Science.gov

Sample records for gene structure identification

  1. Prognostic gene signature identification using causal structure learning: applications in kidney cancer.

    PubMed

    Ha, Min Jin; Baladandayuthapani, Veerabhadran; Do, Kim-Anh

    2015-01-01

    Identification of molecular-based signatures is one of the critical steps toward finding therapeutic targets in cancer. In this paper, we propose methods to discover prognostic gene signatures under a causal structure learning framework across the whole genome. The causal structures are represented by directed acyclic graphs (DAGs), wherein we construct gene-specific network modules that constitute a gene and its corresponding regulators. The modules are then subsequently used to correlate with survival times, thus, allowing for a network-oriented approach to gene selection to adjust for potential confounders, as opposed to univariate (gene-by-gene) approaches. Our methods are motivated by and applied to a clear cell renal cell carcinoma (ccRCC) study from The Cancer Genome Atlas (TCGA) where we find several prognostic genes associated with cancer progression - some of which are novel while others confirm existing findings. PMID:25861215

  2. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    PubMed

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  3. A Metastate HMM with Application to Gene Structure Identification in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Winters-Hilt, Stephen; Baribault, Carl

    2010-12-01

    We introduce a generalized-clique hidden Markov model (HMM) and apply it to gene finding in eukaryotes ( C. elegans). We demonstrate a HMM structure identification platform that is novel and robustly-performing in a number of ways. The generalized clique HMM begins by enlarging the primitive hidden states associated with the individual base labels (as exon, intron, or junk) to substrings of primitive hidden states, or footprint states, having a minimal length greater than the footprint state length. The emissions are likewise expanded to higher order in the fundamental joint probability that is the basis of the generalized-clique, or "metastate", HMM. We then consider application to eukaryotic gene finding and show how such a metastate HMM improves the strength of coding/noncoding-transition contributions to gene-structure identification. We will describe situations where the coding/noncoding-transition modeling can effectively recapture the exon and intron heavy tail distribution modeling capability as well as manage the exon-start needle-in-the-haystack problem. In analysis of the C. elegans genome we show that the sensitivity and specificity (SN,SP) results for both the individual-state and full-exon predictions are greatly enhanced over the standard HMM when using the generalized-clique HMM.

  4. The structure of the human peripherin gene (PRPH) and identification of potential regulatory elements

    SciTech Connect

    Foley, J.; Ley, C.A.; Parysek, L.M.

    1994-07-15

    The authors determined the complete nucleotide sequence of the coding region of the human peripherin gene (PRPH), as well as 742 bp 5{prime} to the cap site and 584 bp 3{prime} to the stop codon, and compared its structure and sequence to the rat and mouse genes. The overall structure of 9 exons separated by 8 introns is conserved among these three mammalian species. The nucleotide sequences of the human peripherin gene exons were 90% identical to the rat gene sequences, and the predicted human peripherin protein differed from rat peripherin at only 18 of 475 amino acid residues. Comparison of the 5{prime} flanking regions of the human peripherin gene and rodent genes revealed extensive areas of high homology. Additional conserved segments were found in introns 1 and 2. Within the 5{prime} region, potential regulatory sequences, including a nerve growth factor negative regulatory element, a Hox protein binding site, and a heat shock element, were identified in all peripherin genes. The positional conservation of each element suggests that they may be important in the tissue-specific, developmental-specific, and injury-specific expression of the peripherin gene. 24 refs., 2 figs., 1 tab.

  5. Identification of recombination between Muscovy duck parvovirus and goose parvovirus structural protein genes.

    PubMed

    Shen, Hongxing; Zhang, Wen; Wang, Hua; Zhou, Yang; Shao, Shihe

    2015-10-01

    Waterfowl parvoviruses are divided into Muscovy duck parvoviruses (MDPVs) and goose parvoviruses (GPVs). Phylogenetic analysis based on structural gene nucleotide sequences showed that the strains of three GPVs (DY, PT and D strains) and two MDPVs (GX5 and SAAH-SHNH) are closely related and formed one cluster. Recombination analysis showed that recombination between GPV-GDFsh and MDPV-89384/FRANCE strains led to five recombinant strains: GPV-DY, GPV-PT, GPV-D, MDPV-GX5 and MDPV-SAAH-SHNH. The recombinant event was confirmed using the Simplot program and phylogenetic analysis. This is the first comprehensive investigation of recombination between MDPV and GPV structural genes.

  6. Overview of PSB track on gene structure identification in large-scale genomic sequence

    SciTech Connect

    Uberbacher, E.C.; Xu, Y.

    1998-12-31

    The recent funding of more than a dozen major genome centers to begin community-wide high-throughput sequencing of the human genome has created a significant new challenge for the computational analysis of DNA sequence and the prediction of gene structure and function. It has been estimated that on average from 1996 to 2003, approximately 2 million bases of newly finished DNA sequence will be produced every day and be made available on the Internet and in central databases. The finished (fully assembled) sequence generated each day will represent approximately 75 new genes (and their respective proteins), and many times this number will be represented in partially completed sequences. The information contained in these is of immeasurable value to medical research, biotechnology, the pharmaceutical industry and researchers in a host of fields ranging from microorganism metabolism, to structural biology, to bioremediation. Sequencing of microorganisms and other model organisms is also ramping up at a very rapid rate. The genomes for yeast and several microorganisms such as H. influenza have recently been fully sequenced, although the significance of many genes remains to be determined.

  7. Identification of a Gene Essential for Sheathed Structure Formation in Sphaerotilus natans, a Filamentous Sheathed Bacterium

    PubMed Central

    Suzuki, Toshihiko; Kanagawa, Takahiro; Kamagata, Yoichi

    2002-01-01

    Sphaerotilus natans, a filamentous bacterium that causes bulking in activated sludge processes, can assume two distinct morphologies, depending on the substrate concentration for growth; in substrate-rich media it grows as single rod-shaped cells, whereas in substrate-limited media it grows as filaments. To identify genes responsible for sheath formation, we carried out transposon Tn5 mutagenesis. Of the approximately 20,000 mutants obtained, 7 did not form sheathed structures. Sequencing of the Tn5-flanking regions showed that five of the seven Tn5 insertions converged at the same open reading frame, designated sthA. The deduced amino acids encoded by sthA were found to be homologous to glycosyltransferase, which is known to be involved in linking sugars to lipid carriers during bacterial exopolysaccharide biosynthesis. Disruption of the gene of the wild-type strain by inserting a kanamycin resistance gene cassette also resulted in sheathless growth under either type of nutrient condition. These findings indicate that sthA is a crucial component responsible for sheath formation. PMID:11772646

  8. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes.

    PubMed

    Lubbers, M W; Waterfield, N R; Beresford, T P; Le Page, R W; Jarvis, A W

    1995-12-01

    The 22,163-bp genome of the lactococcal prolate-headed phage c2 was sequenced. Thirty-nine open reading frames (ORFs), early and late promoters, and a putative transcription terminator were identified. Twenty-two ORFs were in the early gene region, and 17 were in the late gene region. Putative genes for a DNA polymerase, a recombination protein, a sigma factor protein, a transcription regulatory protein, holin proteins, and a terminase were identified. Transcription of the early and late genes proceeded divergently from a noncoding 611-bp region. A 521-bp fragment contained within the 611-bp intergenic region could act as an origin of replication in Lactococcus lactis. Three major structural proteins, with sizes of 175, 90, and 29 kDa, and eight minor proteins, with sizes of 143, 82, 66, 60, 44, 42, 32, and 28 kDa, were identified. Several of these proteins appeared to be posttranslationally modified by proteolytic cleavage. The 175- and 90-kDa proteins were identified as the major phage head proteins, and the 29- and 60-kDa proteins were identified as the major tail protein and (possibly) the tail adsorption protein, respectively. The head proteins appeared to be covalently linked multimers of the same 30-kDa gene product. Phage c2 and prolate-headed lactococcal phage bIL67 (C. Schouler, S. D. Ehrlich, and M.-C. Chopin, Microbiology 140:3061-3069, 1994) shared 80% nucleotide sequence identity. However, several DNA deletions or insertions which corresponded to the loss or acquisition of specific ORFs, respectively, were noted. The identification of direct nucleotide repeats flanking these sequences indicated that recombination may be important in the evolution of these phages.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Bovine and rodent tamm-horsfall protein (THP) genes: cloning, structural analysis, and promoter identification.

    PubMed

    Yu, H; Papa, F; Sukhatme, V P

    1994-01-01

    We have isolated bovine and rodent cDNA and genomic clones encoding the kidney-specific Tamm-Horsfall protein (THP). In both species the gene contains 11 exons, the first of which is noncoding. Exon/intron junctions were analyzed and all were shown to follow the AG/GT rule. A kidney-specific DNase I hypersensitive site was mapped onto a rodent genomic fragment for which the sequence is highly conserved in three species (rat, cow, and human) over a stretch of 350 base pairs. Primer extension and RNase protection analysis identified a transcription start site at the 3' end of this conserved region. A TATA box is located at 32 nucleotides upstream of the start site in the bovine gene and 34 nucleotides upstream in the rodent gene. An inverted CCAAT motif occurs at 65 and 66 nucleotides upstream of the start site in the bovine and rodent genes, respectively. Other highly conserved regions were noted in this 350 bp region and these are likely to be binding sites for transcription factors. A functional assay based on an in vitro transcription system confirmed that the conserved region is an RNA Pol II promoter. The in vitro system accurately initiated transcription from the in vivo start site and was highly sensitive to inhibition by alpha-amanitin at a concentration of 2.5 micrograms/ml. These studies set the stage for the further definition of cis-acting sequences and trans-factors regulating expression of the THP gene, a model for kidney-specific gene expression.

  10. Mapping of the Proteinase B Structural Gene PRB1, in SACCHAROMYCES CEREVISIAE and Identification of Nonsense Alleles within the Locus

    PubMed Central

    Zubenko, George S.; Mitchell, Aaron P.; Jones, Elizabeth W.

    1980-01-01

    We report the mapping of the structural gene for proteinase B, PRB1. It is located 1.1 cM proximal to CAN1 on the left arm of chromosome V of Saccharomyces cerevisiae. We have identified 34 amber and 12 ochre mutations among the 126 prb1 mutations in our collection. PMID:7009321

  11. Identification, structural characterisation and expression analysis of a defensin gene from the tiger beetle Calomera littoralis (Coleoptera: Cicindelidae).

    PubMed

    Rodríguez-García, María Juliana; García-Reina, Andrés; Machado, Vilmar; Galián, José

    2016-09-01

    In this study, a defensin gene (Clit-Def) has been characterised in the tiger beetle Calomera littoralis for the first time. Bioinformatic analysis showed that the gene has an open reading frame of 246bp that contains a 46 amino acid mature peptide. The phylogenetic analysis showed a high variability in the coleopteran defensins analysed. The Clit-Def mature peptide has the features to be involved in the antimicrobial function: a predicted cationic isoelectric point of 8.94, six cysteine residues that form three disulfide bonds, and the typical cysteine-stabilized α-helix β-sheet (CSαβ) structural fold. Real time quantitative PCR analysis showed that Clit-Def was upregulated in the different body parts analysed after infection with lipopolysaccharides of Escherichia coli, and also indicated that has an expression peak at 12h post infection. The expression patterns of Clit-Def suggest that this gene plays important roles in the humoral system in the adephagan beetle Calomera littoralis. PMID:27210512

  12. Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease.

    PubMed

    Yu, H; Anderson, P J; Freedman, B I; Rich, S S; Bowden, D W

    2000-10-15

    Kallikreins are serine proteases that catalyze the release of kinins and other vasoactive peptides. Previously, we have studied one tissue-specific (H. Yu et al., 1996, J. Am. Soc. Nephrol. 7: 2559-2564) and one plasma-specific (H. Yu et al., 1998, Hypertension 31: 906-911) human kallikrein gene in end-stage renal disease (ESRD). Short sequence repeat polymorphisms for the human plasma kallikrein gene (KLKB1; previously known as KLK3) on chromosome 4 were associated with ESRD in an African American study population. This study of KLKB1 in ESRD has been extended by determining the genomic structure of KLKB1 and searching for allelic variants that may be associated with ESRD. Exon-spanning PCR primer sets were identified by serial testing of primer pairs designed from KLKB1 cDNA sequence and DNA sequencing of PCR products. Like the rat plasma kallikrein gene and the closely related human factor XI gene, the human KLKB1 gene contains 15 exons and 14 introns. The longest intron, F, is almost 12 kb long. The total length of the gene is approximately 30 kb. Sequence of the 5'-proximal promoter region of KLKB1 was obtained by shotgun cloning of genomic fragments from a bacterial artificial clone containing the KLKB1 gene, followed by screening of the clones using exon 1-specific probes. Primers flanking the exons and 5'-proximal promoter region were used to screen for allelic variants in the genomic DNA from ESRD patients and controls using the single-strand conformation polymorphism technique. We identified 12 allelic variants in the 5'-proximal promoter and 7 exons. Of note were a common polymorphism (30% of the population) at position 521 of KLKB1 cDNA, which leads to the replacement of asparagine with a serine at position 124 in the heavy chain of the A2 domain of the protein. In addition, an A716C polymorphism in exon 7 resulting in the amino acid change H189P in the A3 domain of the heavy chain was observed in 5 patients belonging to 3 ESRD families. A third

  13. Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease.

    PubMed

    Yu, H; Anderson, P J; Freedman, B I; Rich, S S; Bowden, D W

    2000-10-15

    Kallikreins are serine proteases that catalyze the release of kinins and other vasoactive peptides. Previously, we have studied one tissue-specific (H. Yu et al., 1996, J. Am. Soc. Nephrol. 7: 2559-2564) and one plasma-specific (H. Yu et al., 1998, Hypertension 31: 906-911) human kallikrein gene in end-stage renal disease (ESRD). Short sequence repeat polymorphisms for the human plasma kallikrein gene (KLKB1; previously known as KLK3) on chromosome 4 were associated with ESRD in an African American study population. This study of KLKB1 in ESRD has been extended by determining the genomic structure of KLKB1 and searching for allelic variants that may be associated with ESRD. Exon-spanning PCR primer sets were identified by serial testing of primer pairs designed from KLKB1 cDNA sequence and DNA sequencing of PCR products. Like the rat plasma kallikrein gene and the closely related human factor XI gene, the human KLKB1 gene contains 15 exons and 14 introns. The longest intron, F, is almost 12 kb long. The total length of the gene is approximately 30 kb. Sequence of the 5'-proximal promoter region of KLKB1 was obtained by shotgun cloning of genomic fragments from a bacterial artificial clone containing the KLKB1 gene, followed by screening of the clones using exon 1-specific probes. Primers flanking the exons and 5'-proximal promoter region were used to screen for allelic variants in the genomic DNA from ESRD patients and controls using the single-strand conformation polymorphism technique. We identified 12 allelic variants in the 5'-proximal promoter and 7 exons. Of note were a common polymorphism (30% of the population) at position 521 of KLKB1 cDNA, which leads to the replacement of asparagine with a serine at position 124 in the heavy chain of the A2 domain of the protein. In addition, an A716C polymorphism in exon 7 resulting in the amino acid change H189P in the A3 domain of the heavy chain was observed in 5 patients belonging to 3 ESRD families. A third

  14. Complete sequence of the Rous sarcoma virus env gene: identification of structural and functional regions of its product.

    PubMed Central

    Hunter, E; Hill, E; Hardwick, M; Bhown, A; Schwartz, D E; Tizard, R

    1983-01-01

    The amino-terminal amino acid sequences of gp85 and gp37, the envelope glycoproteins of Rous sarcoma virus (RSV), were determined. Alignment of these sequences with the amino acid sequence predicted from the complete nucleotide sequence of the Prague strain of RSV, subgroup C (PR-C), has allowed us to delineate the env gene-coding region of this virus. The coding sequences for gp85 and gp37 have been placed in an open reading frame that extends from nucleotide 5045 to nucleotide 6862 and predict sizes of 341 amino acids (36,962 molecular weight) for gp85 and 198 amino acids (21,566 molecular weight) for gp37. Carbohydrate makes a significant contribution to the observed molecular weights of these polypeptides--the amino acid sequence contains 14 potential glycosylation sites (Asn-X-Ser/Thr) in gp85 and two in gp37. Experiments aimed at estimating the number of carbohydrate side chains yielded results consistent with most or all of these sites being occupied. Although an initiation codon is located early (codon 4) in the open reading frame, it is likely that splicing yields an mRNA on which translation initiates at the same AUG as that of the gag gene to produce a nascent polypeptide in which gp85 is preceded by a 62-amino-acid-long leader peptide. This leader contains the hydrophobic sequence (signal sequence) necessary for translocation across the endoplasmic reticulum and is completely removed from the env gene product during translation. The polyprotein precursor, Pr95env, is cleaved to gp85 and gp37 at the carboxyl side of the basic sequence:-Arg-Arg-Lys-Arg-. gp85 is attached through a disulphide linkage to gp37, and although the positions of the cysteines involved in this linkage are not known, the presence of a 27-amino-acid-long hydrophobic region at the carboxy-terminus of gp37 is consistent with its role as a membrane anchor for the viral glycoprotein complex. The location of host range variable regions with respect to the possible tertiary structure of

  15. Gene structure and expression

    SciTech Connect

    Hawkins, J. )

    1990-01-01

    This book describes the structure of genes in molecular terms and summarizes present knowledge about how their activity is regulated. It covers a range of topics, including a review of the structure and replication of DNA, transcription and translation, prokaryotic and eukaryotic gene organization and expression, retroviruses and oncogenes. The book also includes a chapter on the methodology of DNA manipulation including sections on site-directed mutagenesis, the polymerase chain reaction, reporter genes and restriction fragment length polymorphisms. The hemoglobin gene system and the genetics of the proteins of the immune system are presented in the latter half of the book to show the structure and expression of the most well-studied systems in higher eukaryotes. The final chapter reviews the differences between prokaryotic and the eukaryotic genomes.

  16. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  17. Genomic Structure and Identification of Novel Mutations in Usherin, the Gene Responsible for Usher Syndrome Type IIa

    PubMed Central

    Weston, M. D.; Eudy, J. D.; Fujita, S.; Yao, S.-F.; Usami, S.; Cremers, C.; Greenburg, J.; Ramesar, R.; Martini, A.; Moller, C.; Smith, R. J.; Sumegi, J.; Kimberling, William J.

    2000-01-01

    Usher syndrome type IIa (USHIIa) is an autosomal recessive disorder characterized by moderate to severe sensorineural hearing loss and progressive retinitis pigmentosa. This disorder maps to human chromosome 1q41. Recently, mutations in USHIIa patients were identified in a novel gene isolated from this chromosomal region. The USH2A gene encodes a protein with a predicted molecular weight of 171.5 kD and possesses laminin epidermal growth factor as well as fibronectin type III domains. These domains are observed in other protein components of the basal lamina and extracellular matrixes; they may also be observed in cell-adhesion molecules. The intron/exon organization of the gene whose protein we name “Usherin” was determined by direct sequencing of PCR products and cloned genomic DNA with cDNA-specific primers. The gene is encoded by 21 exons and spans a minimum of 105 kb. A mutation search of 57 independent USHIIa probands was performed with a combination of direct sequencing and heteroduplex analysis of PCR-amplified exons. Fifteen new mutations were found. Of 114 independent USH2A alleles, 58 harbored probable pathologic mutations. Ten cases of USHIIa were true homozygotes and 10 were compound heterozygotes; 18 heterozygotes with only one identifiable mutation were observed. Sixty-five percent (38/58) of cases had at least one mutation, and 51% (58/114) of the total number of possible mutations were identified. The allele 2299delG (previously reported as 2314delG) was the most frequent mutant allele observed (16%; 31/192). Three new missense mutations (C319Y, N346H, and C419F) were discovered; all were restricted to the previously unreported laminin domain VI region of Usherin. The possible significance of this domain, known to be necessary for laminin network assembly, is discussed in the context of domain VI mutations from other proteins. PMID:10729113

  18. Isolated populations and complex disease gene identification

    PubMed Central

    Kristiansson, Kati; Naukkarinen, Jussi; Peltonen, Leena

    2008-01-01

    The utility of genetically isolated populations (population isolates) in the mapping and identification of genes is not only limited to the study of rare diseases; isolated populations also provide a useful resource for studies aimed at improved understanding of the biology underlying common diseases and their component traits. Well characterized human populations provide excellent study samples for many different genetic investigations, ranging from genome-wide association studies to the characterization of interactions between genes and the environment. PMID:18771588

  19. Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene.

    PubMed Central

    Blanche, F; Thibaut, D; Famechon, A; Debussche, L; Cameron, B; Crouzet, J

    1992-01-01

    Precorrin-6x reductase, which catalyzes the NADPH-dependent reduction of precorrin-6x to a dihydro derivative named precorrin-6y, was purified 14,300-fold to homogeneity with an 8% yield from extracts of a recombinant strain of Pseudomonas denitrificans. Precorrin-6y was identified by fast atom bombardment-mass spectrometry. It was converted in high yield (90%) to hydrogenobyrinic acid by cell-free protein preparations from P. denitrificans. For the purification and characterization of precorrin-6x reductase, a coupled-enzyme radioenzymatic assay was developed in which precorrin-6y was methylated in situ by the cobL gene product (F. Blanche, A. Famechon, D. Thibaut, L. Debussche, B. Cameron, J. Crouzet, J. Bacteriol. 174:1050-1052, 1992) in the presence of [methyl-3H]S-adenosyl-L-methionine. Molecular weights of precorrin-6x reductase obtained by gel filtration (Mr congruent to 27,000) and by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr congruent to 31,000) were consistent with the enzyme being a monomer. Km values of 3.6 +/- 0.2 microM for precorrin-6x and 23.5 +/- 3.5 microM for NADPH and a Vmax value of 17,000 U mg-1 were obtained at pH 7.7. The N-terminal sequence (six amino acids) and three internal sequences obtained after tryptic digestion of the enzyme were determined by microsequencing and established that precorrin-6x reductase is encoded by the cobK gene, located on a previously described 8.7-kb EcoRI fragment (J. Crouzet, B. Cameron, L. Cauchois, S. Rigault, M.-C. Rouyez, F. Blanche, D. Thibaut, and L. Debussche, J. Bacteriol. 172:5980-5990, 1990). However, the coding sequence was shown to be on the strand complementary to the one previously proposed as the coding strand. Images PMID:1732193

  20. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    PubMed

    Forbes, Nicole; Selman, Mohammed; Pelchat, Martin; Jia, Jian Jun; Stintzi, Alain; Brown, Earl G

    2013-01-01

    The NS1 protein of influenza A virus (IAV) is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2) (HK) to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30). Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt) virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR) phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I), the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K) were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  1. Familial Identification: Population Structure and Relationship Distinguishability

    PubMed Central

    Rohlfs, Rori V.; Fullerton, Stephanie Malia; Weir, Bruce S.

    2012-01-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States. PMID:22346758

  2. Identification of miRNA-Mediated Core Gene Module for Glioma Patient Prediction by Integrating High-Throughput miRNA, mRNA Expression and Pathway Structure

    PubMed Central

    Han, Junwei; Shang, Desi; Zhang, Yunpeng; Zhang, Wei; Yao, Qianlan; Han, Lei; Xu, Yanjun; Yan, Wei; Bao, Zhaoshi; You, Gan; Jiang, Tao; Kang, Chunsheng; Li, Xia

    2014-01-01

    The prognosis of glioma patients is usually poor, especially in patients with glioblastoma (World Health Organization (WHO) grade IV). The regulatory functions of microRNA (miRNA) on genes have important implications in glioma cell survival. However, there are not many studies that have investigated glioma survival by integrating miRNAs and genes while also considering pathway structure. In this study, we performed sample-matched miRNA and mRNA expression profilings to systematically analyze glioma patient survival. During this analytical process, we developed pathway-based random walk to identify a glioma core miRNA-gene module, simultaneously considering pathway structure information and multi-level involvement of miRNAs and genes. The core miRNA-gene module we identified was comprised of four apparent sub-modules; all four sub-modules displayed a significant correlation with patient survival in the testing set (P-values≤0.001). Notably, one sub-module that consisted of 6 miRNAs and 26 genes also correlated with survival time in the high-grade subgroup (WHO grade III and IV), P-value = 0.0062. Furthermore, the 26-gene expression signature from this sub-module had robust predictive power in four independent, publicly available glioma datasets. Our findings suggested that the expression signatures, which were identified by integration of miRNA and gene level, were closely associated with overall survival among the glioma patients with various grades. PMID:24809850

  3. Structural Aspects of System Identification

    NASA Technical Reports Server (NTRS)

    Glover, Keith

    1973-01-01

    The problem of identifying linear dynamical systems is studied by considering structural and deterministic properties of linear systems that have an impact on stochastic identification algorithms. In particular considered is parametrization of linear systems so that there is a unique solution and all systems in appropriate class can be represented. It is assumed that a parametrization of system matrices has been established from a priori knowledge of the system, and the question is considered of when the unknown parameters of this system can be identified from input/output observations. It is assumed that the transfer function can be asymptotically identified, and the conditions are derived for the local, global and partial identifiability of the parametrization. Then it is shown that, with the right formulation, identifiability in the presence of feedback can be treated in the same way. Similarly the identifiability of parametrizations of systems driven by unobserved white noise is considered using the results from the theory of spectral factorization.

  4. The gene identification problem: An overview for developers

    SciTech Connect

    Fickett, J.W.

    1995-03-27

    The gene identification problem is the problem of interpreting nucleotide sequences by computer, in order to provide tentative annotation on the location, structure, and functional class of protein-coding genes. This problem is of self-evident importance, and is far from being fully solved, particularly for higher eukaryotes, Thus it is not surprising that the number of algorithm and software developers working in this area is rapidly increasing. The present paper is an overview of the field, with an emphasis on eukaryotes, for such developers.

  5. Structure of the human glucokinase gene and identification of a missense mutation in a Japanese patient with early-onset non-insulin-dependent diabetes mellitus

    SciTech Connect

    Sakura, Hiroshi; Eto, Kazuhiro; Ueno, Hirohisa; Yazaki, Yoshio; Kadowaki, Takashi ); Kadowaki, Hiroko; Simokawa, Kotaro; Akanuma, Yasuo ); Koda, Naoya; Fukushima, Yoshimitsu )

    1992-12-01

    Glucokinase is thought to play a glucose-sensor role in the pancreas, and abnormalities in its structure, function, and regulation can induce diabetes. The authors isolated the human glucokinase gene, and determined its genomic structure including exon-intron boundaries. Structure of the glucokinase gene in human was very similar to that in rat. Then, by screening Japanese diabetic patients using polymerase chain reaction - single strand conformation polymorphism (PCR-SSCP) and direct-sequencing strategies, they identified a missense mutation substituting ariginine (AGG) for glycine (GGG) at position 261 in exon 7 of the glucokinase gene in a patient with early-onset non-insulin-dependent diabetes (NIDDM). 12 refs., 3 figs., 2 tabs.

  6. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus

    PubMed Central

    Liang, Yu; Xiong, Ziyi; Zheng, Jianxiao; Xu, Dongyang; Zhu, Zeyang; Xiang, Jun; Gan, Jianping; Raboanatahiry, Nadia; Yin, Yongtai; Li, Maoteng

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a diverse and large group of polypeptides that play important roles in desiccation and freezing tolerance in plants. The LEA family has been systematically characterized in some plants but not Brassica napus. In this study, 108 BnLEA genes were identified in the B. napus genome and classified into eight families based on their conserved domains. Protein sequence alignments revealed an abundance of alanine, lysine and glutamic acid residues in BnLEA proteins. The BnLEA gene structure has few introns (<3), and they are distributed unevenly across all 19 chromosomes in B. napus, occurring as gene clusters in chromosomes A9, C2, C4 and C5. More than two-thirds of the BnLEA genes are associated with segmental duplication. Synteny analysis revealed that most LEA genes are conserved, although gene losses or gains were also identified. These results suggest that segmental duplication and whole-genome duplication played a major role in the expansion of the BnLEA gene family. Expression profiles analysis indicated that expression of most BnLEAs was increased in leaves and late stage seeds. This study presents a comprehensive overview of the LEA gene family in B. napus and provides new insights into the formation of this family. PMID:27072743

  7. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus.

    PubMed

    Liang, Yu; Xiong, Ziyi; Zheng, Jianxiao; Xu, Dongyang; Zhu, Zeyang; Xiang, Jun; Gan, Jianping; Raboanatahiry, Nadia; Yin, Yongtai; Li, Maoteng

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a diverse and large group of polypeptides that play important roles in desiccation and freezing tolerance in plants. The LEA family has been systematically characterized in some plants but not Brassica napus. In this study, 108 BnLEA genes were identified in the B. napus genome and classified into eight families based on their conserved domains. Protein sequence alignments revealed an abundance of alanine, lysine and glutamic acid residues in BnLEA proteins. The BnLEA gene structure has few introns (<3), and they are distributed unevenly across all 19 chromosomes in B. napus, occurring as gene clusters in chromosomes A9, C2, C4 and C5. More than two-thirds of the BnLEA genes are associated with segmental duplication. Synteny analysis revealed that most LEA genes are conserved, although gene losses or gains were also identified. These results suggest that segmental duplication and whole-genome duplication played a major role in the expansion of the BnLEA gene family. Expression profiles analysis indicated that expression of most BnLEAs was increased in leaves and late stage seeds. This study presents a comprehensive overview of the LEA gene family in B. napus and provides new insights into the formation of this family. PMID:27072743

  8. Structural system identification of a composite shell

    SciTech Connect

    Red-Horse, J.R.; Carne, T.G.; James, G.H.; Witkowski, W.R.

    1991-12-31

    Structural system identification is undergoing a period of renewed interest. Probabilistic approaches to physical parameter identification in analysis finite element models make uncertainty in test results an important issue. In this paper, we investigate this issue with a simple, though in many ways representative, structural system. The results of two modal parameter identification techniques are compared and uncertainty estimates, both through bias and random errors, are quantified. The importance of the interaction between test and analysis is also highlighted. 25 refs.

  9. Structural system identification of a composite shell

    SciTech Connect

    Red-Horse, J.R.; Carne, T.G.; James, G.H.; Witkowski, W.R.

    1991-01-01

    Structural system identification is undergoing a period of renewed interest. Probabilistic approaches to physical parameter identification in analysis finite element models make uncertainty in test results an important issue. In this paper, we investigate this issue with a simple, though in many ways representative, structural system. The results of two modal parameter identification techniques are compared and uncertainty estimates, both through bias and random errors, are quantified. The importance of the interaction between test and analysis is also highlighted. 25 refs.

  10. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes.

    PubMed

    Romero, C; Vilanova, S; Burgos, L; Martínez-Calvo, J; Vicente, M; Llácer, G; Badenes, M L

    2004-09-01

    The gametophytic self-incompatibility (GSI) system in Rosaceae has been proposed to be controlled by two genes located in the S -locusan S-RNase and a recently described pollen expressed S -haplotype specific F-box gene (SFB). However, in apricot (Prunus armeniaca L.) these genes had not been identified yet. We have sequenced 21 kb in total of the S -locus region in 3 different apricot S -haplotypes. These fragments contain genes homologous to the S-RNase and F-box genes found in other Prunus species, preserving their basic gene structure features and defined amino acid domains. The physical distance between the F-box and the S-RNase genes was determined exactly in the S2-haplotype (2.9 kb) and inferred approximately in the S 1-haplotype (< 49 kb) confirming that these genes are linked. Sequence analysis of the 5' flanking regions indicates the presence of a conserved region upstream of the putative TATA box in the S-RNase gene. The three identified S-RNase alleles (S1, S2 and S4) had a high allelic sequence diversity (75.3 amino acid identity), and the apricot F-box allelic variants (SFB1, SFB2 and SFB4) were also highly haplotype-specific (79.4 amino acid identity). Organ specific-expression was also studied, revealing that S1- and S2-RNases are expressed in style tissues, but not in pollen or leaves. In contrast, SFB1 and SFB2 are only expressed in pollen, but not in styles or leaves. Taken together, these results support these genes as candidates for the pistil and pollen S-determinants of GSI in apricot.

  11. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-01

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study.

  12. Recovery of Dominant, Autosomal Flightless Mutants of Drosophila Melanogaster and Identification of a New Gene Required for Normal Muscle Structure and Function

    PubMed Central

    Cripps, R. M.; Ball, E.; Stark, M.; Lawn, A.; Sparrow, J. C.

    1994-01-01

    To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle. PMID:8056306

  13. Identification of a Novel Lipopolysaccharide Core Biosynthesis Gene Cluster in Bordetella pertussis, and Influence of Core Structure and Lipid A Glucosamine Substitution on Endotoxic Activity▿

    PubMed Central

    Geurtsen, Jeroen; Dzieciatkowska, Monika; Steeghs, Liana; Hamstra, Hendrik-Jan; Boleij, Johanna; Broen, Kelly; Akkerman, Grietsje; el Hassan, Hassan; Li, Jianjun; Richards, James C.; Tommassen, Jan; van der Ley, Peter

    2009-01-01

    Lipopolysaccharide (LPS), also known as endotoxin, is one of the main constituents of the gram-negative bacterial outer membrane. Whereas the lipid A portion of LPS is generally considered the main determinant for endotoxic activity, the oligosaccharide moiety plays an important role in immune evasion and the interaction with professional antigen-presenting cells. Here we describe a novel four-gene cluster involved in the biosynthesis of the Bordetella pertussis core oligosaccharide. By insertionally inactivating these genes and studying the resulting LPS structures, we show that at least two of the genes encode active glycosyltransferases, while a third gene encodes a deacetylase also required for biosynthesis of full-length oligosaccharide. In addition, we demonstrate that mutations in the locus differentially affect LPS and whole-cell endotoxic activities. Furthermore, while analyzing the mutant LPS structures, we confirmed a novel modification of the lipid A phosphate with glucosamine and found that inactivation of the responsible glycosyltransferase reduces the endotoxic activity of the LPS. PMID:19364841

  14. Identification and characteristics of the structural gene for the Drosophila eye colour mutant sepia, encoding PDA synthase, a member of the omega class glutathione S-transferases.

    PubMed

    Kim, Jaekwang; Suh, Hyunsuk; Kim, Songhee; Kim, Kiyoung; Ahn, Chiyoung; Yim, Jeongbin

    2006-09-15

    The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic

  15. Identification and characteristics of the structural gene for the Drosophila eye colour mutant sepia, encoding PDA synthase, a member of the omega class glutathione S-transferases.

