binding factors (TRBs) through telobox-related motifs in Arabidopsis. A triple trb1-2, trb2-1, and trb3-2 (trb1/2/3) mutant with a developmental phenotype and a transcriptome strikingly similar to those of strong PRC2 mutants showed redistribution of trimethyl histone H3 Lys27 (H3K27me3) marks and lower H3K27me3 levels, which were correlated with derepression of TRB1-target genes. TRB1-3 physically interacted with the PRC2 proteins CLF and SWN. A SEP3 reporter gene with a telobox mutation showed ectopic expression, which was correlated with H3K27me3 depletion, whereas tethering TRB1 to the mutated cis element partially restored repression. We propose that telobox-related motifs recruit PRC2 through the interaction between TRBs and CLF/SWN, a mechanism essential for H3K27me3 deposition at a subset of target genes.

  10. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    PubMed

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  11. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex.

    PubMed

    Carmi, I; Kopczynski, J B; Meyer, B J

    1998-11-12

    Organisms in many phyla determine sexual fate by distinguishing one X chromosome from two. Here we use the model organism Caenorhabditis elegans to dissect such an X-chromosome-counting mechanism in molecular detail. In this nematode, several genes on the X chromosome called X signal elements communicate X-chromosome dose by controlling the activity of the sex-determination gene xol-1. xol-1 specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The only X signal element described so far represses xol-1 post-transcriptionally, but xol-1 is repressed in XX animals by transcriptional and post-transcriptional mechanisms. Here we identify a nuclear-hormone-receptor homologue, SEX-1, that regulates the transcription of xol-1. We show that sex-1 is vital to X-chromosome counting: changing sex-1 gene dose in XX or XO embryos causes sexual transformation and death from inadequate dosage compensation (the hermaphrodite-specific process that equalizes X-gene expression between the sexes). The SEX-1 protein acts directly on xol-1, associating with its promoter in vivo and repressing xol-1 transcription in XX embryos. Thus, xol-1 is the direct molecular target of the primary sex-determination signal, and the dose of a nuclear hormone receptor helps to communicate X-chromosome number to determine nematode sex.

  12. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

    PubMed

    Amabile, Angelo; Migliara, Alessandro; Capasso, Paola; Biffi, Mauro; Cittaro, Davide; Naldini, Luigi; Lombardo, Angelo

    2016-09-22

    Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Untangling the Web: The Diverse Functions of the PIWI/piRNA Pathway

    PubMed Central

    Mani, Sneha Ramesh; Juliano, Celina E.

    2014-01-01

    SUMMARY Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function. PMID:23712694

  14. EZH2: biology, disease, and structure-based drug discovery

    PubMed Central

    Tan, Jin-zhi; Yan, Yan; Wang, Xiao-xi; Jiang, Yi; Xu, H Eric

    2014-01-01

    EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which is a highly conserved histone methyltransferase that methylates lysine 27 of histone 3. Overexpression of EZH2 has been found in a wide range of cancers, including those of the prostate and breast. In this review, we address the current understanding of the oncogenic role of EZH2, including its PRC2-dependent transcriptional repression and PRC2-independent gene activation. We also discuss the connections between EZH2 and other silencing enzymes, such as DNA methyltransferase and histone deacetylase. We comprehensively address the architecture of the PRC2 complex and the crucial roles of each subunit. Finally, we summarize new progress in developing EZH2 inhibitors, which could be a new epigenetic therapy for cancers. PMID:24362326

  15. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Yamasaki, Tomohito; Voshall, Adam; Kim, Eun-Jeong; Moriyama, Etsuko; Cerutti, Heriberto; Ohama, Takeshi

    2013-12-01

    MicroRNAs (miRNAs) are 20-24 nt non-coding RNAs that play important regulatory roles in a broad range of eukaryotes by pairing with mRNAs to direct post-transcriptional repression. The mechanistic details of miRNA-mediated post-transcriptional regulation have been well documented in multicellular model organisms. However, this process remains poorly studied in algae such as Chlamydomonas reinhardtii, and specific features of miRNA biogenesis, target mRNA recognition and subsequent silencing are not well understood. In this study, we report on the characterization of a Chlamydomonas miRNA, cre-miR1174.2, which is processed from a near-perfect hairpin RNA. Using Gaussia luciferase (gluc) reporter genes, we have demonstrated that cre-miR1174.2 is functional in Chlamydomonas and capable of triggering site-specific cleavage at the center of a perfectly complementary target sequence. A mismatch tolerance test assay, based on pools of transgenic strains, revealed that target hybridization to nucleotides of the seed region, at the 5' end of an miRNA, was sufficient to induce moderate repression of expression. In contrast, pairing to the 3' region of the miRNA was not critical for silencing. Our results suggest that the base-pairing requirements for small RNA-mediated repression in C. reinhardtii are more similar to those of metazoans compared with the extensive complementarity that is typical of land plants. Individual Chlamydomonas miRNAs may potentially modulate the expression of numerous endogenous targets as a result of these relaxed base-pairing requirements. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  16. Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus

    PubMed Central

    Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu

    2013-01-01

    Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species. PMID:23365684

  17. The role of gastrulation brain homeobox 2 (gbx2) in the development of the ventral telencephalon in zebrafish embryos.

    PubMed

    Wang, Zhe; Nakayama, Yukiko; Tsuda, Sachiko; Yamasu, Kyo

    During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain, but its precise roles are still unknown. In this study, we addressed this issue in zebrafish (Danio rerio) first by carefully examining gbx2 expression in the developing forebrain. We showed that gbx2 was expressed in the telencephalon during late somitogenesis, from 18h post-fertilization (hpf) to 24 hpf, and in the thalamic primordium after 26 hpf. In contrast, another gbx gene, gbx1, was expressed in the anterior-most ventral telencephalon after 36 hpf. Thus, the expression patterns of these two gbx genes did not overlap, arguing against their redundant function in the forebrain. Two-color fluorescence in situ hybridization (FISH) showed close relationships between the telencephalic expression of gbx2 and other forebrain-forming genes, suggesting that their interactions contribute to the regionalization of the telencephalon. FISH further revealed that gbx2 is expressed in the ventricular region of the telencephalon. By using transgenic fish in which gbx2 can be induced by heat shock, we found that gbx2 induction at 16 hpf repressed the expression of emx3, dlx2a, and six3b in the ventral telencephalon. Among secreted factor genes, bmp2b and wnt1 were repressed in the vicinity of the gbx2 domain in the telencephalon. The expression of forebrain-forming genes was examined in mutant embryos lacking gbx2, showing emx3 and dlx2a to be upregulated in the subpallium at 24 hpf. Taken together, these findings indicate that gbx2 contributes to the development of the subpallium through its repressive activities against other telencephalon-forming genes. We further showed that inhibiting FGF signaling and activating Wnt signaling repressed gbx2 and affected the regionalization of the telencephalon, supporting a functional link between gbx2, intracellular signaling, and telencephalon development. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses.

    PubMed

    Hall, Neil; Karras, Marianna; Raine, J Dale; Carlton, Jane M; Kooij, Taco W A; Berriman, Matthew; Florens, Laurence; Janssen, Christoph S; Pain, Arnab; Christophides, Georges K; James, Keith; Rutherford, Kim; Harris, Barbara; Harris, David; Churcher, Carol; Quail, Michael A; Ormond, Doug; Doggett, Jon; Trueman, Holly E; Mendoza, Jacqui; Bidwell, Shelby L; Rajandream, Marie-Adele; Carucci, Daniel J; Yates, John R; Kafatos, Fotis C; Janse, Chris J; Barrell, Bart; Turner, C Michael R; Waters, Andrew P; Sinden, Robert E

    2005-01-07

    Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.

  19. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  20. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    PubMed Central

    Koushyar, S; Economides, G; Zaat, S; Jiang, W; Bevan, C L; Dart, D A

    2017-01-01

    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing. PMID:28504694

  1. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity.

    PubMed

    Yang, Tao; Jian, Wei; Luo, Yi; Fu, Xueqi; Noguchi, Constance; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2012-11-23

    HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.

  2. The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness

    PubMed Central

    Di Giorgio, Eros; Franforte, Elisa; Cefalù, Sebastiano; Rossi, Sabrina; Dei Tos, Angelo Paolo; Polano, Maurizio; Maestro, Roberta; Paluvai, Harikrishnareddy

    2017-01-01

    The contribution of MEF2 TFs to the tumorigenic process is still mysterious. Here we clarify that MEF2 can support both pro-oncogenic or tumor suppressive activities depending on the interaction with co-activators or co-repressors partners. Through these interactions MEF2 supervise histone modifications associated with gene activation/repression, such as H3K4 methylation and H3K27 acetylation. Critical switches for the generation of a MEF2 repressive environment are class IIa HDACs. In leiomyosarcomas (LMS), this two-faced trait of MEF2 is relevant for tumor aggressiveness. Class IIa HDACs are overexpressed in 22% of LMS, where high levels of MEF2, HDAC4 and HDAC9 inversely correlate with overall survival. The knock out of HDAC9 suppresses the transformed phenotype of LMS cells, by restoring the transcriptional proficiency of some MEF2-target loci. HDAC9 coordinates also the demethylation of H3K4me3 at the promoters of MEF2-target genes. Moreover, we show that class IIa HDACs do not bind all the regulative elements bound by MEF2. Hence, in a cell MEF2-target genes actively transcribed and strongly repressed can coexist. However, these repressed MEF2-targets are poised in terms of chromatin signature. Overall our results candidate class IIa HDACs and HDAC9 in particular, as druggable targets for a therapeutic intervention in LMS. PMID:28419090

  3. Regulation of the plasma cell transcription factor Blimp-1 gene by Bach2 and Bcl6.

    PubMed

    Ochiai, Kyoko; Muto, Akihiko; Tanaka, Hiromu; Takahashi, Shinichiro; Igarashi, Kazuhiko

    2008-03-01

    B lymphocyte-induced maturation protein 1 (Blimp-1) is a key regulator for plasma cell differentiation. Prior to the terminal differentiation into plasma cells, Blimp-1 expression is suppressed in B cells by transcription repressors BTB and CNC homology 2 (Bach2) and B cell lymphoma 6 (Bcl6). Bach2 binds to the Maf recognition element (MARE) of the promoter upstream region of the Blimp-1 gene (Prdm1) by forming a heterodimer with MafK. Bach2 and Bcl6 were found to interact with each other in B cells. While both Bach2 and Bcl6 possess the BTB domain which mediates protein-protein interactions, they interacted in a BTB-independent manner. Bcl6 is known to repress Prdm1 through a Bcl6 recognition element 1 in the intron 5, in which a putative, evolutionarily conserved MARE was identified. Both repressed the expression of a reporter gene containing the intron 5 region depending on the presence of the respective binding sites in 18-81 pre-B cells. Co-expression of Bach2 and Bcl6 resulted in further repression of the reporter plasmid. Chromatin immunoprecipitation assays showed MafK to bind to the intron MARE in various B cell lines, thus suggesting that it binds as a heterodimer with Bach2. Therefore, the interaction between Bach2 and Bcl6 might be crucial for the proper repression of Prdm1 in B cells.

  4. Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver

    PubMed Central

    Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.

    2017-01-01

    The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223

  5. Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain.

    PubMed

    Li, Yingzhong; Tessaro, Mark J; Li, Xin; Zhang, Yuelin

    2010-07-01

    Plant Resistance (R) genes encode immune receptors that recognize pathogens and activate defense responses. Because of fitness costs associated with maintaining R protein-mediated resistance, expression levels of R genes have to be tightly regulated. However, mechanisms on how R-gene expression is regulated are poorly understood. Here we show that MODIFIER OF snc1, 1 (MOS1) regulates the expression of SUPPRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1), which encodes a Toll/interleukin receptor-nucleotide binding site-leucine-rich repeat type of R protein in Arabidopsis (Arabidopsis thaliana). In the mos1 loss-of-function mutant plants, snc1 expression is repressed and constitutive resistance responses mediated by snc1 are lost. The repression of snc1 expression in mos1 is released by knocking out DECREASE IN DNA METHYLATION1. In mos1 mutants, DNA methylation in a region upstream of SNC1 is altered. Furthermore, expression of snc1 transgenes using the native promoter does not require MOS1, indicating that regulation of SNC1 expression by MOS1 is at the chromatin level. Map-based cloning of MOS1 revealed that it encodes a novel protein with a HLA-B ASSOCIATED TRANSCRIPT2 (BAT2) domain that is conserved in plants and animals. Our study on MOS1 suggests that BAT2 domain-containing proteins may function in regulation of gene expression at chromatin level.

  6. Analysis and Manipulation of Aspartate Pathway Genes for l-Lysine Overproduction from Methanol by Bacillus methanolicus▿

    PubMed Central

    Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E.; Brautaset, Trygve

    2011-01-01

    We investigated the regulation and roles of six aspartate pathway genes in l-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by l-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the l-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has—in addition to a hom-1 mutation—chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for l-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased l-lysine production levels. PMID:21724876

  7. Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E; Brautaset, Trygve

    2011-09-01

    We investigated the regulation and roles of six aspartate pathway genes in L-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by L-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the L-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has-in addition to a hom-1 mutation-chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for L-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased L-lysine production levels.

  8. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  9. Broad chromosomal domains of histone modification patterns in C. elegans

    PubMed Central

    Liu, Tao; Rechtsteiner, Andreas; Egelhofer, Thea A.; Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Kolasinska-Zwierz, Paulina; Rosenbaum, Heidi; Shin, Hyunjin; Taing, Scott; Takasaki, Teruaki; Iniguez, A. Leonardo; Desai, Arshad; Dernburg, Abby F.; Kimura, Hiroshi; Lieb, Jason D.; Ahringer, Julie; Strome, Susan; Liu, X. Shirley

    2011-01-01

    Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. PMID:21177964

  10. PcG and trxG in plants - friends or foes.

    PubMed

    Pu, Li; Sung, Zinmay Renee

    2015-05-01

    The highly-conserved Polycomb group (PcG) and trithorax group (trxG) proteins play major roles in regulating gene expression and maintaining developmental states in many organisms. However, neither the recruitment of Polycomb repressive complexes (PRC) nor the mechanisms of PcG and trxG-mediated gene silencing and activation are well understood. Recent progress in Arabidopsis research challenges the dominant model of PRC2-dependent recruitment of PRC1 to target genes. Moreover, evidence indicates that diverse forms of PRC1, with shared components, are a common theme in plants and mammals. Although trxG is known to antagonize PcG, emerging data reveal that trxG can also repress gene expression, acting cooperatively with PcG. We discuss these recent findings and highlight the employment of diverse epigenetic mechanisms during development in plants and animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei.

    PubMed

    Abrahão-Neto, J; Rossini, C H; el-Gogary, S; Henrique-Silva, F; Crivellaro, O; el-Dorry, H

    1995-08-22

    We examined the effects of inhibition of mitochondrial functions on the expression of two nuclear genes encoding the extracellular cellobiohydrolase I (cbh1) and endoglucanase I (egl1) of the cellulase system of the filamentous fungus Trichoderma reesei. The cbh1 and egl1 transcripts are repressed at a low oxygen tension, and by glucose at a concentration known to repress mitochondrial respiration. The transcripts are also down-regulated by chemical agents known to dissipate the proton electrochemical gradient of the inner mitochondrial membrane and blocking of the electron-transport chain, such as DNP and KCN, respectively. These results suggest that expression of those transcripts is influenced by the physiological state of the mitochondria. In addition, heterologous gene fusion shows that the sensitivity of the expression of those transcripts to the functional state of the mitochondria is transcriptionally controlled through the 5'-flanking DNA sequence of those genes.

  12. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.

    PubMed

    Huang, W; Pérez-García, P; Pokhilko, A; Millar, A J; Antoshechkin, I; Riechmann, J L; Mas, P

    2012-04-06

    In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TIMING OF CAB EXPRESSION 1 (TOC1) was proposed to activate a subset of morning-expressed oscillator genes. Here, we show that TOC1 does not function as an activator but rather as a general repressor of oscillator gene expression. Repression occurs through TOC1 rhythmic association to the promoters of the oscillator genes. Hormone-dependent induction of TOC1 and analysis of RNA interference plants show that TOC1 prevents the activation of morning-expressed genes at night. Our study overturns the prevailing model of the Arabidopsis circadian clock, showing that the morning and evening oscillator loops are connected through the repressing activity of TOC1.

  13. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    PubMed Central

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  14. MTA family of coregulators in nuclear receptor biology and pathology

    PubMed Central

    Manavathi, Bramanandam; Singh, Kamini; Kumar, Rakesh

    2007-01-01

    Nuclear receptors (NRs) rely on coregulators (coactivators and corepressors) to modulate the transcription of target genes. By interacting with nucleosome remodeling complexes, NR coactivators potentiate transcription, whereas corepressors inhibit transcription of the target genes. Metastasis-associated proteins (MTA) represent an emerging family of novel NR coregulators. In general, MTA family members form independent nucleosome remodeling and deacetylation (NuRD) complexes and repress the transcription of different genes by recruiting histone deacetylases onto their target genes. However, MTA1 also acts as a coactivator in a promoter-context dependent manner. Recent findings that repression of estrogen receptor transactivation functions by MTA1, MTA1s, and MTA2 and regulation of MTA3 by estrogen signaling have indicated the significance of these proteins in NR signaling. Here, we highlight the action of MTA proteins on NR signaling and their roles in pathophysiological conditions. PMID:18174918

  15. Genome wide transcriptional profiling of Herbaspirillum seropedicae SmR1 grown in the presence of naringenin

    PubMed Central

    Tadra-Sfeir, Michelle Z.; Faoro, Helisson; Camilios-Neto, Doumit; Brusamarello-Santos, Liziane; Balsanelli, Eduardo; Weiss, Vinicius; Baura, Valter A.; Wassem, Roseli; Cruz, Leonardo M.; De Oliveira Pedrosa, Fábio; Souza, Emanuel M.; Monteiro, Rose A.

    2015-01-01

    Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived. PMID:26052319

  16. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors

    PubMed Central

    Thakore, Pratiksha I.; Gersbach, Charles A.

    2016-01-01

    Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy. PMID:26443215

  17. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark.

    PubMed

    Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu; Duan, Jun; Wu, Keqiang; Liu, Xuncheng

    2017-07-07

    Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark

    PubMed Central

    Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu

    2017-01-01

    Abstract Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. PMID:28444370

  19. Regulatory regions in the promoters of the Saccharomyces cerevisiae PYC1 and PYC2 genes encoding isoenzymes of pyruvate carboxylase.

    PubMed

    Menéndez, J; Gancedo, C

    1998-07-15

    We have identified regions in the promoters of the PYC1 and PYC2 genes from Saccharomyces cerevisiae involved in their regulation in different culture conditions. In the case of PYC1, a UAS in the region between -330/-297 and three repressing sequences with the common central core CCGCC at positions -457, -432 and -399 were identified. Specific binding of nuclear proteins to the -330/-214 DNA fragment was abolished in rtg mutants suggesting a role for the RTG genes in the control of PYC1 expression. In the case of the PYC2 promoter, elimination of a fragment from -417 to -291 brings about a two-fold decrease in the expression in repressed conditions and a similar increase in derepression.

  20. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene.

    PubMed

    He, H; Chen, C; Xie, Y; Asea, A; Calderwood, S K

    2000-11-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation.

  1. Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes.

    PubMed

    Zaragoza, Katrin; Bégay, Valérie; Schuetz, Anja; Heinemann, Udo; Leutz, Achim

    2010-05-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.

  2. EZH2: a pivotal regulator in controlling cell differentiation.

    PubMed

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  3. Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection.

    PubMed

    Yi, S Y; Yu, S H; Choi, D

    1999-06-30

    Recent reports revealed that catalase has a role in the plant defense mechanism against a broad range of pathogens through being inhibited by salicylic acid (SA). During an effort to clone disease resistance-responsive genes, a cDNA encoding catalase (Ngcat1; Nicotiana glutinosa cat1) was isolated from a tobacco cDNA library. In N. glutinosa, catalase is encoded by a small gene family. The deduced amino acid sequence of the Ngcat1 cDNA has 98% homology with the cat1 gene of N. plumbaginifolia. The Ngcat1 expression is controlled by the circadian clock, and its mRNA level is the most abundant in leaves. Both the expression of Ngcat1 mRNA and its enzyme activity in the tobacco plant undergoing a hypersensitive response (HR) to TMV infection were repressed. The repression of the mRNA level was also observed following treatment with SA. These results imply that SA may act as an inhibitor of catalase transcription during the HR of tobacco. Cloning and expression of the Ngcat1 in tobacco following pathogen infection and SA treatment are presented.

  4. A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg.

    PubMed

    Kojima, Tetsuya; Tsuji, Takuya; Saigo, Kaoru

    2005-03-15

    The subdivision of the developing field by region-specific expression of genes encoding transcription factors is an essential step during appendage development in arthropod and vertebrates. In Drosophila leg development, the distal-most region (pretarsus) is specified by the expression of homeobox genes, aristaless and Lim1, and its immediate neighbor (distal tarsus) is specified by the expression of a pair of Bar homeobox genes. Here, we show that one additional gene, clawless, which is a homolog of vertebrate Hox11/tlx homeobox gene family and formerly known as C15, is specifically expressed in the pretarsus and cooperatively acts with aristaless to repress Bar and possibly to activate Lim1. Similar to aristaless, the maximal expression of clawless requires Lim1 and its co-factor, Chip. Bar attenuates aristaless and clawless expression through Lim1 repression. Aristaless and Clawless proteins form a complex capable of binding to specific DNA targets, which cannot be well recognized solely by Aristaless or Clawless.

  5. The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells.

    PubMed

    Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily

    2017-09-01

    Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.

  6. Molecular mechanisms of ribosomal protein gene coregulation.

    PubMed

    Reja, Rohit; Vinayachandran, Vinesh; Ghosh, Sujana; Pugh, B Franklin

    2015-09-15

    The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20-50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1-TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences. © 2015 Reja et al.; Published by Cold Spring Harbor Laboratory Press.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS inmore » a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.« less

  8. Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer.

    PubMed

    Jadhav, Rohit R; Ye, Zhenqing; Huang, Rui-Lan; Liu, Joseph; Hsu, Pei-Yin; Huang, Yi-Wen; Rangel, Leticia B; Lai, Hung-Cheng; Roa, Juan Carlos; Kirma, Nameer B; Huang, Tim Hui-Ming; Jin, Victor X

    2015-01-01

    Recent genome-wide analysis has shown that DNA methylation spans long stretches of chromosome regions consisting of clusters of contiguous CpG islands or gene families. Hypermethylation of various gene clusters has been reported in many types of cancer. In this study, we conducted methyl-binding domain capture (MBDCap) sequencing (MBD-seq) analysis on a breast cancer cohort consisting of 77 patients and 10 normal controls, as well as a panel of 38 breast cancer cell lines. Bioinformatics analysis determined seven gene clusters with a significant difference in overall survival (OS) and further revealed a distinct feature that the conservation of a large gene cluster (approximately 70 kb) metallothionein-1 (MT1) among 45 species is much lower than the average of all RefSeq genes. Furthermore, we found that DNA methylation is an important epigenetic regulator contributing to gene repression of MT1 gene cluster in both ERα positive (ERα+) and ERα negative (ERα-) breast tumors. In silico analysis revealed much lower gene expression of this cluster in The Cancer Genome Atlas (TCGA) cohort for ERα + tumors. To further investigate the role of estrogen, we conducted 17β-estradiol (E2) and demethylating agent 5-aza-2'-deoxycytidine (DAC) treatment in various breast cancer cell types. Cell proliferation and invasion assays suggested MT1F and MT1M may play an anti-oncogenic role in breast cancer. Our data suggests that DNA methylation in large contiguous gene clusters can be potential prognostic markers of breast cancer. Further investigation of these clusters revealed that estrogen mediates epigenetic repression of MT1 cluster in ERα + breast cancer cell lines. In all, our studies identify thousands of breast tumor hypermethylated regions for the first time, in particular, discovering seven large contiguous hypermethylated gene clusters.

  9. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response

    PubMed Central

    Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.