    PubMed

    Kim, Jaekwang; Suh, Hyunsuk; Kim, Songhee; Kim, Kiyoung; Ahn, Chiyoung; Yim, Jeongbin

    2006-09-15

    The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic

  16. The human mitochondrial elongation factor tu (EF-Tu) gene: cDNA sequence, genomic localization, genomic structure, and identification of a pseudogene.

    PubMed

    Ling, M; Merante, F; Chen, H S; Duff, C; Duncan, A M; Robinson, B H

    1997-09-15

    The human mitochondrial elongation factor Tu (EF-Tu) is nuclear-encoded and functions in the translational apparatus of mitochondria. The complete human EF-Tu cDNA sequence of 1677 base pairs (bp) with a 101 bp 5'-untranslated region, a 1368 bp coding region, and a 207 bp 3'-untranslated region, has been determined and updated. The predicted protein from this cDNA sequence is approximately 49.8 kDa in size and is composed of 455 amino acids (aa) with a putative N-terminal mitochondrial leader sequence of approximately 50 aa residues. The predicted amino acid sequence shows high similarity to other EF-Tu protein sequences from ox, yeast, and bacteria, and also shows limited similarity to human cystolic elongation factor 1 alpha. The complete size of this cDNA (1677 bp) obtained by cloning and sequencing was confirmed by Northern blot analysis, which showed a single transcript (mRNA) of approximately 1.7 kb in human liver. The genomic structure of this EF-Tu gene has been determined for the first time. This gene contains nine introns with a predicted size of approximately 3.6 kilobases (kb) and has been mapped to chromosome 16p11.2. In addition, an intronless pseudogene of approximately 1.7 kb with 92.6% nucleotide sequence similarity to the EF-Tu gene has also been identified and mapped to chromosome 17q11.2. PMID:9332382

  17. Identification and procaryotic expression of the gene coding for the highly immunogenic 28-kilodalton structural phosphoprotein (pp28) of human cytomegalovirus.

    PubMed Central

    Meyer, H; Bankier, A T; Landini, M P; Brown, C M; Barrell, B G; Rüger, B; Mach, M

    1988-01-01

    Human cytomegalovirus contains a structural polypeptide that is 28 kilodaltons in apparent molecular size and is reactive in Western blot (immunoblot) analysis with the majority of human sera. The gene coding for this polypeptide was mapped on the genome of human cytomegalovirus strain AD169. A monoclonal antibody specific for the 28-kilodalton polypeptide was used to screen a cDNA library constructed from poly(A)+ RNA of human cytomegalovirus-infected cells in the procaryotic expression vector lambda gt11. Hybridization of cDNA with cosmid and plasmid clones mapped the gene to the HindIII R fragment. The gene was transcribed into a late 1.3-kilobase RNA. The nucleotide sequence of the coding region was determined. Parts of the 28-kilodalton polypeptide were expressed in Escherichia coli as hybrid proteins fused to beta-galactosidase. In Western blots these proteins were recognized by human sera. Antibodies raised against the hybrid proteins reacted specifically with the viral antigen in immunoprecipitations and Western blots. In vitro phosphorylation of HCMV virions and immunoprecipitation showed that the 28-kilodalton polypeptide was phosphorylated. Images PMID:2836608

  18. Data identification for improving gene network inference using computational algebra.

    PubMed

    Dimitrova, Elena; Stigler, Brandilyn

    2014-11-01

    Identification of models of gene regulatory networks is sensitive to the amount of data used as input. Considering the substantial costs in conducting experiments, it is of value to have an estimate of the amount of data required to infer the network structure. To minimize wasted resources, it is also beneficial to know which data are necessary to identify the network. Knowledge of the data and knowledge of the terms in polynomial models are often required a priori in model identification. In applications, it is unlikely that the structure of a polynomial model will be known, which may force data sets to be unnecessarily large in order to identify a model. Furthermore, none of the known results provides any strategy for constructing data sets to uniquely identify a model. We provide a specialization of an existing criterion for deciding when a set of data points identifies a minimal polynomial model when its monomial terms have been specified. Then, we relax the requirement of the knowledge of the monomials and present results for model identification given only the data. Finally, we present a method for constructing data sets that identify minimal polynomial models.

  19. Structural damage assessment as an identification problem

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat; Soeiro, F. J.

    1989-01-01

    Damage assessment of structural assemblies is treated as an identification problem. A brief review of identification methods is first presented with particular focus on the output error approach. The use of numerical optimization methods in identifying the location and extent of damage in structures is studied. The influence of damage on eigenmode shapes and static displacements is explored as a means of formulating a measure of damage in the structure. Preliminary results obtained in this study are presented and special attention is directed at the shortcomings associated with the nonlinear programming approach to solving the optimization problem.

  20. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

    PubMed

    Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L

    2015-01-01

    Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.

  1. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

    PubMed

    Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L

    2015-01-01

    Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein. PMID:25636612

  2. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification. PMID:26790288

  3. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  4. Identification of Complex Carbon Nanotube Structures

    NASA Technical Reports Server (NTRS)

    Han, Jie; Saini, Subhash (Technical Monitor)

    1998-01-01

    A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.

  5. Structural response and input identification

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Callahan, J. C.; Mcelman, J. A.

    1981-01-01

    Three major goals were delineated: (1) to develop a general method for determining the response of a structure to combined base and acoustic random excitation: (2) to develop parametric relationships to aid in the design of plates which are subjected to random force or random base excitation: (3) to develop a method to identify the individual acoustic and base input to a structure with only a limited number of measurement channels, when both types of excitation act simultaneously.

  6. [Application of gene detection technology in food species identification].

    PubMed

    Chen, Ying; Wu, Yajun

    2011-07-01

    It is critical to determine the biological identity of all ingredients in food to ensure its safety and quality. Modern gene detection technology makes species identification in food more accurate, sensitive and rapid. A comprehensive review on its current applications in the last decade and the future perspective in food species identification is presented, including a brief introduction of gene detection methods, and their applications in plant-originated food, animal-originated food, high value-added food and highly processed food.

  7. Parameter identification of civil engineering structures

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  8. Molecular characterization of three NPY receptors (Y2, Y5 and Y7) in chickens: Gene structure, tissue expression, promoter identification, and functional analysis.

    PubMed

    He, Chen; Zhang, Jiannan; Gao, Shunyu; Meng, Fengyan; Bu, Guixian; Li, Juan; Wang, Yajun

    2016-09-15

    Six neuropeptide Y (NPY) receptors are suggested to mediate the biological actions of NPY, peptide YY (PYY), and pancreatic polypeptide (PP), such as food intake in birds, however, information regarding the structure and signaling of avian NPY receptors are rather limited. In this study, we investigated the gene structure, tissue expression and signaling property of three NPY receptors (cY2, cY5 and cY7) in chickens. The results showed that 1) cY2, cY5 and cY7 contain novel non-coding exons upstream of their start codon and alternative mRNA splicing in their 5'-UTR results in the formation of multiple transcript variants; 2) cY2, cY5 and cY7 transcripts were detected to be widely expressed in adult chicken tissues including various brain regions by RT-PCR, and their expression is controlled by a promoter(s) near exon 1, which display promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 3) cY2, cY5 and cY7 expressed in HEK293 cells were preferentially (or potently) activated by cNPY1-36 and cPYY1-37, but not by cPP1-36, and their activation led to the inhibition of cAMP/PKA signaling pathway and activation of MAPK/ERK signaling pathway, monitored by the cell-based luciferase reporter systems or western blots, indicating that the three NPY receptors are functional and capable of transmitting signals effectively. On the whole, our data establishes a molecular basis to elucidate the actions of three functional NPY receptors (cY2, cY5 and cY7) and their ligands in birds, which helps to uncover the conserved roles of these ligand-receptor pairs in vertebrates. PMID:27142335

  9. Molecular characterization of three NPY receptors (Y2, Y5 and Y7) in chickens: Gene structure, tissue expression, promoter identification, and functional analysis.

    PubMed

    He, Chen; Zhang, Jiannan; Gao, Shunyu; Meng, Fengyan; Bu, Guixian; Li, Juan; Wang, Yajun

    2016-09-15

    Six neuropeptide Y (NPY) receptors are suggested to mediate the biological actions of NPY, peptide YY (PYY), and pancreatic polypeptide (PP), such as food intake in birds, however, information regarding the structure and signaling of avian NPY receptors are rather limited. In this study, we investigated the gene structure, tissue expression and signaling property of three NPY receptors (cY2, cY5 and cY7) in chickens. The results showed that 1) cY2, cY5 and cY7 contain novel non-coding exons upstream of their start codon and alternative mRNA splicing in their 5'-UTR results in the formation of multiple transcript variants; 2) cY2, cY5 and cY7 transcripts were detected to be widely expressed in adult chicken tissues including various brain regions by RT-PCR, and their expression is controlled by a promoter(s) near exon 1, which display promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 3) cY2, cY5 and cY7 expressed in HEK293 cells were preferentially (or potently) activated by cNPY1-36 and cPYY1-37, but not by cPP1-36, and their activation led to the inhibition of cAMP/PKA signaling pathway and activation of MAPK/ERK signaling pathway, monitored by the cell-based luciferase reporter systems or western blots, indicating that the three NPY receptors are functional and capable of transmitting signals effectively. On the whole, our data establishes a molecular basis to elucidate the actions of three functional NPY receptors (cY2, cY5 and cY7) and their ligands in birds, which helps to uncover the conserved roles of these ligand-receptor pairs in vertebrates.

  10. Two Rules of Identification for Structural Equation Models

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Davis, Walter R.

    2009-01-01

    Identification of structural equation models remains a challenge to many researchers. Although empirical tests of identification are readily available in structural equation modeling software, these examine local identification and rely on sample estimates of parameters. Rules of identification are available, but do not include all models…

  11. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    PubMed

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-01

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target.

  12. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression

    PubMed Central

    Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain. PMID:27322383

  13. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  14. Heat shock proteins in Trypanosoma cruzi: identification and localization of HSP70 and HSP60 proteins and structure of HSP60 genes (brief report).

    PubMed

    de Marval, M G; Souto-Padron, T; Gottesdiener, K; Silva, R; van der Ploeg, L H; Rondinelli, E

    1993-01-01

    To identify the members of the HSP70 and HSP60 families of Trypanosoma cruzi, we analysed 35S methionine epimastigote cells by two dimensional Western blot. At 29 degrees C, an HSP70 monoclonal antibody (anti-D. melanogaster) recognized eight isotypes. At least five of these were heat-induced. Polyclonal antibody against the 65 KDa antigen (anti-M. tuberculosis) recognized three isotypes with identical molecular weights, but different microliters. Only one isoform was heat induced. The cellular distribution of HSP70 and HSP60 was studied by immunoelectron microscopy. Anti-HSP70 reactive protein was localized in the cytoplasm, mitochondria and nucleus, while anti-HSP60 protein was found in the mitochondrion and in close association with the kinetoplast. To characterize the HSP60 gene and its proteins, we isolated a genomic T. cruzi clone encoding the HSP60 gene. T. cruzi HSP60 genes could be shown to be organized in 2100 nt tandem arrays. RELP in the HSP60 genes revealed that at least three different types of HSP60 genes were encoded in the T cruzi genome. The predicted open reading frame measured exhibits about 50% identity to other HSP60 described. Expression of these HSP60 genes could not be induced by 2 hours heat shock at 37 degrees C. Post-transcriptional mechanisms may be responsible for HSP60 induction in T. cruzi. PMID:7670543

  15. Hierarchical Bayesian model updating for structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak; Lombaert, Geert; Papadimitriou, Costas

    2015-12-01

    A new probabilistic finite element (FE) model updating technique based on Hierarchical Bayesian modeling is proposed for identification of civil structural systems under changing ambient/environmental conditions. The performance of the proposed technique is investigated for (1) uncertainty quantification of model updating parameters, and (2) probabilistic damage identification of the structural systems. Accurate estimation of the uncertainty in modeling parameters such as mass or stiffness is a challenging task. Several Bayesian model updating frameworks have been proposed in the literature that can successfully provide the "parameter estimation uncertainty" of model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However, this assumption may not be valid for civil structures where structural mass and stiffness have inherent variability due to different sources of uncertainty such as changing ambient temperature, temperature gradient, wind speed, and traffic loads. Hierarchical Bayesian model updating is capable of predicting the overall uncertainty/variability of updating parameters by assuming time-variability of the underlying linear system. A general solution based on Gibbs Sampler is proposed to estimate the joint probability distributions of the updating parameters. The performance of the proposed Hierarchical approach is evaluated numerically for uncertainty quantification and damage identification of a 3-story shear building model. Effects of modeling errors and incomplete modal data are considered in the numerical study.

  16. Aquifer Structure Identification Using Stochastic Inversion

    SciTech Connect

    Harp, Dylan R; Dai, Zhenxue; Wolfsberg, Andrew V; Vrugt, Jasper A

    2008-01-01

    This study presents a stochastic inverse method for aquifer structure identification using sparse geophysical and hydraulic response data. The method is based on updating structure parameters from a transition probability model to iteratively modify the aquifer structure and parameter zonation. The method is extended to the adaptive parameterization of facies hydraulic parameters by including these parameters as optimization variables. The stochastic nature of the statistical structure parameters leads to nonconvex objective functions. A multi-method genetically adaptive evolutionary approach (AMALGAM-SO) was selected to perform the inversion given its search capabilities. Results are obtained as a probabilistic assessment of facies distribution based on indicator cokriging simulation of the optimized structural parameters. The method is illustrated by estimating the structure and facies hydraulic parameters of a synthetic example with a transient hydraulic response.

  17. Bioinformatic Identification of Conserved Cis-Sequences in Coregulated Genes.

    PubMed

    Bülow, Lorenz; Hehl, Reinhard

    2016-01-01

    Bioinformatics tools can be employed to identify conserved cis-sequences in sets of coregulated plant genes because more and more gene expression and genomic sequence data become available. Knowledge on the specific cis-sequences, their enrichment and arrangement within promoters, facilitates the design of functional synthetic plant promoters that are responsive to specific stresses. The present chapter illustrates an example for the bioinformatic identification of conserved Arabidopsis thaliana cis-sequences enriched in drought stress-responsive genes. This workflow can be applied for the identification of cis-sequences in any sets of coregulated genes. The workflow includes detailed protocols to determine sets of coregulated genes, to extract the corresponding promoter sequences, and how to install and run a software package to identify overrepresented motifs. Further bioinformatic analyses that can be performed with the results are discussed. PMID:27557771

  18. Robust structural identification via polyhedral template matching

    NASA Astrophysics Data System (ADS)

    Mahler Larsen, Peter; Schmidt, Søren; Schiøtz, Jakob

    2016-06-01

    Successful scientific applications of large-scale molecular dynamics often rely on automated methods for identifying the local crystalline structure of condensed phases. Many existing methods for structural identification, such as common neighbour analysis, rely on interatomic distances (or thresholds thereof) to classify atomic structure. As a consequence they are sensitive to strain and thermal displacements, and preprocessing such as quenching or temporal averaging of the atomic positions is necessary to provide reliable identifications. We propose a new method, polyhedral template matching (PTM), which classifies structures according to the topology of the local atomic environment, without any ambiguity in the classification, and with greater reliability than e.g. common neighbour analysis in the presence of thermal fluctuations. We demonstrate that the method can reliably be used to identify structures even in simulations near the melting point, and that it can identify the most common ordered alloy structures as well. In addition, the method makes it easy to identify the local lattice orientation in polycrystalline samples, and to calculate the local strain tensor. An implementation is made available under a Free and Open Source Software license.

  19. Missing gene identification using functional coherence scores

    PubMed Central

    Chitale, Meghana; Khan, Ishita K.; Kihara, Daisuke

    2016-01-01

    Reconstructing metabolic and signaling pathways is an effective way of interpreting a genome sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily found, reflecting current imperfect information of the target organism. In this work, we developed a new method for finding missing genes, which integrates multiple features, including gene expression, phylogenetic profile, and function association scores. Particularly, for considering function association between candidate genes and neighboring proteins to the target missing gene in the network, we used Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which are designed for capturing functional coherence of proteins. We showed that adding CAS and PAS substantially improve the accuracy of identifying missing genes in the yeast enzyme-enzyme network compared to the cases when only the conventional features, gene expression, phylogenetic profile, were used. Finally, it was also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme position in the network using a proper network-topology-based weighting scheme. PMID:27552989

  20. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily.

    PubMed Central

    Dascher, C; Ossig, R; Gallwitz, D; Schmitt, H D

    1991-01-01

    In Saccharomyces cerevisiae, the GTP-binding Ypt1 protein (Ypt1p) is essential for endoplasmic reticulum-to-Golgi protein transport. By exploiting a GAL10-YPT1 fusion to regulate YPT1 expression, three multicopy suppressors, SLY2, SLY12, and SLY41, and a single-copy suppressor, SLY1-20, that allowed YPT1-independent growth were isolated. Wild-type Sly1p is hydrophilic, is essential for cell viability, and differs from Sly1-20p by a single amino acid. SLY2 and SLY12 encode proteins with hydrophobic tails similar to synaptobrevins, integral membrane proteins of synaptic vesicles in higher eucaryotes. Sly41p is hydrophobic and exhibits sequence similarities with the chloroplast phosphate translocator. SLY12 but not SLY41 is an essential gene. The SLY2 null mutant is cold and heat sensitive. The SLY gene products may comprise elements of the protein transport machinery. Images PMID:1990290

  1. Structure-based identification of catalytic residues.

    PubMed

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction.

  2. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    PubMed Central

    Lopez-Valverde, Francisco J.; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W.; Kotchoni, Simeon O.

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling. PMID:27755582

  3. In silico identification and analysis of phytoene synthase genes in plants.

    PubMed

    Han, Y; Zheng, Q S; Wei, Y P; Chen, J; Liu, R; Wan, H J

    2015-08-14

    In this study, we examined phytoene synthetase (PSY), the first key limiting enzyme in the synthesis of carotenoids and catalyzing the formation of geranylgeranyl pyrophosphate in terpenoid biosynthesis. We used known amino acid sequences of the PSY gene in tomato plants to conduct a genome-wide search and identify putative candidates in 34 sequenced plants. A total of 101 homologous genes were identified. Phylogenetic analysis revealed that PSY evolved independently in algae as well as monocotyledonous and dicotyledonous plants. Our results showed that the amino acid structures exhibited 5 motifs (motifs 1 to 5) in algae and those in higher plants were highly conserved. The PSY gene structures showed that the number of intron in algae varied widely, while the number of introns in higher plants was 4 to 5. Identification of PSY genes in plants and the analysis of the gene structure may provide a theoretical basis for studying evolutionary relationships in future analyses.

  4. A Xenopus laevis gene encoding EF-1 alpha S, the somatic form of elongation factor 1 alpha: sequence, structure, and identification of regulatory elements required for embryonic transcription.

    PubMed

    Johnson, A D; Krieg, P A

    1995-01-01

    Transcription of the Xenopus laevis EF-1 alpha S gene commences at the mid-blastula stage of embryonic development and then continues constitutively in all somatic tissues. The EF-1 alpha S promoter is extremely active in the early Xenopus embryo where EF-1 alpha S transcripts account for as much as 40% of all new polyadenylated transcripts. We have isolated the Xenopus EF-1 alpha S gene and used microinjection techniques to identify promoter elements responsible for embryonic transcription. These in vivo expression studies have identified an enhancer fragment, located approximately 4.4 kb upstream of the transcription start site, that is required for maximum expression from the EF-1 alpha S promoter. The enhancer fragment contains both an octamer and a G/C box sequence, but mutation studies indicate that the octamer plays no significant role in regulation of EF-1 alpha S expression in the embryo. The presence of a G/C element in the enhancer and of multiple G/C boxes in the proximal promoter region suggests that the G/C box binding protein, Sp1, plays a major role in the developmental regulation of EF-1 alpha S promoter activity. PMID:8565334

  5. Identification of the thiamin pyrophosphokinase gene in rainbow trout: characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    USGS Publications Warehouse

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  6. Gene-based and semantic structure of the Gene Ontology as a complex network

    NASA Astrophysics Data System (ADS)

    Coronnello, Claudia; Tumminello, Michele; Miccichè, Salvatore

    2016-09-01

    The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The Gene Ontology (GO) is constantly evolving over time. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. Here we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium. Moreover, the GO is a natural example of bipartite network of terms and genes. Here we are interested in studying the properties of the projected network of terms, i.e. a gene-based weighted network of GO terms, in which a link between any two terms is set if at least one gene is annotated in both terms. One aim of the present paper is to compare the structural properties of the semantic and the gene-based network. The relative importance of terms is very similar in the two networks, but the community structure changes. We show that in some cases GO terms that appear to be distinct from a semantic point of view are instead connected, and appear in the same community when considering their gene content. The identification of such gene-based communities of terms might therefore be the basis of a simple protocol aiming at improving the semantic structure of GO. Information about terms that share large gene content might also be important from a biomedical point of view, as it might reveal how genes over-expressed in a certain term also affect other biological processes, molecular functions and cellular components not directly linked according to GO semantics.

  7. Identification of a Colonial Chordate Histocompatibility Gene

    PubMed Central

    Voskoboynik, Ayelet; Newman, Aaron M.; Corey, Daniel M.; Sahoo, Debashis; Pushkarev, Dmitry; Neff, Norma F.; Passarelli, Benedetto; Koh, Winston; Ishizuka, Katherine J.; Palmeri, Karla J.; Dimov, Ivan K.; Keasar, Chen; Fan, H. Christina; Mantalas, Gary L.; Sinha, Rahul; Penland, Lolita; Quake, Stephen R.; Weissman, Irving L.

    2013-01-01

    Histocompatibility is the basis by which multicellular organisms of the same species distinguish self from non-self. Relatively little is known about the mechanisms underlying histocompatibility reactions in lower organisms. Botryllus schlosseri is a colonial urochordate, a sister group of vertebrates, that exhibits a genetically determined natural transplantation reaction, whereby self-recognition between colonies leads to formation of parabionts with a common vasculature, whereas rejection occurs between incompatible colonies. Using genetically defined lines, whole-transcriptome sequencing, and genomics, we identified a single gene that encodes self/non-self and determines “graft” outcomes in this organism. This gene is significantly upregulated in colonies poised to undergo fusion or rejection, is highly expressed in the vasculature, and is functionally linked to histocompatibility outcomes. These findings establish a platform for advancing the science of allorecognition. PMID:23888037

  8. Identification of structural and morphogenesis genes of Pseudoalteromonas phage φRIO-1 and placement within the evolutionary history of Podoviridae

    PubMed Central

    Hardies, Stephen C.; Thomas, Julie A.; Black, Lindsay; Weintraub, Susan T.; Hwang, Chung Y.; Cho, Byung C.

    2016-01-01

    The virion proteins of Pseudoalteromonas phage φRIO-1 were identified and quantitated by mass spectrometry and gel densitometry. Bioinformatic methods customized to deal with extreme divergence defined a φRIO-1 tail structure homology group of phages, which was further related to T7 tail and internal virion proteins (IVPs). Similarly, homologs of tubular tail components and internal virion proteins were identified in essentially all completely sequenced podoviruses other than those in the subfamily Picovirinae. The podoviruses were subdivided into several tail structure homology groups, in addition to the RIO-1 and T7 groups. Molecular phylogeny indicated that these groups all arose about the same ancient time as the φRIO-1/T7 split. Hence, the T7-like infection mechanism involving the IVPs was an ancestral property of most podoviruses. The IVPs were found to variably host both tail lysozyme domains and domains destined for the cytoplasm, including the N4 virion RNA polymerase embedded within an IVP-D homolog. PMID:26748333

  9. The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence.

    PubMed

    Fizames, Cécile; Muños, Stéphane; Cazettes, Céline; Nacry, Philippe; Boucherez, Jossia; Gaymard, Frédéric; Piquemal, David; Delorme, Valérie; Commes, Thérèse; Doumas, Patrick; Cooke, Richard; Marti, Jacques; Sentenac, Hervé; Gojon, Alain

    2004-01-01

    Large-scale identification of genes expressed in roots of the model plant Arabidopsis was performed by serial analysis of gene expression (SAGE), on a total of 144,083 sequenced tags, representing at least 15,964 different mRNAs. For tag to gene assignment, we developed a computational approach based on 26,620 genes annotated from the complete sequence of the genome. The procedure selected warrants the identification of the genes corresponding to the majority of the tags found experimentally, with a high level of reliability, and provides a reference database for SAGE studies in Arabidopsis. This new resource allowed us to characterize the expression of more than 3,000 genes, for which there is no expressed sequence tag (EST) or cDNA in the databases. Moreover, 85% of the tags were specific for one gene. To illustrate this advantage of SAGE for functional genomics, we show that our data allow an unambiguous analysis of most of the individual genes belonging to 12 different ion transporter multigene families. These results indicate that, compared with EST-based tag to gene assignment, the use of the annotated genome sequence greatly improves gene identification in SAGE studies. However, more than 6,000 different tags remained with no gene match, suggesting that a significant proportion of transcripts present in the roots originate from yet unknown or wrongly annotated genes. The root transcriptome characterized in this study markedly differs from those obtained in other organs, and provides a unique resource for investigating the functional specificities of the root system. As an example of the use of SAGE for transcript profiling in Arabidopsis, we report here the identification of 270 genes differentially expressed between roots of plants grown either with NO3- or NH4NO3 as N source.

  10. Computational Identification of Novel Genes: Current and Future Perspectives.

    PubMed

    Klasberg, Steffen; Bitard-Feildel, Tristan; Mallet, Ludovic

    2016-01-01

    While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies. PMID:27493475

  11. Computational Identification of Novel Genes: Current and Future Perspectives

    PubMed Central

    Klasberg, Steffen; Bitard-Feildel, Tristan; Mallet, Ludovic

    2016-01-01

    While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies. PMID:27493475

  12. A genetic screen for the identification of thiamin metabolic genes.

    PubMed

    Lawhorn, Brian G; Gerdes, Svetlana Y; Begley, Tadhg P

    2004-10-15

    A genetic screen was developed for the identification of genes related to thiamin biosynthesis and degradation. Genes conferring resistance to bacimethrin or 4-amino-2-trifluoromethyl-5-hydroxymethylpyrimidine were selected from Escherichia coli and Bacillus subtilis genomic libraries. Hits from the selection included the known thiamin biosynthetic genes thiC, thiE, and dxs as well as five genes of previously unknown function (E. coli yjjX, yajO, ymfB, and cof and B. subtilis yveN). The gene products YmfB and Cof catalyze the hydrolysis of 4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate to 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate. YmfB also converts thiamin pyrophosphate into thiamin phosphate.

  13. Identification of genes and gene clusters involved in mycotoxin synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...

  14. Graben Structure Identification Using Gravity Method

    NASA Astrophysics Data System (ADS)

    Hasanah, Lilik; Aminudin, Ahmad; Ardi, Nanang D.; Utomo, Agus. S.; Yuwono, Heru; Kamtono; Wardhana, Dadan. D.; Gaol, Karit L.; Iryanti, Mimin

    2016-01-01

    Graben (trench) is a natural expanse that is lower in altitude compared to its surrounding which is caused by normal faults shift. Changes in rock density can be identified to obtain the subsurface rock structure. Gravity method is a basic method yet very effective in determining subsurface rock structure. Identification of graben structure is the main focus of this research in order to identify the natural resources which may be available under the ground. Research work was performed in various locations in Bogor and according to our analysis using 2D Talwani model, the average density at the surface is 2.5 gram/cm3. 2D modelling results show a fault structure at rocks with relative direction West-East. The fault is forming an extension block faulting which makes the area a graben. In general, the crosssection profile of the model indicates rock layer structure made from limestone rocks (2.75 gr/cm3), sands, flakes, limestone (2.5 gr/cm3), volcanic sediment layer sandstone (2.3 gr/cm3), and clay layer and similar (2.00 - 2.10 gr/cm3).

  15. Identification and manipulation of Rhizobium phytohormone genes

    SciTech Connect

    Ditta, G.S.

    1988-06-27

    The goal of this project was to determine whether phytohormone production by the gram-negative bacterium Rhizobium meliloti is required for successful modulation and symbiosis with alfalfa. specifically, we undertook the study of indoleacetic acid (IAA; auxin) production by R. meliloti and sought to create a mutant totally deficient in IAA biosynthesis. For many years it has been known that rhizobia are capable of synthesizing and excreting IAA, and it has often been suggested that this could be of importance for the initiation of root nodule development. Published work demonstrating the involvement of bacterial IAA genes in pathogenesis by Pseudomonas syringae and Agrobacterium tumefaciens further emphasized the need for this type of study in Rhizobium.

  16. Gene-wide identification of episodic selection.

    PubMed

    Murrell, Ben; Weaver, Steven; Smith, Martin D; Wertheim, Joel O; Murrell, Sasha; Aylward, Anthony; Eren, Kemal; Pollner, Tristan; Martin, Darren P; Smith, Davey M; Scheffler, Konrad; Kosakovsky Pond, Sergei L

    2015-05-01

    We present BUSTED, a new approach to identifying gene-wide evidence of episodic positive selection, where the non-synonymous substitution rate is transiently greater than the synonymous rate. BUSTED can be used either on an entire phylogeny (without requiring an a priori hypothesis regarding which branches are under positive selection) or on a pre-specified subset of foreground lineages (if a suitable a priori hypothesis is available). Selection is modeled as varying stochastically over branches and sites, and we propose a computationally inexpensive evidence metric for identifying sites subject to episodic positive selection on any foreground branches. We compare BUSTED with existing models on simulated and empirical data. An implementation is available on www.datamonkey.org/busted, with a widget allowing the interactive specification of foreground branches.

  17. Identification of PAHX, a Refsum disease gene.

    PubMed

    Mihalik, S J; Morrell, J C; Kim, D; Sacksteder, K A; Watkins, P A; Gould, S J

    1997-10-01

    Refsum disease is an autosomal recessive disorder characterized by retinitis pigmentosa, peripheral polyneuropathy, cerebellar ataxia and increased cerebrospinal fluid protein. Biochemically, the disorder is defined by two related properties: pronounced accumulation of phytanic acid and selective loss of the peroxisomal dioxygenase required for alpha-hydroxylation of phytanoyl-CoA2. Decreased phytanic-acid oxidation is also observed in human cells lacking PEX7, the receptor for the type-2 peroxisomal targetting signal (PTS2; refs 3,4), suggesting that the enzyme defective in Refsum disease is targetted to peroxisomes by a PTS2. We initially identified the human PAHX and mouse Pahx genes as expressed sequence tags (ESTs) capable of encoding PTS2 proteins. Human PAHX is targetted to peroxisomes, requires the PTS2 receptor for peroxisomal localization, interacts with the PTS2 receptor in the yeast two-hybrid assay and has intrinsic phytanoyl-CoA alpha-hydroxylase activity that requires the dioxygenase cofactor iron and cosubstrate 2-oxoglutarate. Radiation hybrid data place PAHX on chromosome 10 between the markers D10S249 and D10S466, a region previously implicated in Refsum disease by homozygosity mapping. We find that both Refsum disease patients examined are homozygous for inactivating mutations in PAHX, demonstrating that mutations in PAHX can cause Refsum disease.

  18. Identification of Human Gene Core Promoters in Silico

    PubMed Central

    Zhang, Michael Q.

    1998-01-01

    Identification of the 5′-end of human genes requires identification of functional promoter elements. In silico identification of those elements is difficult because of the hierarchical and modular nature of promoter architecture. To address this problem, I propose a new stepwise strategy based on initial localization of a functional promoter into a 1- to 2-kb (extended promoter) region from within a large genomic DNA sequence of 100 kb or larger and further localization of a transcriptional start site (TSS) into a 50- to 100-bp (corepromoter) region. Using positional dependent 5-tuple measures, a quadratic discriminant analysis (QDA) method has been implemented in a new program—CorePromoter. Our experiments indicate that when given a 1- to 2-kb extended promoter, CorePromoter will correctly localize the TSS to a 100-bp interval ∼60% of the time. [Figure 3 can be found in its entirety as an online supplement at http://www.genome.org.] PMID:9521935

  19. Optimal matrix approximants in structural identification

    NASA Technical Reports Server (NTRS)

    Beattie, C. A.; Smith, S. W.

    1992-01-01

    Problems of model correlation and system identification are central in the design, analysis, and control of large space structures. Of the numerous methods that have been proposed, many are based on finding minimal adjustments to a model matrix sufficient to introduce some desirable quality into that matrix. In this work, several of these methods are reviewed, placed in a modern framework, and linked to other previously known ideas in computational linear algebra and optimization. This new framework provides a point of departure for a number of new methods which are introduced here. Significant among these is a method for stiffness matrix adjustment which preserves the sparsity pattern of an original matrix, requires comparatively modest computational resources, and allows robust handling of noisy modal data. Numerical examples are included to illustrate the methods presented herein.