    2002-01-01

    We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388

  10. An Autoregulatory Loop Controlling CYP1A1 Gene Expression: Role of H2O2 and NFI

    PubMed Central

    Morel, Yannick; Mermod, Nicolas; Barouki, Robert

    1999-01-01

    Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H2O2 catabolism), thus implying that H2O2 is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H2O2, a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H2O2 production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell. PMID:10490621

  11. A Novel Approach to Assay DNA Methylation in Prostate Cancer

    DTIC Science & Technology

    2017-12-01

    concordant with repression or activation of those nearby genes.15 More recently, a series of chromosome conformation capture (3C)-based approaches ...AWARD NUMBER: W81XWH-13-1-0319 TITLE: A Novel Approach to Assay DNA Methylation in Prostate Cancer PRINCIPAL INVESTIGATOR: Jindan Yu...Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No

  12. Dual Regulation of Bacillus subtilis kinB Gene Encoding a Sporulation Trigger by SinR through Transcription Repression and Positive Stringent Transcription Control.

    PubMed

    Fujita, Yasutaro; Ogura, Mitsuo; Nii, Satomi; Hirooka, Kazutake

    2017-01-01

    It is known that transcription of kinB encoding a trigger for Bacillus subtilis sporulation is under repression by SinR, a master repressor of biofilm formation, and under positive stringent transcription control depending on the adenine species at the transcription initiation nucleotide (nt). Deletion and base substitution analyses of the kinB promoter (P kinB ) region using lacZ fusions indicated that either a 5-nt deletion (Δ5, nt -61/-57, +1 is the transcription initiation nt) or the substitution of G at nt -45 with A (G-45A) relieved kinB repression. Thus, we found a pair of SinR-binding consensus sequences (GTTCTYT; Y is T or C) in an inverted orientation (SinR-1) between nt -57/-42, which is most likely a SinR-binding site for kinB repression. This relief from SinR repression likely requires SinI, an antagonist of SinR. Surprisingly, we found that SinR is essential for positive stringent transcription control of P kinB . Electrophoretic mobility shift assay (EMSA) analysis indicated that SinR bound not only to SinR-1 but also to SinR-2 (nt -29/-8) consisting of another pair of SinR consensus sequences in a tandem repeat arrangement; the two sequences partially overlap the '-35' and '-10' regions of P kinB . Introduction of base substitutions (T-27C C-26T) in the upstream consensus sequence of SinR-2 affected positive stringent transcription control of P kinB , suggesting that SinR binding to SinR-2 likely causes this positive control. EMSA also implied that RNA polymerase and SinR are possibly bound together to SinR-2 to form a transcription initiation complex for kinB transcription. Thus, it was suggested in this work that derepression of kinB from SinR repression by SinI induced by Spo0A∼P and occurrence of SinR-dependent positive stringent transcription control of kinB might induce effective sporulation cooperatively, implying an intimate interplay by stringent response, sporulation, and biofilm formation.

  13. Mi2β Is Required for γ-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in β-YAC Transgenic Mice

    PubMed Central

    Costa, Flávia C.; Fedosyuk, Halyna; Chazelle, Allen M.; Neades, Renee Y.; Peterson, Kenneth R.

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the −566 GATA motif of the Aγ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of Aγ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the −566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1–mediated repressor complex was disrupted by the −566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting −566 Aγ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis. PMID:23284307

  14. Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice.

    PubMed

    Costa, Flávia C; Fedosyuk, Halyna; Chazelle, Allen M; Neades, Renee Y; Peterson, Kenneth R

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of (A)γ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting -566 (A)γ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis.

  15. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.

    PubMed

    Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio

    2011-11-25

    We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  16. An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR

    PubMed Central

    Meredith, Emily K.; Balas, Maggie M.; Sindy, Karla; Haislop, Krystal; Johnson, Aaron M.

    2016-01-01

    The human long noncoding RNA (lncRNA) HOTAIR acts in trans to recruit the Polycomb repressive complex 2 (PRC2) to the HOXD gene cluster and to promote gene silencing during development. In breast cancers, overexpression of HOTAIR increases metastatic potential via the repression of many additional genes. It has remained unclear what factors determine HOTAIR-dependent PRC2 activity at specific genomic loci, particularly when high levels of HOTAIR result in aberrant gene silencing. To identify additional proteins that contribute to the specific action of HOTAIR, we performed a quantitative proteomic analysis of the HOTAIR interactome. We found that the most specific interaction was between HOTAIR and the heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a member of a family of proteins involved in nascent mRNA processing and RNA matchmaking. Our data suggest that A2/B1 are key contributors to HOTAIR-mediated chromatin regulation in breast cancer cells: A2/B1 knockdown reduces HOTAIR-dependent breast cancer cell invasion and decreases PRC2 activity at the majority of HOTAIR-dependent loci. We found that the B1 isoform, which differs from A2 by 12 additional amino acids, binds with highest specificity to HOTAIR. B1 also binds chromatin and associates preferentially with RNA transcripts of HOTAIR gene targets. We furthermore demonstrate a direct RNA–RNA interaction between HOTAIR and a target transcript that is enhanced by B1 binding. Together, these results suggest a model in which B1 matches HOTAIR with transcripts of target genes on chromatin, leading to repression by PRC2. PMID:27146324

  17. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells.

    PubMed

    Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances

    2009-03-01

    Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.

  18. Molecular Signature of Mineralocorticoid Receptor Signaling in Cardiomyocytes: From Cultured Cells to Mouse Heart

    PubMed Central

    Latouche, Celine; Sainte-Marie, Yannis; Steenman, Marja; Castro Chaves, Paulo; Naray-Fejes-Toth, Aniko; Fejes-Toth, Geza; Farman, Nicolette; Jaisser, Frederic

    2010-01-01

    Excess mineralocorticoid signaling is deleterious for cardiovascular functions, as demonstrated by the beneficial effects of mineralocorticoid receptor (MR) antagonism on morbidity and mortality in patients with heart failure. However, the understanding of signaling pathways after MR activation in the heart remains limited. We performed transcriptomic analyses in the heart of double-transgenic mice with conditional, cardiomyocyte-specific, overexpression of the MR (MRcardio mice) or the glucocorticoid receptor (GR; GRcardio mice). Some of the genes induced in MRcardio mice were selected for comparative evaluation (real time PCR) in vivo in the heart of mice and ex vivo in the MR-expressing cardiomyocyte H9C2 cell line after aldosterone or corticosterone treatment. We demonstrate that chronic MR overexpression in the heart results in a limited number of induced (n = 24) and repressed (n = 22) genes compared with their control littermates. These genes are specifically modulated by MR because there is limited overlap (three induced, four repressed) with the genes that are regulated in the heart of GRcardio mice (compared with control mice: 70 induced, 73 repressed). Interestingly, some MR-induced genes that are up-regulated in vivo in mice are also induced by 24-h aldosterone treatment in H9C2 cells, such as plasminogen activator inhibitor 1 and Serpina-3 (α1-antichymotrypsin). The signaling pathways that are affected by long-term activation of MR may be of particular interest to design novel therapeutic targets in cardiac diseases. PMID:20591974

  19. Role of histone deacetylases in gene regulation at nuclear lamina.

    PubMed

    Milon, Beatrice C; Cheng, Haibo; Tselebrovsky, Mikhail V; Lavrov, Sergei A; Nenasheva, Valentina V; Mikhaleva, Elena A; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2012-01-01

    Theoretical models suggest that gene silencing at the nuclear periphery may involve "closing" of chromatin by transcriptional repressors, such as histone deacetylases (HDACs). Here we provide experimental evidence confirming these predictions. Histone acetylation, chromatin compactness, and gene repression in lamina-interacting multigenic chromatin domains were analyzed in Drosophila S2 cells in which B-type lamin, diverse HDACs, and lamina-associated proteins were downregulated by dsRNA. Lamin depletion resulted in decreased compactness of the repressed multigenic domain associated with its detachment from the lamina and enhanced histone acetylation. Our data reveal the major role for HDAC1 in mediating deacetylation, chromatin compaction, and gene silencing in the multigenic domain, and an auxiliary role for HDAC3 that is required for retention of the domain at the lamina. These findings demonstrate the manifold and central involvement of class I HDACs in regulation of lamina-associated genes, illuminating a mechanism by which these enzymes can orchestrate normal and pathological development.

  20. A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae.

    PubMed

    Blázquez, M A; Gamo, F J; Gancedo, C

    1995-12-18

    Yeasts with disruptions in the genes PYC1 and PYC2 encoding the isoenzymes of pyruvate carboxylase cannot grow in a glucose-ammonium medium (Stucka et al. (1991) Mol. Gen. Genet. 229, 307-315). We have isolated a dominant mutation, BPC1-1, that allows growth in this medium of yeasts with interrupted PYC1 and PYC2 genes. The BPC1-1 mutation abolishes catabolite repression of a series of genes and allows expression of the enzymes of the glyoxylate cycle during growth in glucose. A functional glyoxylate cycle is necessary for suppression as a disruption of gene ICL1 encoding isocitrate lyase abolished the phenotypic effect of BPC1-1 on growth in glucose-ammonium. Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants. The mutation BPC1-1 is either allelic or closely linked to the mutation DGT1-1.

  1. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation

    PubMed Central

    Nakagawa, Takeya; Kajitani, Takuya; Togo, Shinji; Masuko, Norio; Ohdan, Hideki; Hishikawa, Yoshitaka; Koji, Takehiko; Matsuyama, Toshifumi; Ikura, Tsuyoshi; Muramatsu, Masami; Ito, Takashi

    2008-01-01

    Transcriptional initiation is a key step in the control of mRNA synthesis and is intimately related to chromatin structure and histone modification. Here, we show that the ubiquitylation of H2A (ubH2A) correlates with silent chromatin and regulates transcriptional initiation. The levels of ubH2A vary during hepatocyte regeneration, and based on microarray expression data from regenerating liver, we identified USP21, a ubiquitin-specific protease that catalyzes the hydrolysis of ubH2A. When chromatin is assembled in vitro, ubH2A, but not H2A, specifically represses the di- and trimethylation of H3K4. USP21 relieves this ubH2A-specific repression. In addition, in vitro transcription analysis revealed that ubH2A represses transcriptional initiation, but not transcriptional elongation, by inhibiting H3K4 methylation. Notably, ubH2A-mediated repression was not observed when H3 Lys 4 was changed to arginine. Furthermore, overexpression of USP21 in the liver up-regulates a gene that is normally down-regulated during hepatocyte regeneration. Our studies revealed a novel mode of trans-histone cross-talk, in which H2A ubiquitylation controls the di- and trimethylation of H3K4, resulting in regulation of transcriptional initiation. PMID:18172164

  2. Identifying Novel Transcriptional and Epigenetic Features of Nuclear Lamina-associated Genes.

    PubMed

    Wu, Feinan; Yao, Jie

    2017-03-07

    Because a large portion of the mammalian genome is associated with the nuclear lamina (NL), it is interesting to study how native genes resided there are transcribed and regulated. In this study, we report unique transcriptional and epigenetic features of nearly 3,500 NL-associated genes (NL genes). Promoter regions of active NL genes are often excluded from NL-association, suggesting that NL-promoter interactions may repress transcription. Active NL genes with higher RNA polymerase II (Pol II) recruitment levels tend to display Pol II promoter-proximal pausing, while Pol II recruitment and Pol II pausing are not correlated among non-NL genes. At the genome-wide scale, NL-association and H3K27me3 distinguishes two large gene classes with low transcriptional activities. Notably, NL-association is anti-correlated with both transcription and active histone mark levels among genes not significantly enriched with H3K9me3 or H3K27me3, suggesting that NL-association may represent a novel gene repression pathway. Interestingly, an NL gene subgroup is not significantly enriched with H3K9me3 or H3K27me3 and is transcribed at higher levels than the rest of NL genes. Furthermore, we identified distal enhancers associated with active NL genes and reported their epigenetic features.