  20. Identification of genes induced by neuregulin in cultured myotubes.

    PubMed

    Fu, A K; Cheung, W M; Ip, F C; Ip, N Y

    1999-09-01

    The formation of the neuromuscular junction (NMJ) involves a series of inductive interactions between motor neurons and muscle fibers. The neural signals proposed to induce the mRNA expression of acetylcholine receptors in muscle include neuregulin (NRG). In the present study, we have employed RNA fingerprinting by arbitrarily primed PCR analysis to identify the differentially expressed transcripts following NRG treatment in cultured myotubes. Nine partial cDNA fragments were isolated; the mRNA expression of eight of these genes was found to be up-regulated by NRG. The spatial and temporal expression profiles of these NRG-regulated genes in rat tissues during development suggest potential functional roles during the formation of NMJ in vivo. Our findings not only allowed the identification of novel genes, but also suggested possible functions for some known genes that are consistent with their potential roles at the NMJ. Furthermore, the identification of G-protein beta1 subunit and G-protein-coupled receptor as NRG-regulated genes has provided the first demonstration that activation of the NRG signaling pathway can induce the expression of components in the G-protein signaling cascade. PMID:10576892

  1. Global identification of bursicon-regulated genes in Drosophila melanogaster

    PubMed Central

    An, Shiheng; Wang, Songjie; Gilbert, Lawrence I; Beerntsen, Brenda; Ellersieck, Mark; Song, Qisheng

    2008-01-01

    Background Bursicon is a heterodimer neuropeptide responsible for regulating cuticle sclerotization and wing expansion in several insect species. Recent studies indicate that the action of bursicon is mediated by a specific G protein-coupled receptor DLGR2 and the cAMP/PKA signaling pathway. However, little is known regarding the genes that are regulated by bursicon. The identification of bursicon-regulated genes is the focus of this investigation. Results We used DNA microarray analysis to identify bursicon-regulated genes in neck-ligated flies (Drosophila melanogaster) that received recombinant bursicon (r-bursicon). Fifty four genes were found to be regulated by bursicon 1 h post r-bursicon injection, 52 being up-regulated and 2 down-regulated while 33 genes were influenced by r-bursicon 3 h post-injection (24 up-regulated and 9 down-regulated genes). Analysis of these genes by inference from the fly database revealed that these genes encode proteins with diverse functions, including cell signaling, gene transcription, DNA/RNA binding, ion trafficking, proteolysis-peptidolysis, metabolism, cytoskeleton formation, immune response and cell-adhesion. Twenty eight genes randomly selected from the microarray-identified list were verified by real time PCR (qPCR) which supported the microarray data. Temporal response studies of 13 identified and verified genes by qPCR revealed that the temporal expression patterns of these genes are consistent with the microarray data. Conclusion Using r-bursicon, we identified 87 genes that are regulated by bursicon, 30 of which have no previously known function. Most importantly, all genes randomly selected from the microarray-identified list were verified by real time PCR. Temporal analysis of 13 verified genes revealed that the expression of these genes was indeed induced by bursicon and correlated well with the cuticle sclerotization process. The composite data suggest that these genes play important roles in regulating the

  2. Systematic identification of cis-silenced genes by trans complementation

    PubMed Central

    Lee, Jae Hyun; Bugarija, Branimir; Millan, Enrique J.; Walton, Noah M.; Gaetz, Jedidiah; Fernandes, Croydon J.; Yu, Wei-Hua; Mekel-Bobrov, Nitzan; Vallender, Tammy W.; Snyder, Gregory E.; Xiang, Andy Peng; Lahn, Bruce T.

    2009-01-01

    A gene’s transcriptional output is the combined product of two inputs: diffusible factors in the cellular milieu acting in trans, and chromatin state acting in cis. Here, we describe a strategy for dissecting the relative contribution of cis versus trans mechanisms to gene regulation. Referred to as trans complementation, it entails fusing two disparate cell types and searching for genes differentially expressed between the two genomes of fused cells. Any differential expression can be causally attributed to cis mechanisms because the two genomes of fused cells share a single homogenized milieu in trans. This assay uncovered a state of transcriptional competency that we termed ‘occluded’ whereby affected genes are silenced by cis-acting mechanisms in a manner that blocks them from responding to the trans-acting milieu of the cell. Importantly, occluded genes in a given cell type tend to include master triggers of alternative cell fates. Furthermore, the occluded state is maintained during cell division and is extraordinarily stable under a wide range of physiological conditions. These results support the model that the occlusion of lineage-inappropriate genes is a key mechanism of cell fate restriction. The identification of occluded genes by our assay provides a hitherto unavailable functional readout of chromatin state that is distinct from and complementary to gene expression status. PMID:19050040

  3. Identification of p53-target genes in Danio rerio.

    PubMed

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  4. Identification of p53-target genes in Danio rerio

    PubMed Central

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M. Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  5. Identification of p53-target genes in Danio rerio.

    PubMed

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species.

  6. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis.

    PubMed

    Zhao, Jing-yi; Mu, Xiao-dong; Zhu, Yuan-qi; Xi, Lijun; Xiao, Zijun

    2015-09-01

    This study investigated multidrug resistance in Shewanella xiamenensis isolated from an estuarine water sample in China during 2014. This strain displayed resistance or decreased susceptibility to ampicillin, aztreonam, cefepime, cefotaxime, chloramphenicol, ciprofloxacin, erythromycin, kanamycin and trimethoprim-sulfamethoxazole. The antimicrobial resistance genes aacA3, blaOXA-199, qnrA1 and sul1 were identified by PCR amplification and by sequencing. Pulsed-field gel electrophoresis and DNA hybridization experiments showed that the quinolone resistance gene qnrA1 was chromosomally located. qnrA1 was located in a complex class 1 integron, downstream from an ISCR1, and bracketed by two copies of qacEΔ1-sul1 genes. This integron is similar to In825 with four gene cassettes aacA3, catB11c, dfrA1z and aadA2az. An IS26-mel-mph2-IS26 structure was also detected in the flanking sequences, conferring resistance to macrolides. This is the first identification of the class 1 integron in S. xiamenensis. This is also the first identification of the qnrA1 gene and IS26-mediated macrolide resistance genes in S. xiamenensis. Presence of a variety of resistance genetic determinants in environmental S. xiamenensis suggests the possibility that this species may serve as a potential vehicle of antimicrobial resistance genes in aquatic environments.

  7. Bioinformatics-Based Identification of Candidate Genes from QTLs Associated with Cell Wall Traits in Populus

    SciTech Connect

    Ranjan, Priya; Yin, Tongming; Zhang, Xinye; Kalluri, Udaya C; Yang, Xiaohan; Jawdy, Sara; Tuskan, Gerald A

    2009-11-01

    Quantitative trait locus (QTL) studies are an integral part of plant research and are used to characterize the genetic basis of phenotypic variation observed in structured populations and inform marker-assisted breeding efforts. These QTL intervals can span large physical regions on a chromosome comprising hundreds of genes, thereby hampering candidate gene identification. Genome history, evolution, and expression evidence can be used to narrow the genes in the interval to a smaller list that is manageable for detailed downstream functional genomics characterization. Our primary motivation for the present study was to address the need for a research methodology that identifies candidate genes within a broad QTL interval. Here we present a bioinformatics-based approach for subdividing candidate genes within QTL intervals into alternate groups of high probability candidates. Application of this approach in the context of studying cell wall traits, specifically lignin content and S/G ratios of stem and root in Populus plants, resulted in manageable sets of genes of both known and putative cell wall biosynthetic function. These results provide a roadmap for future experimental work leading to identification of new genes controlling cell wall recalcitrance and, ultimately, in the utility of plant biomass as an energy feedstock.

  8. Ensemble positive unlabeled learning for disease gene identification.

    PubMed

    Yang, Peng; Li, Xiaoli; Chua, Hon-Nian; Kwoh, Chee-Keong; Ng, See-Kiong

    2014-01-01

    An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.

  9. Ensemble Positive Unlabeled Learning for Disease Gene Identification

    PubMed Central

    Yang, Peng; Li, Xiaoli; Chua, Hon-Nian; Kwoh, Chee-Keong; Ng, See-Kiong

    2014-01-01

    An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions

  10. Stochastic system identification in structural dynamics

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.

  11. Identification of Master Regulator Genes in Human Periodontitis.

    PubMed

    Sawle, A D; Kebschull, M; Demmer, R T; Papapanou, P N

    2016-08-01

    Analytic approaches confined to fold-change comparisons of gene expression patterns between states of health and disease are unable to distinguish between primary causal disease drivers and secondary noncausal events. Genome-wide reverse engineering approaches can facilitate the identification of candidate genes that may distinguish between causal and associative interactions and may account for the emergence or maintenance of pathologic phenotypes. In this work, we used the algorithm for the reconstruction of accurate cellular networks (ARACNE) to analyze a large gene expression profile data set (313 gingival tissue samples from a cross-sectional study of 120 periodontitis patients) obtained from clinically healthy (n = 70) or periodontitis-affected (n = 243) gingival sites. The generated transcriptional regulatory network of the gingival interactome was subsequently interrogated with the master regulator inference algorithm (MARINA) and gene expression signature data from healthy and periodontitis-affected gingiva. Our analyses identified 41 consensus master regulator genes (MRs), the regulons of which comprised between 25 and 833 genes. Regulons of 7 MRs (HCLS1, ZNF823, XBP1, ZNF750, RORA, TFAP2C, and ZNF57) included >500 genes each. Gene set enrichment analysis indicated differential expression of these regulons in gingival health versus disease with a type 1 error between 2% and 0.5% and with >80% of the regulon genes in the leading edge. Ingenuity pathway analysis showed significant enrichment of 36 regulons for several pathways, while 6 regulons (those of MRs HCLS1, IKZF3, ETS1, NHLH2, POU2F2, and VAV1) were enriched for >10 pathways. Pathways related to immune system signaling and development were the ones most frequently enriched across all regulons. The unbiased analysis of genome-wide regulatory networks can enhance our understanding of the pathobiology of human periodontitis and, after appropriate validation, ultimately identify target molecules of

  12. Structures and Assumptions: Strategies to Harness Gene × Gene and Gene × Environment Interactions in GWAS

    PubMed Central

    Kooperberg, Charles; LeBlanc, Michael; Dai, James Y.; Rajapakse, Indika

    2009-01-01

    Genome-wide association studies, in which as many as a million single nucleotide polymorphisms (SNP) are measured on several thousand samples, are quickly becoming a common type of study for identifying genetic factors associated with many phenotypes. There is a strong assumption that interactions between SNPs or genes and interactions between genes and environmental factors substantially contribute to the genetic risk of a disease. Identification of such interactions could potentially lead to increased understanding about disease mechanisms; drug × gene interactions could have profound applications for personalized medicine; strong interaction effects could be beneficial for risk prediction models. In this paper we provide an overview of different approaches to model interactions, emphasizing approaches that make specific use of the structure of genetic data, and those that make specific modeling assumptions that may (or may not) be reasonable to make. We conclude that to identify interactions it is often necessary to do some selection of SNPs, for example, based on prior hypothesis or marginal significance, but that to identify SNPs that are marginally associated with a disease it may also be useful to consider larger numbers of interactions. PMID:20640184

  13. AthaMap web tools for the analysis and identification of co-regulated genes.

    PubMed

    Galuschka, Claudia; Schindler, Martin; Bülow, Lorenz; Hehl, Reinhard

    2007-01-01

    The AthaMap database generates a map of cis-regulatory elements for the whole Arabidopsis thaliana genome. This database has been extended by new tools to identify common cis-regulatory elements in specific regions of user-provided gene sets. A resulting table displays all cis-regulatory elements annotated in AthaMap including positional information relative to the respective gene. Further tables show overviews with the number of individual transcription factor binding sites (TFBS) present and TFBS common to the whole set of genes. Over represented cis-elements are easily identified. These features were used to detect specific enrichment of drought-responsive elements in cold-induced genes. For identification of co-regulated genes, the output table of the colocalization function was extended to show the closest genes and their relative distances to the colocalizing TFBS. Gene sets determined by this function can be used for a co-regulation analysis in microarray gene expression databases such as Genevestigator or PathoPlant. Additional improvements of AthaMap include display of the gene structure in the sequence window and a significant data increase. AthaMap is freely available at http://www.athamap.de/. PMID:17148485

  14. Dynamic Identification for Control of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Ibrahim, S. R.

    1985-01-01

    This is a compilation of reports by the one author on one subject. It consists of the following five journal articles: (1) A Parametric Study of the Ibrahim Time Domain Modal Identification Algorithm; (2) Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique; (3) Computation of Normal Modes from Identified Complex Modes; (4) Dynamic Modeling of Structural from Measured Complex Modes; and (5) Time Domain Quasi-Linear Identification of Nonlinear Dynamic Systems.

  15. Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shashi Bajaj; Sen, Pradip Kumar

    2010-10-01

    Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.

  16. Identification of wheat chromosomal regions containing expressed resistance genes.

    PubMed Central

    Dilbirligi, Muharrem; Erayman, Mustafa; Sandhu, Devinder; Sidhu, Deepak; Gill, Kulvinder S

    2004-01-01

    The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped. PMID:15020436

  17. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  18. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  19. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  20. Genomewide Identification of Genes Under Directional Selection: Gene Transcription QST Scan in Diverging Atlantic Salmon Subpopulations

    PubMed Central

    Roberge, C.; Guderley, H.; Bernatchez, L.

    2007-01-01

    Evolutionary genomics has benefited from methods that allow identifying evolutionarily important genomic regions on a genomewide scale, including genome scans and QTL mapping. Recently, genomewide scanning by means of microarrays has permitted assessing gene transcription differences among species or populations. However, the identification of differentially transcribed genes does not in itself suffice to measure the role of selection in driving evolutionary changes in gene transcription. Here, we propose and apply a “transcriptome scan” approach to investigating the role of selection in shaping differential profiles of gene transcription among populations. We compared the genomewide transcription levels between two Atlantic salmon subpopulations that have been diverging for only six generations. Following assessment of normality and unimodality on a gene-per-gene basis, the additive genetic basis of gene transcription was estimated using the animal model. Gene transcription h2 estimates were significant for 1044 (16%) of all detected cDNA clones. In an approach analogous to that of genome scans, we used the distribution of the QST values estimated from intra- and intersubpopulation additive genetic components of the transcription profiles to identify 16 outlier genes (average QST estimate = 0.11) whose transcription levels are likely to have evolved under the influence of directional selection within six generations only. Overall, this study contributes both empirically and methodologically to the quantitative genetic exploration of gene transcription data. PMID:17720934

  1. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  2. Identification and characterization of essential genes in the human genome

    PubMed Central

    Wang, Tim; Birsoy, Kıvanç; Hughes, Nicholas W.; Krupczak, Kevin M.; Post, Yorick; Wei, Jenny J.; Lander, Eric S.; Sabatini, David M.

    2015-01-01

    Large-scale genetic analysis of lethal phenotypes has elucidated the molecular underpinnings of many biological processes. Using the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system, we constructed a genome-wide single-guide RNA (sgRNA) library to screen for genes required for proliferation and survival in a human cancer cell line. Our screen revealed the set of cell-essential genes, which was validated by an orthogonal gene-trap-based screen and comparison with yeast gene knockouts. This set is enriched for genes that encode components of fundamental pathways, are expressed at high levels, and contain few inactivating polymorphisms in the human population. We also uncovered a large group of uncharacterized genes involved in RNA processing, a number of whose products localize to the nucleolus. Lastly, screens in additional cell lines showed a high degree of overlap in gene essentiality, but also revealed differences specific to each cell line and cancer type that reflect the developmental origin, oncogenic drivers, paralogous gene expression pattern, and chromosomal structure of each line. These results demonstrate the power of CRISPR-based screens and suggest a general strategy for identifying liabilities in cancer cells. PMID:26472758

  3. Ivory identification by DNA profiling of cytochrome b gene.

    PubMed

    Lee, James Chun-I; Hsieh, Hsing-Mei; Huang, Li-Hung; Kuo, Yi-Chen; Wu, Jane-Hong; Chin, Shih-Chien; Lee, An-Hsing; Linacre, Adrian; Tsai, Li-Chin

    2009-03-01

    Ivory can be visually identified in its native form as coming from an elephant species; however, determining from which of the three extant elephant species a section of ivory originates is more problematic. We report on a method that will identify and distinguish the protected and endangered elephant species, Elephas maximus or Loxodonta sp. To identify the species of elephant from ivory products, we developed three groups of nested PCR amplifications within the cytochrome b gene that generate amplification products using highly degraded DNA isolated from confiscated ivory samples dating from 1995. DNA from a total of 382 out of 453 ivory samples were successfully isolated and amplified leading to species identification. All sequences were searched against GenBank and found to match with E. maximus and Loxodonta sp. with at least 99% similarity. The samples that were tested came from eight Asian elephants, 14 African forest elephants (Loxodonta cyclotis), and 360 African savannah elephants (Loxodonta africana). This study demonstrates a high success rate in species identification of ivory by a nested PCR approach within the cytochrome b gene which provides the necessary information for the protection of endangered species conservation.

  4. Identification of novel virulence-associated genes via genome analysis of hypothetical genes.

    PubMed

    Garbom, Sara; Forsberg, Ake; Wolf-Watz, Hans; Kihlberg, Britt-Marie

    2004-03-01

    The sequencing of bacterial genomes has opened new perspectives for identification of targets for treatment of infectious diseases. We have identified a set of novel virulence-associated genes (vag genes) by comparing the genome sequences of six human pathogens that are known to cause persistent or chronic infections in humans: Yersinia pestis, Neisseria gonorrhoeae, Helicobacter pylori, Borrelia burgdorferi, Streptococcus pneumoniae, and Treponema pallidum. This comparison was limited to genes annotated as hypothetical in the T. pallidum genome project. Seventeen genes with unknown functions were found to be conserved among these pathogens. Insertional inactivation of 14 of these genes generated nine mutants that were attenuated for virulence in a mouse infection model. Out of these nine genes, five were found to be specifically associated with virulence in mice as demonstrated by infection with Yersinia pseudotuberculosis in-frame deletion mutants. In addition, these five vag genes were essential only in vivo, since all the mutants were able to grow in vitro. These genes are broadly conserved among bacteria. Therefore, we propose that the corresponding vag gene products may constitute novel targets for antimicrobial therapy and that some vag mutants could serve as carrier strains for live vaccines. PMID:14977936

  5. Identification and analysis of bacterial virulence genes in vivo.

    PubMed Central

    Unsworth, K E; Holden, D W

    2000-01-01

    Signature-tagged mutagenesis is a mutation-based screening method for the identification of virulence genes of microbial pathogens. Genes isolated by this approach fall into three classes: those with known biochemical function, those of suspected function and some whose functions cannot be predicted from database searches. A variety of in vitro and in vivo methods are available to elucidate the function of genes of the second and third classes. We describe the use of some of these approaches to study the function of the Salmonella pathogenicity island 2 type III secretion system of Salmonella typhimurium. This virulence determinant is required for intracellular survival. Secretion by this system is induced by an acidic pH, and its function may be to alter trafficking of the Salmonella-containing vacuole. Use of a temperature-sensitive non-replicating plasmid and competitive index tests with other genes show that in vivo phenotypes do not always correspond to those predicted from in vitro studies. PMID:10874734

  6. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.

    PubMed

    Gefen, Avitan; Cohen, Raphael; Birk, Ohad S

    2010-03-01

    The identification of genomic loci associated with human genetic syndromes has been significantly facilitated through the generation of high density SNP arrays. However, optimal selection of candidate genes from within such loci is still a tedious labor-intensive bottleneck. Syndrome to Gene (S2G) is based on novel algorithms which allow an efficient search for candidate genes in a genomic locus, using known genes whose defects cause phenotypically similar syndromes. S2G (http://fohs.bgu.ac.il/s2g/index.html) includes two components: a phenotype Online Mendelian Inheritance in Man (OMIM)-based search engine that alleviates many of the problems in the existing OMIM search engine (negation phrases, overlapping terms, etc.). The second component is a gene prioritizing engine that uses a novel algorithm to integrate information from 18 databases. When the detailed phenotype of a syndrome is inserted to the web-based software, S2G offers a complete improved search of the OMIM database for similar syndromes. The software then prioritizes a list of genes from within a genomic locus, based on their association with genes whose defects are known to underlie similar clinical syndromes. We demonstrate that in all 30 cases of novel disease genes identified in the past year, the disease gene was within the top 20% of candidate genes predicted by S2G, and in most cases--within the top 10%. Thus, S2G provides clinicians with an efficient tool for diagnosis and researchers with a candidate gene prediction tool based on phenotypic data and a wide range of gene data resources. S2G can also serve in studies of polygenic diseases, and in finding interacting molecules for any gene of choice.

  7. Identification of susceptibility genes and genetic modifiers of human diseases

    NASA Astrophysics Data System (ADS)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  8. Identification of the transcriptional activator pobR and characterization of its role in the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus.

    PubMed Central

    DiMarco, A A; Averhoff, B; Ornston, L N

    1993-01-01

    We have identified pobR, a gene encoding a transcriptional activator that regulates expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase (PobA) in Acinetobacter calcoaceticus ADP1. Inducible expression of cloned pobA in Escherichia coli depended upon the presence of a functional pobR gene, and mutations within pobR prevented pobA expression in A. calcoaceticus. A pobA-lacZ operon fusion was used to demonstrate that pobA expression in A. calcoaceticus is enhanced up to 400-fold by the inducer p-hydroxybenzoate. Inducer concentrations as low as 10(-7) M were sufficient to elicit partial induction. Some structurally related analogs of p-hydroxybenzoate, unable to cause induction by themselves, were effective anti-inducers. The nucleotide sequence of pobR was determined, and the activator gene was shown to be transcribed divergently from pobA; the genes are separated by 134 DNA base pairs. The deduced amino acid sequence yielded a polypeptide of M(r) = 30,764. Analysis of this sequence revealed at the NH2 terminus a stretch of residues with high potential for forming a helix-turn-helix structure that could serve as a DNA-binding domain. A conservative amino acid substitution (Arg-61-->His-61) in this region inactivated PobR. The primary structure of PobR appears to be evolutionarily distinct from the four major families of NH2-terminal helix-turn-helix containing bacterial regulatory proteins that have been identified thus far. PMID:8331077

  9. Exon structure of the human dystrophin gene

    SciTech Connect

    Roberts, R.G.; Coffey, A.J.; Bobrow, M.; Bentley, D.R.

    1993-05-01

    Application of a novel vectorette PCR approach to defining intron-exon boundaries has permitted completion of analysis of the exon structure of the largest and most complex known human gene. The authors present here a summary of the exon structure of the entire human dystrophin gene, together with the sizes of genomic HindIII fragments recognized by each exon, and (where available) GenBank accession numbers for adjacent intron sequences. 20 refs., 1 tab.

  10. Structural damage identification using mathematical optimization techniques

    NASA Technical Reports Server (NTRS)

    Shen, Mo-How Herman

    1991-01-01

    An identification procedure is proposed to identify damage characteristics (location and size of the damage) from dynamic measurements. This procedure was based on minimization of the mean-square measure of difference between measurement data (natural frequencies and mode shapes) and the corresponding predictions obtained from the computational model. The procedure is tested for simulated damage in the form of stiffness changes in a simple fixed free spring mass system and symmetric cracks in a simply supported Bernoulli Euler beam. It is shown that when all the mode information is used in the identification procedure it is possible to uniquely determine the damage properties. Without knowing the complete set of modal information, a restricted region in the initial data space has been found for realistic and convergent solution from the identification process.

  11. Identification of Genes to Differentiate Closely Related Salmonella Lineages

    PubMed Central

    Zou, Qing-Hua; Li, Ren-Qing; Wang, Ye-Jun; Liu, Shu-Lin

    2013-01-01

    Background Salmonella are important human and animal pathogens. Though highly related, the Salmonella lineages may be strictly adapted to different hosts or cause different diseases, from mild local illness like gastroenteritis to fatal systemic infections like typhoid. Therefore, rapid and accurate identification of Salmonella is essential for timely and correct diagnosis of Salmonella infections. The current identification methods such as 16S rRNA sequencing and multilocus sequence typing are expensive and time consuming. Additionally, these methods often do not have sufficient distinguishing resolution among the Salmonella lineages. Methodologies/Principal Findings We compared 27 completely sequenced Salmonella genomes to identify possible genomic features that could be used for differentiation of individual lineages. We concatenated 2372 core genes in each of the 27 genomes and constructed a neighbor-joining tree. On the tree, strains of each serotype were clustered tightly together and different serotypes were unambiguously separated with clear genetic distances, demonstrating systematic genomic divergence among the Salmonella lineages. We made detailed comparisons among the 27 genomes and identified distinct sets of genomic differences, including nucleotide variations and genomic islands (GIs), among the Salmonella lineages. Two core genes STM4261 and entF together could unambiguously distinguish all Salmonella lineages compared in this study. Additionally, strains of a lineage have a common set of GIs and closely related lineages have similar sets of GIs. Conclusions Salmonella lineages have accumulated distinct sets of mutations and laterally acquired DNA (e.g., GIs) in evolution. Two genes entF and STM4261 have diverged sufficiently among the Salmonella lineages to be used for their differentiation. Further investigation of the distinct sets of mutations and GIs will lead to novel insights into genomic evolution of Salmonella and greatly facilitate the

  12. Optimal Sensor Locations for Structural Identification

    NASA Technical Reports Server (NTRS)

    Udwadia, F. E.; Garba, J.

    1985-01-01

    The optimum sensor location problem, OSLP, may be thought of in terms of the set of systems, S, the class of input time functions, I, and the identification algorithm (estimator) used, E. Thus, for a given time history of input, the technique of determining the OSL requires, in general, the solution of the optimization and the identification problems simultaneously. A technique which uncouples the two problems is introduced. This is done by means of the concept of an efficient estimator for which the covariance of the parameter estimates is inversely proportional to the Fisher Information Matrix.

  13. Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU.

    PubMed

    Brzostowicz, P C; Blasko, M S; Rouvière, P E

    2002-05-01

    Brevibacterium epidermidis HCU can grow on cyclic ketones and alcohols as a sole carbon source. We have previously reported the identification of two cyclohexanone-induced Bayer-Villiger monooxygenase genes by mRNA differential display. Using the related technique of Out-PCR, we have amplified large DNA fragments flanking the two monooxygenase genes. Two large gene clusters were sequenced. Several ORFs in each gene cluster encoded proteins homologous to cyclohexanol and cyclohexanone oxidation enzymes from Acinetobacter. However, the structure of these two gene clusters differs significantly from that of Acinetobacter, where the complete pathway has been described. To assess activity of these genes, they were cloned and expressed in Escherichia coli. In vivo and in vitro assays enabled us to assign functions to the expressed ORFs. These ORFs included a cyclohexanol dehydrogenase, two different epsilon-caprolactone hydrolases and two 6-hydroxyhexanoate dehydrogenases belonging to different enzyme families. Because this environmental isolate is difficult to manipulate, we cannot determine at this time which cluster is involved in the degradation of cyclohexanone under physiological conditions. However, the original differential display experiments and some of the experiments reported here suggest the involvement of both gene clusters in the oxidation of cyclic ketones.

  14. Identification of quorum sensing-controlled genes in Burkholderia ambifaria

    PubMed Central

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-01-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

  15. Identification of novel hereditary cancer genes by whole exome sequencing.

    PubMed

    Sokolenko, Anna P; Suspitsin, Evgeny N; Kuligina, Ekatherina Sh; Bizin, Ilya V; Frishman, Dmitrij; Imyanitov, Evgeny N

    2015-12-28

    Whole exome sequencing (WES) provides a powerful tool for medical genetic research. Several dozens of WES studies involving patients with hereditary cancer syndromes have already been reported. WES led to breakthrough in understanding of the genetic basis of some exceptionally rare syndromes; for example, identification of germ-line SMARCA4 mutations in patients with ovarian hypercalcemic small cell carcinomas indeed explains a noticeable share of familial aggregation of this disease. However, studies on common cancer types turned out to be more difficult. In particular, there is almost a dozen of reports describing WES analysis of breast cancer patients, but none of them yet succeeded to reveal a gene responsible for the significant share of missing heritability. Virtually all components of WES studies require substantial improvement, e.g. technical performance of WES, interpretation of WES results, mode of patient selection, etc. Most of contemporary investigations focus on genes with autosomal dominant mechanism of inheritance; however, recessive and oligogenic models of transmission of cancer susceptibility also need to be considered. It is expected that the list of medically relevant tumor-predisposing genes will be rapidly expanding in the next few years. PMID:26427841

  16. Finite element modeling for validation of structural damage identification experimentation.

    SciTech Connect

    Stinemates, D. W.; Bennett, J. G.

    2001-01-01

    The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and darnage identification. To do this, a finite dement model was Constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from thie physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.

  17. Identification of high-stringency DNA hairpin probes by partial gene folding.

    PubMed

    Strohsahl, Christopher M; Krauss, Todd D; Miller, Benjamin L

    2007-09-30

    Hairpin DNA sequences are widely used as probes for oligonucleotides in a broad range of assays, often as "molecular beacons". A potential disadvantage of the standard methodology for molecular beacon design is the need to add several self-complementary bases to each end of the probe, since these do not correspond to the target sequence. We describe a conceptually new method of hairpin DNA probe identification, in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within an expressed gene having the requisite hairpin structure. Intuitively, such probes should have significantly improved performance over "traditional" hairpin probes, because they are fully complementary with the target. We present experimental evidence verifying this hypothesis for a series of hairpin probes targeting the pag gene of Bacillus anthracis.

  18. Novel gene complex structure determination

    SciTech Connect

    Gatewood, J.M.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LORD) project at the Los Alamos National Laboratory. `Operative` chromatin containing exclusively the minor hasten variants was successfully isolated. Linker hasten H1 is quantitatively missing from operative chromatin. One of the aims of this proposal was to determine the proteins responsible for stabilizing operative chromatin. This chromatin is stabilized by microtubule proteins tar and tubulin. Another goal of this project was the structural characterization of operate chromatin nucleosomes. Using solution scattering, nucleosomes containing the minor variants were shown to be structurally distinct from major variant containing nucleosomes. The unusual structure and stabilization of operative chromatin by microtubule proteins provides a possible mechanism for direct interaction of transcription machinery with specific chromatin domains.

  19. Identification and characterization of the doublesex gene of Nasonia

    PubMed Central

    Oliveira, Deodoro C.S.G.; Werren, John H.; Verhulst, Eveline C.; Giebel, Jonathan D.; Kamping, Albert; Beukeboom, Leo W.; van de Zande, Louis

    2010-01-01

    The doublesex (dsx) gene of the parasitic wasp Nasonia vitripennis is described and characterized. Differential splicing of dsx transcripts has been shown to induce somatic sexual differentiation in Diptera and Lepidoptera, but not yet in other insect orders. Two spliceforms of Nasonia dsx mRNA are differentially expressed in males and females. In addition, in a gynandromorphic line that produces haploids (normally males) with full female phenotypes, these individuals show the female spliceform, providing the first demonstration of a direct association of dsx with somatic sex differentiation in Hymenoptera. Finally, the DM domain of Nasonia dsx clusters phylogenetically with dsx from other insects, and Nasonia dsx shows microsynteny with dsx of Apis, further supporting identification of the dsx ortholog in Nasonia. PMID:19523063

  20. Identification and characterization of a second mouse Nramp gene

    SciTech Connect

    Gruenheid, S.; Cellier, M.; Vidal, S.

    1995-01-20

    Nramp gene was isolated as a candidate for the host resistance locus Bcg/Ity/Lsh, which controls natural resistance of mice to several types of infections. We have isolated by cross-hybridization cDNA clones corresponding to a second mouse Nramp gene, which we designate Nramp2. Nucleotide and predicted amino acid sequence analyses of full-length cDNA clones for Nramp2 indicate that this novel Nramp protein is closely homologous to the previously described Nramp and that the two genes form part of a small gene family. The two Nramp proteins encode integral membrane proteins that share 63% identical residues and an overall homology of 78%. They share very similar secondary structure, including identical hydropathy profiles and predicted membrane organization, with a minimum of 10 and most probably 12 transmembrane domains, a cluster of predicted N-linked glycosylation sites, and a consensus transport motif. Analysis of the distribution of Nramp2 mRNA transcripts in normal mouse tissues by Northern blotting revealed that the Nramp2 gene produces several mRNAs, including prominent 3.3- and 2.3-kb species generated by the use of alternative polyadenylation signals. In contrast to the previously described macrophage-specific Nramp gene, Nramp2 mRNAs were found to be expressed at low levels in all tissues tested. Using a polymorphic (GT)26 dinucleotide repeat identified in the 3{prime} untranslated region of the mRNA, we have mapped the Nramp2 gene to the distal part of mouse chromosome 15 between markers D15Mit41 and D15Mit15, with the gene order and intergene distance (in cM): centromere-56.1-D15Mit41-(1{+-}1)-Nramp2-(5{+-}2)-D15Mit15. 59 refs., 5 figs., 1 tab.

  1. Identification and characterization of the Populus sucrose synthase gene family.

    PubMed

    An, Xinmin; Chen, Zhong; Wang, Jingcheng; Ye, Meixia; Ji, Lexiang; Wang, Jia; Liao, Weihua; Ma, Huandi

    2014-04-10

    In this study, we indentified 15 sucrose synthase (SS) genes in Populus and the results of RT-qPCR revealed that their expression patterns were constitutive and partially overlapping but diverse. The release of the most recent Populus genomic data in Phytozome v9.1 has revealed the largest SS gene family described to date, comprising 15 distinct members. This information will now enable the analysis of transcript expression profiles for those that have not been previously reported. Here, we performed a comprehensive analysis of SS genes in Populus by describing the gene structure, chromosomal location and phylogenetic relationship of each family member. A total of 15 putative SS gene members were identified in the Populus trichocarpa (Torr. & Gray) genome using the SS domain and amino acid sequences from Arabidopsis thaliana as a probe. A phylogenetic analysis indicated that the 15 members could be classified into four groups that fall into three major categories: dicots, monocots & dicots 1 (M & D 1), and monocots & dicots 2 (M & D 2). In addition, the 15 SS genes were found to be unevenly distributed on seven chromosomes. The two conserved domains (sucrose synthase and glycosyl transferase) were found in this family. Meanwhile, the expression profiles of all 15 gene members in seven different organs were investigated in Populus tomentosa (Carr.) by using RT-qPCR. Additional analysis indicated that the poplar SS gene family is also involved in response to water-deficit. The current study provides basic information that will assist in elucidating the functions of poplar SS family. PMID:24508272

  2. DNA-based identification of novel bovine casein gene variants.

    PubMed

    Gallinat, J L; Qanbari, S; Drögemüller, C; Pimentel, E C G; Thaller, G; Tetens, J

    2013-01-01

    In cattle, at least 39 variants of the 4 casein proteins (α(S1)-, β-, α(S2)- and κ-casein) have been described to date. Many of these variants are known to affect milk-production traits, cheese-processing properties, and the nutritive value of milk. They also provide valuable information for phylogenetic studies. So far, the majority of studies exploring the genetic variability of bovine caseins considered European taurine cattle breeds and were carried out at the protein level by electrophoretic techniques. This only allows the identification of variants that, due to amino acid exchanges, differ in their electric charge, molecular weight, or isoelectric point. In this study, the open reading frames of the casein genes CSN1S1, CSN2, CSN1S2, and CSN3 of 356 animals belonging to 14 taurine and 3 indicine cattle breeds were sequenced. With this approach, we identified 23 alleles, including 5 new DNA sequence variants, with a predicted effect on the protein sequence. The new variants were only found in indicine breeds and in one local Iranian breed, which has been phenotypically classified as a taurine breed. A multidimensional scaling approach based on available SNP chip data, however, revealed an admixture of taurine and indicine populations in this breed as well as in the local Iranian breed Golpayegani. Specific indicine casein alleles were also identified in a few European taurine breeds, indicating the introgression of indicine breeds into these populations. This study shows the existence of substantial undiscovered genetic variability of bovine casein loci, especially in indicine cattle breeds. The identification of new variants is a valuable tool for phylogenetic studies and investigations into the evolution of the milk protein genes.