  3. DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons

    PubMed Central

    Zhao, Jian-Yuan; Liang, Lingli; Gu, Xiyao; Li, Zhisong; Wu, Shaogen; Sun, Linlin; Atianjoh, Fidelis E.; Feng, Jian; Mo, Kai; Jia, Shushan; Lutz, Brianna Marie; Bekker, Alex; Nestler, Eric J.; Tao, Yuan-Xiang

    2017-01-01

    Nerve injury induces changes in gene transcription in dorsal root ganglion (DRG) neurons, which may contribute to nerve injury-induced neuropathic pain. DNA methylation represses gene expression. Here, we report that peripheral nerve injury increases expression of the DNA methyltransferase DNMT3a in the injured DRG neurons via the activation of the transcription factor octamer transcription factor 1. Blocking this increase prevents nerve injury-induced methylation of the voltage-dependent potassium (Kv) channel subunit Kcna2 promoter region and rescues Kcna2 expression in the injured DRG and attenuates neuropathic pain. Conversely, in the absence of nerve injury, mimicking this increase reduces the Kcna2 promoter activity, diminishes Kcna2 expression, decreases Kv current, increases excitability in DRG neurons and leads to spinal cord central sensitization and neuropathic pain symptoms. These findings suggest that DNMT3a may contribute to neuropathic pain by repressing Kcna2 expression in the DRG. PMID:28270689

  4. Allele-specific DNA methylation and its interplay with repressive histone marks at promoter-mutant TERT genes

    PubMed Central

    Stern, Josh Lewis; Paucek, Richard D.; Huang, Franklin W.; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C.; Cech, Thomas R.

    2017-01-01

    SUMMARY A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here we find that DNA methylation of the TERT CpG Island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter-mutant cancers. Finally, in several cancers DNA methylation levels at the TERT CGI correlate with altered patient survival. PMID:29281820

  5. Researchers use Modified CRISPR Systems to Modulate Gene Expression on a Genomic Scale

    Cancer.gov

    Cancer Target Discovery and Development Network (CTD2) researchers at the University of California, San Francisco, developed a CRISPR system that can regulate both gene repression and activation with fewer off-target effects.

  6. Repressed expression of a gene for a basic helix-loop-helix protein causes a white flower phenotype in carnation

    PubMed Central

    Totsuka, Akane; Okamoto, Emi; Miyahara, Taira; Kouno, Takanobu; Cano, Emilio A.; Sasaki, Nobuhiro; Watanabe, Aiko; Tasaki, Keisuke; Nishihara, Masahiro; Ozeki, Yoshihiro

    2018-01-01

    In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes. PMID:29681756

  7. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis

    PubMed Central

    Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad

    2012-01-01

    Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466

  8. Location of Promoter and Operator Sites in the Biotin Gene Cluster of Escherichia coli

    PubMed Central

    Cleary, Paul P.; Campbell, Allan; Chang, Robin

    1972-01-01

    Biotin independence in E. coli requires five closely linked genes, bioA, bioB, bioF, bioC, and bioD. The residual gene activity of deletion mutants has been studied by complementation and enzyme assays. Deletion of the left end of the bioA gene does not impair expression of the remaining genes, but deletions from the left extending into bioB abolish all gene expression. Nonsense mutations in bioB reduce expression of bioC, bioF, and bioD. Therefore, the four genes, bioB, bioF, bioC, and bioD, are transcribed as a unit from left to right, from a promotor located between bioA and bioB. Expression of the bio genes is repressible by added biotin. Deletions removing the left end of bioA do not affect repressibility of bioD. Therefore the operator, as well as the promoter, lie to the right of bioA. One deletion that removes bioA, bioB, and bioF renders the bioD gene constitutive, presumably by fusion to an unknown operon. Therefore, the operator lies to the left of bioC. PMID:4559599

  9. Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum.

    PubMed

    Daboussi, M J; Langin, T; Deschamps, F; Brygoo, Y; Scazzocchio, C; Burger, G

    1991-12-20

    We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.

  10. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.

    PubMed

    Cao, Yingxiu; Li, Xiaofei; Li, Feng; Song, Hao

    2017-09-15

    Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.

  11. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    PubMed Central

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  12. Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators

    PubMed Central

    Muyan, Mesut; Güpür, Gizem; Yaşar, Pelin; Ayaz, Gamze; User, Sırma Damla; Kazan, Hasan Hüseyin; Huang, Yanfang

    2015-01-01

    Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue. PMID:26295471

  13. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level.

    PubMed

    Prielhofer, Roland; Cartwright, Stephanie P; Graf, Alexandra B; Valli, Minoska; Bill, Roslyn M; Mattanovich, Diethard; Gasser, Brigitte

    2015-03-11

    The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength.

  14. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Caballero, Otavia L.; Lo, Christine; Lister, Ryan; Pelizzola, Mattia; Valsesia, Armand; Ye, Zhen; Kuan, Samantha; Edsall, Lee E.; Camargo, Anamaria Aranha; Stevenson, Brian J.; Ecker, Joseph R.; Bafna, Vineet; Strausberg, Robert L.; Simpson, Andrew J.; Ren, Bing

    2012-01-01

    While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells. PMID:22156296

  15. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress

    PubMed Central

    McDade, Simon S.; Patel, Daksha; Moran, Michael; Campbell, James; Fenwick, Kerry; Kozarewa, Iwanka; Orr, Nicholas J.; Lord, Christopher J.; Ashworth, Alan A.; McCance, Dennis J.

    2014-01-01

    In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair. PMID:24823795

  16. The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago truncatula[W][OPEN

    PubMed Central

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I.; Nakashima, Jin; Benedito, Vagner A.; Kondorosi, Eva; Udvardi, Michael K.

    2013-01-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants. PMID:24082011

  17. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.

    PubMed

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I; Nakashima, Jin; Benedito, Vagner A; Kondorosi, Eva; Udvardi, Michael K

    2013-09-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.

  18. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation.

    PubMed

    Lambert, Marie-Pierre; Terrone, Sophie; Giraud, Guillaume; Benoit-Pilven, Clara; Cluet, David; Combaret, Valérie; Mortreux, Franck; Auboeuf, Didier; Bourgeois, Cyril F

    2018-06-21

    The Repressor Element 1-silencing transcription factor (REST) represses a number of neuronal genes in non-neuronal cells or in undifferentiated neural progenitors. Here, we report that the DEAD box RNA helicase DDX17 controls important REST-related processes that are critical during the early phases of neuronal differentiation. First, DDX17 associates with REST, promotes its binding to the promoter of a subset of REST-targeted genes and co-regulates REST transcriptional repression activity. During neuronal differentiation, we observed a downregulation of DDX17 along with that of the REST complex that contributes to the activation of neuronal genes. Second, DDX17 and its paralog DDX5 regulate the expression of several proneural microRNAs that are known to target the REST complex during neurogenesis, including miR-26a/b that are also direct regulators of DDX17 expression. In this context, we propose a new mechanism by which RNA helicases can control the biogenesis of intronic miRNAs. We show that the processing of the miR-26a2 precursor is dependent on RNA helicases, owing to an intronic regulatory region that negatively impacts on both miRNA processing and splicing of its host intron. Our work places DDX17 in the heart of a pathway involving REST and miRNAs that allows neuronal gene repression.

  19. Mechanisms of iron regulation of luminescence in Vibrio fischeri.

    PubMed Central

    Haygood, M G; Nealson, K H

    1985-01-01

    Synthesis of luciferase (an autoinducible enzyme) is repressed by iron in the symbiotic bioluminescent bacterium Vibrio fischeri. Possible mechanisms of iron regulation of luciferase synthesis were tested with V. fischeri and with Escherichia coli clones containing plasmids carrying V. fischeri luminescence genes. Experiments were conducted in complete medium with and without the synthetic iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid). Comparison of the effect of ethylenediamine-di(o-hydroxyphenyl acetic acid) and another growth inhibitor, (2-n-heptyl-4-hydroxyquinoline-N-oxide), showed that iron repression is not due to inhibition of growth. A quantitative bioassay for autoinducer was developed with E. coli HB101 containing pJE411, a plasmid carrying V. fischeri luminescence genes with a transcriptional fusion between luxI and E. coli lacZ. Bioassay experiments showed no effect of iron on either autoinducer activity or production (before induction) or transcription of the lux operon. Ethylenediamine-di(o-hydroxyphenyl acetic acid) did not affect luciferase induction in E. coli strains with wild-type iron assimilation (ED8654) or impaired iron assimilation (RW193) bearing pJE202 (a plasmid with functional V. fischeri lux genes), suggesting that the genes responsible for the iron effect are missing or substituted in these clones. Two models are consistent with the data: (i) iron represses autoinducer transport, and (ii) iron acts through an autoinduction-independent regulatory system (e.g., an iron repressor). PMID:3920202

  20. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  1. Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.

    PubMed Central

    Lo, W Y; Ting, L P

    1994-01-01

    Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237

  2. Reverse engineering the gap gene network of Drosophila melanogaster.

    PubMed

    Perkins, Theodore J; Jaeger, Johannes; Reinitz, John; Glass, Leon

    2006-05-01

    A fundamental problem in functional genomics is to determine the structure and dynamics of genetic networks based on expression data. We describe a new strategy for solving this problem and apply it to recently published data on early Drosophila melanogaster development. Our method is orders of magnitude faster than current fitting methods and allows us to fit different types of rules for expressing regulatory relationships. Specifically, we use our approach to fit models using a smooth nonlinear formalism for modeling gene regulation (gene circuits) as well as models using logical rules based on activation and repression thresholds for transcription factors. Our technique also allows us to infer regulatory relationships de novo or to test network structures suggested by the literature. We fit a series of models to test several outstanding questions about gap gene regulation, including regulation of and by hunchback and the role of autoactivation. Based on our modeling results and validation against the experimental literature, we propose a revised network structure for the gap gene system. Interestingly, some relationships in standard textbook models of gap gene regulation appear to be unnecessary for or even inconsistent with the details of gap gene expression during wild-type development.

  3. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution.

    PubMed

    Okano, Yosuke; Aono, Naoki; Hiwatashi, Yuji; Murata, Takashi; Nishiyama, Tomoaki; Ishikawa, Takaaki; Kubo, Minoru; Hasebe, Mitsuyasu

    2009-09-22

    Land plants have distinct developmental programs in haploid (gametophyte) and diploid (sporophyte) generations. Although usually the two programs strictly alternate at fertilization and meiosis, one program can be induced during the other program. In a process called apogamy, cells of the gametophyte other than the egg cell initiate sporophyte development. Here, we report for the moss Physcomitrella patens that apogamy resulted from deletion of the gene orthologous to the Arabidopsis thaliana CURLY LEAF (PpCLF), which encodes a component of polycomb repressive complex 2 (PRC2). In the deletion lines, a gametophytic vegetative cell frequently gave rise to a sporophyte-like body. This body grew indeterminately from an apical cell with the character of a sporophytic pluripotent stem cell but did not form a sporangium. Furthermore, with continued culture, the sporophyte-like body branched. Sporophyte branching is almost unknown among extant bryophytes. When PpCLF was expressed in the deletion lines once the sporophyte-like bodies had formed, pluripotent stem cell activity was arrested and a sporangium-like organ formed. Supported by the observed pattern of PpCLF expression, these results demonstrate that, in the gametophyte, PpCLF represses initiation of a sporophytic pluripotent stem cell and, in the sporophyte, represses that stem cell activity and induces reproductive organ development. In land plants, branching, along with indeterminate apical growth and delayed initiation of spore-bearing reproductive organs, were conspicuous innovations for the evolution of a dominant sporophyte plant body. Our study provides insights into the role of PRC2 gene regulation for sustaining evolutionary innovation in land plants.

  4. Characterization of cis-acting elements required for autorepression of the equine herpesvirus 1 IE gene

    PubMed Central

    Kim, Seongman; Dai, Gan; O’Callaghan, Dennis J.; Kim, Seong Kee

    2012-01-01

    The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5’-ATCGT-3’) located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box. PMID:22265772

  5. Characterization of cis-acting elements required for autorepression of the equine herpesvirus 1 IE gene.

    PubMed

    Kim, Seongman; Dai, Gan; O'Callaghan, Dennis J; Kim, Seong Kee

    2012-04-01

    The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5'-ATCGT-3') located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box. Copyright © 2012. Published by Elsevier B.V.

  6. Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis

    PubMed Central

    Meng, Yingying; Sang, Dajun; Yin, Pengcheng; Wu, Jinxia; Tang, Yuhong; Lu, Tiegang; Wang, Zeng-Yu; Tadege, Million

    2017-01-01

    Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs. PMID:28264034

  7. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein.

    PubMed

    Parakati, Rajini; DiMario, Joseph X

    2013-05-10

    FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.

  8. Evaluation and control of miRNA-like off-target repression for RNA interference.

    PubMed

    Seok, Heeyoung; Lee, Haejeong; Jang, Eun-Sook; Chi, Sung Wook

    2018-03-01

    RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.