  3. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes.

    PubMed

    Cho, Samuel Sunghwan; Kim, Yongkang; Yoon, Joon; Seo, Minseok; Shin, Su-Kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of

  4. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  5. Gene3D: Structural Assignment for Whole Genes and Genomes Using the CATH Domain Structure Database

    PubMed Central

    Buchan, Daniel W.A.; Shepherd, Adrian J.; Lee, David; Pearl, Frances M.G.; Rison, Stuart C.G.; Thornton, Janet M.; Orengo, Christine A.

    2002-01-01

    We present a novel web-based resource, Gene3D, of precalculated structural assignments to gene sequences and whole genomes. This resource assigns structural domains from the CATH database to whole genes and links these to their curated functional and structural annotations within the CATH domain structure database, the functional Dictionary of Homologous Superfamilies (DHS) and PDBsum. Currently Gene3D provides annotation for 36 complete genomes (two eukaryotes, six archaea, and 28 bacteria). On average, between 30% and 40% of the genes of a given genome can be structurally annotated. Matches to structural domains are found using the profile-based method (PSI-BLAST). and a novel protocol, DRange, is used to resolve conflicts in matches involving different homologous superfamilies. PMID:11875040

  6. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    PubMed Central

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  7. Structural damage identification using piezoelectric impedance and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Shuai, Q.; Zhou, K.; Tang, J.

    2015-04-01

    Structural damage identification is a challenging subject in the structural health monitoring research. The piezoelectric impedance-based damage identification, which usually utilizes the matrix inverse-based optimization, may in theory identify the damage location and damage severity. However, the sensitivity matrix is oftentimes ill-conditioned in practice, since the number of unknowns may far exceed the useful measurements/inputs. In this research, a new method based on intelligent inference framework for damage identification is presented. Bayesian inference is used to directly predict damage location and severity using impedance measurement through forward prediction and comparison. Gaussian process is employed to enrich the forward analysis result, thereby reducing computational cost. Case study is carried out to illustrate the identification performance.

  8. Cytochrome b gene for species identification of the conservation animals.

    PubMed

    Hsieh, H M; Chiang, H L; Tsai, L C; Lai, S Y; Huang, N E; Linacre, A; Lee, J C

    2001-10-15

    A partial DNA sequence of cytochrome b gene was used to identify the remains of endangered animals and species endemic to Taiwan. The conservation of animals species included in this study were: the formosan gem-faced civets, leopard cats, tigers, clouded leopards, lion, formosan muntjacs, formosan sika deers, formosan sambars, formosan serows, water buffalo, formosan pangolins and formosan macaques. The control species used included domestic cats, domestic dogs, domestic sheeps, domestic cattles, domestic pigs and humans. Heteroplasmy was detected in the formosan macaque, domestic pig and domestic cats. The frequencies of heteroplasmy in these animals were about 0.25% (1 in 402bp). Sequences were aligned by Pileup program of GCG computer package, and the phylogenetic tree was constructed by the neighbor-joining method. The results of sequence comparison showed that the percentage range of sequence diversity in the same species was from 0.25 to 2.74%, and that between the different species was from 5.97 to 34.83%. The results of phylogenetic analysis showed that the genetic distance between the different species was from 6.33 to 40.59. Animals of the same species, both the endangered animal species and domestic animals, were clustered together in the neighbor-joining tree. Three unknown samples of animal remains were identified by this system. The partial sequence of cytochrome b gene adopted in this study proved to be usable for animal identification.

  9. Identification of novel Notch target genes in T cell leukaemia

    PubMed Central

    Chadwick, Nicholas; Zeef, Leo; Portillo, Virginia; Fennessy, Carl; Warrander, Fiona; Hoyle, Sarah; Buckle, Anne-Marie

    2009-01-01

    Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL) cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone) or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE), and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1). Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease. PMID:19508709

  10. Linear and nonlinear structural identifications using the support vector regression

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Sato, Tadanobu

    2006-03-01

    Robust and efficient identification methods are necessary to study in the structural health monitoring field, especially when the I/O data are accompanied by high-level noise and the structure studied is a large-scale one. The Support vector Regression (SVR) is a promising nonlinear modeling method that has been found working very well in many fields, and has a powerful potential to be applied in system identifications. The SVR-based methods are provided in this article to make linear large-scale structural identification and nonlinear hysteretic structural identifications. The LS estimator is a cornerstone of statistics but less robust to outliers. Instead of the classical Gaussian loss function without regularization used in the LS method, a novel e-insensitive loss function is employed in the SVR. Meanwhile, the SVR adopts the 'max-margined' idea to search for an optimum hyper-plane separating the training data into two subsets by maximizing the margin between them. Therefore, the SVR-based structural identification approach is robust and accuracy even though the observation data involve different kinds and high-level noise. By means of the local strategy, the linear large-scale structural identification approach based on the SVR is first investigated. The novel SVR can identify structural parameters directly by writing structural observation equations in linear equations with respect to unknown structural parameters. Furthermore, the substrutural idea employed reduces the number of unknown parameters seriously to guarantee the SVR work in a low dimension and to focus the identification on a local arbitrary subsystem. It is crucial to make nonlinear structural identification also, because structures exhibit highly nonlinear characters under severe loads such as strong seismic excitations. The Bouc-Wen model is often utilized to describe structural nonlinear properties, the power parameter of the model however is often assumed as known even though it is unknown

  11. CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation

    PubMed Central

    Nikulova, Anna A.; Favorov, Alexander V.; Sutormin, Roman A.; Makeev, Vsevolod J.; Mironov, Andrey A.

    2012-01-01

    Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory ‘grammar’, or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be evolutionarily conserved. Here, we present a method CORECLUST (COnservative REgulatory CLUster STructure) that predicts CRMs based on a set of positional weight matrices. Given regulatory regions of orthologous and/or co-regulated genes, CORECLUST constructs a CRM model by revealing the conserved rules that describe the relative location of binding sites. The constructed model may be consequently used for the genome-wide prediction of similar CRMs, and thus detection of co-regulated genes, and for the investigation of the regulatory grammar of the system. Compared with related methods, CORECLUST shows better performance at identification of CRMs conferring muscle-specific gene expression in vertebrates and early-developmental CRMs in Drosophila. PMID:22422836

  12. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  13. Genome structure and gene content in protist mitochondrial DNAs.

    PubMed

    Gray, M W; Lang, B F; Cedergren, R; Golding, G B; Lemieux, C; Sankoff, D; Turmel, M; Brossard, N; Delage, E; Littlejohn, T G; Plante, I; Rioux, P; Saint-Louis, D; Zhu, Y; Burger, G

    1998-02-15

    Although the collection of completely sequenced mitochondrial genomes is expanding rapidly, only recently has a phylogenetically broad representation of mtDNA sequences from protists (mostly unicellular eukaryotes) become available. This review surveys the 23 complete protist mtDNA sequences that have been determined to date, commenting on such aspects as mitochondrial genome structure, gene content, ribosomal RNA, introns, transfer RNAs and the genetic code and phylogenetic implications. We also illustrate the utility of a comparative genomics approach to gene identification by providing evidence that orfB in plant and protist mtDNAs is the homolog of atp8 , the gene in animal and fungal mtDNA that encodes subunit 8 of the F0portion of mitochondrial ATP synthase. Although several protist mtDNAs, like those of animals and most fungi, are seen to be highly derived, others appear to be have retained a number of features of the ancestral, proto-mitochondrial genome. Some of these ancestral features are also shared with plant mtDNA, although the latter have evidently expanded considerably in size, if not in gene content, in the course of evolution. Comparative analysis of protist mtDNAs is providing a new perspective on mtDNA evolution: how the original mitochondrial genome was organized, what genes it contained, and in what ways it must have changed in different eukaryotic phyla.

  14. Identification and Characterization of the Sucrose Synthase 2 Gene (Sus2) in Durum Wheat

    PubMed Central

    Volpicella, Mariateresa; Fanizza, Immacolata; Leoni, Claudia; Gadaleta, Agata; Nigro, Domenica; Gattulli, Bruno; Mangini, Giacomo; Blanco, Antonio; Ceci, Luigi R.

    2016-01-01

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase (SUS), which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for SUS in durum wheat (cultivars Ciccio and Svevo) is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur, and 5-BIL42). The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modeling approaches. The combined results of sucrose synthase 2 expression and activity levels were then considered in the light of their possible involvement in starch yield. PMID:27014292

  15. Identification of genes expressed in the Xenopus inner ear.

    PubMed

    Serrano, E E; Trujillo-Provencio, C; Sultemeier, D R; Bullock, W M; Quick, Q A

    2001-11-01

    Recent studies indicate that hearing loss in humans has strong hereditary components associated with expression of specific genes in the auditory apparatus of the inner ear. However, the inner ear poses challenges for molecular research because the amount of tissue that can be isolated is limited, and extraction procedures yield small quantities of RNA and protein. To begin to identity genes essential for auditory function, we synthesized a cDNA library using an RT-PCR protocol and total RNA isolated from eight Xenopus laevis inner ears. Sequence analysis of randomly selected clones demonstrated expression of both identified (calmodulin, SNARE protein, syndecan-2) and unidentified genes, and confirmed synthesis of full length transcripts. Confocal and scanning electron microscopy (SEM) were used to examine the structure of inner ear organs that serve as auditory receptors in amphibians: the sacculus, the amphibian papilla and the basilar papilla. SEM images illustrate the heterogeneity of bundle morphology and demonstrate the continuous appearance of stereociliary bundles in the X. laevis amphibian papilla during larval development and adult life. Investigations of gene expression in Xenopus auditory organs using clones recovered from inner ear cDNA libraries should provide insight regarding the molecular basis of hearing.

  16. Structure and evolution of Paramecium hemoglobin genes.

    PubMed

    Yamauchi, K; Tada, H; Usuki, I

    1995-10-17

    Hemoglobin (Hb) genes have been cloned from three different species of ciliated protists, P. multimicronucleatum, P. triaurelia and P. jenningsi. Southern blotting of the genomic DNAs using the P. caudatum Hb cDNA showed both intraspecies variation in different stocks of P. caudatum and interspecies variation within the genus Paramecium. The isolated Hb genes were composed of 118, 117 and 117 codons, and interrupted by a short intron with 27, 29 and 29 bp at the same position, in P. multimicronucleatum, P. triaurelia and P. jenningsi, respectively. This suggests that the one-intron and two-exon structure has been conserved in the Hb genes in this genus. The amino acid sequences of the Paramecium Hbs were more than 87% identical to one another and homologous to those from the other ciliated protists Tetrahymena thermophila and T. pyriformis, the green alga Chlamydomonas eugametos, and the cyanobacterium Nostoc commune Hbs, all of which consist of about 120 amino acid residues (120-aa group). In particular, the amino acid sequences of the P. triaurelia and P. jenningsi Hbs were the same, although there were 20 nucleotide differences between the coding regions in the two genes. A maximum likelihood inference as to the phylogenetic relationships among these genes suggests that the Paramecium Hbs genes have evolved more rapidly than the other genes in the 120-aa group, and that P. triaurelia and P. genningsi are sibling species and the P. aurelia complex became a small cell after it separated from P. jenningsi.

  17. Identification and Validation of Housekeeping Genes for Gene Expression Analysis of Cancer Stem Cells

    PubMed Central

    Lemma, Silvia; Avnet, Sofia; Salerno, Manuela; Chano, Tokuhiro; Baldini, Nicola

    2016-01-01

    The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting. PMID:26894994

  18. Identification and Validation of Housekeeping Genes for Gene Expression Analysis of Cancer Stem Cells.

    PubMed

    Lemma, Silvia; Avnet, Sofia; Salerno, Manuela; Chano, Tokuhiro; Baldini, Nicola

    2016-01-01

    The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.

  19. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  20. Identification of plant defence genes in canola using Arabidopsis cDNA microarrays.

    PubMed

    Schenk, P M; Thomas-Hall, S R; Nguyen, A V; Manners, J M; Kazan, K; Spangenberg, G

    2008-09-01

    We report the identification of novel defence genes in canola by using a cDNA microarray from Arabidopsis. We examined changes that occur in the abundance of transcripts corresponding to 2375 Arabidopsis expressed sequence tags (selected for defence gene identification) following inoculation of canola plants with the fungal necrotrophic leaf pathogen, Alternaria brassicicola. Microarray data obtained from this cross-hybridisation experiment were compared to expression profiles previously obtained from the equivalent Arabidopsis experiment. Homology searches using a canola expressed sequence tag database with approximately 6000 unique clones led to identification of canola defence genes. Pathogen-responsive transcripts included those associated to known defence genes, reactive oxygen species metabolism, disease resistance and regulatory genes, and cell maintenance/metabolism genes. Using specific primers for quantitative real-time reverse transcriptase PCR, gene expression profiles in canola were obtained that demonstrated coordinated defence responses, including systemic responses in distal tissue and salicylic acid- and methyl jasmonate-mediated signalling against A. brassicicola.

  1. Physics-based gene identification: proof of concept for Plasmodium falciparum.

    PubMed

    Yeramian, Edouard; Bonnefoy, Serge; Langsley, Gordon

    2002-01-01

    The ab initio prediction of new genes in eukaryotic genomes represents a difficult task, notably for the identification of complex split genes. A Physics-Based Gene Identification (PBGI) method was formulated recently (Yeramian, Gene, 255, 139-150, 151-168, 2000a,b) to address this problem, taking as a model the Plasmodium falciparum genome. Here, the predictive power of this method is put under experimental test for this genome. The presented results demonstrate the usefulness of the PBGI as a gene-identification tool for P. falciparum, notably for the discovery of new genes with no homology to known genes. Perspectives opened by this new method for other eukaryotic genomes are also mentioned.

  2. Identification of civil structures with nonproportional damping

    NASA Astrophysics Data System (ADS)

    Yang, Jann N.; Lei, Ying

    2000-04-01

    Recently, the method of Hilbert transform has been used successfully by the authors to identify parameters of linear structures with real eigenvalues and eigenvectors, e.g., structures with proportional damping. Frequently, linear structures may not have proportional damping so that normal modes do not exist. In this case, all the eigenvalues, eigenvectors and modeshapes are complex. In this paper, the Hilbert transform and the method of Empirical Mode Decomposition are used to identify the parameters of structures with nonproportional damping using the impulse response data. Measured impulse response signals are first decomposed into Intrinsic Mode Functions using the method of Empirical Mode Decomposition with intermittency criteria. An Intrinsic Mode Function (IMF) contains only one characteristic time scale (frequency), which may involve the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio, referred to as the modal response. It is shown that all the modal responses can be obtained from IMFs. Then, each modal response is decomposed in the frequency-time domain to yield instantaneous phase angle and amplitude as functions of time using the Hilbert transform. Based on only a single measurement of the impulse response time history at one location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex modeshapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the methodology presented are demonstrated through numerical simulations. It is shown that complete dynamic characteristics of linear structures with nonproportional damping can be identified effectively using the Hilbert transform and the Empirical Mode Decomposition method.

  3. Combining skin texture and facial structure for face identification

    NASA Astrophysics Data System (ADS)

    Manoni, R. E.; Canosa, R. L.

    2012-03-01

    Current face identification systems are not robust enough to accurately identify the same individual in different images with changes in head pose, facial expression, occlusion, length of hair, illumination, aging, etc. This is especially a problem for facial images that are captured using low resolution video cameras or webcams. This paper introduces a new technique for facial identification in low resolution images that combines facial structure with skin texture to accommodate changes in lighting and head pose. Experiments using this new technique show that combining facial structure features with skin texture features results in a facial identification system for low resolution images that is more robust to pose and illumination conditions than either technique used alone.

  4. Identification and characterisation of synaptonemal complex genes in monotremes.

    PubMed

    Casey, Aaron E; Daish, Tasman J; Grutzner, Frank

    2015-08-10

    The platypus and echidna are the only extant species belonging to the clade of monotremata, the most basal mammalian lineage. The platypus is particularly well known for its mix of mammalian and reptilian characteristics and work in recent years has revealed this also extends to the genetic level. Amongst the monotreme specific features is the unique multiple sex chromosome system (5X4Y in the echidna and 5X5Y in the platypus), which forms a chain in meiosis. This raises questions about sex chromosome organisation at meiosis, including whether there has been changes in genes coding for synaptonemal complex proteins which are involved in homologous synapsis. Here we investigate the key structural components of the synaptonemal complex in platypus and echidna, synaptonemal complex proteins 1, 2 and 3 (SYCP1, SYCP2 and SYCP3). SYCP1 and SYCP2 orthologues are present, conserved and expressed in platypus testis. SYCP3 in contrast is highly diverged, but key residues required for self-association are conserved, while those required for tetramer stabilisation and DNA binding are missing. We also discovered a second SYCP3-like gene (SYCP3-like) in the same region. Comparison with the recently published Y-borne SYCP3 amino acid sequences revealed that SYCP3Y is more similar to SYCP3 in other mammals than the monotreme autosomal SYCP3. It is currently unclear if these changes in the SYCP3 gene repertoire are related to meiotic organisation of the extraordinary monotreme sex chromosome system.

  5. Identification and characterisation of synaptonemal complex genes in monotremes.

    PubMed

    Casey, Aaron E; Daish, Tasman J; Grutzner, Frank

    2015-08-10

    The platypus and echidna are the only extant species belonging to the clade of monotremata, the most basal mammalian lineage. The platypus is particularly well known for its mix of mammalian and reptilian characteristics and work in recent years has revealed this also extends to the genetic level. Amongst the monotreme specific features is the unique multiple sex chromosome system (5X4Y in the echidna and 5X5Y in the platypus), which forms a chain in meiosis. This raises questions about sex chromosome organisation at meiosis, including whether there has been changes in genes coding for synaptonemal complex proteins which are involved in homologous synapsis. Here we investigate the key structural components of the synaptonemal complex in platypus and echidna, synaptonemal complex proteins 1, 2 and 3 (SYCP1, SYCP2 and SYCP3). SYCP1 and SYCP2 orthologues are present, conserved and expressed in platypus testis. SYCP3 in contrast is highly diverged, but key residues required for self-association are conserved, while those required for tetramer stabilisation and DNA binding are missing. We also discovered a second SYCP3-like gene (SYCP3-like) in the same region. Comparison with the recently published Y-borne SYCP3 amino acid sequences revealed that SYCP3Y is more similar to SYCP3 in other mammals than the monotreme autosomal SYCP3. It is currently unclear if these changes in the SYCP3 gene repertoire are related to meiotic organisation of the extraordinary monotreme sex chromosome system. PMID:25981592

  6. Role Identification and Game Structure: Effects on Political Attitudes.

    ERIC Educational Resources Information Center

    Livingston, Samuel A.; Kidder, Steven J.

    The research study measures changes in political attitudes of high school students after playing the game "Democracy." The primary purpose of the experiment was to determine if role identification and game structure are primarily responsible for the effects of the game upon the player's attitudes. The player takes the role of a congressman who…

  7. Structures of two molluscan hemocyanin genes: significance for gene evolution.

    PubMed

    Lieb, B; Altenhein, B; Markl, J; Vincent, A; van Olden, E; van Holde, K E; Miller, K I

    2001-04-10

    We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3' untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented. PMID:11287637

  8. Structures of two molluscan hemocyanin genes: Significance for gene evolution

    PubMed Central

    Lieb, Bernhard; Altenhein, Benjamin; Markl, Jürgen; Vincent, Alexandra; van Olden, Erin; van Holde, Kensal E.; Miller, Karen I.

    2001-01-01

    We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3′ untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented. PMID:11287637

  9. Network-Based Enriched Gene Subnetwork Identification: A Game-Theoretic Approach.

    PubMed

    Razi, Abolfazl; Afghah, Fatemeh; Singh, Salendra; Varadan, Vinay

    2016-01-01

    Identifying subsets of genes that jointly mediate cancer etiology, progression, or therapy response remains a challenging problem due to the complexity and heterogeneity in cancer biology, a problem further exacerbated by the relatively small number of cancer samples profiled as compared with the sheer number of potential molecular factors involved. Pure data-driven methods that merely rely on multiomics data have been successful in discovering potentially functional genes but suffer from high false-positive rates and tend to report subsets of genes whose biological interrelationships are unclear. Recently, integrative data-driven models have been developed to integrate multiomics data with signaling pathway networks in order to identify pathways associated with clinical or biological phenotypes. However, these approaches suffer from an important drawback of being restricted to previously discovered pathway structures and miss novel genomic interactions as well as potential crosstalk among the pathways. In this article, we propose a novel coalition-based game-theoretic approach to overcome the challenge of identifying biologically relevant gene subnetworks associated with disease phenotypes. The algorithm starts from a set of seed genes and traverses a protein-protein interaction network to identify modulated subnetworks. The optimal set of modulated subnetworks is identified using Shapley value that accounts for both individual and collective utility of the subnetwork of genes. The algorithm is applied to two illustrative applications, including the identification of subnetworks associated with (i) disease progression risk in response to platinum-based therapy in ovarian cancer and (ii) immune infiltration in triple-negative breast cancer. The results demonstrate an improved predictive power of the proposed method when compared with state-of-the-art feature selection methods, with the added advantage of identifying novel potentially functional gene subnetworks

  10. Network-Based Enriched Gene Subnetwork Identification: A Game-Theoretic Approach.

    PubMed

    Razi, Abolfazl; Afghah, Fatemeh; Singh, Salendra; Varadan, Vinay

    2016-01-01

    Identifying subsets of genes that jointly mediate cancer etiology, progression, or therapy response remains a challenging problem due to the complexity and heterogeneity in cancer biology, a problem further exacerbated by the relatively small number of cancer samples profiled as compared with the sheer number of potential molecular factors involved. Pure data-driven methods that merely rely on multiomics data have been successful in discovering potentially functional genes but suffer from high false-positive rates and tend to report subsets of genes whose biological interrelationships are unclear. Recently, integrative data-driven models have been developed to integrate multiomics data with signaling pathway networks in order to identify pathways associated with clinical or biological phenotypes. However, these approaches suffer from an important drawback of being restricted to previously discovered pathway structures and miss novel genomic interactions as well as potential crosstalk among the pathways. In this article, we propose a novel coalition-based game-theoretic approach to overcome the challenge of identifying biologically relevant gene subnetworks associated with disease phenotypes. The algorithm starts from a set of seed genes and traverses a protein-protein interaction network to identify modulated subnetworks. The optimal set of modulated subnetworks is identified using Shapley value that accounts for both individual and collective utility of the subnetwork of genes. The algorithm is applied to two illustrative applications, including the identification of subnetworks associated with (i) disease progression risk in response to platinum-based therapy in ovarian cancer and (ii) immune infiltration in triple-negative breast cancer. The results demonstrate an improved predictive power of the proposed method when compared with state-of-the-art feature selection methods, with the added advantage of identifying novel potentially functional gene subnetworks

  11. Identification and control of structures in space

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Quinn, R. D.; Norris, M. A.

    1984-01-01

    The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.

  12. Exon/intron structure of the human alpha 3(IV) gene encompassing the Goodpasture antigen (alpha 3(IV)NC1). Identification of a potentially antigenic region at the triple helix/NC1 domain junction.

    PubMed

    Quinones, S; Bernal, D; García-Sogo, M; Elena, S F; Saus, J

    1992-10-01

    The Goodpasture antigen has been identified as the non-collagenous (NC1) domain of alpha 3(IV), a novel collagen IV chain (Saus, J., Wieslander, J., Langeveld, J., Quinones, S., and Hudson, B.G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the exon/intron structure and sequence for 285 amino acids of human alpha 3(IV), comprising 53 amino acids of the triple-helical domain and the complete NC1 domain (232 amino acids), were determined. Based on the comparison of the amino acid sequences of the alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) NC1 domains, a phylogenetic tree was constructed which indicates that alpha 2(IV) was the first chain to evolve, followed by alpha 3(IV), and then by alpha 1(IV) and alpha 5(IV). The exon/intron structure of these domains is consistent with this evolution model. In addition, it appears that alpha 3(IV) changed most after diverging from the parental gene. Analysis of its primary structure reveals that, at the junction between the triple-helical and NC1 domains, there exists a previously unrecognized, highly hydrophilic region (GLKGKRGDSGSPATWTTR) which is unique to the human alpha 3(IV) chain, containing a cell adhesion motif (RGD) as an integral part of a sequence (KRGDSGSP) conforming to a number of protein kinase recognition sites. Based on primary structure data, we outline new aspects to be explored concerning the molecular basis of collagen IV function and Goodpasture syndrome.

  13. Identification and control of structures in space

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.

    1985-01-01

    Work during the period January 1 to June 30, 1985 has concentrated on the completion of the derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) as well on the development of a control scheme for the maneuvering of the spacecraft. The report consists of a paper presented at the Fifth Symposium on Dynamics and Control of Large Structures, June 12 to 14, 1985 at Blacksburg, VA.

  14. Recent literature on structural modeling, identification, and analysis

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1990-01-01

    The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.

  15. Structure and evolution of somatostatin genes.

    PubMed

    Su, C J; White, J W; Li, W H; Luo, C C; Frazier, M L; Saunders, G F; Chan, L

    1988-03-01

    A bovine pancreatic preprosomatostatin cDNA clone has been isolated and sequenced. Although it encodes a predicted 116 amino acid preprosomatostatin that is very similar in primary structure to those deduced from other mammalian preprosomatostatin cDNAs, there are some differences in amino acid composition. Hybridization of this clone to Northern blots of fetal bovine pancreatic poly(A+) RNA reveals a mRNA of 700 nucleotides. Evolution of the preprosomatostatin genes was studied by statistical analysis of anglerfish, catfish, bovine, rat, and human cDNA sequences. The results suggest that the two somatostatin genes present in both anglerfish and catfish were the result of a gene duplication event in a common ancestor of anglerfish and catfish. PMID:2899837

  16. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009

    PubMed Central

    Li, Rongfeng; Lloyd, Evan P.; Moshos, Kristos A.

    2014-01-01

    Nearly 50 naturally-occurring carbapenem β-lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C-2 and C-6 side chains as well as the stereochemistry at C-5/C-6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. While the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by S. argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that genes encoding the biosynthesis of the bicyclic core and the C-6 and C-2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22/23, encode a two-component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems. PMID:24420617

  17. Large scale in silico identification of MYB family genes from wheat expressed sequence tags.

    PubMed

    Cai, Hongsheng; Tian, Shan; Dong, Hansong

    2012-10-01

    The MYB proteins constitute one of the largest transcription factor families in plants. Much research has been performed to determine their structures, functions, and evolution, especially in the model plants, Arabidopsis, and rice. However, this transcription factor family has been much less studied in wheat (Triticum aestivum), for which no genome sequence is yet available. Despite this, expressed sequence tags are an important resource that permits opportunities for large scale gene identification. In this study, a total of 218 sequences from wheat were identified and confirmed to be putative MYB proteins, including 1RMYB, R2R3-type MYB, 3RMYB, and 4RMYB types. A total of 36 R2R3-type MYB genes with complete open reading frames were obtained. The putative orthologs were assigned in rice and Arabidopsis based on the phylogenetic tree. Tissue-specific expression pattern analyses confirmed the predicted orthologs, and this meant that gene information could be inferred from the Arabidopsis genes. Moreover, the motifs flanking the MYB domain were analyzed using the MEME web server. The distribution of motifs among wheat MYB proteins was investigated and this facilitated subfamily classification.

  18. Identification and Engineering of the Cytochalasin Gene Cluster from Aspergillus clavatus NRRL 1

    PubMed Central

    Qiao, Kangjian; Chooi, Yit-Heng; Tang, Yi

    2012-01-01

    Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ~30 kb ccs gene cluster was identified based on the presence of a polyketide synthase-nonribosomal peptide synthetases (PKS-NRPS) and a putative Baeyer-Villiger monooxygenase (BVMO). Deletion of the central PKS-NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25 mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production. PMID:21983160

  19. Mesocopic Structure of Nonviral Gene Delivery Vectors

    NASA Astrophysics Data System (ADS)

    van Zanten, John; Hanes, Justin; Lai, Eva; Har-El, Yah-El

    2003-03-01

    In general, little is known about nonviral gene delivery vector formation kinetics and the interplay between vector structure, especially mesoscopic structure, and transfection efficiency. DNA complexation with various condensing agents is a self-assembly process driven primarily by electrostatic interactions and counterion release. DNA complexation kinetics influence two physical parameters that directly affect gene delivery and expression efficiency: DNA complex geometric size and molar mass (density). In this study we demonstrate the utility of time resolved multiangle laser light scattering (TR-MALLS) for probing DNA complexation kinetics, determining DNA complex size and density in real time and monitoring nonviral vector stability in liquid formulations and serum. The condensing agents considered are poly-L-lysine, polyethylenimine and various cationic liposome formulations.

  20. Identification of a Maize Locus that Modulates the Hypersensitive Defense Response, Using Mutant-Assisted Gene Identification and Characterization (MAGIC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypersensitive response (HR) is the most visible and arguably the most important defense response in plants, although the details of how it is controlled and executed remain patchy. In this paper a novel genetic technique called MAGIC (Mutant-Assisted Gene Identification and Characterization) i...

  1. Identification of microRNA Genes in Three Opisthorchiids

    PubMed Central

    Ovchinnikov, Vladimir Y.; Afonnikov, Dmitry A.; Vasiliev, Gennady V.; Kashina, Elena V.; Sripa, Banchob; Mordvinov, Viacheslav A.; Katokhin, Alexey V.

    2015-01-01

    Background Opisthorchis felineus, O. viverrini, and Clonorchis sinensis (family Opisthorchiidae) are parasitic flatworms that pose a serious threat to humans in some countries and cause opisthorchiasis/clonorchiasis. Chronic disease may lead to a risk of carcinogenesis in the biliary ducts. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression at post-transcriptional level and are implicated in the regulation of various cellular processes during the parasite- host interplay. However, to date, the miRNAs of opisthorchiid flukes, in particular those essential for maintaining their complex biology and parasitic mode of existence, have not been satisfactorily described. Methodology/Principal Findings Using a SOLiD deep sequencing-bioinformatic approach, we identified 43 novel and 18 conserved miRNAs for O. felineus (miracidia, metacercariae and adult worms), 20 novel and 16 conserved miRNAs for O. viverrini (adult worms), and 33 novel and 18 conserved miRNAs for C. sinensis (adult worms). The analysis of the data revealed differences in the expression level of conserved miRNAs among the three species and among three the developmental stages of O. felineus. Analysis of miRNA genes revealed two gene clusters, one cluster-like region and one intronic miRNA in the genome. The presence and structure of the two gene clusters were validated using a PCR-based approach in the three flukes. Conclusions This study represents a comprehensive description of miRNAs in three members of the family Opistorchiidae, significantly expands our knowledge of miRNAs in multicellular parasites and provides a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites. Results of this study also provides novel resources for deeper understanding the complex parasite biology, for further research on the pathogenesis and molecular events of disease induced by the liver flukes. The present data may also facilitate the development of novel

  2. Structure of the human retinoblastoma gene

    SciTech Connect

    Hong, F.D.; Huang, Hueijen S.; To, Hoang; Young, Lihjiuan S.; Oro, A.; Bookstein, R.; Lee, E.Y.H.P.; Lee, Wenhwa )

    1989-07-01

    Complete inactivation of the human retinoblastoma gene (RB) is believed to be an essential step in tumorigenesis of several different cancers. To provide a framework for understanding inactivation mechanisms, the structure of RB was delineated. The RB transcript is encoded in 27 exons dispersed over about 200 kilobases (kb) of genomic DNA. The length of individual exons ranges from 31 to 1,889 base pairs (bp). The largest intron spans >60 kb and the smallest one has only 80 bp. Deletion of exons 13-17 is frequently observed in various types of tumors, including retinoblastoma, breast cancer, and osteosarcoma, and the presence of a potential hot spot for recombination in the region is predicted. A putative leucine-zipper motif is exclusively encoded by exon 20. The detailed RB structure presented should prove useful in defining potential functional domains of its encoded protein. Transcription of RB is initiated at multiple positions and the sequences surrounding the initiation sites have a high G+C content. A typical upstream TATA box is not present. Localization of the RB promoter region was accomplished by utilizing a heterologous expression system containing a bacterial chloramphenicol acetyltransferase gene. Deletion analysis revealed that a region as small as 70 bp is sufficient for RB promoter activity, similar to other previously characterized G+C-rich gene promoters. Several direct repeats and possible stem-and-loop structures are found in the promoter region.

  3. Frequency domain identification experiment on a large flexible structure

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Hadaegh, F. Y.; Yam, Y.; Scheid, R. E.; Mettler, E.; Milman, M. H.

    1989-01-01

    Recent experiences in the field of flexible structure control in space have indicated a need for on-orbit system identification to support robust control redesign to avoid in-flight instabilities and maintain high spacecraft performance. The authors highlight an automated frequency domain system identification methodology recently developed to fill this need. The methodology supports (1) the estimation of system quantities useful for robust control analysis and design, (2) experiment design tailored to performing system identification in a typically constrained on-orbit environment, and (3) the automation of operations to reduce human-in-the-loop requirements. A basic overview of the methodology is presented first, followed by an experimental verification of the approach performed on the JPL/AFAL testbed facility.

  4. A Benchmark Problem for Development of Autonomous Structural Modal Identification

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woodard, Stanley E.; Juang, Jer-Nan

    1996-01-01

    This paper summarizes modal identification results obtained using an autonomous version of the Eigensystem Realization Algorithm on a dynamically complex, laboratory structure. The benchmark problem uses 48 of 768 free-decay responses measured in a complete modal survey test. The true modal parameters of the structure are well known from two previous, independent investigations. Without user involvement, the autonomous data analysis identified 24 to 33 structural modes with good to excellent accuracy in 62 seconds of CPU time (on a DEC Alpha 4000 computer). The modal identification technique described in the paper is the baseline algorithm for NASA's Autonomous Dynamics Determination (ADD) experiment scheduled to fly on International Space Station assembly flights in 1997-1999.