  9. RNAi and heterochromatin repress centromeric meiotic recombination

    PubMed Central

    Ellermeier, Chad; Higuchi, Emily C.; Phadnis, Naina; Holm, Laerke; Geelhood, Jennifer L.; Thon, Genevieve; Smith, Gerald R.

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essential in most species for proper homologue segregation. Nevertheless, recombination is repressed specifically in and around the centromeres of chromosomes, apparently because rare centromeric (or pericentromeric) recombination events, when they do occur, can disrupt proper segregation and lead to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination. Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis. PMID:20421495

  10. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity.

    PubMed

    Nishida, Tamotsu; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves.

    PubMed

    Wu, Hui-Wen; Deng, Shulin; Xu, Haiying; Mao, Hui-Zhu; Liu, Jun; Niu, Qi-Wen; Wang, Huan; Chua, Nam-Hai

    2018-06-04

    Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  12. Inducible repression of multiple expansin genes leads to growth suppression during leaf development.

    PubMed

    Goh, Hoe-Han; Sloan, Jennifer; Dorca-Fornell, Carmen; Fleming, Andrew

    2012-08-01

    Expansins are cell wall proteins implicated in the control of plant growth via loosening of the extracellular matrix. They are encoded by a large gene family, and data linked to loss of single gene function to support a role of expansins in leaf growth remain limited. Here, we provide a quantitative growth analysis of transgenics containing an inducible artificial microRNA construct designed to down-regulate the expression of a number of expansin genes that an expression analysis indicated are expressed during the development of Arabidopsis (Arabidopsis thaliana) leaf 6. The results support the hypothesis that expansins are required for leaf growth and show that decreased expansin gene expression leads to a more marked repression of growth during the later stage of leaf development. In addition, a histological analysis of leaves in which expansin gene expression was suppressed indicates that, despite smaller leaves, mean cell size was increased. These data provide functional evidence for a role of expansins in leaf growth, indicate the importance of tissue/organ developmental context for the outcome of altered expansin gene expression, and highlight the separation of the outcome of expansin gene expression at the cellular and organ levels.

  13. Acetylation of hMOF Modulates H4K16ac to Regulate DNA Repair Genes in Response to Oxidative Stress.

    PubMed

    Zhong, Jianing; Ji, Liying; Chen, Huiqian; Li, Xianfeng; Zhang, Jian'an; Wang, Xingxing; Wu, Weilin; Xu, Ying; Huang, Fei; Cai, Wanshi; Sun, Zhong Sheng

    2017-01-01

    Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.

  14. The multifaceted RisA regulon of Bordetella pertussis

    PubMed Central

    Coutte, Loïc; Huot, Ludovic; Antoine, Rudy; Slupek, Stephanie; Merkel, Tod J.; Chen, Qing; Stibitz, Scott; Hot, David; Locht, Camille

    2016-01-01

    The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA− background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD60N and the phosphomimetic RisAD60E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation. PMID:27620673

  15. The multifaceted RisA regulon of Bordetella pertussis.

    PubMed

    Coutte, Loïc; Huot, Ludovic; Antoine, Rudy; Slupek, Stephanie; Merkel, Tod J; Chen, Qing; Stibitz, Scott; Hot, David; Locht, Camille

    2016-09-13

    The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA(-) background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD(60)N and the phosphomimetic RisAD(60)E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation.

  16. A Reduction in Age-Enhanced Gluconeogenesis Extends Lifespan

    PubMed Central

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan. PMID:23342062

  17. A reduction in age-enhanced gluconeogenesis extends lifespan.

    PubMed

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  18. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    PubMed

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  19. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene

    PubMed Central

    He, Haiying; Chen, Changmin; Xie, Yue; Asea, Alexzander; Calderwood, Stuart K.

    2000-01-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation. PMID:11189444

  20. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  1. OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana

    PubMed Central

    Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou

    2018-01-01

    Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040

  2. Environmental perception and epigenetic memory: mechanistic insight through FLC

    PubMed Central

    Berry, Scott; Dean, Caroline

    2015-01-01

    Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation. Significance Statement FLOWERING LOCUS C (FLC) regulation provides a paradigm for understanding how chromatin can be modulated to determine gene expression in a developmental context. This review describes our current mechanistic understanding of how FLC expression is genetically specified and epigenetically regulated throughout the plant life cycle, and how this determines plant life-history strategy. PMID:25929799

  3. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot.

    PubMed Central

    Hirota, Kouji; Hoffman, Charles S; Shibata, Takehiko; Ohta, Kunihiro

    2003-01-01

    Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function. PMID:14573465

  4. SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures1[OPEN

    PubMed Central

    Marín-González, Esther; Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E.; Lee, Jeong Hwan; Ahn, Ji Hoon; Suárez-López, Paula; Pelaz, Soraya

    2015-01-01

    Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under inductive photoperiods, through repression of FT, revealing the importance of floral repressors acting at low temperatures. Previously, we have reported that the floral repressors TEMPRANILLO (TEM; TEM1 and TEM2) control flowering time through direct regulation of FT at 22°C. Here, we show that tem mutants are less sensitive than the wild type to changes in ambient growth temperature, indicating that TEM genes may play a role in floral repression at 16°C. Moreover, we have found that TEM2 directly represses the expression of FT and TWIN SISTER OF FT at 16°C. In addition, the floral repressor SHORT VEGETATIVE PHASE (SVP) directly regulates TEM2 but not TEM1 expression at 16°C. Flowering time analyses of svp tem mutants indicate that TEM may act in the same genetic pathway as SVP to repress flowering at 22°C but that SVP and TEM are partially independent at 16°C. Thus, TEM2 partially mediates the temperature-dependent function of SVP at low temperatures. Taken together, our results indicate that TEM genes are also able to repress flowering at low ambient temperatures under inductive long-day conditions. PMID:26243615

  5. A Saccharomyces cerevisiae mitochondrial DNA fragment activates Reg1p-dependent glucose-repressible transcription in the nucleus.

    PubMed

    Santangelo, G M; Tornow, J

    1997-12-01

    As part of an effort to identify random carbon-source-regulated promoters in the Saccharomyces cerevisiae genome, we discovered that a mitochondrial DNA fragment is capable of directing glucose-repressible expression of a reporter gene. This fragment (CR24) originated from the mitochondrial genome adjacent to a transcription initiation site. Mutational analyses identified a GC cluster within the fragment that is required for transcriptional induction. Repression of nuclear CR24-driven transcription required Reg1p, indicating that this mitochondrially derived promoter is a member of a large group of glucose-repressible nuclear promoters that are similarly regulated by Reg1p. In vivo and in vitro binding assays indicated the presence of factors, located within the nucleus and the mitochondria, that bind to the GC cluster. One or more of these factors may provide a regulatory link between the nucleus and mitochondria.

  6. Mycotoxigenic Fusarium and Deoxynivalenol Production Repress Chitinase Gene Expression in the Biocontrol Agent Trichoderma atroviride P1

    PubMed Central

    Lutz, Matthias P.; Feichtinger, Georg; Défago, Geneviève; Duffy, Brion

    2003-01-01

    Mycotoxin contamination associated with head blight of wheat and other grains caused by Fusarium culmorum and F. graminearum is a chronic threat to crop, human, and animal health throughout the world. One of the most important toxins in terms of human exposure is deoxynivalenol (DON) (formerly called vomitoxin), an inhibitor of protein synthesis with a broad spectrum of toxigenicity against animals. Certain Fusarium toxins have additional antimicrobial activity, and the phytotoxin fusaric acid has recently been shown to modulate fungus-bacterium interactions that affect plant health (Duffy and Défago, Phytopathology 87:1250-1257, 1997). The potential impact of DON on Fusarium competition with other microorganisms has not been described previously. Any competitive advantage conferred by DON would complicate efforts to control Fusarium during its saprophytic growth on crop residues that are left after harvest and constitute the primary inoculum reservoir for outbreaks in subsequent plantings. We examined the effect of the DON mycotoxin on ecological interactions between pathogenic Fusarium and Trichoderma atroviride strain P1, a competitor fungus with biocontrol activity against a wide range of plant diseases. Expression of the Trichoderma chitinase genes, ech42 and nag1, which contribute to biocontrol activity, was monitored in vitro and on crop residues of two maize cultivars by using goxA reporter gene fusions. We found that DON-producing F. culmorum and F. graminearum strains repressed expression of nag1-gox. DON-negative wild-type Fusarium strains and a DON-negative mutant with an insertional disruption in the tricothecene biosynthetic gene, tri5, had no effect on antagonist gene expression. The role of DON as the principal repressor above other pathogen factors was confirmed. Exposure of Trichoderma to synthetic DON or to a non-DON-producing Fusarium mutant resulted in the same level of nag1-gox repression as the level observed with DON-producing Fusarium. DON repression was specific for nag1-gox and had no effect, either positive or negative, on expression of another key chitinase gene, ech42. This is the first demonstration that a target pathogen down-regulates genes in a fungal biocontrol agent, and our results provide evidence that mycotoxins have a novel ecological function as factors in Fusarium competitiveness. PMID:12788701

  7. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.

    PubMed

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-09-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.

  8. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum

    PubMed Central

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-01-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a “seesaw model” in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors. PMID:26360497

  9. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis.

    PubMed

    Pillai, Ramesh S; Artus, Caroline G; Filipowicz, Witold

    2004-10-01

    MicroRNAs (miRNAs) are approximately 21-nt-long RNAs involved in regulating development, differentiation, and other processes in eukaryotes. In metazoa, nearly all miRNAs control gene expression by imperfectly base-pairing with the 3'-untranslated region (3'-UTR) of target mRNAs and repressing protein synthesis by an unknown mechanism. It is also unknown whether miRNA-mRNA duplexes containing mismatches and bulges provide specific features that are recognized by factors mediating the repression. miRNAs form part of ribonucleoprotein complexes, miRNPs, that contain Argonaute (Ago) and other proteins. Here we demonstrate that effects of miRNAs on translation can be mimicked in human HeLa cells by the miRNA-independent tethering of Ago proteins to the 3'-UTR of a reporter mRNA. Inhibition of protein synthesis occurred without a change in the reporter mRNA level and was dependent on the number, but not the position, of the hairpins tethering hAgo2 to the 3'-UTR. These findings indicate that a primary function of miRNAs is to guide their associated proteins to the mRNA. Copyright 2004 RNA Society

  10. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  11. Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor.

    PubMed

    Sexton, Jessica A; Brown, Victoria; Johnston, Mark

    2007-10-01

    The ability of the fungal pathogen Candida albicans to cause systemic infections depends in part on the function of Hgt4, a cell surface sugar sensor. The orthologues of Hgt4 in Saccharomyces cerevisiae, Snf3 and Rgt2, initiate a signalling cascade that inactivates Rgt1, a transcriptional repressor of genes encoding hexose transporters. To determine whether Hgt4 functions similarly through the C. albicans orthologue of Rgt1, we analysed Cargt1 deletion mutants. We found that Cargt1 mutants are sensitive to the glucose analogue 2-deoxyglucose, a phenotype probably due to uncontrolled expression of genes encoding glucose transporters. Indeed, transcriptional profiling revealed that expression of about two dozen genes, including multiple HGT genes encoding hexose transporters, is increased in the Cargt1 mutant in the absence of sugars, suggesting that CaRgt1 represses expression of several HGT genes under this condition. Some of the HGT genes (probably encoding high-affinity transporters) are also repressed by high levels of glucose, and we show that this repression is mediated by CaMig1, the orthologue of the major glucose-activated repressor in S. cerevisiae, but not by its paralogue CaMig2. Therefore, CaRgt1 and CaMig1 collaborate to control expression of C. albicans hexose transporters in response to different levels of sugars. We were surprised to find that CaRgt1 also regulates expression of GAL1, suggesting that regulation of galactose metabolism in C. albicans is unconventional. Finally, Cargt1 mutations cause cells to hyperfilament, and suppress the hypofilamented phenotype of an hgt4 mutant, indicating that the Hgt4 glucose sensor may affect filamentation by modulating sugar import and metabolism via CaRgt1. Copyright 2007 John Wiley & Sons, Ltd.

  12. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  13. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    PubMed Central

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas

    2013-01-01

    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441

  14. The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus

    PubMed Central

    Kim, In Hwang; Wen, Yancheng; Son, Jee-Soo; Lee, Kyu-Ho

    2013-01-01

    The gene vvpE, encoding the virulence factor elastase, is a member of the quorum-sensing regulon in Vibrio vulnificus and displays enhanced expression at high cell density. We observed that this gene was repressed under iron-rich conditions and that the repression was due to a Fur (ferric uptake regulator)-dependent repression of smcR, a gene encoding a quorum-sensing master regulator with similarity to luxR in Vibrio harveyi. A gel mobility shift assay and a footprinting experiment demonstrated that the Fur-iron complex binds directly to two regions upstream of smcR (−82 to −36 and −2 to +27, with respect to the transcription start site) with differing affinities. However, binding of the Fur-iron complex is reversible enough to allow expression of smcR to be induced by quorum sensing at high cell density under iron-rich conditions. Under iron-limiting conditions, Fur fails to bind either region and the expression of smcR is regulated solely by quorum sensing. These results suggest that two biologically important environmental signals, iron and quorum sensing, converge to direct the expression of smcR, which then coordinates the expression of virulence factors. PMID:23716618

  15. Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti: identification of a pit-like gene.

    PubMed

    Bardin, S D; Voegele, R T; Finan, T M

    1998-08-01

    Rhizobium meliloti mutants defective in the phoCDET-encoded phosphate transport system form root nodules on alfalfa plants that fail to fix nitrogen (Fix-). We have previously reported that two classes of second-site mutations can suppress the Fix- phenotype of phoCDET mutants to Fix+. Here we show that one of these suppressor loci (sfx1) contains two genes, orfA and pit, which appear to form an operon transcribed in the order orfA-pit. The Pit protein is homologous to various phosphate transporters, and we present evidence that three suppressor mutations arose from a single thymidine deletion in a hepta-thymidine sequence centered 54 nucleotides upstream of the orfA transcription start site. This mutation increased the level of orfA-pit transcription. These data, together with previous biochemical evidence, show that the orfA-pit genes encode a Pi transport system that is expressed in wild-type cells grown with excess Pi but repressed in cells under conditions of Pi limitation. In phoCDET mutant cells, orfA-pit expression is repressed, but this repression is alleviated by the second-site suppressor mutations. Suppression increases orfA-pit expression compensating for the deficiencies in phosphate assimilation and symbiosis of the phoCDET mutants.

  16. Histone deacetylase inhibitor belinostat represses survivin expression through reactivation of transforming growth factor beta (TGFbeta) receptor II leading to cancer cell death.

    PubMed

    Chowdhury, Sanjib; Howell, Gillian M; Teggart, Carol A; Chowdhury, Aparajita; Person, Jonathan J; Bowers, Dawn M; Brattain, Michael G

    2011-09-02

    Survivin is a cancer-associated gene that functions to promote cell survival, cell division, and angiogenesis and is a marker of poor prognosis. Histone deacetylase inhibitors induce apoptosis and re-expression of epigenetically silenced tumor suppressor genes in cancer cells. In association with increased expression of the tumor suppressor gene transforming growth factor β receptor II (TGFβRII) induced by the histone deacetylase inhibitor belinostat, we observed repressed survivin expression. We investigated the molecular mechanisms involved in survivin down-regulation by belinostat downstream of reactivation of TGFβ signaling. We identified two mechanisms. At early time points, survivin protein half-life was decreased with its proteasomal degradation. We observed that belinostat activated protein kinase A at early time points in a TGFβ signaling-dependent mechanism. After longer times (48 h), survivin mRNA was also decreased by belinostat. We made the novel observation that belinostat mediated cell death through the TGFβ/protein kinase A signaling pathway. Induction of TGFβRII with concomitant survivin repression may represent a significant mechanism in the anticancer effects of this drug. Therefore, patient populations exhibiting high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use of this histone deacetylase inhibitor.

  17. RARα-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia

    PubMed Central

    Guidez, Fabien; Parks, Sarah; Wong, Henna; Jovanovic, Jelena V.; Mays, Ashley; Gilkes, Amanda F.; Mills, Kenneth I.; Guillemin, Marie-Claude; Hobbs, Robin M.; Pandolfi, Pier Paolo; de Thé, Hugues; Solomon, Ellen; Grimwade, David

    2007-01-01

    Leukemia-associated chimeric oncoproteins often act as transcriptional repressors, targeting promoters of master genes involved in hematopoiesis. We show that CRABPI (encoding cellular retinoic acid binding protein I) is a target of PLZF, which is fused to RARα by the t(11;17)(q23;q21) translocation associated with retinoic acid (RA)-resistant acute promyelocytic leukemia (APL). PLZF represses the CRABPI locus through propagation of chromatin condensation from a remote intronic binding element culminating in silencing of the promoter. Although the canonical, PLZF-RARα oncoprotein has no impact on PLZF-mediated repression, the reciprocal translocation product RARα-PLZF binds to this remote binding site, recruiting p300, inducing promoter hypomethylation and CRABPI gene up-regulation. In line with these observations, RA-resistant murine PLZF/RARα+RARα/PLZF APL blasts express much higher levels of CRABPI than standard RA-sensitive PML/RARα APL. RARα-PLZF confers RA resistance to a retinoid-sensitive acute myeloid leukemia (AML) cell line in a CRABPI-dependent fashion. This study supports an active role for PLZF and RARα-PLZF in leukemogenesis, identifies up-regulation of CRABPI as a mechanism contributing to retinoid resistance, and reveals the ability of the reciprocal fusion gene products to mediate distinct epigenetic effects contributing to the leukemic phenotype. PMID:18000064

  18. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    PubMed

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression.

    PubMed

    Ogden, S K; Lee, K C; Wernke-Dollries, K; Stratton, S A; Aronow, B; Barton, M C

    2001-11-09

    Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.

  20. Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome

    PubMed Central

    Regha, Kakkad; Sloane, Mathew A.; Huang, Ru; Pauler, Florian M.; Warczok, Katarzyna E.; Melikant, Balázs; Radolf, Martin; Martens, Joost H.A.; Schotta, Gunnar; Jenuwein, Thomas; Barlow, Denise P.

    2010-01-01

    SUMMARY The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 ± HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome. PMID:17679087

  1. Differential Gene Expression for Investigation of Escherichia coli Biofilm Inhibition by Plant Extract Ursolic Acid

    PubMed Central

    Ren, Dacheng; Zuo, Rongjun; González Barrios, Andrés F.; Bedzyk, Laura A.; Eldridge, Gary R.; Pasmore, Mark E.; Wood, Thomas K.

    2005-01-01

    After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 μg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 μg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 μg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 μg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid). PMID:16000817

  2. Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage

    PubMed Central

    Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.

    2007-01-01

    The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513

  3. Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression.

    PubMed

    Scassa, María E; Guberman, Alejandra S; Ceruti, Julieta M; Cánepa, Eduardo T

    2004-07-02

    Although the negative regulation of gene expression by insulin has been widely studied, the transcription factors responsible for the insulin effect are still unknown. The purpose of this work was to explore the molecular mechanisms involved in the insulin repression of the 5-aminolevulinate synthase (ALAS) gene. Deletion analysis of the 5'-regulatory region allowed us to identify an insulin-responsive region located at -459 to -354 bp. This fragment contains a highly homologous insulin-responsive (IRE) sequence. By transient transfection assays, we determined that hepatic nuclear factor 3 (HNF3) and nuclear factor 1 (NF1) are necessary for an appropriate expression of the ALAS gene. Insulin overrides the HNF3beta or HNF3beta plus NF1-mediated stimulation of ALAS transcriptional activity. Electrophoretic mobility shift assay and Southwestern blotting indicate that HNF3 binds to the ALAS promoter. Mutational analysis of this region revealed that IRE disruption abrogates insulin action, whereas mutation of the HNF3 element maintains hormone responsiveness. This dissociation between HNF3 binding and insulin action suggests that HNF3beta is not the sole physiologic mediator of insulin-induced transcriptional repression. Furthermore, Southwestern blotting assay shows that at least two polypeptides other than HNF3beta can bind to ALAS promoter and that this binding is dependent on the integrity of the IRE. We propose a model in which insulin exerts its negative effect through the disturbance of HNF3beta binding or transactivation potential, probably due to specific phosphorylation of this transcription factor by Akt. In this regard, results obtained from transfection experiments using kinase inhibitors support this hypothesis. Due to this event, NF1 would lose accessibility to the promoter. The posttranslational modification of HNF3 would allow the binding of a protein complex that recognizes the core IRE. These results provide a potential mechanism for the insulin-mediated repression of IRE-containing promoters.

  4. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    PubMed

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 AlphaMed Press.

  5. Genetic Control of Amadori Product Degradation in Bacillus subtilis via Regulation of frlBONMD Expression by FrlR▿†

    PubMed Central

    Deppe, Veronika Maria; Klatte, Stephanie; Bongaerts, Johannes; Maurer, Karl-Heinz; O'Connell, Timothy; Meinhardt, Friedhelm

    2011-01-01

    Bacillus subtilis is capable of degrading fructosamines. The phosphorylation and the cleavage of the resulting fructosamine 6-phosphates is catalyzed by the frlD and frlB gene products, respectively. This study addresses the physiological importance of the frlBONMD genes (formerly yurPONML), revealing the necessity of their expression for growth on fructosamines and focusing on the complex regulation of the corresponding transcription unit. In addition to the known regulation by the global transcriptional regulator CodY, the frl genes are repressed by the convergently transcribed FrlR (formerly YurK). The latter causes repression during growth on substrates other than fructosamines. Additionally, we identified in the first intergenic region of the operon an FrlR binding site which is centrally located within a 38-bp perfect palindromic sequence. There is genetic evidence that this sequence, in combination with FrlR, contributes to the remarkable decrease in the transcription downstream of the first gene of the frl operon. PMID:21398478

  6. Repression by PRDM13 is critical for generating precision in neuronal identity

    PubMed Central

    Kollipara, Rahul K; Ma, Zhenzhong; Borromeo, Mark D; Chang, Joshua C

    2017-01-01

    The mechanisms that activate some genes while silencing others are critical to ensure precision in lineage specification as multipotent progenitors become restricted in cell fate. During neurodevelopment, these mechanisms are required to generate the diversity of neuronal subtypes found in the nervous system. Here we report interactions between basic helix-loop-helix (bHLH) transcriptional activators and the transcriptional repressor PRDM13 that are critical for specifying dorsal spinal cord neurons. PRDM13 inhibits gene expression programs for excitatory neuronal lineages in the dorsal neural tube. Strikingly, PRDM13 also ensures a battery of ventral neural tube specification genes such as Olig1, Olig2 and Prdm12 are excluded dorsally. PRDM13 does this via recruitment to chromatin by multiple neural bHLH factors to restrict gene expression in specific neuronal lineages. Together these findings highlight the function of PRDM13 in repressing the activity of bHLH transcriptional activators that together are required to achieve precise neuronal specification during mouse development. PMID:28850031

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Sukanya; Karig, David K; Norred, Sarah E

    Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on host E. coli promoters for the construction of circuit elements, such as logic gates, makes implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a simple orthogonal expression system for use in a variety of cellular backgrounds and even in cell free systems. Here we develop a T7 promoter system that can be regulated by two different transcriptional repressors for the construction of a logic gate that functions in cells and in cell free systems. We first present LacImore » repressible T7lacO promoters that are regulated from a distal lac operator site for repression. We next explore the positioning of a tet operator site within the T7lacO framework to create T7 promoters that respond to tet and lac repressors and realize an IMPLIES gate. Finally, we demonstrate that these dual input sensitive promoters function in a commercially available E. coli cell-free protein expression system. Together, our results contribute to the first demonstration of multi-input regulation of T7 promoters and expand the utility of T7 promoters in cell based as well as cell-free gene circuits.« less

  8. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.

    PubMed

    Shanmugam, Rajasubramaniam; Gade, Padmaja; Wilson-Weekes, Annique; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A; Baghdadi, Tareq Al; Sargent, Katie J; Cripe, Larry D; Kalvakolanu, Dhananjaya V; Boswell, H Scott

    2012-01-15

    Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML. ©2011 AACR.