  5. Genome-level identification, gene expression, and comparative analysis of porcine ß-defensin genes

    PubMed Central

    2012-01-01

    Background Beta-defensins (β-defensins) are innate immune peptides with evolutionary conservation across a wide range of species and has been suggested to play important roles in innate immune reactions against pathogens. However, the complete β-defensin repertoire in the pig has not been fully addressed. Result A BLAST analysis was performed against the available pig genomic sequence in the NCBI database to identify β-defensin-related sequences using previously reported β-defensin sequences of pigs, humans, and cattle. The porcine β-defensin gene clusters were mapped to chromosomes 7, 14, 15 and 17. The gene expression analysis of 17 newly annotated porcine β-defensin genes across 15 tissues using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed differences in their tissue distribution, with the kidney and testis having the largest pBD expression repertoire. We also analyzed single nucleotide polymorphisms (SNPs) in the mature peptide region of pBD genes from 35 pigs of 7 breeds. We found 8 cSNPs in 7 pBDs. Conclusion We identified 29 porcine β-defensin (pBD) gene-like sequences, including 17 unreported pBDs in the porcine genome. Comparative analysis of β-defensin genes in the pig genome with those in human and cattle genomes showed structural conservation of β-defensin syntenic regions among these species. PMID:23150902

  6. A phylogenetic approach to the identification of phosphoglucomutase genes.

    PubMed

    Whitehouse, D B; Tomkins, J; Lovegrove, J U; Hopkinson, D A; McMillan, W O

    1998-04-01

    The expanding molecular database provides unparalleled opportunities for characterizing genes and for studying groups of related genes. We use sequences drawn from the database to construct an evolutionary framework for examining the important glycolytic enzyme phosphoglucomutase (PGM). Phosphoglucomutase plays a pivotal role in the synthesis and utilization of glycogen and is present in all organisms. In humans, there are three well-described isozymes, PGMI, PGM2, and PGM3. PGM1 was cloned 5 years ago; however, repeated attempts using both immunological approaches and molecular probes designed from PGM1 have failed to isolate either PGM2 or PGM3. Using a phylogenetic strategy, we first identified 47 highly divergent prokaryotic and eukaryotic PGM-like sequences from the database. Although overall amino acid identity often fell below 20%, the relative order, position, and sequence of three structural motifs, the active site and the magnesium--and sugar-binding sites, were conserved in all 47 sequences. The phylogenetic history of these sequences was complex and marked by duplications and translocations; two instances of transkingdom horizontal gene transfer were identified. Nonetheless, the sequences fell within six well-defined evolutionary lineages, three of which contained only prokaryotes. Of the two prokaryotic/eukaryotic lineages, one contained bacterial, yeast, slimemold, invertebrate, and vertebrate homologs to human PGM1 and the second contained likely homologs to human PGM2. Indeed, an amino acid sequence, derived from a partial human cDNA, that fell within the second cross-kingdom lineage bears several characteristics expected for PGM2. A third lineage may contain homologs to human PGM3. On a general level, our phylogenetic-based approach shows promise for the further utilization of the extensive molecular database. PMID:9549096

  7. Gene Expression Analysis for the Identification of Genes Involved in Early Tumour Development

    NASA Astrophysics Data System (ADS)

    Forte, Stefano; Scarpulla, Salvatore; Lagana, Alessandro; Memeo, Lorenzo; Gulisano, Massimo

    Prostatic tissues can undergo to cancer insurgence and prostate cancer is one of the most common types of malignancies affecting adult men in the United States. Primary adenocarcinoma of the seminal vesi-cles (SVCA) is a very rare neoplasm with only 48 histologically confirmed cases reported in the European and United States literature. Prostatic tissues, seminal vesicles and epididymis belongs all to the same microenvironment, shows a very close morphology and share the same embryological origin. Despite these common features the rate of cancer occurrence is very different. The understanding of molecular differences between non neoplastic prostatic tissues and non neoplastic epididymis or seminal vesicles may suggest potential mechanisms of resistance to tumour occurrence. The comparison of expression patterns of non neoplastic prostatic and seminal vesicles tissues to identify differentially expressed genes can help researchers in the identification of biological actors involved in the early stages of the tumour development.

  8. Identification, isolation, and analysis of a gene cluster involved in iron acquisition by Pseudomonas mendocina ymp

    PubMed Central

    Awaya, Jonathan D.

    2013-01-01

    Microbial acquisition of iron from natural sources in aerobic environments is a little-studied process that may lead to mineral instability and trace metal mobilization. Pseudomonas mendocina ymp was isolated from the Yucca Mountain Site for long-term nuclear waste storage. Its ability to solubilize a variety of Fe-containing minerals under aerobic conditions has been previously investigated but its molecular and genetic potential remained uncharacterized. Here, we have shown that the organism produces a hydroxamate and not a catecholate-based siderophore that is synthesized via non-ribosomal peptide synthetases. Gene clustering patterns observed in other Pseudomonads suggested that hybridizing multiple probes to the same library could allow for the identification of one or more clusters of syntenic siderophore-associated genes. Using this approach, two independent clusters were identified. An unfinished draft genome sequence of P. mendocina ymp indicated that these mapped to two independent contigs. The sequenced clusters were investigated informatically and shown to contain respectively a potentially complete set of genes responsible for siderophore biosynthesis, uptake, and regulation, and an incomplete set of genes with low individual homology to siderophore-associated genes. A mutation in the cluster’s pvdA homolog (pmhA) resulted in a siderophore-null phenotype, which could be reversed by complementation. The organism likely produces one siderophore with possibly different isoforms and a peptide backbone structure containing seven residues (predicted sequence: Acyl-Asp-Dab-Ser-fOHOrn-Ser-fOHorn). A similar approach could be applied for discovery of Fe− and siderophore-associated genes in unsequenced or poorly annotated organisms. PMID:18058194

  9. Identification, phylogeny, and transcript of chitinase family genes in sugarcane.

    PubMed

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4 °C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function.

  10. Identification of the sex genes in an early diverged fungus.

    PubMed

    Idnurm, Alexander; Walton, Felicia J; Floyd, Anna; Heitman, Joseph

    2008-01-10

    Sex determination in fungi is controlled by a small, specialized region of the genome in contrast to the large sex-specific chromosomes of animals and some plants. Different gene combinations reside at these mating-type (MAT) loci and confer sexual identity; invariably they encode homeodomain, alpha-box, or high mobility group (HMG)-domain transcription factors. So far, MAT loci have been characterized from a single monophyletic clade of fungi, the Dikarya (the ascomycetes and basidiomycetes), and the ancestral state and evolutionary history of these loci have remained a mystery. Mating in the basal members of the kingdom has been less well studied, and even their precise taxonomic inter-relationships are still obscure. Here we apply bioinformatic and genetic mapping to identify the sex-determining (sex) region in Phycomyces blakesleeanus (Zygomycota), which represents an early branch within the fungi. Each sex allele contains a single gene that encodes an HMG-domain protein, implicating the HMG-domain proteins as an earlier form of fungal MAT loci. Additionally, one allele also contains a copy of a unique, chromosome-specific repetitive element, suggesting a generalized mechanism for the earliest steps in the evolution of sex determination and sex chromosome structure in eukaryotes.

  11. Identification, Phylogeny, and Transcript of Chitinase Family Genes in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4 °C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  12. Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance

    PubMed Central

    Saand, Mumtaz A.; Xu, You-Ping; Li, Wen; Wang, Ji-Peng; Cai, Xin-Zhong

    2015-01-01

    The cyclic nucleotide gated channel (CNGC) is suggested to be one of the important calcium conducting channels. Nevertheless, genome-wide identification and systemic functional analysis of CNGC gene family in crop plant species have not yet been conducted. In this study, we performed genome-wide identification of CNGC gene family in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of the group IVb SlCNGC genes in disease resistance. Eighteen CNGC genes were identified in tomato genome, and four CNGC loci that were misannotated at database were corrected by cloning and sequencing. Detailed bioinformatics analyses on gene structure, domain composition and phylogenetic relationship of the SlCNGC gene family were conducted and the group-specific feature was revealed. Comprehensive expression analyses demonstrated that SlCNGC genes were highly, widely but differently responsive to diverse stimuli. Pharmacological assays showed that the putative CNGC activators cGMP and cAMP enhanced resistance against Sclerotinia sclerotiorum. Silencing of group IVb SlCNGC genes significantly enhanced resistance to fungal pathogens Pythium aphanidermatum and S. sclerotiorum, strongly reduced resistance to viral pathogen Tobacco rattle virus, while attenuated PAMP- and DAMP-triggered immunity as shown by obvious decrease of the flg22- and AtPep1-elicited hydrogen peroxide accumulation in SlCNGC-silenced plants. Additionally, silencing of these SlCNGC genes significantly altered expression of a set of Ca2+ signaling genes including SlCaMs, SlCDPKs, and SlCAMTA3. Collectively, our results reveal that group IV SlCNGC genes regulate a wide range of resistance in tomato probably by affecting Ca2+ signaling. PMID:25999969

  13. Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis).

    PubMed

    Tao, P; Guo, W L; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-10-05

    Small heat shock proteins (sHSPs) are essential for the plant's normal development and stress responses, especially the heat stress response. The information regarding sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis) is sparse, hence we performed a genome-wide analysis to identify sHSP genes in this species. We identified 26 non-redundant sHSP genes distributed on all chromosomes, except chromosome A7, with one additional sHSP gene identified from an expressed sequence tag library. Chinese cabbage was found to contain more sHSP genes than Arabidopsis. The 27 sHSP genes were classified into 11 subfamilies. We identified 22 groups of sHSP syntenic orthologous genes between Chinese cabbage and Arabidopsis. In addition, eight groups of paralogous genes were uncovered in Chinese cabbage. Protein structures of the 27 Chinese cabbage sHSPs were modeled using Phyre2, which revealed that all of them contain several conserved β strands across different subfamilies. In general, gene structure was conserved within each subfamily between Chinese cabbage and Arabidopsis, except for peroxisome sHSP. Analysis of promoter motifs showed that most sHSP genes contain heat shock elements or variants. We also found that biased gene loss has occurred during the evolution of the sHSP subfamily in Chinese cabbage. Expression analysis indicated that the greatest transcript abundance of most Chinese cabbage sHSP genes was found in siliques and early cotyledon embryos. Thus, genome-wide identification and characterization of sHSP genes is a first and important step in the investigation of sHSPs in Chinese cabbage.

  14. Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis).

    PubMed

    Tao, P; Guo, W L; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-01-01

    Small heat shock proteins (sHSPs) are essential for the plant's normal development and stress responses, especially the heat stress response. The information regarding sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis) is sparse, hence we performed a genome-wide analysis to identify sHSP genes in this species. We identified 26 non-redundant sHSP genes distributed on all chromosomes, except chromosome A7, with one additional sHSP gene identified from an expressed sequence tag library. Chinese cabbage was found to contain more sHSP genes than Arabidopsis. The 27 sHSP genes were classified into 11 subfamilies. We identified 22 groups of sHSP syntenic orthologous genes between Chinese cabbage and Arabidopsis. In addition, eight groups of paralogous genes were uncovered in Chinese cabbage. Protein structures of the 27 Chinese cabbage sHSPs were modeled using Phyre2, which revealed that all of them contain several conserved β strands across different subfamilies. In general, gene structure was conserved within each subfamily between Chinese cabbage and Arabidopsis, except for peroxisome sHSP. Analysis of promoter motifs showed that most sHSP genes contain heat shock elements or variants. We also found that biased gene loss has occurred during the evolution of the sHSP subfamily in Chinese cabbage. Expression analysis indicated that the greatest transcript abundance of most Chinese cabbage sHSP genes was found in siliques and early cotyledon embryos. Thus, genome-wide identification and characterization of sHSP genes is a first and important step in the investigation of sHSPs in Chinese cabbage. PMID:26505345

  15. [Identification of Sorghum genes responsible for resistance to Green bug].

    PubMed

    Radchenko, E E

    2000-04-01

    Genes responsible for resistance to greenbug (Schizaphis graminum Rond.) were identified in sorghum. The dominant (Sgr1) and recessive (Sgr2) genes for resistance were revealed in sample k-457 (PI264453, United States). The samples i-589430 (PI264453, Spain) and k-3852 (Sarvasi, Hungary) carry gene Sgr1. These accessions are assumed to also have gene Sgr2. The samples k-9921 (Shallu, United States) and k-9922 (KS-30, United States) have incompletely dominant resistance gene Sgr3. A symbol Sgr4 was assigned to the dominant gene from sample k-6694 (Deer, United States). The dominant Sgr5 and recessive Sgr6 genes were revealed in the samples k-1362 (Durra Belaya, Syria) and k-1240 (Dzhugara Belaya, China). The cultivar Sorgogradskoe (k-9436, Rostovskaya oblast) has gene Sgr5. The samples k-10092 (Odesskii 360, Ukraine) and k-5091 (Cherhata, Marocco) are assumed to have genes Sgr5 and Sgr6. Sample k-924 (Dzhugara Belaya, China) is protected by the dominant gene Srg7 and recessive gene Sgr8. Sample k-923 (Dzhugara Belaya, China) has at least one of these genes. Two dominant complementary genes for resistance (Sgr9 and Sgr10) were revealed in sample k-930 (Dzhugara Belaya, China). One of two dominant genes of sample k-1237 (Dzhugara Belaya, China) was assigned the symbol Sgr11. Genes Sgr5-Sgr11 responsible for resistance to greenbug are new and were not previously used in breeding. PMID:10822813

  16. Direct structural damping identification method using complex FRFs

    NASA Astrophysics Data System (ADS)

    Arora, Vikas

    2015-03-01

    Most of the identification methods are based only on the viscous damping model and uses modal data. In this paper, a new FRF-based direct structural damping identification method is proposed. The proposed method is a direct method and identifies structural damping matrix explicitly. As the new method is a FRF-based method, it overcomes the problem of closely spaced modes for damping identification. The accuracy of identified structural damping matrix depends upon the accuracy of finite element model. In this paper, FRF-based model updating method is used to obtain accurate mass and stiffness matrices. Thus, the procedure to obtain accurate structural damping matrix is a two-step procedure. In the first step, mass and stiffness matrices are updated and in the second step, structural damping matrix is identified using updated mass and stiffness matrices, which are obtained in the previous step. The effectiveness of the new method is demonstrated by three numerical examples and one experimental example. The numerical studies of lumped mass system, fixed-fixed beam and L-shaped frame structure are carried out. The effects of coordinate incompleteness, ill-conditioning and robustness of method under presence of noise are investigated. The proposed method is able to predict FRFs accurately for the frequency range covering the modes considered. However, beyond the considered modes, the predicted FRFs do not match the experimental FRFs. It is suggested in this work that ill-conditioning problem should be dealt by considering all the modes in the frequency range of interest. The performance of the proposed method is investigated for cases of light, medium and heavily damped structures. The numerical studies are followed by experimental case study of cantilever beam structure. The effectiveness of the proposed method is evaluated by comparing the predicted and the experimental FRFs. The results have shown that the proposed method is able to predict accurately the

  17. Identification of Secondary Structure Elements in Intermediate Resolution Density Maps

    PubMed Central

    Baker, Matthew L.; Ju, Tao; Chiu, Wah

    2007-01-01

    An increasing number of structural studies of large macromolecular complexes, both in X-ray crystallography and electron cryomicroscopy, have resulted in intermediate resolution (5–10 Å) structures. Despite being limited in resolution, significant structural and functional information may be extractable from these maps. To aid in the analysis and annotation of these complexes, we have developed SSEhunter, a tool for the quantitative detection of α-helices and β-sheets. Based on density skeletonization, local geometry calculations and a template-based search, SSEhunter has been tested and validated on a variety of simulated and authentic subnanometer resolution density maps. The result is a robust, user-friendly approach that allows users to quickly visualize, assess and annotate intermediate resolution density maps. Beyond secondary structure element identification, the skeletonization algorithm in SSEhunter provides secondary structure topology, potentially useful in leading to structural models of individual molecular components directly from the density. PMID:17223528

  18. Simultaneous identification of duplications and lateral gene transfers.

    PubMed

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens

    2011-01-01

    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  19. Chromosomal Anomalies in Individuals with Autism: A Strategy Towards the Identification of Genes Involved in Autism

    ERIC Educational Resources Information Center

    Castermans, Dries; Wilquet, Valerie; Steyaert, Jean; van de Ven, Wim; Fryns, Jean-Pierre; Devriendt, Koen

    2004-01-01

    We review the different strategies currently used to try to identify susceptibility genes for idiopathic autism. Although identification of genes is usually straightforward in Mendelian disorders, it has proved to be much more difficult to establish in polygenic disorders like autism. Neither genome screens of affected siblings nor the large…

  20. Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor

    DOEpatents

    Smith, Desmond J.; Rubin, Edward M.

    2000-01-01

    A a diagnostic test useful for prenatal identification of Down syndrome and mental retardation. A method for gene therapy for correction and treatment of Down syndrome. DYRK gene involved in the ability to learn. A method for diagnosing Down's syndrome and mental retardation and an assay therefor. A pharmaceutical composition for treatment of Down's syndrome mental retardation.

  1. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus.

    PubMed

    Liu, Wei; Fu, Rao; Li, Qiang; Li, Jing; Wang, Lina; Ren, Zhonghai

    2013-12-01

    The HD-Zip proteins comprise one of the largest families of transcription factors in plants. HD-Zip genes have been grouped into four different classes: HD-Zip I to IV. In this study, we described the identification and structural characterization of Class I HD-Zip genes in cucumber. A complete set of 13 HD-Zip I genes were identified in the cucumber genome using Blast search tools and phylogeny. The cucumber HD-Zip I family contained a smaller number of identified genes compared to other higher plants such as Arabidopsis and maize due to the absence of recent gene duplication events. Chromosomal location of these genes revealed that they are distributed unevenly across 5 of 7 chromosomes. Tissue-specific expression profiles showed that 13 cucumber HD-Zip I genes were expressed in at least one of the tissues, which suggested that cucumber HD-Zip I genes took part in many cellular processes. The transcript abundance level analysis during abiotic stress conditions (NaCl, ABA and low temperature treatments) identified a group of HD-Zip I genes that responded to one or more treatments.

  2. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA. PMID:27664732

  3. Identification of STAT5A and STAT5B target genes in human T cells.

    PubMed

    Kanai, Takahiro; Seki, Scott; Jenks, Jennifer A; Kohli, Arunima; Kawli, Trupti; Martin, Dorrelyn Patacsil; Snyder, Michael; Bacchetta, Rosa; Nadeau, Kari C

    2014-01-01

    Signal transducer and activator of transcription (STAT) comprises a family of universal transcription factors that help cells sense and respond to environmental signals. STAT5 refers to two highly related proteins, STAT5A and STAT5B, with critical function: their complete deficiency is lethal in mice; in humans, STAT5B deficiency alone leads to endocrine and immunological problems, while STAT5A deficiency has not been reported. STAT5A and STAT5B show peptide sequence similarities greater than 90%, but subtle structural differences suggest possible non-redundant roles in gene regulation. However, these roles remain unclear in humans. We applied chromatin immunoprecipitation followed by DNA sequencing using human CD4(+) T cells to detect candidate genes regulated by STAT5A and/or STAT5B, and quantitative-PCR in STAT5A or STAT5B knock-down (KD) human CD4(+) T cells to validate the findings. Our data show STAT5A and STAT5B play redundant roles in cell proliferation and apoptosis via SGK1 interaction. Interestingly, we found a novel, unique role for STAT5A in binding to genes involved in neural development and function (NDRG1, DNAJC6, and SSH2), while STAT5B appears to play a distinct role in T cell development and function via DOCK8, SNX9, FOXP3 and IL2RA binding. Our results also suggest that one or more co-activators for STAT5A and/or STAT5B may play important roles in establishing different binding abilities and gene regulation behaviors. The new identification of these genes regulated by STAT5A and/or STAT5B has major implications for understanding the pathophysiology of cancer progression, neural disorders, and immune abnormalities. PMID:24497979

  4. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.

  5. Identification of candidates for human disease genes using large-scale PCR mapping of gene-based STSs

    SciTech Connect

    Berry, R.; Stevens, T.J.; Wilcox, A.S.

    1994-09-01

    We have developed a strategy for the rapid identification of possible human disease/syndrome genes. Using this procedure we found candidates for 45 human disease/syndrome genes from the first 200 genes mapped. New human genes are identified through automated single-pass sequencing into the 3{prime} untranslated (3{prime}UT) regions of human cDNAs. Primers derived from the 3{prime}UT region sequences, representing gene-based STSs, are used for PCR analyses of the CEPH megabase YAC DNA pools. With this approach {approximately}18,000 megabase YACs can be screened and a single YAC identified using only 52 PCR reactions. The YAC localization in conjunction with other mapping approaches, such as PCR mapping to chromosomes by means of somatic hybrids, allows mapping to chromosomal band locations. In this manner, each gene can be associated with its own STS which in turn specifies both a corresponding genomic clone and a specific location in the genome. These locations can be compared to purported locations of disease genes listed in Online Mendelian Inheritance in Man. Using our current collection of >3,000 human brain cDNA sequences as a resource, we have carried out a proof of principle study in which {approximately}200 cDNAs were mapped to YACs within a few months. Appropriate scale up of this strategy could permit mapping of most human genes and identification of many candidate disease genes over the next few years.

  6. An Approach for the Identification of Targets Specific to Bone Metastasis Using Cancer Genes Interactome and Gene Ontology Analysis

    PubMed Central

    Vashisht, Shikha; Bagler, Ganesh

    2012-01-01

    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a ‘Cancer Genes Network’, a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of ‘Cancer Genes Network’, have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer. PMID:23166660

  7. Identification of local variations within secondary structures of proteins.

    PubMed

    Kumar, Prasun; Bansal, Manju

    2015-05-01

    Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php.

  8. Identification of local variations within secondary structures of proteins.

    PubMed

    Kumar, Prasun; Bansal, Manju

    2015-05-01

    Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php. PMID:25945573

  9. Parameter identification of material constants in a composite shell structure

    SciTech Connect

    Martinez, D.R.; Carne, T.G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently, comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test-verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. In this work a parameter identification procedure was used to determine the elastic constants of a cylindrical, graphite epoxy composite shell. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem. 17 refs., 7 figs.

  10. Structure identification methods for atomistic simulations of crystalline materials

    DOE PAGES

    Stukowski, Alexander

    2012-05-28

    Here, we discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as common neighbor analysis (CNA), centrosymmetry analysis, bond angle analysis, bond order analysis and Voronoi analysis. In addition we propose a simple extension to the CNA method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.

  11. An adaptive identification and control scheme for large space structures

    NASA Technical Reports Server (NTRS)

    Carroll, J. V.

    1988-01-01

    A unified identification and control scheme capable of achieving space at form performance objectives under nominal or failure conditions is described. Preliminary results are also presented, showing that the methodology offers much promise for effective robust control of large space structures. The control method is a multivariable, adaptive, output predictive controller called Model Predictive Control (MPC). MPC uses a state space model and input reference trajectories of set or tracking points to adaptively generate optimum commands. For a fixed model, MPC processes commands with great efficiency, and is also highly robust. A key feature of MPC is its ability to control either nonminimum phase or open loop unstable systems. As an output controller, MPC does not explicitly require full state feedback, as do most multivariable (e.g., Linear Quadratic) methods. Its features are very useful in LSS operations, as they allow non-collocated actuators and sensors. The identification scheme is based on canonical variate analysis (CVA) of input and output data. The CVA technique is particularly suited for the measurement and identification of structural dynamic processes - that is, unsteady transient or dynamically interacting processes such as between aerodynamics and structural deformation - from short, noisy data. CVA is structured so that the identification can be done in real or near real time, using computationally stable algorithms. Modeling LSS dynamics in 1-g laboratories has always been a major impediment not only to understanding their behavior in orbit, but also to controlling it. In cases where the theoretical model is not confirmed, current methods provide few clues concerning additional dynamical relationships that are not included in the theoretical models. CVA needs no a priori model data, or structure; all statistically significant dynamical states are determined using natural, entropy-based methods. Heretofore, a major limitation in applying adaptive

  12. Survival prediction and gene identification with penalized global AUC maximization.

    PubMed

    Liu, Zhenqiu; Gartenhaus, Ronald B; Chen, Xue-Wen; Howell, Charles D; Tan, Ming

    2009-12-01

    Identifying genes (biomarkers) and predicting the clinical outcomes with censored survival times are important for cancer prognosis and pathogenesis. In this article, we propose a novel method with L(1) penalized global AUC summary maximization (L(1)GAUCS). The L(1)GAUCS method is developed for simultaneous gene (feature) selection and survival prediction. L(1) penalty shrinks coefficients and produces some coefficients that are exactly zero, and therefore selects a small subset of genes (features). It is a well-known fact that many genes are highly correlated in gene expression data and the highly correlated genes may function together. We, therefore, define a correlation measure to identify those genes such that their expression level may be low but they are highly correlated with the downstream highly expressed genes selected with L(1)GAUCS. Partial pathways associated with the correlated genes are identified with DAVID (http://david.abcc.ncifcrf.gov/). Experimental results with chemotherapy and gene expression data demonstrate that the proposed procedures can be used for identifying important genes and pathways that are related to time to death due to cancer and for building a parsimonious model for predicting the survival of future patients. Software is available upon request from the first author.

  13. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  14. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family. PMID:26440085

  15. Systematic identification and integrative analysis of novel genes expressed specifically or predominantly in mouse epididymis

    PubMed Central

    Oh, Jungsu; Lee, Jiae; Woo, Jong-Min; Choi, Eunyoung; Park, Inju; Han, Cecil; Baek, Namhoe; Lee, Hoyong; Kim, Do Han; Cho, Chunghee

    2006-01-01

    Background Maturation of spermatozoa, including development of motility and the ability to fertilize the oocyte, occurs during transit through the microenvironment of the epididymis. Comprehensive understanding of sperm maturation requires identification and characterization of unique genes expressed in the epididymis. Results We systematically identified 32 novel genes with epididymis-specific or -predominant expression in the mouse epididymis UniGene library, containing 1505 gene-oriented transcript clusters, by in silico and in vitro analyses. The Northern blot analysis revealed various characteristics of the genes at the transcript level, such as expression level, size and the presence of isoform. We found that expression of the half of the genes is regulated by androgens. Further expression analyses demonstrated that the novel genes are region-specific and developmentally regulated. Computational analysis showed that 15 of the genes lack human orthologues, suggesting their implication in male reproduction unique to the mouse. A number of the novel genes are putative epididymal protease inhibitors or β-defensins. We also found that six of the genes have secretory activity, indicating that they may interact with sperm and have functional roles in sperm maturation. Conclusion We identified and characterized 32 novel epididymis-specific or -predominant genes by an integrative approach. Our study is unique in the aspect of systematic identification of novel epididymal genes and should be a firm basis for future investigation into molecular mechanisms underlying sperm maturation in the epididymis. PMID:17166261

  16. Identification of cellular senescence-specific genes by comparative transcriptomics

    PubMed Central

    Nagano, Taiki; Nakano, Masayuki; Nakashima, Akio; Onishi, Kengo; Yamao, Shunsuke; Enari, Masato; Kikkawa, Ushio; Kamada, Shinji

    2016-01-01

    Cellular senescence is defined as permanent cell cycle arrest induced by various stresses. Although the p53 transcriptional activity is essential for senescence induction, the downstream genes that are crucial for senescence remain unsolved. Here, by using a developed experimental system in which cellular senescence or apoptosis is induced preferentially by altering concentration of etoposide, a DNA-damaging drug, we compared gene expression profiles of senescent and apoptotic cells by microarray analysis. Subtraction of the expression profile of apoptotic cells identified 20 genes upregulated specifically in senescent cells. Furthermore, 6 out of 20 genes showed p53-dependent upregulation by comparing gene expression between p53-proficient and -deficient cells. These 6 genes were also upregulated during replicative senescence of normal human diploid fibroblasts, suggesting that upregulation of these genes is a general phenomenon in senescence. Among these genes, 2 genes (PRODH and DAO) were found to be directly regulated by p53, and ectopic expression of 4 genes (PRODH, DAO, EPN3, and GPR172B) affected senescence phenotypes induced by etoposide treatment. Collectively, our results identified several proteins as novel downstream effectors of p53-mediated senescence and provided new clues for further research on the complex signalling networks underlying the induction and maintenance of senescence. PMID:27545311

  17. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  18. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  19. An online substructure identification method for local structural health monitoring

    NASA Astrophysics Data System (ADS)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  20. Modal identification experiment design for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Doiron, Harold H.

    1991-01-01

    This paper describes an on-orbit modal identification experiment design for large space structures. Space Station Freedom (SSF) systems design definition and structural dynamic models were used as representative large space structures for optimizing experiment design. Important structural modes of study models were selected to provide a guide for experiment design and used to assess the design performance. A pulsed random excitation technique using propulsion jets was developed to identify closely-spaced modes. A measuremenat location selection approach was developed to estimate accurate mode shapes as well as frequencies and damping factors. The data acquisition system and operational scenarios were designed to have minimal impacts on the SSF. A comprehensive simulation was conducted to assess the overall performance of the experiment design.

  1. Identification of repeat structure in large genomes using repeat probability clouds.

    PubMed

    Gu, Wanjun; Castoe, Todd A; Hedges, Dale J; Batzer, Mark A; Pollock, David D

    2008-09-01

    The identification of repeat structure in eukaryotic genomes can be time-consuming and difficult because of the large amount of information ( approximately 3 x 10(9) bp) that needs to be processed and compared. We introduce a new approach based on exact word counts to evaluate, de novo, the repeat structure present within large eukaryotic genomes. This approach avoids sequence alignment and similarity search, two of the most time-consuming components of traditional methods for repeat identification. Algorithms were implemented to efficiently calculate exact counts for any length oligonucleotide in large genomes. Based on these oligonucleotide counts, oligonucleotide excess probability clouds, or "P-clouds," were constructed. P-clouds are composed of clusters of related oligonucleotides that occur, as a group, more often than expected by chance. After construction, P-clouds were mapped back onto the genome, and regions of high P-cloud density were identified as repetitive regions based on a sliding window approach. This efficient method is capable of analyzing the repeat content of the entire human genome on a single desktop computer in less than half a day, at least 10-fold faster than current approaches. The predicted repetitive regions strongly overlap with known repeat elements as well as other repetitive regions such as gene families, pseudogenes, and segmental duplicons. This method should be extremely useful as a tool for use in de novo identification of repeat structure in large newly sequenced genomes.

  2. Identification of druggable cancer driver genes amplified across TCGA datasets.

    PubMed

    Chen, Ying; McGee, Jeremy; Chen, Xianming; Doman, Thompson N; Gong, Xueqian; Zhang, Youyan; Hamm, Nicole; Ma, Xiwen; Higgs, Richard E; Bhagwat, Shripad V; Buchanan, Sean; Peng, Sheng-Bin; Staschke, Kirk A; Yadav, Vipin; Yue, Yong; Kouros-Mehr, Hosein

    2014-01-01

    The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 16 cancer subtypes and identified 486 genes that were amplified in two or more datasets. The list was narrowed to 75 cancer-associated genes with potential "druggable" properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 42 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 42 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapters GRB2 and GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer

  3. Statistical damage identification of structures with frequency changes

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Hao, Hong

    2003-06-01

    Model updating methods based on structural vibration data have being rapidly developed and applied to detect structural damage in civil engineering. But uncertainties existing in the structural model and measured vibration data might lead to unreliable damage detection. In this paper a statistical damage identification algorithm based on frequency changes is developed to account for the effects of random noise in both the vibration data and finite element model. The structural stiffness parameters in the intact state and damaged state are, respectively, derived with a two-stage model updating process. The statistics of the parameters are estimated by the perturbation method and verified by Monte Carlo technique. The probability of damage existence is then estimated based on the probability density functions of the parameters in the two states. A higher probability statistically implies a more likelihood of damage occurrence. The presented technique is applied to detect damages in a numerical cantilever beam and a laboratory tested steel cantilever plate. The effects of using different number of modal frequencies, noise level and damage level on damage identification results are also discussed.

  4. Prospective calculation of identification power for individual genes in analyses controlling the false discovery rate.

    PubMed

    Crager, Michael R

    2012-12-01

    Recent work on prospective power and sample size calculations for analyses of high-dimension gene expression data that control the false discovery rate (FDR) focuses on the average power over all the truly nonnull hypotheses, or equivalently, the expected proportion of nonnull hypotheses rejected. Using another characterization of power, we adapt Efron's ([2007] Ann Stat 35:1351-1377) empirical Bayes approach to post hoc power calculation to develop a method for prospective calculation of the "identification power" for individual genes. This is the probability that a gene with a given true degree of association with clinical outcome or state will be included in a set within which the FDR is controlled at a specified level. An example calculation using proportional hazards regression highlights the effects of large numbers of genes with little or no association on the identification power for individual genes with substantial association.