  9. A non-canonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia (AML)

    PubMed Central

    Shanmugam, Rajasubramaniam; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A.; Baghdadi, Tareq Al; Sargent, Katie J.; Cripe, Larry D.; Kalvakolanu, Dhananjaya V.; Boswell, H. Scott

    2014-01-01

    Purpose DAPK1, a tumor suppressor, is a rate-limiting effector in an ER stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of AML with poor prognosis, which lacked ER stress-induced apoptosis. Experimental Design Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB- and c- jun-responsive genes, was studied. RNAi knockdown studies were performed in Flt3ITD+ve cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were performed to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. Results AMLs characterized by normal karyotype with Flt3ITD were found to have 10-100-fold lower DAPK1 transcripts normalized to the expression of c-jun, a transcriptional activator of DAPK1, as compared to a heterogeneous cytogenetic category. Meis1, a c-jun-responsive adverse AML prognostic gene signature was also measured as control. These Flt3ITD+ve AMLs over-express relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter along with HDAC2 and HDAC6 in the Flt3ITD+ve human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NIK, de-repressed DAPK1. DAPK1-repressed primary Flt3ITD+ve AMLs had selective nuclear activation of p52NF-κB. Conclusions Flt3ITD promotes a non-canonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD+ve AML. PMID:22096027

  10. Gene length as a biological timer to establish temporal transcriptional regulation

    PubMed Central

    Kirkconnell, Killeen S.; Magnuson, Brian; Paulsen, Michelle T.; Lu, Brian; Bedi, Karan; Ljungman, Mats

    2017-01-01

    ABSTRACT Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs. PMID:28055303

  11. Gene repressive mechanisms in the mouse brain involved in memory formation

    PubMed Central

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-01-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200] PMID:26949020

  12. Gene repressive mechanisms in the mouse brain involved in memory formation.

    PubMed

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  13. Sign epistasis caused by hierarchy within signalling cascades.

    PubMed

    Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J

    2018-04-13

    Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.

  14. Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis.

    PubMed

    Ahmed, Ikhlak; Sarazin, Alexis; Bowler, Chris; Colot, Vincent; Quesneville, Hadi

    2011-09-01

    Transposable elements (TEs) and their relics play major roles in genome evolution. However, mobilization of TEs is usually deleterious and strongly repressed. In plants and mammals, this repression is typically associated with DNA methylation, but the relationship between this epigenetic mark and TE sequences has not been investigated systematically. Here, we present an improved annotation of TE sequences and use it to analyze genome-wide DNA methylation maps obtained at single-nucleotide resolution in Arabidopsis. We show that although the majority of TE sequences are methylated, ∼26% are not. Moreover, a significant fraction of TE sequences densely methylated at CG, CHG and CHH sites (where H = A, T or C) have no or few matching small interfering RNA (siRNAs) and are therefore unlikely to be targeted by the RNA-directed DNA methylation (RdDM) machinery. We provide evidence that these TE sequences acquire DNA methylation through spreading from adjacent siRNA-targeted regions. Further, we show that although both methylated and unmethylated TE sequences located in euchromatin tend to be more abundant closer to genes, this trend is least pronounced for methylated, siRNA-targeted TE sequences located 5' to genes. Based on these and other findings, we propose that spreading of DNA methylation through promoter regions explains at least in part the negative impact of siRNA-targeted TE sequences on neighboring gene expression.

  15. Translational Repression of NhaR, a Novel Pathway for Multi-Tier Regulation of Biofilm Circuitry by CsrA

    PubMed Central

    Pannuri, Archana; Yakhnin, Helen; Vakulskas, Christopher A.; Edwards, Adrianne N.; Babitzke, Paul

    2012-01-01

    The RNA binding protein CsrA (RsmA) represses biofilm formation in several proteobacterial species. In Escherichia coli, it represses the production of the polysaccharide adhesin poly-β-1,6-N-acetyl-d-glucosamine (PGA) by binding to the pgaABCD mRNA leader, inhibiting pgaA translation, and destabilizing this transcript. In addition, CsrA represses genes responsible for the synthesis of cyclic di-GMP, an activator of PGA production. Here we determined that CsrA also represses NhaR, a LysR-type transcriptional regulator which responds to elevated [Na+] and alkaline pH and activates the transcription of the pgaABCD operon. Gel shift studies revealed that CsrA binds at two sites in the 5′ untranslated segment of nhaR, one of which overlaps the Shine-Dalgarno sequence. An epitope-tagged NhaR protein, expressed from the nhaR chromosomal locus, and an nhaR posttranscriptional reporter fusion (PlacUV5-nhaR′-′lacZ) both showed robust repression by CsrA. Northern blotting revealed a complex transcription pattern for the nhaAR locus. Nevertheless, CsrA did not repress nhaR mRNA levels. Toeprinting assays showed that CsrA competes effectively with the ribosome for binding to the translation initiation region of nhaR. Together, these findings indicate that CsrA blocks nhaR translation. Epistasis studies with a pgaA-lacZ transcriptional fusion confirmed a model in which CsrA indirectly represses pgaABCD transcription via NhaR. We conclude that CsrA regulates the horizontally acquired pgaABCD operon and PGA biosynthesis at multiple levels. Furthermore, nhaR repression exemplifies an expanding role for CsrA as a global regulator of stress response systems. PMID:22037401

  16. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

    PubMed Central

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T. Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-01-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  17. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins

    PubMed Central

    Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan

    2014-01-01

    In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. PMID:24942546

  18. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression.

    PubMed

    Zaragoza, O; Rodríguez, C; Gancedo, C

    2000-01-01

    We have cloned a Candida albicans gene (CaMIG1) that encodes a protein homologous to the DNA-binding protein Mig1 from Saccharomyces cerevisiae (ScMig1). The C. albicans Mig1 protein (CaMig1) differs from ScMig1, in that, among other things, it lacks a putative phosphorylation site for Snf1 and presents several long stretches rich in glutamine or in asparagine, serine, and threonine and has the effector domain located at some distance (50 amino acids) from the carboxy terminus. Expression of CaMIG1 was low and was similar in glucose-, sucrose-, or ethanol-containing media. Disruption of the two CaMIG1 genomic copies had no effect in filamentation or infectivity. Levels of a glucose-repressible alpha-glucosidase, implicated in both sucrose and maltose utilization, were similar in wild-type or mig1/mig1 cells. Disruption of CaMIG1 had also no effect on the expression of the glucose-repressed gene CaGAL1. CaMIG1 was functional in S. cerevisiae, as judged by its ability to suppress the phenotypes produced by mig1 or tps1 mutations. In addition, CaMig1 formed specific complexes with the URS1 region of the S. cerevisiae FBP1 gene. The existence of a possible functional analogue of CaMIG1 in C. albicans was suggested by the results of band shift experiments.

  19. Isolation of the MIG1 Gene from Candida albicans and Effects of Its Disruption on Catabolite Repression

    PubMed Central

    Zaragoza, Oscar; Rodríguez, Cristina; Gancedo, Carlos

    2000-01-01

    We have cloned a Candida albicans gene (CaMIG1) that encodes a protein homologous to the DNA-binding protein Mig1 from Saccharomyces cerevisiae (ScMig1). The C. albicans Mig1 protein (CaMig1) differs from ScMig1, in that, among other things, it lacks a putative phosphorylation site for Snf1 and presents several long stretches rich in glutamine or in asparagine, serine, and threonine and has the effector domain located at some distance (50 amino acids) from the carboxy terminus. Expression of CaMIG1 was low and was similar in glucose-, sucrose-, or ethanol-containing media. Disruption of the two CaMIG1 genomic copies had no effect in filamentation or infectivity. Levels of a glucose-repressible α-glucosidase, implicated in both sucrose and maltose utilization, were similar in wild-type or mig1/mig1 cells. Disruption of CaMIG1 had also no effect on the expression of the glucose-repressed gene CaGAL1. CaMIG1 was functional in S. cerevisiae, as judged by its ability to suppress the phenotypes produced by mig1 or tps1 mutations. In addition, CaMig1 formed specific complexes with the URS1 region of the S. cerevisiae FBP1 gene. The existence of a possible functional analogue of CaMIG1 in C. albicans was suggested by the results of band shift experiments. PMID:10629176

  20. Reversal of an Epigenetic Switch Governing Cell Chaining in Bacillus subtilis by Protein Instability

    PubMed Central

    Chai, Yunrong; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms long chains of cells during growth and biofilm formation. Cell separation is mediated by autolysins, whose genes are under the negative control of a heteromeric complex composed of the proteins SinR and SlrR. Formation of the SinR•SlrR complex is governed by a self-reinforcing, double-negative feedback loop in which SinR represses the gene for SlrR and SlrR, by forming the SinR•SlrR complex, titrates SinR and prevents it from repressing slrR. The loop is a bistable switch and exists in a SlrRLOW state in which autolysin genes are on, and a SlrRHIGH state in which autolysin genes are repressed by SinR•SlrR. Cells in the SlrRLOW state are driven into the SlrRHIGH state by SinI, an antirepressor that binds to and inhibits SinR. However, the mechanism by which cells in the SlrRHIGH state revert back to the SlrRLOW state is unknown. We report that SlrR is proteolytically unstable and present evidence that self-cleavage via a LexA-like autopeptidase and ClpC contribute to its degradation. Cells producing a self-cleavage-resistant mutant of SlrR exhibited more persistent chaining during growth and yielded biofilms with enhanced structural complexity. We propose that degradation of SlrR allows cells to switch from the SlrRHIGH to the SlrRLOW state. PMID:20923420

  1. Direct Role for the Rpd3 Complex in Transcriptional Induction of the Anaerobic DAN/TIR Genes in Yeast▿‡

    PubMed Central

    Sertil, Odeniel; Vemula, Arvind; Salmon, Sharon L.; Morse, Randall H.; Lowry, Charles V.

    2007-01-01

    Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of “anaerobic” genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression. PMID:17210643

  2. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism.

    PubMed

    Dai, Mingqiu; Zhao, Yu; Ma, Qian; Hu, Yongfeng; Hedden, Peter; Zhang, Qifa; Zhou, Dao-Xiu

    2007-05-01

    Gibberellin (GA) biosynthesis is regulated by feedback control providing a mechanism for GA homeostasis in plants. However, regulatory elements involved in the feedback control are not known. In this report, we show that a rice (Oryza sativa) YABBY1 (YAB1) gene had a similar expression pattern as key rice GA biosynthetic genes GA3ox2 and GA20ox2. Overexpression of YAB1 in transgenic rice resulted in a semidwarf phenotype that could be fully rescued by applied GA. Quantification of the endogenous GA content revealed increases of GA(20) and decreases of GA(1) levels in the overexpression plants, in which the transcripts of the biosynthetic gene GA3ox2 were decreased. Cosuppression of YAB1 in transgenic plants induced expression of GA3ox2. The repression of GA3ox2 could be obtained upon treatment by dexamethasone of transgenic plants expressing a YAB1-glucocorticoid receptor fusion. Importantly, we show that YAB1 bound to a GA-responsive element within the GA3ox2 promoter. In addition, the expression of YAB1 was deregulated in GA biosynthesis and signaling mutants and could be either transiently induced by GA or repressed by a GA inhibitor. Finally, either overexpression or cosuppression of YAB1 impaired GA-mediated repression of GA3ox2. These data together suggest that YAB1 is involved in the feedback regulation of GA biosynthesis in rice.

  3. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fader, Kelly A.; Nault, Rance

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resultingmore » in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron homeostasis promotes TCDD-elicited steatohepatitis with fibrosis.« less

  4. Identification of regulatory targets for the bacterial Nus factor complex.

    PubMed

    Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T

    2017-12-11

    Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.

  5. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation.

    PubMed

    Carouge, Delphine; Host, Lionel; Aunis, Dominique; Zwiller, Jean; Anglard, Patrick

    2010-06-01

    Rett syndrome and its "early-onset seizure" variant are severe neurodevelopmental disorders associated with mutations within the MECP2 and the CDKL5 genes. Antidepressants and drugs of abuse induce the expression of the epigenetic factor MeCP2, thereby influencing chromatin remodeling. We show that increased MeCP2 levels resulted in the repression of Cdkl5 in rat brain structures in response to cocaine, as well as in cells exposed to serotonin, or overexpressing MeCP2. In contrast, Cdkl5 was induced by siRNA-mediated knockdown of Mecp2 and by DNA-methyltransferase inhibitors, demonstrating its regulation by MeCP2 and by DNA methylation. Cdkl5 gene methylation and its methylation-dependent binding to MeCP2 were increased in the striatum of cocaine-treated rats. Our data demonstrate that Cdkl5 is a MeCP2-repressed target gene providing a link between genes the mutation of which generates overlapping symptoms. They highlight DNA methylation changes as a potential mechanism participating in the long-term plasticity triggered by pharmacological agents.