  5. Identification and Functional Analysis of the Nocardithiocin Gene Cluster in Nocardia pseudobrasiliensis

    PubMed Central

    Sakai, Kanae; Komaki, Hisayuki; Gonoi, Tohru

    2015-01-01

    Nocardithiocin is a thiopeptide compound isolated from the opportunistic pathogen Nocardia pseudobrasiliensis. It shows a strong activity against acid-fast bacteria and is also active against rifampicin-resistant Mycobacterium tuberculosis. Here, we report the identification of the nocardithiocin gene cluster in N. pseudobrasiliensis IFM 0761 based on conserved thiopeptide biosynthesis gene sequence and the whole genome sequence. The predicted gene cluster was confirmed by gene disruption and complementation. As expected, strains containing the disrupted gene did not produce nocardithiocin while gene complementation restored nocardithiocin production in these strains. The predicted cluster was further analyzed using RNA-seq which showed that the nocardithiocin gene cluster contains 12 genes within a 15.2-kb region. This finding will promote the improvement of nocardithiocin productivity and its derivatives production. PMID:26588225

  6. Evaluation of tRNA Gene PCR for Identification of Mollicutes

    PubMed Central

    Stakenborg, Tim; Vicca, Jo; Verhelst, Rita; Butaye, Patrick; Maes, Dominiek; Naessens, Anne; Claeys, Geert; De Ganck, Catharine; Haesebrouck, Freddy; Vaneechoutte, Mario

    2005-01-01

    We evaluated the applicability of tRNA gene PCR in combination with fluorescent capillary electrophoresis with an ABI310 genetic analyzer (Applied Biosystems, Calif.) for the identification of different mollicute species. A total of 103 strains and DNA extracts of 30 different species belonging to the genera Acholeplasma, Mycoplasma, and Ureaplasma were studied. Reproducible peak profiles were generated for all samples, except for one M. genitalium isolate, the three M. gallisepticum isolates, and 8 of the 24 Ureaplasma cultures, where no amplification could be obtained. Clustering revealed numerous discrepancies compared to the identifications that had been previously obtained by means of biochemical and serological tests. Final identification was obtained by 16S rRNA gene amplification followed by sequence analysis and/or restriction digestion. This confirmed the identification obtained by tRNA gene PCR in all cases. Seven samples yielded an unexpected tRNA gene PCR profile. Sequence analysis of the 16S rRNA genes showed that six of these samples were mixed and that one had a unique sequence that did not match any of the published sequences, pointing to the existence of a not-yet-described species. In conclusion, we found tRNA gene PCR to be a rapid and discriminatory method to correctly identify a large collection of different species of the class of Mollicutes and to recognize not-yet-described groups. PMID:16145107

  7. Identification of genes associated with low furanocoumarin content in grapefruit.

    PubMed

    Chen, Chunxian; Yu, Qibin; Wei, Xu; Cancalon, Paul F; Gmitter, Fred G

    2014-10-01

    Some furanocoumarins in grapefruit (Citrus paradisi) are associated with the so-called grapefruit juice effect. Previous phytochemical quantification and genetic analysis suggested that the synthesis of these furanocoumarins may be controlled by a single gene in the pathway. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of fruit tissues was performed to identify the candidate gene(s) likely associated with low furanocoumarin content in grapefruit. Fifteen tentative differentially expressed fragments were cloned through the cDNA-AFLP analysis of the grapefruit variety Foster and its spontaneous low-furanocoumarin mutant Low Acid Foster. Sequence analysis revealed a cDNA-AFLP fragment, Contig 6, was homologous to a substrate-proved psoralen synthase gene, CYP71A22, and was part of citrus unigenes Cit.3003 and Csi.1332, and predicted genes Ciclev10004717m in mandarin and orange1.1g041507m in sweet orange. The two predicted genes contained the highly conserved motifs at one of the substrate recognition sites of CYP71A22. Digital gene expression profile showed the unigenes were expressed only in fruit and seed. Quantitative real-time PCR also proved Contig 6 was down-regulated in Low Acid Foster. These results showed the differentially expressed Contig 6 was related to the reduced furanocoumarin levels in the mutant. The identified fragment, homologs, unigenes, and genes may facilitate further furanocoumarin genetic study and grapefruit variety improvement. PMID:25756876

  8. Identification of LytSR-regulated genes from Staphylococcus aureus.

    PubMed

    Brunskill, E W; Bayles, K W

    1996-10-01

    In this report, the characterization of a Staphylococcus aureus operon containing two LytSR-regulated genes, lrgA and lrgB, is described. Sequence and mutagenesis studies of these genes suggest that lrgA encodes a murein hydrolase exporter similar to bacteriophage holin proteins while lrgB may encode a protein having murein hydrolase activity. PMID:8824633

  9. Identification of the Key Genes and Pathways in Esophageal Carcinoma

    PubMed Central

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo

    2016-01-01

    Objective. Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods. 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results. A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion. The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  10. Identification and validation of genes affecting aortic lesions in mice.

    PubMed

    Yang, Xia; Peterson, Larry; Thieringer, Rolf; Deignan, Joshua L; Wang, Xuping; Zhu, Jun; Wang, Susanna; Zhong, Hua; Stepaniants, Serguei; Beaulaurier, John; Wang, I-Ming; Rosa, Ray; Cumiskey, Anne-Marie; Luo, Jane Ming-Juan; Luo, Qi; Shah, Kashmira; Xiao, Jianying; Nickle, David; Plump, Andrew; Schadt, Eric E; Lusis, Aldons J; Lum, Pek Yee

    2010-07-01

    Atherosclerosis represents the most significant risk factor for coronary artery disease (CAD), the leading cause of death in developed countries. To better understand the pathogenesis of atherosclerosis, we applied a likeli-hood-based model selection method to infer gene-disease causality relationships for the aortic lesion trait in a segregating mouse population demonstrating a spectrum of susceptibility to developing atherosclerotic lesions. We identified 292 genes that tested causal for aortic lesions from liver and adipose tissues of these mice, and we experimentally validated one of these candidate causal genes, complement component 3a receptor 1 (C3ar1), using a knockout mouse model. We also found that genes identified by this method overlapped with genes progressively regulated in the aortic arches of 2 mouse models of atherosclerosis during atherosclerotic lesion development. By comparing our gene set with findings from public human genome-wide association studies (GWAS) of CAD and related traits, we found that 5 genes identified by our study overlapped with published studies in humans in which they were identified as risk factors for multiple atherosclerosis-related pathologies, including myocardial infarction, serum uric acid levels, mean platelet volume, aortic root size, and heart failure. Candidate causal genes were also found to be enriched with CAD risk polymorphisms identified by the Wellcome Trust Case Control Consortium (WTCCC). Our findings therefore validate the ability of causality testing procedures to provide insights into the mechanisms underlying atherosclerosis development.

  11. Identification of major blast resistance genes in the southern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes in rice play important roles in preventing infections of rice blast fungus, Magnaporthe oryzae. In order to identify more R genes for different rice growing areas in the Southern US, an extensive field survey of the blast fungus was performed from 2012 to 2013. A total of 500 is...

  12. Frequency Response Function Based Damage Identification for Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite

  13. Identification and structural elucidation of ozonation transformation products of estrone

    PubMed Central

    2013-01-01

    Background Quantitative methods for the analysis of contaminants of emerging concern (CECs) are abundant in the scientific literature. However, there are few reports on systematic methods of identification and structural identification of transformation products. For this reason, a new method based on high-resolution mass spectrometry and differential analysis was developed in order to facilitate and accelerate the process of identification and structural elucidation of transformation products CECs. This method was applied to the study of ozonation transformation products (OTPs) of the natural hormone estrone (E1). Results A control compare trend experiment consisting in the comparison of a control sample to several samples having been exposed to decreasing concentrations of O3(aq) indicated that 593 peaks could be associated with OTPs. After applying various filters to remove background noise, sample contaminants and signal spikes, this data set was reduced to 16 candidate peaks. By inspection of the shape of these peaks, only two compounds OTP-276 (m/z 275.12930) and OTP-318 (m/z 317.14008) were considered as good candidates for further study. Multi-stage tandem mass spectrometry (MSn) experiments of SPE extracts of the ozonated samples of E1 and of a deuterium-labeled analogue (E1-d4) showed that OTP-276 and OTP-318 had carboxylic acid and hydroxyl functional groups, as previously reported for OTPs of other hormones. Structures for these two compounds were proposed based on their MSn spectra. Conclusion These results indicate that the method proposed is a systematic and rapid approach to study transformation products of CECs. PMID:23618537

  14. Parameter identification of material constants in a composite shell structure

    NASA Technical Reports Server (NTRS)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  15. Modeling and identification of flexible joints in vehicle structures

    NASA Astrophysics Data System (ADS)

    Lee, Kwangju

    A simple, design-oriented model of joints in vehicle structures is developed. This model accounts for the flexibility, the offsets of rotation centers of joint branches, and the coupling between rotations of a joint branch in different planes. The model parameters consist of torsional spring rates, the coordinates of the flexible hinges, and the orientations of planes in which the torsional springs are located. The model parameters are selected to be physically meaningful. In some cases, the behavior of joints can be accurately represented by using simpler models. The conditions under which the joint model can be simplified are discussed. A family of joint models with different levels of complexity are also defined. A probabilistic system identification is used to estimate the joint parameters by using the measured displacements. The parameters are estimated by minimizing the discrepancies between the measured and predicted displacements. Statistical tests which identify important parameters are also presented. These tests can be used to simplify the joint models without significantly reducing the accuracy in predicting structural responses. The identification methodology is applied to automotive structures with joints and also to isolated subassemblies consisting of joints and attached branches.

  16. Identification of driving network of cellular differentiation from single sample time course gene expression data

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  17. Global Identification of Genes Specific for Rice Meiosis

    PubMed Central

    Zhang, Bingwei; Xu, Meng; Bian, Shiquan; Hou, Lili; Tang, Ding; Li, Yafei; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-01-01

    The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast. PMID:26394329

  18. Global Identification of Genes Specific for Rice Meiosis.

    PubMed

    Zhang, Bingwei; Xu, Meng; Bian, Shiquan; Hou, Lili; Tang, Ding; Li, Yafei; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-01-01

    The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.

  19. The IL-9 receptor gene (IL9R): Genomic structure, chromosomal localization in the pseudoautosomal region of the long arm of sex chromosomes, and identification of IL9R pseudogenes at 9qter, 10pter, 16pter, 18pter

    SciTech Connect

    Kermouni, A.; Godelaine, D.; Lurquin, C.; Szikora, J.P.

    1995-09-20

    Cosmids containing the human IL-9 receptor (R) gene (IL9R) have been isolated from a genomic library using the IL9R cDNA as a probe. We have shown that the human IL9R gene is composed of 11 exons and 10 introns, stretching over {approx} 17 kb, and is located within the pseudoautosomal region of the Xq and Yq chromosome, in the vicinity of the telomere. Analysis of the 5` flanking region revealed multiple transcription initiation sites as well as potential binding motifs for AP1, AP2, AP3, Sp1, and NF-kB, although this region lacks a TATA box. Using the human IL9R cosmid as a probe to perform fluorescence in situ hybridization, additional signals were identified in the subtelomeric regions of chromosomes 9q, 10p, 16p, and 18p. IL9R homologs located on chromosomes 9 and 18 were partially characterized, while those located on chromosomes 16 and 10 were completely sequenced. Although they are similiar to the IL9R gene ({approx} 90% identity), none of these copies encodes a functional receptor: none of them contains sequences homologous to the 5` flanking region or exon 1 of the IL9R gene, and the remaining ORFs have been inactivated by various point mutations and deletions. Taken together, our results indicate that the IL9R gene is located at Xq28 and Yq12, in the long arm pseudoautosomal region, and that four IL9R pseudogenes are located on 9q34, 10p15, 16p13.3 and 18p11.3, probably dispersed as the result of translocations during evolution. 42 refs., 6 figs., 3 tabs.

  20. Identification of key target genes and pathways in laryngeal carcinoma

    PubMed Central

    Liu, Feng; Du, Jintao; Liu, Jun; Wen, Bei

    2016-01-01

    The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma. PMID:27446427

  1. Genomewide identification of genes under directional selection: gene transcription Q(ST) scan in diverging Atlantic salmon subpopulations.

    PubMed

    Roberge, C; Guderley, H; Bernatchez, L

    2007-10-01

    Evolutionary genomics has benefited from methods that allow identifying evolutionarily important genomic regions on a genomewide scale, including genome scans and QTL mapping. Recently, genomewide scanning by means of microarrays has permitted assessing gene transcription differences among species or populations. However, the identification of differentially transcribed genes does not in itself suffice to measure the role of selection in driving evolutionary changes in gene transcription. Here, we propose and apply a "transcriptome scan" approach to investigating the role of selection in shaping differential profiles of gene transcription among populations. We compared the genomewide transcription levels between two Atlantic salmon subpopulations that have been diverging for only six generations. Following assessment of normality and unimodality on a gene-per-gene basis, the additive genetic basis of gene transcription was estimated using the animal model. Gene transcription h(2) estimates were significant for 1044 (16%) of all detected cDNA clones. In an approach analogous to that of genome scans, we used the distribution of the Q(ST) values estimated from intra- and intersubpopulation additive genetic components of the transcription profiles to identify 16 outlier genes (average Q(ST) estimate = 0.11) whose transcription levels are likely to have evolved under the influence of directional selection within six generations only. Overall, this study contributes both empirically and methodologically to the quantitative genetic exploration of gene transcription data. PMID:17720934

  2. Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression.

    PubMed

    Elbl, Paula; Navarro, Bruno V; de Oliveira, Leandro F; Almeida, Juliana; Mosini, Amanda C; Dos Santos, André L W; Rossi, Magdalena; Floh, Eny I S

    2015-01-01

    Quantitative analysis of gene expression is a fundamental experimental approach in many fields of plant biology, but it requires the use of internal controls representing constitutively expressed genes for reliable transcript quantification. In this study, we identified fifteen putative reference genes from an A. angustifolia transcriptome database. Variation in transcript levels was first evaluated in silico by comparing read counts and then by quantitative real-time PCR (qRT-PCR), resulting in the identification of six candidate genes. The consistency of transcript abundance was also calculated applying geNorm and NormFinder software packages followed by a validation approach using four target genes. The results presented here indicate that a diverse set of samples should ideally be used in order to identify constitutively expressed genes, and that the use of any two reference genes in combination, of the six tested genes, is sufficient for effective expression normalization. Finally, in agreement with the in silico prediction, a comprehensive analysis of the qRT-PCR data combined with validation analysis revealed that AaEIF4B-L and AaPP2A are the most suitable reference genes for comparative studies of A. angustifolia gene expression.

  3. Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression

    PubMed Central

    Almeida, Juliana; Mosini, Amanda C.; dos Santos, André L. W.; Rossi, Magdalena; Floh, Eny I. S.

    2015-01-01

    Quantitative analysis of gene expression is a fundamental experimental approach in many fields of plant biology, but it requires the use of internal controls representing constitutively expressed genes for reliable transcript quantification. In this study, we identified fifteen putative reference genes from an A. angustifolia transcriptome database. Variation in transcript levels was first evaluated in silico by comparing read counts and then by quantitative real-time PCR (qRT-PCR), resulting in the identification of six candidate genes. The consistency of transcript abundance was also calculated applying geNorm and NormFinder software packages followed by a validation approach using four target genes. The results presented here indicate that a diverse set of samples should ideally be used in order to identify constitutively expressed genes, and that the use of any two reference genes in combination, of the six tested genes, is sufficient for effective expression normalization. Finally, in agreement with the in silico prediction, a comprehensive analysis of the qRT-PCR data combined with validation analysis revealed that AaEIF4B-L and AaPP2A are the most suitable reference genes for comparative studies of A. angustifolia gene expression. PMID:26313945

  4. Identification of the two rotavirus genes determining neutralization specificities

    SciTech Connect

    Offit, P.A.; Blavat, G.

    1986-01-01

    Bovine rotavirus NCDV and simian rotavirus SA-11 represent two distinct rotavirus serotypes. A genetic approach was used to determine which viral gene segments segregated with serotype-specific viral neutralization. There were 16 reassortant rotarviruses derived by coinfection of MA-104 cells in vitro with the SA-11 and NCDV strains. The parental origin of reassortant rotavirus double-stranded RNA segments was determined by gene segment mobility in polyacrylamide gels and by hybridization with radioactively labeled parental viral transcripts. The authors found that two rotavirus gene segments found previously to code for outer capsid proteins vp3 and vp7 cosegreated with virus neutralization specificities.

  5. A hybrid method for identification of structural domains.

    PubMed

    Hua, Yongpan; Zhu, Min; Wang, Yuelong; Xie, Zhaoyang; Li, Menglong

    2014-01-01

    Structural domains in proteins are the basic units to form various proteins. In the protein's evolution and functioning, domains play important roles. But the definition of domain is not yet precisely given, and the update cycle of structural domain databases is long. The automatic algorithms identify domains slowly, while protein entities with great structural complexity are on the rise. Here, we present a method which recognizes the compact and modular segments of polypeptide chains to identify structural domains, and contrast some data sets to illuminate their effect. The method combines support vector machine (SVM) with K-means algorithm. It is faster and more stable than most current algorithms and performs better. It also indicates that when proteins are presented as some Alpha-carbon atoms in 3D space, it is feasible to identify structural domains by the spatially structural properties. We have developed a web-server, which would be helpful in identification of structural domains (http://vis.sculab.org/~huayongpan/cgi-bin/domainAssignment.cgi).

  6. In silico identification of gene amplification targets for improvement of lycopene production.

    PubMed

    Choi, Hyung Seok; Lee, Sang Yup; Kim, Tae Yong; Woo, Han Min

    2010-05-01

    The identification of genes to be deleted or amplified is an essential step in metabolic engineering for strain improvement toward the enhanced production of desired bioproducts. In the past, several methods based on flux analysis of genome-scale metabolic models have been developed for identifying gene targets for deletion. Genome-wide identification of gene targets for amplification, on the other hand, has been rather difficult. Here, we report a strategy called flux scanning based on enforced objective flux (FSEOF) to identify gene amplification targets. FSEOF scans all the metabolic fluxes in the metabolic model and selects fluxes that increase when the flux toward product formation is enforced as an additional constraint during flux analysis. This strategy was successfully employed for the identification of gene amplification targets for the enhanced production of the red-colored antioxidant lycopene. Additional metabolic engineering based on gene knockout simulation resulted in further synergistic enhancement of lycopene production. Thus, FSEOF can be used as a general strategy for selecting genome-wide gene amplification targets in silico.

  7. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis

    PubMed Central

    2012-01-01

    Background Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with periodontal disease onset and progression. Genetic tools for the manipulation of bacterial genomes allow for in-depth mechanistic studies of metabolism, physiology, interspecies and host-pathogen interactions. Analysis of the essential genes, protein-coding sequences necessary for survival of P. gingivalis by transposon mutagenesis has not previously been attempted due to the limitations of available transposon systems for the organism. We adapted a Mariner transposon system for mutagenesis of P. gingivalis and created an insertion mutant library. By analyzing the location of insertions using massively-parallel sequencing technology we used this mutant library to define genes essential for P. gingivalis survival under in vitro conditions. Results In mutagenesis experiments we identified 463 genes in P. gingivalis strain ATCC 33277 that are putatively essential for viability in vitro. Comparing the 463 P. gingivalis essential genes with previous essential gene studies, 364 of the 463 are homologues to essential genes in other species; 339 are shared with more than one other species. Twenty-five genes are known to be essential in P. gingivalis and B. thetaiotaomicron only. Significant enrichment of essential genes within Cluster of Orthologous Groups ‘D’ (cell division), ‘I’ (lipid transport and metabolism) and ‘J’ (translation/ribosome) were identified. Previously, the P. gingivalis core genome was shown to encode 1,476 proteins out of a possible 1,909; 434 of 463 essential genes are contained within the core genome. Thus, for the species P. gingivalis twenty-two, seventy-seven and twenty-three percent of the genome respectively are devoted to essential, core and accessory functions. Conclusions A Mariner transposon system can be adapted to create mutant libraries in P. gingivalis amenable to analysis by next-generation sequencing technologies. In silico analysis

  8. Identification of genes from the Treacher Collins candidate region

    SciTech Connect

    Dixon, M.; Dixon, J.; Edwards, S. |

    1994-09-01

    Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development. The TCOF1 locus has previously been mapped to chromosome 5q32-33. The candidate gene region has been defined as being between two flanking markers, ribosomal protein S14 (RPS14) and Annexin 6 (ANX6), by analyzing recombination events in affected individuals. It is estimated that the distance between these flanking markers is 500 kb by three separate analysis methods: (1) radiation hybrid mapping; (2) genetic linkage; and (3) YAC contig analysis. A cosmid contig which spans the candidate gene region for TCOF1 has been constructed by screening the Los Alamos National Laboratory flow-sorted chromosome 5 cosmid library. Cosmids were obtained by using a combination of probes generated from YAC end clones, Alu-PCR fragments from YACs, and asymmetric PCR fragments from both T7 and T3 cosmid ends. Exon amplifications, the selection of genomic coding sequences based upon the presence of functional splice acceptor and donor sites, was used to identify potential exon sequences. Sequences found to be conserved between species were then used to screen cDNA libraries in order to identify candidate genes. To date, four different cDNAs have been isolated from this region and are being analyzed as potential candidate genes for TCOF1. These include the genes encoding plasma glutathione peroxidase (GPX3), heparin sulfate sulfotransferase (HSST), a gene with homology to the ETS family of proteins and one which shows no homology to any known genes. Work is also in progress to identify and characterize additional cDNAs from the candidate gene region.

  9. The fur gene as a new phylogenetic marker for Vibrionaceae species identification.

    PubMed

    Machado, Henrique; Gram, Lone

    2015-04-01

    Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA.

  10. The fur Gene as a New Phylogenetic Marker for Vibrionaceae Species Identification

    PubMed Central

    Gram, Lone

    2015-01-01

    Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA. PMID:25662978

  11. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid.

    PubMed

    Akutsu, Tomoko; Motani, Hisako; Watanabe, Ken; Iwase, Hirotaro; Sakurada, Koichi

    2012-05-01

    To preliminarily evaluate the applicability of bacterial DNA as a marker for the forensic identification of vaginal fluid, we developed and performed PCR-based detection of 16S ribosomal RNA genes of Lactobacillus spp. dominating the vagina and of bacterial vaginosis-related bacteria from DNA extracted from body fluids and stains. As a result, 16S ribosomal RNA genes of Lactobacillus crispatus, Lactobacillus jensenii and Atopobium vaginae were specifically detected in vaginal fluid and female urine samples. Bacterial genes detected in female urine might have originated from contaminated vaginal fluid. In addition, those of Lactobacillus iners, Lactobacillus gasseri and Gardnerella vaginalis were also detected in non-vaginal body fluids such as semen. Because bacterial genes were successfully amplified in DNA samples extracted by using the general procedure for animal tissues without any optional treatments, DNA samples prepared for the identification of vaginal fluid can also be used for personal identification. In conclusion, 16S ribosomal RNA genes of L. crispatus, L. jensenii and A. vaginae could be effective markers for forensic identification of vaginal fluid.

  12. Application of Euclidean distance measurement and principal component analysis for gene identification.

    PubMed

    Ghosh, Antara; Barman, Soma

    2016-06-01

    Gene systems are extremely complex, heterogeneous, and noisy in nature. Many statistical tools which are used to extract relevant feature from genes provide fuzzy and ambiguous information. High-dimensional gene expression database available in public domain usually contains thousands of genes. Efficient prediction method is demanding nowadays for accurate identification of such database. Euclidean distance measurement and principal component analysis methods are applied on such databases to identify the genes. In both methods, prediction algorithm is based on homology search approach. Digital Signal Processing technique along with statistical method is used for analysis of genes in both cases. A two-level decision logic is used for gene classification as healthy or cancerous. This binary logic minimizes the prediction error and improves prediction accuracy. Superiority of the method is judged by receiver operating characteristic curve. PMID:26877227

  13. Application of Euclidean distance measurement and principal component analysis for gene identification.

    PubMed

    Ghosh, Antara; Barman, Soma

    2016-06-01

    Gene systems are extremely complex, heterogeneous, and noisy in nature. Many statistical tools which are used to extract relevant feature from genes provide fuzzy and ambiguous information. High-dimensional gene expression database available in public domain usually contains thousands of genes. Efficient prediction method is demanding nowadays for accurate identification of such database. Euclidean distance measurement and principal component analysis methods are applied on such databases to identify the genes. In both methods, prediction algorithm is based on homology search approach. Digital Signal Processing technique along with statistical method is used for analysis of genes in both cases. A two-level decision logic is used for gene classification as healthy or cancerous. This binary logic minimizes the prediction error and improves prediction accuracy. Superiority of the method is judged by receiver operating characteristic curve.

  14. A Genomic Signature and the Identification of New Sporulation Genes

    PubMed Central

    Abecasis, Ana B.; Serrano, Mónica; Alves, Renato; Quintais, Leonor

    2013-01-01

    Bacterial endospores are the most resistant cell type known to humans, as they are able to withstand extremes of temperature, pressure, chemical injury, and time. They are also of interest because the endospore is the infective particle in a variety of human and livestock diseases. Endosporulation is characterized by the morphogenesis of an endospore within a mother cell. Based on the genes known to be involved in endosporulation in the model organism Bacillus subtilis, a conserved core of about 100 genes was derived, representing the minimal machinery for endosporulation. The core was used to define a genomic signature of about 50 genes that are able to distinguish endospore-forming organisms, based on complete genome sequences, and we show this 50-gene signature is robust against phylogenetic proximity and other artifacts. This signature includes previously uncharacterized genes that we can now show are important for sporulation in B. subtilis and/or are under developmental control, thus further validating this genomic signature. We also predict that a series of polyextremophylic organisms, as well as several gut bacteria, are able to form endospores, and we identified 3 new loci essential for sporulation in B. subtilis: ytaF, ylmC, and ylzA. In all, the results support the view that endosporulation likely evolved once, at the base of the Firmicutes phylum, and is unrelated to other bacterial cell differentiation programs and that this involved the evolution of new genes and functions, as well as the cooption of ancestral, housekeeping functions. PMID:23396918

  15. Identification of genes associated with chlorophyll accumulation in flower petals.

    PubMed

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation.

  16. Identification and characterization of TIFY family genes in Brachypodium distachyon.

    PubMed

    Zhang, Lihua; You, Jun; Chan, Zhulong

    2015-11-01

    The TIFY family is a plant-specific gene family encoding proteins characterized by a conserved TIFY domain. This family encodes four subfamilies of proteins, including ZIM-like (ZML), TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. TIFY proteins play important roles in plant development and stress responses. In this study, 21 BdTIFYs were identified in Brachypodium distachyon through genome-wide analysis, including 15 JAZ and 6 ZML genes. Analysis of the distribution of conserved domains showed that there are three additional domains (CCT domain, GATA domain and Jas domain) in the BdTIFY proteins besides the TIFY domain. Phylogenetic analysis indicated that these 21 proteins were classified into two major groups. Expression profile of BdTIFY genes in response to abiotic stresses and phytohormones was analyzed using quantitative real-time RT-PCR. Among 21 BdTIFY genes, 12 of them were induced by JA treatment, and 4 of them were induced by ABA treatment. Most of BdTIFY genes were responsive to one or more abiotic stresses including drought, salinity, low temperature and heat. Especially, BdTIFY5, 9a, 9b, 10c and 11a were significantly up-regulated by multiple abiotic stresses. These results provided important clues for functional analysis of TIFY family genes in B. distachyon. PMID:26423998

  17. PIECE: a database for plant gene structure comparison and evolution.

    PubMed

    Wang, Yi; You, Frank M; Lazo, Gerard R; Luo, Ming-Cheng; Thilmony, Roger; Gordon, Sean; Kianian, Shahryar F; Gu, Yong Q

    2013-01-01

    Gene families often show degrees of differences in terms of exon-intron structures depending on their distinct evolutionary histories. Comparative analysis of gene structures is important for understanding their evolutionary and functional relationships within plant species. Here, we present a comparative genomics database named PIECE (http://wheat.pw.usda.gov/piece) for Plant Intron and Exon Comparison and Evolution studies. The database contains all the annotated genes extracted from 25 sequenced plant genomes. These genes were classified based on Pfam motifs. Phylogenetic trees were pre-constructed for each gene category. PIECE provides a user-friendly interface for different types of searches and a graphical viewer for displaying a gene structure pattern diagram linked to the resulting bootstrapped dendrogram for each gene family. The gene structure evolution of orthologous gene groups was determined using the GLOOME, Exalign and GECA software programs that can be accessed within the database. PIECE also provides a web server version of the software, GSDraw, for drawing schematic diagrams of gene structures. PIECE is a powerful tool for comparing gene sequences and provides valuable insights into the evolution of gene structure in plant genomes.

  18. PIECE: a database for plant gene structure comparison and evolution

    PubMed Central

    Wang, Yi; You, Frank M.; Lazo, Gerard R.; Luo, Ming-Cheng; Thilmony, Roger; Gordon, Sean; Kianian, Shahryar F.; Gu, Yong Q.

    2013-01-01

    Gene families often show degrees of differences in terms of exon–intron structures depending on their distinct evolutionary histories. Comparative analysis of gene structures is important for understanding their evolutionary and functional relationships within plant species. Here, we present a comparative genomics database named PIECE (http://wheat.pw.usda.gov/piece) for Plant Intron and Exon Comparison and Evolution studies. The database contains all the annotated genes extracted from 25 sequenced plant genomes. These genes were classified based on Pfam motifs. Phylogenetic trees were pre-constructed for each gene category. PIECE provides a user-friendly interface for different types of searches and a graphical viewer for displaying a gene structure pattern diagram linked to the resulting bootstrapped dendrogram for each gene family. The gene structure evolution of orthologous gene groups was determined using the GLOOME, Exalign and GECA software programs that can be accessed within the database. PIECE also provides a web server version of the software, GSDraw, for drawing schematic diagrams of gene structures. PIECE is a powerful tool for comparing gene sequences and provides valuable insights into the evolution of gene structure in plant genomes. PMID:23180792

  19. GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures

    PubMed Central

    2013-01-01

    Background All sequenced eukaryotic genomes have been shown to possess at least a few introns. This includes those unicellular organisms, which were previously suspected to be intron-less. Therefore, gene splicing must have been present at least in the last common ancestor of the eukaryotes. To explain the evolution of introns, basically two mutually exclusive concepts have been developed. The introns-early hypothesis says that already the very first protein-coding genes contained introns while the introns-late concept asserts that eukaryotic genes gained introns only after the emergence of the eukaryotic lineage. A very important aspect in this respect is the conservation of intron positions within homologous genes of different taxa. Results GenePainter is a standalone application for mapping gene structure information onto protein multiple sequence alignments. Based on the multiple sequence alignments the gene structures are aligned down to single nucleotides. GenePainter accounts for variable lengths in exons and introns, respects split codons at intron junctions and is able to handle sequencing and assembly errors, which are possible reasons for frame-shifts in exons and gaps in genome assemblies. Thus, even gene structures of considerably divergent proteins can properly be compared, as it is needed in phylogenetic analyses. Conserved intron positions can also be mapped to user-provided protein structures. For their visualization GenePainter provides scripts for the molecular graphics system PyMol. Conclusions GenePainter is a tool to analyse gene structure conservation providing various visualization options. A stable version of GenePainter for all operating systems as well as documentation and example data are available at http://www.motorprotein.de/genepainter.html. PMID:23496949

  20. Structure identification in fuzzy inference using reinforcement learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  1. Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics

    PubMed Central

    Lai, Chun-Hung; Chou, Chang-Yuan; Ch'ang, Lan-Yang; Liu, Chung-Shyan; Lin, Wen-chang

    2000-01-01

    Modern biomedical research greatly benefits from large-scale genome-sequencing projects ranging from studies of viruses, bacteria, and yeast to multicellular organisms, like Caenorhabditis elegans. Comparative genomic studies offer a vast array of prospects for identification and functional annotation of human ortholog genes. We presented a novel comparative proteomic approach for assembling human gene contigs and assisting gene discovery. The C. elegans proteome was used as an alignment template to assist in novel human gene identification from human EST nucleotide databases. Among the available 18,452 C. elegans protein sequences, our results indicate that at least 83% (15,344 sequences) of C. elegans proteome has human homologous genes, with 7,954 records of C. elegans proteins matching known human gene transcripts. Only 11% or less of C. elegans proteome contains nematode-specific genes. We found that the remaining 7,390 sequences might lead to discoveries of novel human genes, and over 150 putative full-length human gene transcripts were assembled upon further database analyses. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF132936–AF132973, AF151799–AF151909, and AF152097.] PMID:10810093

  2. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas.

    PubMed

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A; Copeland, Neal G; Lenz, Jack

    2003-02-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.

  3. Genome-Based Identification of Cancer Genes by Proviral Tagging in Mouse Retrovirus-Induced T-Cell Lymphomas

    PubMed Central

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A.; Copeland, Neal G.; Lenz, Jack

    2003-01-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors. PMID:12525640

  4. Impact identification in structures using a sensor network: The system identification approach

    NASA Astrophysics Data System (ADS)

    Park, Jonghyun

    This research in this dissertation is motivated by the need for reliable monitoring technologies for the detection of impact events on structures. A system that automatically detects and reports impacts would ensure structures' integrity while reducing inspections only to investigation of possible damage at significant impact points. In this research, a new method and an implementation procedure for identifying impact events is presented based on a system identification technique using built-in sensors. The method identifies the impact location and force time history of an impact event on structures without the need for information about actual mechanical properties, geometries and boundary conditions. The proposed technique does not require constructing a sophisticated mathematical model to simulate the behavior of a structure or building a specific neural network with exhaustive training; instead, the technique uses the inverse of system transfer functions to reconstruct the loading history from sensor measurements. In this proposed approach, the system transfer functions for the entire structure are constructed by two sequential approaches: (1) impact tests at selected points to generate sensor data for establishing the system transfer functions between the sensor and the impact points of the structure; (2) interpretation functions based on a traditional finite element approach to approximate the system transfer functions everywhere on the structures. A specific implementation procedure based on the proposed technique is proposed for practical application of the technique in structures with a built-in sensory system. Extensive tests on various structures were performed to verify the proposed method and accuracy of load and position predictions.

  5. Identification of internal reference genes for gene expression normalization between the two sexes in dioecious white Campion.

    PubMed

    Zemp, Niklaus; Minder, Aria; Widmer, Alex

    2014-01-01

    Quantitative real time (qRT)-PCR is a precise and efficient method for studying gene expression changes between two states of interest, and is frequently used for validating interesting gene expression patterns in candidate genes initially identified in genome-wide expression analyses, such as RNA-seq experiments. For an adequate normalisation of qRT-PCR data, it is essential to have reference genes available whose expression intensities are constant among the different states of interest. In this study we present and validate a catalogue of traditional and newly identified reference genes that were selected from RNA-seq data from multiple individuals from the dioecious plant Silene latifolia with the aim of studying gene expression differences between the two sexes in both reproductive and vegetative tissues. The catalogue contains more than 15 reference genes with both stable expression intensities and a range of expression intensities in flower buds and leaf tissues. These reference genes were used to normalize expression differences between reproductive and vegetative tissues in eight candidate genes with sex-biased expression. Our results suggest a trend towards a reduced sex-bias in sex-linked gene expression in vegetative tissues. In this study, we report on the systematic identification and validation of internal reference genes for adequate normalization of qRT-PCR-based analyses of gene expression differences between the two sexes in S. latifolia. We also show how RNA-seq data can be used efficiently to identify suitable reference genes in a wide diversity of species.

  6. A graphic method for identification of novel glioma related genes.

    PubMed

    Gao, Yu-Fei; Shu, Yang; Yang, Lei; He, Yi-Chun; Li, Li-Peng; Huang, GuaHua; Li, Hai-Peng; Jiang, Yang

    2014-01-01

    Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases.

  7. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig are presented.

  8. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  9. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1989-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  10. Identification of Damaged Spot Welds in a Complicated Joined Structure

    NASA Astrophysics Data System (ADS)

    Yunus, M. A.; Rani, M. N. Abdul; Ouyang, H.; Deng, H.; James, S.

    2011-07-01

    In automotive engineering, spot welds on assembled structures such as Body in White (BiW) have a significant effect on the vehicles' dynamic characteristics. Understandably, imperfections in the spot welds will cause variations in the dynamic properties such as natural frequencies and mode shapes of the structure. In this paper, a complicated welded structure which is a simplified Natural Gas Vehicle (NGV) platform is investigated. The structure fabricated from thin metal sheets consists of ten components. They are jointed together by a number of scattered spot welds. NASTRAN Solution 200 based on sensitivity analysis is used to identify the most sensitive parameters to natural frequencies. The numerical model of the undamaged structure is initially updated in order to minimise the discrepancies between the measured and numerical data using NASTRAN optimisation code. The initial updated model serves as a benchmark for the subsequent structural damage identification. The numerical data of the benchmark model is then compared with the measured data obtained from the damaged structure. The same updating procedure is applied to the benchmark model in order to bring the numerical data as close as possible to the measured data of the damaged structure. The disparity in certain parameter values from the parameter values used in the benchmark model shows a fault or damage in the location of a particular joint, depending on the severity of this disparity. The challenge in this work is to localise damaged area and quantify the damage of the complicated structure with multiple spot welds in the presence of uncertainty in the location and material properties of the welds.

  11. Identification of genes associated with tumor development in CaSki cells in the cosmic space.

    PubMed

    Guo, Fengjie; Li, Yalin; Liu, Yan; Huang, Jian; Zhang, Zhijie; Wang, Jiajia; Li, Yuehui; Hu, Jinyue; Li, Guancheng

    2012-06-01

    It is important to understand the mechanisms of tumor development for curing cervical cancer. However, the molecular basis determining the different characteristics of tumor remains unclear. Space environment as a special study model can expand the study field of tumor development. To approach this, after human cervical carcinoma CaSki cells were flown on “Shen Zhou IV” space shuttle mission, the cell morphology and proliferation was investigated after flying to ground. We found that the growth of 48A9 CaSki cell (flight group) became slow compared with ground groups. Observation of cells by light microscopy revealed differences in cell morphology between ground controls and flight groups, and the flight group exhibited morphologic differences, characterized by rounder, smoother, decreased, smaller and low-adhension cells. Transmission electron microscope images showed the structure of the ultrastructural characteristics of 48A9 CaSki cells were clearly distinct from those of the ground CaSki cells in aspects of mitochondrion, cytoplasm, nucleus and ribosomes. MTT and soft agar assay showed that 48A9 CaSki cells grew slowly compared to ground control. Furthermore, suppression subtractive hybridization combining with reverse Northern blot was used to identify differently expression genes between flight and ground groups. These differentially expressed genes included cytoskeleton, cell differentiation, cell apoptosis, signal transduction, DNA repair, protein synthesis, substance metabolism, and antigen presentation. The identification of differently expressed genes which is likely to increase our understanding of the molecular processes underlying tumor development will provide new insight into tumor development mechanisms, and may facilitate the development of new anticancer strategies.

  12. Molecular identification of nanoplanktonic protists based on small subunit ribosomal RNA gene sequences for ecological studies.

    PubMed

    Lim, E L

    1996-01-01

    Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.

  13. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals

    PubMed Central

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  14. Identification of the NAC1-regulated genes in ovarian cancer.

    PubMed

    Gao, Min; Wu, Ren-Chin; Herlinger, Alice L; Yap, Kailee; Kim, Jung-Won; Wang, Tian-Li; Shih, Ie-Ming

    2014-01-01

    Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.

  15. EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes

    PubMed Central

    Nabavi, Sheida; Schmolze, Daniel; Maitituoheti, Mayinuer; Malladi, Sadhika; Beck, Andrew H.

    2016-01-01

    Motivation: A major goal of biomedical research is to identify molecular features associated with a biological or clinical class of interest. Differential expression analysis has long been used for this purpose; however, conventional methods perform poorly when applied to data with high within class heterogeneity. Results: To address this challenge, we developed EMDomics, a new method that uses the Earth mover’s distance to measure the overall difference between the distributions of a gene’s expression in two classes of samples and uses permutations to obtain q-values for each gene. We applied EMDomics to the challenging problem of identifying genes associated with drug resistance in ovarian cancer. We also used simulated data to evaluate the performance of EMDomics, in terms of sensitivity and specificity for identifying differentially expressed gene in classes with high within class heterogeneity. In both the simulated and real biological data, EMDomics outperformed competing approaches for the identification of differentially expressed genes, and EMDomics was significantly more powerful than conventional methods for the identification of drug resistance-associated gene sets. EMDomics represents a new approach for the identification of genes differentially expressed between heterogeneous classes and has utility in a wide range of complex biomedical conditions in which sample classes show within class heterogeneity. Availability and implementation: The R package is available at http://www.bioconductor.org/packages/release/bioc/html/EMDomics.html Contact: abeck2@bidmc.harvard.edu Supplementary information: supplementary data are available at Bioinformatics online. PMID:26515818

  16. Identification of caerulomycin A gene cluster implicates a tailoring amidohydrolase.

    PubMed

    Zhu, Yiguang; Fu, Peng; Lin, Qinheng; Zhang, Guangtao; Zhang, Haibo; Li, Sumei; Ju, Jianhua; Zhu, Weiming; Zhang, Changsheng

    2012-06-01

    The biosynthetic gene cluster for caerulomycin A (1) was cloned and characterized from the marine actinomycete Actinoalloteichus cyanogriseus WH1-2216-6, which revealed an unusual hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) system. The crmL disruption mutant accumulated caerulomycin L (2) with an extended L-leucine at C-7, implicating an amidohydrolase activity for CrmL. The leucine-removing activity was confirmed for crude CrmL enzymes. Heterologous expression of the 1 gene cluster led to 1 production in Streptomyces coelicolor.

  17. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  18. Identification and expression profiling analysis of goose melanoma differentiation associated gene 5 (MDA5) gene.

    PubMed

    Wei, L M; Jiao, P R; Song, Y F; Han, F; Cao, L; Yang, F; Ren, T; Liao, M

    2013-10-01

    Melanoma differentiation associated gene 5 (MDA5) is an important cytoplasmic receptor that recognizes long molecules of viral double-stranded RNA and single-stranded RNA with 5' triphosphate and mediates type I interferon secretion. In this study, the full-length MDA5 gene in the goose was identified and characterized. The cDNA of goose MDA5 was 3,306 bp in length with an open reading frame of 3,018 bp, which encoded a polypeptide of 1,005 amino acids. The deduced amino acid sequence contained 6 main structure domains including 2 caspase activation and recruitment domains, one DExD/H-box helicase domain, one type III restriction enzyme domain, one helicase conserved C-terminal domain, and one RIG-I C-terminal domain. Quantitative real-time PCR analysis indicated that goose MDA5 mRNA was constitutively expressed in all sampled tissues. It was highly expressed in the jejunum, trachea, ileum, colon, and kidney, and lowly expressed in the muscular stomach, glandular stomach, and muscle. A significant increase in the transcription of MDA5 was detected in the brain, spleen, and lungs of geese after infection with H5N1 highly pathogenic avian influenza virus compared with uninfected tissues. These findings indicated that goose MDA5 was an important receptor, involved in the antiviral innate immune defense to H5N1 highly pathogenic avian influenza virus in geese.

  19. Identification of metastasis-associated genes in colorectal cancer through an integrated genomic and transcriptomic analysis

    PubMed Central

    Peng, Sihua

    2013-01-01

    Objective Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of microarray data was presented, by combined with evidence acquired from comparative genomic hybridization (CGH) data. Methods Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify metastasis-associated genes in CRC. Results A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions Our results demonstrated that integration analysis is an effective strategy for mining cancer-associated genes. PMID:24385689

  20. Comparison of Traditional Phenotypic Identification Methods with Partial 5′ 16S rRNA Gene Sequencing for Species-Level Identification of Nonfermenting Gram-Negative Bacilli▿

    PubMed Central

    Cloud, Joann L.; Harmsen, Dag; Iwen, Peter C.; Dunn, James J.; Hall, Gerri; LaSala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L.; Mellmann, Alexander

    2010-01-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5′ 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB. PMID:20164273

  1. Identification of genes associated with low furanocoumarin content in grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some furanocoumarins in grapefruit (Citrus paradisi) are associated with the so-called grapefruit juice effect. Previous phytochemical quantification and genetic analysis suggested that the synthesis of these furanocoumarins may be controlled by a single gene in the pathway. In this study, cDNA-ampl...

  2. Identification of blast resistance genes for managing rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  3. Genome-wide identification of Tribolium dorsoventral patterning genes.

    PubMed

    Stappert, Dominik; Frey, Nadine; von Levetzow, Cornelia; Roth, Siegfried

    2016-07-01

    The gene regulatory network controlling dorsoventral axis formation in insects has undergone drastic evolutionary changes. In Drosophila, a stable long-range gradient of Toll signalling specifies ventral cell fates and restricts BMP signalling to the dorsal half of the embryo. In Tribolium, however, Toll signalling is transient and only indirectly controls BMP signalling. In order to gain unbiased insights into the Tribolium network, we performed comparative transcriptome analyses of embryos with various dorsoventral pattering defects produced by parental RNAi for Toll and BMP signalling components. We also included embryos lacking the mesoderm (produced by Tc-twist RNAi) and characterized similarities and differences between Drosophila and Tribolium twist loss-of-function phenotypes. Using stringent conditions, we identified over 750 differentially expressed genes and analysed a subset with altered expression in more than one knockdown condition. We found new genes with localized expression and showed that conserved genes frequently possess earlier and stronger phenotypes than their Drosophila orthologues. For example, the leucine-rich repeat (LRR) protein Tartan, which has only a minor influence on nervous system development in Drosophila, is essential for early neurogenesis in Tribolium and the Tc-zinc-finger homeodomain protein 1 (Tc-zfh1), the orthologue of which plays a minor role in Drosophila muscle development, is essential for maintaining early Tc-twist expression, indicating an important function for mesoderm specification. PMID:27287803

  4. Identification of Fur-regulated genes in Actinobacillus actinomycetemcomitans.

    PubMed

    Haraszthy, Violet I; Jordan, Shawn F; Zambon, Joseph J

    2006-03-01

    Actinobacillus actinomycetemcomitans is an oral pathogen that causes aggressive periodontitis as well as sometimes life-threatening, extra-oral infections. Iron regulation is thought to be important in the pathogenesis of A. actinomycetemcomitans infections and, consistent with this hypothesis, the fur gene has recently been identified and characterized in A. actinomycetemcomitans. In this study, 14 putatively Fur-regulated genes were identified by Fur titration assay (Furta) in A. actinomycetemcomitans, including afuA, dgt, eno, hemA, tbpA, recO and yfe - some of which are known to be Fur regulated in other species. A fur mutant A. actinomycetemcomitans strain was created by selecting for manganese resistance in order to study the Fur regulon. Comparisons between the fur gene sequences revealed that nucleotide 66 changed from C in the wild-type to T in the mutant strain, changing leucine to isoleucine. The fur mutant strain expressed a nonfunctional Fur protein as determined by Escherichia coli-based ferric uptake assays and Western blotting. It was also more sensitive to acid stress and expressed higher levels of minC than the wild-type strain. minC, which inhibits cell division in other bacterial species and whose regulation by iron has not been previously described, was found to be Fur regulated in A. actinomycetemcomitans by Furta, by gel shift assays, and by RT-qPCR assays for gene expression. PMID:16514158

  5. Identification of genetic elements associated with EPSPS gene amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved to confer resistance to glyphosate, the world's most important herbicide, in the wee...

  6. Identification of direction in gene networks from expression and methylation

    PubMed Central

    2013-01-01

    Background Reverse-engineering gene regulatory networks from expression data is difficult, especially without temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time series observational mRNA expression data. Some additional evidence is required and high-throughput methylation data can viewed as a natural multifactorial gene perturbation experiment. Results We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the circumstances under which edge directions become identifiable and experiments with both real and synthetic data demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory networks is significantly improved relative to other methods. Conclusion Reverse-engineering directed gene regulatory networks from static observational data becomes feasible by exploiting the context provided by high-throughput DNA methylation data. An implementation of the algorithm described is available at http://code.google.com/p/idem/. PMID:24182195

  7. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  8. Gene product identification and promoter analysis of hig locus of plasmid Rts1.

    PubMed

    Tian, Q B; Hayashi, T; Murata, T; Terawaki, Y

    1996-08-14

    The hig (host inhibition of growth) genes of plasmid Rts1 belong to the plasmid-encoded proteic killer gene family. Compared with other proteic killer genes described so far, hig is unique in that the toxic part (higB) exists upstream of the antidote gene (higA). Here we describe results of the promoter analysis of hig genes together with identification of the proteic gene products of higA and higB. Two promoters were identified in the hig locus; a stronger one, named Phig, is located upstream of higB and a weaker one, PhigA, is upstream of higA within the higB coding region. The Phig activity was negatively regulated by HigA and this regulation was augmented by HigB, whereas PhigA was not subjected to such a regulation.

  9. Identification of patients with defects in the globin genes

    PubMed Central

    Dell’Edera, Domenico; Epifania, Annunziata Anna; Milazzo, Giusi Natalia; Leo, Manuela; Santacesaria, Carmela; Allegretti, Arianna; Mazzone, Eleonora; Panetta, Paolo; Iammarino, Giovanna; Lupo, Maria Giovanna; Barbieri, Rocchina; Lioi, Maria Brigida

    2013-01-01

    Summary Introduction hemoglobinopathies constitute a major health problem worldwide. These disorders are characterized by a clinical and hematological phenotypic heterogeneity. The increase of HbA2 is an invaluable hematological marker of the beta-thalassemia heterozygosis and of double heterozygosis for the alleles of delta and alpha globin genes or for the alleles of delta and beta globin genes which can cause the increase of HbA2 up to normal or borderline values. Case Report we report the case of a 30-year-old woman (first pregnant) who was admitted to our Unit at 12 weeks for a screening for thalassemia. The outcomes of the biochemical and haematological exams (MCV, MCH, HbA2, HbF) highlighted that the patient was a carrier of a beta-thalassemic trait. Molecular analysis of the beta globin genes highlighted a β039C>T heterozygous mutation. Biochemical and hematological parameters of the husband (MCV, MCH, HbA2, HbF) were normal except for the level of HbA2 (3,6%). The molecular analysis of the beta globin genes highlighted a IVS2 nt844 C>G heterozygous mutation. Furthermore, the heterozygous mutation δ+cod.27G>T was detected in his δ globin gene. For this reason, he was diagnosed a δ+β Thal. Conclusions the aim of this paper is to highlight that biochemical diagnosis could not exhaustive and a molecular diagnostic widening is required to detect the genetic deficiency causing the thalassemic trait. PMID:24611095

  10. Identification of the simian foamy virus transcriptional transactivator gene (taf).

    PubMed Central

    Mergia, A; Shaw, K E; Pratt-Lowe, E; Barry, P A; Luciw, P A

    1991-01-01

    Simian foamy virus type 1 (SFV-1), a member of spumavirus subfamily of retroviruses, encodes a transcriptional transactivator that functions to strongly augment gene expression directed by the viral long terminal repeat (LTR). The objective of this study was to identify the viral gene responsible for transactivation. Nucleotide sequences between the env gene and the LTR of SFV-1 were determined. The predicted amino acid sequence revealed two large open reading frames (ORFs), designated ORF-1 (311 amino acids) and ORF-2 (422 amino acids). In the corresponding region of the human foamy virus, three ORFs (bel-1, bel-2, and bel-3) have been identified (R. M. Flugel, A. Rethwilm, B. Maurer, and G. Darai, EMBO J. 6:2077-2084, 1987). Pairwise comparisons of the ORF-1 and ORF-2 with bel-1 and bel-2 show small clusters of homology; less than 39% overall homology of conserved amino acids is observed. A counterpart for human foamy virus bel-3 is not present in the SFV-1 sequence. Three species of viral RNA have been identified in cells infected with SFV-1; an 11.5-kb RNA representing full-length transcripts, a 6.5-kb RNA representing the env message, and a 2.8-kb RNA from the ORF region. Analysis of a cDNA clone encoding the ORF region of SFV-1 reveals that the 2.8-kb message is generated by complex splicing events involving the 3' end of the env gene. In transient expression assays in cell lines representing several species. ORF-1 was shown to be necessary and sufficient for transactivating viral gene expression directed by the SFV-1 LTR. The target for transactivation is located in the U3 domain of the LTR, upstream from position - 125 (+ 1 represents the transcription initiation site). We propose that OFF-1 of SFV-1 be designated the transcriptional transactivator of foamy virus (taf). Images PMID:1851862

  11. Identification of genes associated with osteoarthritis by microarray analysis.

    PubMed

    Sun, Jianwei; Yan, Bingshan; Yin, Wangping; Zhang, Xinchao

    2015-10-01

    The aim of the present study was to investigate the mechanisms of osteoarthritis (OA). Raw microarray data (GSE51588) were downloaded from Gene Expression Omnibus, including samples from OA (n=20) and non‑OA (n=5) knee lateral and medial tibial plateaus. Differentially expressed genes (DEGs) were identified using Student's t‑test. Functional and pathway enrichment analyses were performed for the upregulated and downregulated DEGs. A protein‑protein interaction network (PPI) was constructed according to the Search Tool for the Retrieval of Interacting Genes/Proteins database, and module analysis of the PPI network was performed using CFinder. The protein domain enrichment analysis for genes in modules was performed using the INTERPRO database. A total of 869 upregulated and 508 downregulated DEGs were identified. The enriched pathways of downregulated and upregulated DEGs were predominantly associated with the cell cycle (BUB1, BUB1B, CCNA2, CCNB1 and CCNE1), and extracellular matrix (ECM)‑receptor interaction (CD36, COL11A2, COL1A1, COL2A1 and COL3A1). Functional enrichment analysis of the DEGs demonstrated that FGF19, KIF11 and KIF2C were involved in the response to stress and that ACAN, ADAMTS10 and BGN were associated with proteinaceous ECM. The top protein domain was IPR001752: Kinesin motor region involving three genes (KIF2C, KIF11 and KIF20A). The identified DEGs, including KIF2C, KIF11 and KIF20A, may be significant in the pathogenesis of OA. PMID:26151199

  12. Identification of putative gene based markers of renal toxicity.

    PubMed Central

    Amin, Rupesh P; Vickers, Alison E; Sistare, Frank; Thompson, Karol L; Roman, Richard J; Lawton, Michael; Kramer, Jeffrey; Hamadeh, Hisham K; Collins, Jennifer; Grissom, Sherry; Bennett, Lee; Tucker, C Jeffrey; Wild, Stacie; Kind, Clive; Oreffo, Victor; Davis, John W; Curtiss, Sandra; Naciff, Jorge M; Cunningham, Michael; Tennant, Raymond; Stevens, James; Car, Bruce; Bertram, Timothy A; Afshari, Cynthia A

    2004-01-01

    This study, designed and conducted as part of the International Life Sciences Institute working group on the Application of Genomics and Proteomics, examined the changes in the expression profile of genes associated with the administration of three different nephrotoxicants--cisplatin, gentamicin, and puromycin--to assess the usefulness of microarrays in the understanding of mechanism(s) of nephrotoxicity. Male Sprague-Dawley rats were treated with daily doses of puromycin (5-20 mg/kg/day for 21 days), gentamicin (2-240 mg/kg/day for 7 days), or a single dose of cisplatin (0.1-5 mg/kg). Groups of rats were sacrificed at various times after administration of these compounds for standard clinical chemistry, urine analysis, and histological evaluation of the kidney. RNA was extracted from the kidney for microarray analysis. Principal component analysis and gene expression-based clustering of compound effects confirmed sample separation based on dose, time, and degree of renal toxicity. In addition, analysis of the profile components revealed some novel changes in the expression of genes that appeared to be associated with injury in specific portions of the nephron and reflected the mechanism of action of these various nephrotoxicants. For example, although puromycin is thought to specifically promote injury of the podocytes in the glomerulus, the changes in gene expression after chronic exposure of this compound suggested a pattern similar to the known proximal tubular nephrotoxicants cisplatin and gentamicin; this prediction was confirmed histologically. We conclude that renal gene expression profiling coupled with analysis of classical end points affords promising opportunities to reveal potential new mechanistic markers of renal toxicity. PMID:15033597

  13. Human retinoblastoma susceptibility gene: cloning, identification, and sequence.

    PubMed

    Lee, W H; Bookstein, R; Hong, F; Young, L J; Shew, J Y; Lee, E Y

    1987-03-13

    Recent evidence indicates the existence of a genetic locus in chromosome region 13q14 that confers susceptibility to retinoblastoma, a cancer of the eye in children. A gene encoding a messenger RNA (mRNA) of 4.6 kilobases (kb), located in the proximity of esterase D, was identified as the retinoblastoma susceptibility (RB) gene on the basis of chromosomal location, homozygous deletion, and tumor-specific alterations in expression. Transcription of this gene was abnormal in six of six retinoblastomas examined: in two tumors, RB mRNA was not detectable, while four others expressed variable quantities of RB mRNA with decreased molecular size of about 4.0 kb. In contrast, full-length RB mRNA was present in human fetal retina and placenta, and in other tumors such as neuroblastoma and medulloblastoma. DNA from retinoblastoma cells had a homozygous gene deletion in one case and hemizygous deletion in another case, while the remainder were not grossly different from normal human control DNA. The gene contains at least 12 exons distributed in a region of over 100 kb. Sequence analysis of complementary DNA clones yielded a single long open reading frame that could encode a hypothetical protein of 816 amino acids. A computer-assisted search of a protein sequence database revealed no closely related proteins. Features of the predicted amino acid sequence include potential metal-binding domains similar to those found in nucleic acid-binding proteins. These results provide a framework for further study of recessive genetic mechanisms in human cancers.

  14. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    PubMed Central

    2012-01-01

    an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members. PMID:22251627

  15. Structure and expression of the ATFa gene.

    PubMed

    Goetz, J; Chatton, B; Mattei, M G; Kedinger, C

    1996-11-22

    The human ATFa proteins belong to the ATF/CREB family of transcription factors. We have previously shown that they mediate the transcriptional activation by the largest E1a protein and can heterodimerize with members of the Jun/Fos family. ATFa proteins have also been found tightly associated with JNK2, a stress-activated kinase. We now report on the structure of the ATFa gene, which mapped to chromosome 12 (band 12q13). Sequence analysis revealed that ATFa isoforms are generated by alternative splice donor site usage. A minimal promoter region of approximately 200 base pairs was identified that retained nearly full transcriptional activity. Binding sites for potential transcription factors were delineated within a GC-rich segment by DNase I footprinting. Expression studies revealed that ATFa accumulates in the nuclei of transfected cells, and the nuclear localization signal was defined next to the leucine zipper domain. As revealed by hybridization with mouse ATFa sequences, low levels of ATFa mRNAs were ubiquitously distributed in fetal or adult mice, with enhanced expression in particular tissues, like squamous epithelia and specific brain cell layers. The possible significance of coexpression of ATFa, ATF-2, and Jun at similar sites in the brain is discussed. PMID:8939888

  16. Identification and validation of genes involved in cervical tumourigenesis

    PubMed Central

    2011-01-01

    Background Cervical cancer is the most common cancer among Indian women. This cancer has well defined pre-cancerous stages and evolves over 10-15 years or more. This study was undertaken to identify differentially expressed genes between normal, dysplastic and invasive cervical cancer. Materials and methods A total of 28 invasive cervical cancers, 4 CIN3/CIS, 4 CIN1/CIN2 and 5 Normal cervix samples were studied. We have used microarray technique followed by validation of the significant genes by relative quantitation using Taqman Low Density Array Real Time PCR. Immunohistochemistry was used to study the protein expression of MMP3, UBE2C and p16 in normal, dysplasia and cancers of the cervix. The effect of a dominant negative UBE2C on the growth of the SiHa cells was assessed using a MTT assay. Results Our study, for the first time, has identified 20 genes to be up-regulated and 14 down-regulated in cervical cancers and 5 up-regulated in CIN3. In addition, 26 genes identified by other studies, as to playing a role in cervical cancer, were also confirmed in our study. UBE2C, CCNB1, CCNB2, PLOD2, NUP210, MELK, CDC20 genes were overexpressed in tumours and in CIN3/CIS relative to both Normal and CIN1/CIN2, suggesting that they could have a role to play in the early phase of tumorigenesis. IL8, INDO, ISG15, ISG20, AGRN, DTXL, MMP1, MMP3, CCL18, TOP2A AND STAT1 were found to be upregulated in tumours. Using Immunohistochemistry, we showed over-expression of MMP3, UBE2C and p16 in cancers compared to normal cervical epithelium and varying grades of dysplasia. A dominant negative UBE2C was found to produce growth inhibition in SiHa cells, which over-expresses UBE2C 4 fold more than HEK293 cells. Conclusions Several novel genes were found to be differentially expressed in cervical cancer. MMP3, UBE2C and p16 protein overexpression in cervical cancers was confirmed by immunohistochemistry. These will need to be validated further in a larger series of samples. UBE2C could be

  17. Identification of Novel Liver X Receptor Activators by Structure-Based Modeling

    PubMed Central

    2012-01-01

    Liver X receptors (LXRs) are members of the nuclear receptor family. Activators of LXRs are of high pharmacological interest as LXRs regulate cholesterol, fatty acid, and carbohydrate metabolism as well as inflammatory processes. On the basis of different X-ray crystal structures, we established a virtual screening workflow for the identification of novel LXR modulators. A two-step screening concept to identify active compounds included 3D-pharmacophore filters and rescoring by shape alignment. Eighteen virtual hits were tested in vitro applying a reporter gene assay, where concentration-dependent activity was proven for four novel lead structures. The most active compound 10, a 1,4-naphthochinone, has an estimated EC50 of around 5 μM. PMID:22489742

  18. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  19. Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses.

    PubMed

    Peng, Ya-Lan; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    Gene expression studies could provide insight into the physiological mechanisms and strategies used by plants under stress conditions. Selection of suitable internal control gene(s) is essential to accurately assess gene expression levels. For the mangrove plant, Aegiceras corniculatum, reliable reference genes to normalize real-time quantitative PCR data have not been previously investigated. In this study, the expression stabilities of five candidate reference genes [glyceraldehydes-3-phosphate dehydrogenase (GAPDH), 18SrRNA, β-Actin, 60S ribosomal protein L2, and elongation factor-1-A] were determined in leaves of A. corniculatum treated by cold, drought, salt, heavy metals, and pyrene and in different tissues of A. corniculatum under normal condition. Two software programs (geNorm and NormFinder) were employed to analyze and rank the tested genes. Results showed that GAPDH was the most suitable reference gene in A. corniculatum and the combination of two or three genes was recommended for greater accuracy. To assess the value of these tested genes as internal controls, the relative quantifications of CuZnSOD gene were also conducted. Results showed that the relative expression levels of CuZnSOD gene varied depending on the internal reference genes used, which highlights the importance of the choice of suitable internal controls in gene expression studies. Furthermore, the results also confirmed that GAPDH was a suitable reference gene for qPCR normalization in A. corniculatum under abiotic stresses. Identification of A. corniculatum reference gens in a wide range of experimental samples will provide a useful reference in future gene expression studies in this species, particularly involving similar stresses. PMID:25980489

  20. Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses.

    PubMed

    Peng, Ya-Lan; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    Gene expression studies could provide insight into the physiological mechanisms and strategies used by plants under stress conditions. Selection of suitable internal control gene(s) is essential to accurately assess gene expression levels. For the mangrove plant, Aegiceras corniculatum, reliable reference genes to normalize real-time quantitative PCR data have not been previously investigated. In this study, the expression stabilities of five candidate reference genes [glyceraldehydes-3-phosphate dehydrogenase (GAPDH), 18SrRNA, β-Actin, 60S ribosomal protein L2, and elongation factor-1-A] were determined in leaves of A. corniculatum treated by cold, drought, salt, heavy metals, and pyrene and in different tissues of A. corniculatum under normal condition. Two software programs (geNorm and NormFinder) were employed to analyze and rank the tested genes. Results showed that GAPDH was the most suitable reference gene in A. corniculatum and the combination of two or three genes was recommended for greater accuracy. To assess the value of these tested genes as internal controls, the relative quantifications of CuZnSOD gene were also conducted. Results showed that the relative expression levels of CuZnSOD gene varied depending on the internal reference genes used, which highlights the importance of the choice of suitable internal controls in gene expression studies. Furthermore, the results also confirmed that GAPDH was a suitable reference gene for qPCR normalization in A. corniculatum under abiotic stresses. Identification of A. corniculatum reference gens in a wide range of experimental samples will provide a useful reference in future gene expression studies in this species, particularly involving similar stresses.

  1. Identification of Interferon-Stimulated Genes with Antiretroviral Activity.

    PubMed

    Kane, Melissa; Zang, Trinity M; Rihn, Suzannah J; Zhang, Fengwen; Kueck, Tonya; Alim, Mudathir; Schoggins, John; Rice, Charles M; Wilson, Sam J; Bieniasz, Paul D

    2016-09-14

    Interferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif-56 (TRIM56) accentuates ISG induction by IFNα and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs. PMID:27631702

  2. Identification of a gene cluster associated with triclosan catabolism.

    PubMed

    Kagle, Jeanne M; Paxson, Clayton; Johnstone, Precious; Hay, Anthony G

    2015-06-01

    Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.

  3. Identification of Interferon-Stimulated Genes with Antiretroviral Activity.

    PubMed

    Kane, Melissa; Zang, Trinity M; Rihn, Suzannah J; Zhang, Fengwen; Kueck, Tonya; Alim, Mudathir; Schoggins, John; Rice, Charles M; Wilson, Sam J; Bieniasz, Paul D

    2016-09-14

    Interferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif-56 (TRIM56) accentuates ISG induction by IFNα and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs.

  4. Speech identification based on temporal fine structure cues

    PubMed Central

    Sheft, Stanley; Ardoint, Marine; Lorenzi, Christian

    2008-01-01

    The contribution of temporal fine structure (TFS) cues to consonant identification was assessed in normal-hearing listeners with two speech-processing schemes designed to remove temporal envelope (E) cues. Stimuli were processed vowel-consonant-vowel speech tokens. Derived from the analytic signal, carrier signals were extracted from the output of a bank of analysis filters. The “PM” and “FM” processing schemes estimated a phase- and frequency-modulation function, respectively, of each carrier signal and applied them to a sinusoidal carrier at the analysis-filter center frequency. In the FM scheme, processed signals were further restricted to the analysis-filter bandwidth. A third scheme retaining only E cues from each band was used for comparison. Stimuli processed with the PM and FM schemes were found to be highly intelligible (50–80% correct identification) over a variety of experimental conditions designed to affect the putative reconstruction of E cues subsequent to peripheral auditory filtering. Analysis of confusions between consonants showed that the contribution of TFS cues was greater for place than manner of articulation, whereas the converse was observed for E cues. Taken together, these results indicate that TFS cues convey important phonetic information that is not solely a consequence of E reconstruction. PMID:18646999

  5. Consonant identification using temporal fine structure and recovered envelope cuesa)

    PubMed Central

    Swaminathan, Jayaganesh; Reed, Charlotte M.; Desloge, Joseph G.; Braida, Louis D.; Delhorne, Lorraine A.

    2014-01-01

    The contribution of recovered envelopes (RENVs) to the utilization of temporal-fine structure (TFS) speech cues was examined in normal-hearing listeners. Consonant identification experiments used speech stimuli processed to present TFS or RENV cues. Experiment 1 examined the effects of exposure and presentation order using 16-band TFS speech and 40-band RENV speech recovered from 16-band TFS speech. Prior exposure to TFS speech aided in the reception of RENV speech. Performance on the two conditions was similar (∼50%-correct) for experienced listeners as was the pattern of consonant confusions. Experiment 2 examined the effect of varying the number of RENV bands recovered from 16-band TFS speech. Mean identification scores decreased as the number of RENV bands decreased from 40 to 8 and were only slightly above chance levels for 16 and 8 bands. Experiment 3 examined the effect of varying the number of bands in the TFS speech from which 40-band RENV speech was constructed. Performance fell from 85%- to 31%-correct as the number of TFS bands increased from 1 to 32. Overall, these results suggest that the interpretation of previous studies that have used TFS speech may have been confounded with the presence of RENVs. PMID:25235005

  6. Identification of senescence-associated genes from daylily petals.

    PubMed

    Panavas, T; Pikula, A; Reid, P D; Rubinstein, B; Walker, E L

    1999-05-01

    The petals of daylily (Hemerocallis hybrid) have a genetically based program that leads to senescence and cell death ca. 24 h after the flower opens. In order to determine the components of this program, six cDNAs, whose levels increase during petal senescence, were isolated and sequenced and designated DSA3, 4, 5, 6, 12 and 15. All six DSAs are members of gene families and all but DSA5 and DSA6 have one to three other very similar genes. GenBank database homology searches indicate that DSA3 is most similar at the amino acid level to an in-chain fatty acid hydroxylase which is bound to cytochrome P450, DSA4 may be an aspartic proteinase, DSA5 is as yet unidentified, DSA6 is a putative S1-type nuclease, DSA12 is very similar to a cytochrome P450-containing allene oxide synthase, and DSA15 may be a fatty acid elongase. Except for DSA12, the genes are expressed at low levels in daylily roots. Levels of the DSA mRNAs in leaves are less than 4% of the maximum detected in petals, and there are no clear differences between younger and older leaves. With the exception of DSA4, accumulation of the DSA mRNAs is increased 3.2 to 43 times by a concentration of abscisic acid that causes premature senescence of the petals. The relationship of the putative DSA gene products to senescence and cell death of daylily petals is discussed. PMID:10412903

  7. Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems.