  6. LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome

    PubMed Central

    Ariel, Federico; Latrasse, David; Mariappan, Kiruthiga Gayathri; Kim, Soon-Kap; Crespi, Martin; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2016-01-01

    Precise expression patterns of genes in time and space are essential for proper development of multicellular organisms. Dynamic chromatin conformation and spatial organization of the genome constitute a major step in this regulation to modulate developmental outputs. Polycomb repressive complexes (PRCs) mediate stable or flexible gene repression in response to internal and environmental cues. In Arabidopsis thaliana, LHP1 co-localizes with H3K27me3 epigenetic marks throughout the genome and interacts with PRC1 and PRC2 members as well as with a long noncoding RNA. Here, we show that LHP1 is responsible for the spreading of H3K27me3 towards the 3’ end of the gene body. We also identified a subset of LHP1-activated genes and demonstrated that LHP1 shapes local chromatin topology in order to control transcriptional co-regulation. Our work reveals a general role of LHP1 from local to higher conformation levels of chromatin configuration to determine its accessibility to define gene expression patterns. PMID:27410265

  7. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs

    PubMed Central

    Harris, Robin E; Setiawan, Linda; Saul, Josh; Hariharan, Iswar K

    2016-01-01

    Many organisms lose the capacity to regenerate damaged tissues as they mature. Damaged Drosophila imaginal discs regenerate efficiently early in the third larval instar (L3) but progressively lose this ability. This correlates with reduced damage-responsive expression of multiple genes, including the WNT genes wingless (wg) and Wnt6. We demonstrate that damage-responsive expression of both genes requires a bipartite enhancer whose activity declines during L3. Within this enhancer, a damage-responsive module stays active throughout L3, while an adjacent silencing element nucleates increasing levels of epigenetic silencing restricted to this enhancer. Cas9-mediated deletion of the silencing element alleviates WNT repression, but is, in itself, insufficient to promote regeneration. However, directing Myc expression to the blastema overcomes repression of multiple genes, including wg, and restores cellular responses necessary for regeneration. Localized epigenetic silencing of damage-responsive enhancers can therefore restrict regenerative capacity in maturing organisms without compromising gene functions regulated by developmental signals. DOI: http://dx.doi.org/10.7554/eLife.11588.001 PMID:26840050

  8. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress

    PubMed Central

    Elfving, Nils; Chereji, Răzvan V.; Bharatula, Vasudha; Björklund, Stefan; Morozov, Alexandre V.; Broach, James R.

    2014-01-01

    The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling. PMID:24598258

  9. Construction of CRISPR Libraries for Functional Screening.

    PubMed

    Carstens, Carsten P; Felts, Katherine A; Johns, Sarah E

    2018-01-01

    Identification of gene function has been aided by the ability to generate targeted gene knockouts or transcriptional repression using the CRISPR/CAS9 system. Using pooled libraries of guide RNA expression vectors that direct CAS9 to a specific genomic site allows identification of genes that are either enriched or depleted in response to a selection scheme, thus linking the affected gene to the chosen phenotype. The quality of the data generated by the screening is dependent on the quality of the guide RNA delivery library with regards to error rates and especially evenness of distribution of the guides. Here, we describe a method for constructing complex plasmid libraries based on pooled designed oligomers with high representation and tight distributions. The procedure allows construction of plasmid libraries of >60,000 members with a 95th/5th percentile ratio of less than 3.5.

  10. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs

    PubMed Central

    Ferry, Quentin R. V.; Lyutova, Radostina; Fulga, Tudor A.

    2017-01-01

    CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5′ end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this ‘plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies. PMID:28256578

  11. Beta-arrestin-1 protein represses diet-induced obesity.

    PubMed

    Zhuang, Le-nan; Hu, Wen-xiang; Zhang, Ming-liang; Xin, Shun-mei; Jia, Wei-ping; Zhao, Jian; Pei, Gang

    2011-08-12

    Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.

  12. Regulation of the yjjQ-bglJ Operon, Encoding LuxR-Type Transcription Factors, and the Divergent yjjP Gene by H-NS and LeuO▿ †

    PubMed Central

    Stratmann, Thomas; Madhusudan, S.; Schnetz, Karin

    2008-01-01

    The yjjQ and bglJ genes encode LuxR-type transcription factors conserved in several enterobacterial species. YjjQ is a potential virulence factor in avian pathogenic Escherichia coli. BglJ counteracts the silencing of the bgl (β-glucoside) operon by H-NS in E. coli K-12. Here we show that yjjQ and bglJ form an operon carried by E. coli K-12, whose expression is repressed by the histone-like nucleoid structuring (H-NS) protein. The LysR-type transcription factor LeuO counteracts this repression. Furthermore, the yjjP gene, encoding a membrane protein of unknown function and located upstream in divergent orientation to the yjjQ-bglJ operon, is likewise repressed by H-NS. Mapping of the promoters as well as the H-NS and LeuO binding sites within the 555-bp intergenic region revealed that H-NS binds to the center of the AT-rich regulatory region and distal to the divergent promoters. LeuO sites map to the center and to positions distal to the yjjQ promoters, while one LeuO binding site overlaps with the divergent yjjP promoter. This latter LeuO site is required for full derepression of the yjjQ promoters. The arrangement of regulatory sites suggests that LeuO restructures the nucleoprotein complex formed by H-NS. Furthermore, the data support the conclusion that LeuO, whose expression is likewise repressed by H-NS and which is a virulence factor in Salmonella enterica, is a master regulator that among other loci, also controls the yjjQ-bglJ operon and thus indirectly the presumptive targets of YjjQ and BglJ. PMID:18055596

  13. Environmental Estrogens Differentially Engage the Histone Methyltransferase EZH2 to Increase Risk of Uterine Tumorigenesis

    PubMed Central

    Greathouse, K. Leigh; Bredfeldt, Tiffany; Everitt, Jeffrey I.; Lin, Kevin; Berry, Tia; Kannan, Kurunthachalam; Mittelstadt, Megan L.; Ho, Shuk-mei; Walker, Cheryl L.

    2013-01-01

    Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. For example, exposure to the xenoestrogen diethylstilbestrol (DES) during reproductive tract development can reprogram estrogen-responsive gene expression in the myometrium, resulting in hyper-responsiveness to hormone in the adult uterus and promotion of hormone-dependent uterine leiomyoma. We show here that the environmental estrogens genistein (GEN), a soy phytoestrogen, and the plasticizer bisphenol A (BPA), differ in their pattern of developmental reprogramming and promotion of tumorigenesis (leiomyomas) in the uterus. While both GEN and BPA induce genomic estrogen receptor (ER) signaling in the developing uterus, only GEN induced PI3K/AKT non-genomic ER signaling to the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2). As a result, this “pre-genomic” signaling phosphorylates and represses EZH2, and reduces levels of H3K27 repressive mark in chromatin. Furthermore, only GEN caused estrogen-responsive genes in the adult myometrium to become hyper-responsive to hormone; estrogen-responsive genes were repressed in BPA exposed uteri. Importantly, this pattern of EZH2 engagement to decrease versus increase H3K27 methylation correlated with the effect of these xenoestrogens on tumorigenesis. Developmental reprogramming by GEN promoted development of uterine leiomyomas, increasing tumor incidence and multiplicity, while BPA did not. These data demonstrate that environmental estrogens have distinct non-genomic effects in the developing uterus that determines their ability to engage the epigenetic regulator EZH2, decrease levels of the repressive epigenetic histone H3K27 methyl mark in chromatin during developmental reprogramming, and promote uterine tumorigenesis. PMID:22504913

  14. Prolactin Signaling through the Short Form of Its Receptor Represses Forkhead Transcription Factor FOXO3 and Its Target Gene Galt Causing a Severe Ovarian Defect

    PubMed Central

    Halperin, Julia; Devi, Sangeeta Y.; Elizur, Shai; Stocco, Carlos; Shehu, Aurora; Rebourcet, Diane; Unterman, Terry G.; Leslie, Nancy D.; Le, Jamie; Binart, Nadine; Gibori, Geula

    2008-01-01

    Prolactin (PRL) is a hormone with over 300 biological activities. Although the signaling pathway downstream of the long form of its receptor (RL) has been well characterized, little is known about PRL actions upon activation of the short form (RS). Here, we show that mice expressing only RS exhibit an ovarian phenotype of accelerated follicular recruitment followed by massive follicular death leading to premature ovarian failure. Consequently, RS-expressing ovaries of young adults are depleted of functional follicles and formed mostly by interstitium. We also show that activation of RS represses the expression of the transcription factor Forkhead box O3 (FOXO3) and that of the enzyme galactose-1-phosphate uridyltransferase (Galt), two proteins known to be essential for normal follicular development. Our finding that FOXO3 regulates the expression of Galt and enhances its transcriptional activity indicates that it is the repression of FOXO3 by PRL acting through RS that prevents Galt expression in the ovary and causes follicular death. Coexpression of RL with RS prevents PRL inhibition of Galt, and the ovarian defect is no longer seen in RS transgenic mice that coexpress RL, suggesting that RL prevents RS-induced ovarian impairment. In summary, we show that PRL signals through RS and causes, in the absence of RL, a severe ovarian pathology by repressing the expression of FOXO3 and that of its target gene Galt. We also provide evidence of a link between the premature ovarian failure seen in mice expressing RS and in mice with FOXO3 gene deletion as well as in human with Galt mutation. PMID:17975019

  15. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F

    2015-01-01

    The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro.

  16. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression.

    PubMed

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R

    2017-12-01

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal development.

  17. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression

    PubMed Central

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M.

    2017-01-01

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immuno-precipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal development. PMID:27914010

  18. The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT.

    PubMed

    Sun, Yi-Cheng; Guo, Xiao-Peng; Hinnebusch, B Joseph; Darby, Creg

    2012-04-01

    Yersinia pestis, which causes bubonic plague, forms biofilms in fleas, its insect vectors, as a means to enhance transmission. Biofilm development is positively regulated by hmsT, encoding a diguanylate cyclase that synthesizes the bacterial second messenger cyclic-di-GMP. Biofilm development is negatively regulated by the Rcs phosphorelay signal transduction system. In this study, we show that Rcs-negative regulation is accomplished by repressing transcription of hmsT.

  19. Functional repression of PtSND2 represses growth and development by disturbing auxin biosynthesis, transport and signaling in transgenic poplar.

    PubMed

    Wang, Haihai; Tang, Renjie; Wang, Cuiting; Qi, Qi; Gai, Ying; Jiang, Xiangning; Zhang, Hongxia

    2015-01-01

    Using chimeric repressor silencing technology, we previously reported that functional repression of PtSND2 severely arrested wood formation in transgenic poplar (Populus). Here, we provide further evidence that auxin biosynthesis, transport and signaling were disturbed in these transgenic plants, leading to pleiotropic defects in their growth patterns, including inhibited leaf enlargement and vascular tissue development in the leaf central vein, suppressed cambial growth and fiber elongation in the stem, and arrested growth in the root system. Two transgenic lines, which displayed the most remarkable phenotypic deviation from the wild-type, were selected for detailed studies. In both transgenic lines, expression of genes for auxin biosynthesis, transport and signaling was down-regulated, and indole-3-acetic acid distribution was severely disturbed in the apical buds, leaves, stems and roots of field-grown transgenic plants. Transient transcription dual-luciferase assays of ProPtTYDC2::LUC, ProPttLAX2::LUC and ProPoptrIAA20.2::LUC in poplar protoplasts revealed that expression of auxin-related genes might be regulated by PtSND2 at the transcriptional level. All these results indicate that functional repression of PtSND2 altered auxin biosynthesis, transport and signaling, and thereby disturbed the normal growth and development of transgenic plants. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy.

    PubMed

    Huang, Zhan-Peng; Young Seok, Hee; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T; Wang, Da-Zhi

    2012-03-16

    Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. To identify and investigate novel regulators that modulate cardiac hypertrophy. Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.

Top