    PubMed

    Taniguchi, Masatoshi; Nakamura, Moritaka; Tasaka, Masao; Morita, Miyo Terao

    2014-01-01

    Differential organ growth during gravitropic response is caused by differential accumulation of auxin, that is, relative higher auxin concentration in lower flanks than in upper flanks of responding organs. Auxin responsive reporter systems such as DR5::GUS and DR5::GFP have usually been used as indicators of gravitropic response in roots and hypocotyls of Arabidopsis. However, in the inflorescence stems, the reporter systems don't work well to monitor gravitropic response. Here, we aim to certify appropriate gravitropic response indicators (GRIs) in inflorescence stems. We performed microarray analysis comparing gene expression profiles between upper and lower flanks of Arabidopsis inflorescence stems after gravistimulation. Thirty genes showed > 2-fold differentially increased expression in lower flanks at 30 min, of which 19 were auxin response genes. We focused on IAA5 and IAA2 and verified whether they are appropriate GRIs by real-time qRT-PCR analyses. Transcript levels of IAA5 and IAA2 were remarkably higher in lower flanks than in upper flanks after gravistimulation. The biased IAA5 or IAA2 expression is disappeared in sgr2-1 mutant which is defective in gravity perception, indicating that gravity perception process is essential for formation of the biased gene expression during gravitropism. IAA5 expression was remarkably increased in lower flanks at 30 min after gravistimulation, whereas IAA2 expression was gradually decreased in upper flanks in a time-dependent manner. Therefore, we conclude that IAA5 is a sensitive GRI to monitor asymmetric auxin signaling caused by gravistimulation in Arabidopsis inflorescence stems.

  8. Identification of novel SNP in caprine β-lactoglobulin gene.

    PubMed

    Gharedaghi, Leila; Shahrbabak, Hosein Moradi; Sadeghi, Mostafa

    2016-09-01

    β-lactoglobulin (β-LG) gene is suggested as a functional candidate gene for milk yield and milk composition. β-LG polymorphism has been reported to be associated with milk yield in cows, sheep and Indian goats. This study was performed to identify SNPs in exon 7 of β-LG gene and their association with milk traits in Iranian local Mahabadi goats using polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) and PCR-sequencing. Three SSCP patterns were observed with frequencies 0.678, 0.096 and 0.226, respectively. Subsequently, after sequencing each unique pattern nine novel mutations were identified. These mutations include: T InDel at nucleotide position 93 and substitutions T/C, T/G, T/C, G/T, T/G,T/C, G/A and A/T at nucleotide positions 99, 124, 126, 134, 147, 156, 176 and 177, respectively. Of these, seven mutations were same among the genotypic patterns while differences were related to T deletion and insertion (-/T) at nucleotide position 93 with frequencies 0.22 and 0.78 in the presence and absence of T allele, respectively; and substitution (A/T) at nucleotide position 177 with frequencies 0.16 and 0.84 for A and T alleles, respectively. Milk traits including milk production (gr), milk fat and protein (%) were also measured. These findings demonstrated that β-LG gene had a significant effect on milk protein percentage (P < 0.05), but had no significant effect on milk production and milk fat percentage. PMID:27659319

  9. Identification of Developmental Regulatory Genes in Aspergillus Nidulans by Overexpression

    PubMed Central

    Marhoul, J. F.; Adams, T. H.

    1995-01-01

    Overexpression of several Aspergillus nidulans developmental regulatory genes has been shown to cause growth inhibition and development at inappropriate times. We set out to identify previously unknown developmental regulators by constructing a nutritionally inducible A. nidulans expression library containing small, random genomic DNA fragments inserted next to the alcA promoter [ alcA (p) ] in an A. nidulans transformation vector. Among 20,000 transformants containing random alcA (p) genomic DNA fusion constructs, we identified 66 distinct mutant strains in which alcA (p) induction resulted in growth inhibition as well as causing other detectable phenotypic changes. These growth inhibited mutants were divided into 52 FIG (Forced expression Inhibition of Growth) and 14 FAB (Forced expression Activation of brlA) mutants based on whether or not alcA (p) induction resulted in accumulation of mRNA for the developmental regulatory gene brlA. In four FAB mutants, alcA (p) induction not only activated brlA expression but also caused hyphae to differentiate into reduced conidiophores that produced viable spores from the tips as is observed after alcA (p) :: brlA induction. Sequence analyses of the DNA fragments under alcA (p) control in three of these four sporulating strains showed that in two cases developmental activation resulted from overexpression of previously uncharacterized genes, whereas in the third strain, the alcA (p) was fused to brlA. The potential uses for this strategy in identifying genes whose overexpression results in specific phenotypic changes like developmental induction are discussed. PMID:7713416

  10. Identification of developmental regulatory genes in Aspergillus nidulans by overexpression.

    PubMed

    Marhoul, J F; Adams, T H

    1995-02-01

    Overexpression of several Aspergillus nidulans developmental regulatory genes has been shown to cause growth inhibition and development at inappropriate times. We set out to identify previously unknown developmental regulators by constructing a nutritionally inducible A. nidulans expression library containing small, random genomic DNA fragments inserted next to the alcA promoter [alcA(p)] in an A. nidulans transformation vector. Among 20,000 transformants containing random alcA(p) genomic DNA fusion constructs, we identified 66 distinct mutant strains in which alcA(p) induction resulted in growth inhibition as well as causing other detectable phenotypic changes. These growth inhibited mutants were divided into 52 FIG (Forced expression Inhibition of Growth) and 14 FAB (Forced expression Activation of brlA) mutants based on whether or not alcA(p) induction resulted in accumulation of mRNA for the developmental regulatory gene brlA. In four FAB mutants, alcA(p) induction not only activated brlA expression but also caused hyphae to differentiate into reduced conidiophores that produced viable spores from the tips as is observed after alcA(p)::brlA induction. Sequence analyses of the DNA fragments under alcA(p) control in three of these four sporulating strains showed that in two cases developmental activation resulted from overexpression of previously uncharacterized genes, whereas in the third strain, the alcA(p) was fused to brlA. The potential uses for this strategy in identifying genes whose overexpression results in specific phenotypic changes like developmental induction are discussed.

  11. Identification of sample annotation errors in gene expression datasets.

    PubMed

    Lohr, Miriam; Hellwig, Birte; Edlund, Karolina; Mattsson, Johanna S M; Botling, Johan; Schmidt, Marcus; Hengstler, Jan G; Micke, Patrick; Rahnenführer, Jörg

    2015-12-01

    The comprehensive transcriptomic analysis of clinically annotated human tissue has found widespread use in oncology, cell biology, immunology, and toxicology. In cancer research, microarray-based gene expression profiling has successfully been applied to subclassify disease entities, predict therapy response, and identify cellular mechanisms. Public accessibility of raw data, together with corresponding information on clinicopathological parameters, offers the opportunity to reuse previously analyzed data and to gain statistical power by combining multiple datasets. However, results and conclusions obviously depend on the reliability of the available information. Here, we propose gene expression-based methods for identifying sample misannotations in public transcriptomic datasets. Sample mix-up can be detected by a classifier that differentiates between samples from male and female patients. Correlation analysis identifies multiple measurements of material from the same sample. The analysis of 45 datasets (including 4913 patients) revealed that erroneous sample annotation, affecting 40 % of the analyzed datasets, may be a more widespread phenomenon than previously thought. Removal of erroneously labelled samples may influence the results of the statistical evaluation in some datasets. Our methods may help to identify individual datasets that contain numerous discrepancies and could be routinely included into the statistical analysis of clinical gene expression data.

  12. Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis)

    PubMed Central

    2013-01-01

    Background Cytokinins (CKs) have significant roles in various aspects of plant growth and development, and they are also involved in plant stress adaptations. The fine-tuning of the controlled CK levels in individual tissues, cells, and organelles is properly maintained by isopentenyl transferases (IPTs) and cytokinin oxidase/dehydrogenases (CKXs). Chinese cabbage is one of the most economically important vegetable crops worldwide. The whole genome sequencing of Brassica rapa enables us to perform the genome-wide identification and functional analysis of the IPT and CKX gene families. Results In this study, a total of 13 BrIPT genes and 12 BrCKX genes were identified. The gene structures, conserved domains and phylogenetic relationships were analyzed. The isoelectric point, subcellular localization and glycosylation sites of the proteins were predicted. Segmental duplicates were found in both BrIPT and BrCKX gene families. We also analyzed evolutionary patterns and divergence of the IPT and CKX genes in the Cruciferae family. The transcription levels of BrIPT and BrCKX genes were analyzed to obtain an initial picture of the functions of these genes. Abiotic stress elements related to adverse environmental stimuli were found in the promoter regions of BrIPT and BrCKX genes and they were confirmed to respond to drought and high salinity conditions. The effects of 6-BA and ABA on the expressions of BrIPT and BrCKX genes were also investigated. Conclusions The expansion of BrIPT and BrCKX genes after speciation from Arabidopsis thaliana is mainly attributed to segmental duplication events during the whole genome triplication (WGT) and substantial duplicated genes are lost during the long evolutionary history. Genes produced by segmental duplication events have changed their expression patterns or may adopted new functions and thus are obtained. BrIPT and BrCKX genes respond well to drought and high salinity stresses, and their transcripts are affected by exogenous

  13. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    PubMed

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.

  14. Identification of Genes Responsible for Natural Variation in Volatile Content Using Next-Generation Sequencing Technology.

    PubMed

    Amaya, Iraida; Pillet, Jeremy; Folta, Kevin M

    2016-01-01

    Identification of the genes controlling the variation of key traits remains a challenge for plant researchers and represents a goal for the development of functional markers and their implementation in marker-assisted crop breeding. As an example we describe the identification of volatile organic compounds (VOCs) that segregate as single locus or mayor quantitative trait loci (QTL) in strawberry F1 segregating populations. Next, we describe a fast and efficient method for RNA extraction in strawberry that yields high-quality RNA for downstream RNA-seq analysis. Finally, two alternative methods for analysis of global transcript expression in contrasting lines will be described in order to identify the candidate gene and genes with differential expression using RNA-seq.

  15. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    PubMed

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  16. Commentary: When does understanding phenotypic evolution require identification of the underlying genes?

    PubMed

    Rausher, Mark D; Delph, Lynda F

    2015-07-01

    Adaptive evolution is fundamentally a genetic process. Over the past three decades, characterizing the genes underlying adaptive phenotypic change has revealed many important aspects of evolutionary change. At the same time, natural selection is often fundamentally an ecological process that can often be studied without identifying the genes underlying the variation on which it acts. This duality has given rise to disagreement about whether, and under what circumstances, it is necessary to identify specific genes associated with phenotypic change. This issue is of practical concern, especially for researchers who study nonmodel organisms, because of the often enormous cost and labor required to "go for the genes." We here consider a number of situations and questions commonly addressed by researchers. Our conclusion is that although gene identification can be crucial for answering some questions, there are others for which definitive answers can be obtained without finding underlying genes. It should thus not be assumed that considerations of "empirical completeness" dictate that gene identification is always desirable.

  17. Commentary: When does understanding phenotypic evolution require identification of the underlying genes?

    PubMed

    Rausher, Mark D; Delph, Lynda F

    2015-07-01

    Adaptive evolution is fundamentally a genetic process. Over the past three decades, characterizing the genes underlying adaptive phenotypic change has revealed many important aspects of evolutionary change. At the same time, natural selection is often fundamentally an ecological process that can often be studied without identifying the genes underlying the variation on which it acts. This duality has given rise to disagreement about whether, and under what circumstances, it is necessary to identify specific genes associated with phenotypic change. This issue is of practical concern, especially for researchers who study nonmodel organisms, because of the often enormous cost and labor required to "go for the genes." We here consider a number of situations and questions commonly addressed by researchers. Our conclusion is that although gene identification can be crucial for answering some questions, there are others for which definitive answers can be obtained without finding underlying genes. It should thus not be assumed that considerations of "empirical completeness" dictate that gene identification is always desirable. PMID:25973520

  18. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH)

    PubMed Central

    Chaudhuri, Roy R; Allen, Andrew G; Owen, Paul J; Shalom, Gil; Stone, Karl; Harrison, Marcus; Burgis, Timothy A; Lockyer, Michael; Garcia-Lara, Jorge; Foster, Simon J; Pleasance, Stephen J; Peters, Sarah E; Maskell, Duncan J; Charles, Ian G

    2009-01-01

    Background In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. Results We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH), that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. Conclusion We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens. PMID:19570206

  19. Frequency domain identification for robust large space structure control design

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1991-01-01

    A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

  20. Identification of genes in anonymous DNA sequences. Final report: Report period, 15 April 1993--15 April 1994

    SciTech Connect

    Fields, C.A.

    1994-09-01

    This Report concludes the DOE Human Genome Program project, ``Identification of Genes in Anonymous DNA Sequence.`` The central goals of this project have been (1) understanding the problem of identifying genes in anonymous sequences, and (2) development of tools, primarily the automated identification system gm, for identifying genes. The activities supported under the previous award are summarized here to provide a single complete report on the activities supported as part of the project from its inception to its completion.

  1. IDENTIFICATION OF BIOLOGICALLY RELEVANT GENES USING A DATABASE OF RAT LIVER AND KIDNEY BASELINE GENE EXPRESSION

    EPA Science Inventory

    Microarray data from independent labs and studies can be compared to potentially identify toxicologically and biologically relevant genes. The Baseline Animal Database working group of HESI was formed to assess baseline gene expression from microarray data derived from control or...

  2. Identification and characterization of the lamprey IRF gene.

    PubMed

    Pang, Yue; Liu, Shuang; Zheng, Zhen; Liu, Xin; Li, Qingwei

    2015-04-01

    Interferon regulatory factors (IRFs) are named for their ability to bind to and regulate interferon genes when an organism becomes infected with a virus. Numerous studies have revealed the versatile and critical functions of IRFs. In this study, an IRF gene from Lampetra japonica was identified and analyzed using bioinformatic methods. The L. japonica IRF (Lj-IRF) shares high sequence homology with other vertebrate IRFs but low sequence homology with an ascidian IRF-like protein. We also used recombinant Lj-IRF protein (rLj-IRF) to immunize New Zealand rabbits to prepare specific anti-rLj-IRF polyclonal antibodies. Enzyme-linked immunosorbent assays (ELISAs) and Western blotting assays were performed to detect the valence and specificity of the antibody. FACS analysis revealed that the Lj-IRF protein was expressed in approximately 21.14% of leukocytes and 9.60% of supraneural body cells in L. japonica, with immunofluorescence staining indicating a cytoplasmic location. The immunohistochemistry results demonstrated that IRF is distributed in the epithelial cells of the heart, supraneural body, kidneys and gills but is not detectable in intestinals or oral gland tissues. However, the expression of IRF was upregulated in lamprey intestinal tissues upon stimulation with the rLj-HMGB1 protein. Lj-IRF gene expression levels were higher in the rLj-HMGB1-stimulated group than the control group, and the expression level of Lj-IRF was significantly increased in the intestines as determined by quantitative real-time PCR. These results provide a foundation for studying the origin and evolution of the innate immune system in lampreys. PMID:25712467

  3. Identification of novel fusion genes in testicular germ cell tumors

    PubMed Central

    Hoff, Andreas M.; Alagaratnam, Sharmini; Zhao, Sen; Bruun, Jarle; Andrews, Peter W.; Lothe, Ragnhild A.; Skotheim, Rolf I.

    2015-01-01

    Testicular germ cell tumors (TGCT) are the most frequently diagnosed solid tumors in young men ages 15 to 44 years. Embryonal carcinomas (EC) comprise a subset of TGCTs that exhibit pluripotent characteristics similar to embryonic stem (ES) cells, but the genetic drivers underlying malignant transformation of ECs are unknown. To elucidate the abnormal genetic events potentially contributing to TGCT malignancy, such as the existence of fusion genes or aberrant fusion transcript expression, we performed RNA sequencing of EC cell lines and their non-malignant ES cell line counterparts. We identified eight novel fusion transcripts and one gene with alternative promoter usage, ETV6. Four out of nine transcripts were found recurrently expressed in an extended panel of primary TGCTs and additional EC cell lines, but not in normal parenchyma of the testis, implying tumor-specific expression. Two of the recurrent transcripts involved an intrachromosomal fusion between RCC1 and HENMT1 located 80 Mbp apart and an interchromosomal fusion between RCC1 and ABHD12B. RCC1-ABHD12B and the ETV6 transcript variant were found to be preferentially expressed in the more undifferentiated TGCT subtypes. In vitro differentiation of the NTERA2 EC cell line resulted in significantly reduced expression of both fusion transcripts involving RCC1 and the ETV6 transcript variant, indicating that they are markers of pluripotency in a malignant setting. In conclusion, we identified eight novel fusion transcripts that, to our knowledge, are the first fusion genes described in TGCT and may therefore potentially serve as genomic biomarkers of malignant progression. PMID:26659575

  4. Identification and characterization of the lamprey IRF gene.

    PubMed

    Pang, Yue; Liu, Shuang; Zheng, Zhen; Liu, Xin; Li, Qingwei

    2015-04-01

    Interferon regulatory factors (IRFs) are named for their ability to bind to and regulate interferon genes when an organism becomes infected with a virus. Numerous studies have revealed the versatile and critical functions of IRFs. In this study, an IRF gene from Lampetra japonica was identified and analyzed using bioinformatic methods. The L. japonica IRF (Lj-IRF) shares high sequence homology with other vertebrate IRFs but low sequence homology with an ascidian IRF-like protein. We also used recombinant Lj-IRF protein (rLj-IRF) to immunize New Zealand rabbits to prepare specific anti-rLj-IRF polyclonal antibodies. Enzyme-linked immunosorbent assays (ELISAs) and Western blotting assays were performed to detect the valence and specificity of the antibody. FACS analysis revealed that the Lj-IRF protein was expressed in approximately 21.14% of leukocytes and 9.60% of supraneural body cells in L. japonica, with immunofluorescence staining indicating a cytoplasmic location. The immunohistochemistry results demonstrated that IRF is distributed in the epithelial cells of the heart, supraneural body, kidneys and gills but is not detectable in intestinals or oral gland tissues. However, the expression of IRF was upregulated in lamprey intestinal tissues upon stimulation with the rLj-HMGB1 protein. Lj-IRF gene expression levels were higher in the rLj-HMGB1-stimulated group than the control group, and the expression level of Lj-IRF was significantly increased in the intestines as determined by quantitative real-time PCR. These results provide a foundation for studying the origin and evolution of the innate immune system in lampreys.

  5. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections

    PubMed Central

    Murphy, Dennis J; Brown, James R

    2007-01-01

    Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant M. tuberculosis strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections. Methods The availability of M. tuberculosis genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality. Results Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by devR, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (devR/devS, relA, mprAB), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development

  6. Constrained maximum likelihood modal parameter identification applied to structural dynamics

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Peeters, Bart; Guillaume, Patrick; De Troyer, Tim

    2016-05-01

    A new modal parameter estimation method to directly establish modal models of structural dynamic systems satisfying two physically motivated constraints will be presented. The constraints imposed in the identified modal model are the reciprocity of the frequency response functions (FRFs) and the estimation of normal (real) modes. The motivation behind the first constraint (i.e. reciprocity) comes from the fact that modal analysis theory shows that the FRF matrix and therefore the residue matrices are symmetric for non-gyroscopic, non-circulatory, and passive mechanical systems. In other words, such types of systems are expected to obey Maxwell-Betti's reciprocity principle. The second constraint (i.e. real mode shapes) is motivated by the fact that analytical models of structures are assumed to either be undamped or proportional damped. Therefore, normal (real) modes are needed for comparison with these analytical models. The work done in this paper is a further development of a recently introduced modal parameter identification method called ML-MM that enables us to establish modal model that satisfies such motivated constraints. The proposed constrained ML-MM method is applied to two real experimental datasets measured on fully trimmed cars. This type of data is still considered as a significant challenge in modal analysis. The results clearly demonstrate the applicability of the method to real structures with significant non-proportional damping and high modal densities.

  7. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    PubMed

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  8. Identification and validation of reference genes for gene expression studies in water buffalo.

    PubMed

    Terzi, V; Morcia, C; Spini, M; Tudisco, R; Cutrignelli, M I; Infascelli, F; Stanca, A M; Faccioli, P

    2010-06-01

    In gene expression analysis, a key step to obtain informative data from reverse transcription quantitative PCR (RT qPCR) assay is normalization, that is usually achieved by ratio to correct the abundance of the gene of interest against that of an endogenous reference gene. The finding of such reference genes, ideally expressed in a stable way in multiple tissue samples and in different experimental conditions, is a non-trivial problem. In this work, a set of genes potentially useful as reference for gene expression studies in water buffalo has been identified and evaluated. In the first step, a publicly available Bos taurus expressed sequence tags database has been downloaded from the TIGR Gene Index and mined by some simple frequency algorithms to find out which tentative consensuses are present in a remarkable number of different cDNA libraries and, consequently, are more suitable to be included in a starter set of candidate reference genes. To validate the potential of such candidates for their use as normalizers in buffalo gene expression analysis, an RT qPCR analysis has been carried out, in which the expression stability of these genes has been evaluated on a panel of buffalo tissues and organs. Our results indicate that ribosomal proteins L4 and L5 and Gek protein encoding genes can be useful as normalizers to compare gene expression levels across tissues and organs in buffalo.

  9. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    PubMed

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species.

  10. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene

    PubMed Central

    LI, Xiu-Feng; HAN, Chong; ZHONG, Cai-Rong; XU, Jun-Qiu; HUANG, Jian-Rong

    2016-01-01

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans. PMID:27686791

  11. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene.

    PubMed

    Li, Xiu-Feng; Han, Chong; Zhong, Cai-Rong; Xu, Jun-Qiu; Huang, Jian-Rong

    2016-09-18

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans. PMID:27686791

  12. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene.

    PubMed

    Li, Xiu-Feng; Han, Chong; Zhong, Cai-Rong; Xu, Jun-Qiu; Huang, Jian-Rong

    2016-09-18

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans.

  13. Genome-wide identification of NBS-encoding resistance genes in Brassica rapa.

    PubMed

    Mun, Jeong-Hwan; Yu, Hee-Ju; Park, Soomin; Park, Beom-Seok

    2009-12-01

    Nucleotide-binding site (NBS)-encoding resistance genes are key plant disease-resistance genes and are abundant in plant genomes, comprising up to 2% of all genes. The availability of genome sequences from several plant models enables the identification and cloning of NBS-encoding genes from closely related species based on a comparative genomics approach. In this study, we used the genome sequence of Brassica rapa to identify NBS-encoding genes in the Brassica genome. We identified 92 non-redundant NBS-encoding genes [30 CC-NBS-LRR (CNL) and 62 TIR-NBS-LRR (TNL) genes] in approximately 100 Mbp of B. rapa euchromatic genome sequence. Despite the fact that B. rapa has a significantly larger genome than Arabidopsis thaliana due to a recent whole genome triplication event after speciation, B. rapa contains relatively small number of NBS-encoding genes compared to A. thaliana, presumably because of deletion of redundant genes related to genome diploidization. Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes. Recent tandem duplication and ectopic deletion are likely to have played a role in the generation of novel Brassica lineage-specific resistance genes.

  14. Computational identification and analysis of MADS box genes in Camellia sinensis.

    PubMed

    Gogoi, Madhurjya; Borchetia, Sangeeta; Bandyopadhyay, Tanoy

    2015-01-01

    MADS (Minichromosome Maintenance1 Agamous Deficiens Serum response factor) box genes encode transcription factors and they play a key role in growth and development of flowering plants. There are two types of MADS box genes- Type I (serum response factor (SRF)-like) and Type II (myocyte enhancer factor 2 (MEF2)-like). Type II MADS box genes have a conserved MIKC domain (MADS DNA-binding domain, intervening domain, keratin-like domain, and c-terminal domain) and these were extensively studied in plants. Compared to other plants very little is known about MADS box genes in Camellia sinensis. The present study aims at identifying and analyzing the MADS-box genes present in Camellia sinensis. A comparative bioinformatics and phylogenetic analysis of the Camellia sinensis sequences along with Arabidopsis thaliana MADS box sequences available in the public domain databases led to the identification of 16 genes which were orthologous to Type II MADS box gene family members. The protein sequences were classified into distinct clades which are associated with the conserved function of flower and seed development. The identified genes may be used for gene expression and gene manipulation studies to elucidate their role in the development and flowering of tea which may pave the way to improve the crop productivity.

  15. Identification of reference genes for real-time quantitative PCR experiments in the liverwort Marchantia polymorpha.

    PubMed

    Saint-Marcoux, Denis; Proust, Hélène; Dolan, Liam; Langdale, Jane A

    2015-01-01

    Real-time quantitative polymerase chain reaction (qPCR) has become widely used as a method to compare gene transcript levels across different conditions. However, selection of suitable reference genes to normalize qPCR data is required for accurate transcript level analysis. Recently, Marchantia polymorpha has been adopted as a model for the study of liverwort development and land plant evolution. Identification of appropriate reference genes has therefore become a necessity for gene expression studies. In this study, transcript levels of eleven candidate reference genes have been analyzed across a range of biological contexts that encompass abiotic stress, hormone treatment and different developmental stages. The consistency of transcript levels was assessed using both geNorm and NormFinder algorithms, and a consensus ranking of the different candidate genes was then obtained. MpAPT and MpACT showed relatively constant transcript levels across all conditions tested whereas the transcript levels of other candidate genes were clearly influenced by experimental conditions. By analyzing transcript levels of phosphate and nitrate starvation reporter genes, we confirmed that MpAPT and MpACT are suitable reference genes in M. polymorpha and also demonstrated that normalization with an inappropriate gene can lead to erroneous analysis of qPCR data. PMID:25798897

  16. Computational identification and analysis of MADS box genes in Camellia sinensis

    PubMed Central

    Gogoi, Madhurjya; Borchetia, Sangeeta; Bandyopadhyay, Tanoy

    2015-01-01

    MADS (Minichromosome Maintenance1 Agamous Deficiens Serum response factor) box genes encode transcription factors and they play a key role in growth and development of flowering plants. There are two types of MADS box genes- Type I (serum response factor (SRF)-like) and Type II (myocyte enhancer factor 2 (MEF2)-like). Type II MADS box genes have a conserved MIKC domain (MADS DNA-binding domain, intervening domain, keratin-like domain, and c-terminal domain) and these were extensively studied in plants. Compared to other plants very little is known about MADS box genes in Camellia sinensis. The present study aims at identifying and analyzing the MADS-box genes present in Camellia sinensis. A comparative bioinformatics and phylogenetic analysis of the Camellia sinensis sequences along with Arabidopsis thaliana MADS box sequences available in the public domain databases led to the identification of 16 genes which were orthologous to Type II MADS box gene family members. The protein sequences were classified into distinct clades which are associated with the conserved function of flower and seed development. The identified genes may be used for gene expression and gene manipulation studies to elucidate their role in the development and flowering of tea which may pave the way to improve the crop productivity. PMID:25914445

  17. Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses.

    PubMed

    Brulle, Franck; Bernard, Fabien; Vandenbulcke, Franck; Cuny, Damien; Dumez, Sylvain

    2014-04-01

    Real-time quantitative PCR is nowadays a standard method to study gene expression variations in various samples and experimental conditions. However, to interpret results accurately, data normalization with appropriate reference genes appears to be crucial. The present study describes the identification and the validation of suitable reference genes in Brassica oleracea leaves. Expression stability of eight candidates was tested following drought and cold abiotic stresses by using three different softwares (BestKeeper, NormFinder and geNorm). Four genes (BolC.TUB6, BolC.SAND1, BolC.UBQ2 and BolC.TBP1) emerged as the most stable across the tested conditions. Further gene expression analysis of a drought- and a cold-responsive gene (BolC.DREB2A and BolC.ELIP, respectively), confirmed the stability and the reliability of the identified reference genes when used for normalization in the leaves of B. oleracea. These four genes were finally tested upon a benzene exposure and all appeared to be useful reference genes along this toxicological condition. These results provide a good starting point for future studies involving gene expression measurement on leaves of B. oleracea exposed to environmental modifications. PMID:24566730

  18. Identification of novel thyroid cancer-related genes and chemicals using shortest path algorithm.

    PubMed

    Jiang, Yang; Zhang, Peiwei; Li, Li-Peng; He, Yi-Chun; Gao, Ru-jian; Gao, Yu-Fei

    2015-01-01

    Thyroid cancer is a typical endocrine malignancy. In the past three decades, the continued growth of its incidence has made it urgent to design effective treatments to treat this disease. To this end, it is necessary to uncover the mechanism underlying this disease. Identification of thyroid cancer-related genes and chemicals is helpful to understand the mechanism of thyroid cancer. In this study, we generalized some previous methods to discover both disease genes and chemicals. The method was based on shortest path algorithm and applied to discover novel thyroid cancer-related genes and chemicals. The analysis of the final obtained genes and chemicals suggests that some of them are crucial to the formation and development of thyroid cancer. It is indicated that the proposed method is effective for the discovery of novel disease genes and chemicals.

  19. Identification and characterization of Lateral Organ Boundaries Domain genes in mulberry, Morus notabilis.

    PubMed

    Luo, Yiwei; Ma, Bi; Zeng, Qiwei; Xiang, Zhonghuai; He, Ningjia

    2016-06-01

    Genes from the plant specific Lateral Organ Boundaries Domain (LBD) family encode transcriptional regulators that have a variety of functions in various physiological and developmental processes. In the present study, 31 LBD genes were identified in the mulberry genome. The genome features of all MnLBD genes and phylogenetic studies with Arabidopsis LBD protein sequences, accompanied by the expression analysis of each of the Morus LBD genes provide insights into the functional prediction of mulberry LBDs. The genome-wide surveys of the current mulberry genome have resulted in the identification of catalogs of MnLBD genes that may function in the development of leaf, root, and secondary metabolism in Morus sp. PMID:27014591

  20. Identification and characterization of Lateral Organ Boundaries Domain genes in mulberry, Morus notabilis

    PubMed Central

    Luo, Yiwei; Ma, Bi; Zeng, Qiwei; Xiang, Zhonghuai; He, Ningjia

    2016-01-01

    Genes from the plant specific Lateral Organ Boundaries Domain (LBD) family encode transcriptional regulators that have a variety of functions in various physiological and developmental processes. In the present study, 31 LBD genes were identified in the mulberry genome. The genome features of all MnLBD genes and phylogenetic studies with Arabidopsis LBD protein sequences, accompanied by the expression analysis of each of the Morus LBD genes provide insights into the functional prediction of mulberry LBDs. The genome-wide surveys of the current mulberry genome have resulted in the identification of catalogs of MnLBD genes that may function in the development of leaf, root, and secondary metabolism in Morus sp. PMID:27014591

  1. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  2. Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene

    PubMed Central

    Geyer, Christopher B.; Eddy, Edward M.

    2008-01-01

    Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325

  3. IFGFA: Identification of featured genes from genomic data using factor analysis.

    PubMed

    Fu, C H; Deng, S; Wu, J H; Wu, X Q; Fu, Z H; Yu, Z G

    2016-01-01

    In this study, a software tool (IFGFA) for identification of featured genes from gene expression data based on latent factor analysis was developed. Despite the availability of computational methods and statistical models appropriate for analyzing special genomic data, IFGFA provides a platform for predicting colon cancer-related genes and can be applied to other cancer types. The computational framework behind IFGFA is based on the well-established Bayesian factor and regression model and prior knowledge about the gene from OMIM. We validated the predicted genes by analyzing somatic mutations in patients. An interface was developed to enable users to run the computational framework efficiently through visual programming. IFGFA is executable in a Windows system and does not require other dependent software packages. This program can be freely downloaded at http://www.fupage.org/downloads/ifgfa.zip. PMID:27525867

  4. Identification of Toxoplasma gondii infections by BI gene amplification.

    PubMed Central

    van de Ven, E; Melchers, W; Galama, J; Camps, W; Meuwissen, J

    1991-01-01

    The diagnosis of toxoplasmosis in congenitally infected children or in immunocompromised patients can be difficult; serology is not reliable, and the diagnosis must be based on the combination of symptomatology and the direct demonstration of the parasite in clinical specimens by microscopy, antigen detection, or inoculation of samples into mice or tissue cultures. These techniques are either insensitive or time-consuming. To determine the value of the polymerase chain reaction (PCR) for the diagnosis of Toxoplasma gondii infections, we compared this technique with conventional detection techniques, such as microscopy, tissue culturing, and mouse inoculation. We were able to detect T. gondii by PCR in clinical specimens and tissue samples that were obtained postmortem from a bone marrow recipient with cerebral toxoplasmosis and from three congenitally infected children. The presence of T. gondii was demonstrated in brain tissue, cerebrospinal fluid, the heart, and skeletal muscle tested fresh or after fixation in Formalin. In only one sample was T. gondii isolated by mouse inoculation but not detected by PCR. Because it is a sensitive, relatively rapid, and specific method and because it can be applied to a variety of different clinical samples, PCR can be considered a valuable additional tool for the identification of T. gondii infections. Images PMID:1939564

  5. Identification of Gene Expression Biomarkers for Predicting Radiation Exposure

    PubMed Central

    Lu, Tzu-Pin; Hsu, Yi-Yao; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chuang, Eric Y.

    2014-01-01

    A need for more accurate and reliable radiation dosimetry has become increasingly important due to the possibility of a large-scale radiation emergency resulting from terrorism or nuclear accidents. Although traditional approaches provide accurate measurements, such methods usually require tedious effort and at least two days to complete. Therefore, we provide a new method for rapid prediction of radiation exposure. Eleven microarray datasets were classified into two groups based on their radiation doses and utilized as the training samples. For the two groups, Student's t-tests and resampling tests were used to identify biomarkers, and their gene expression ratios were used to develop a prediction model. The performance of the model was evaluated in four independent datasets, and Ingenuity pathway analysis was performed to characterize the associated biological functions. Our meta-analysis identified 29 biomarkers, showing approximately 90% and 80% accuracy in the training and validation samples. Furthermore, the 29 genes significantly participated in the regulation of cell cycle, and 19 of them are regulated by three well-known radiation-modulated transcription factors: TP53, FOXM1 and ERBB2. In conclusion, this study demonstrates a reliable method for identifying biomarkers across independent studies and high and reproducible prediction accuracy was demonstrated in both internal and external datasets. PMID:25189756

  6. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae

    PubMed Central

    Zhang, Xin; Zhang, Jianzhen; Park, Yoonseong; Zhu, Kun Yan

    2012-01-01

    Chitin synthase (CHS) represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely tuned chitin biosynthesis and this pathway is absent in humans and other vertebrates. Current knowledge on CHS in insects, especially their structures, functions, and regulations is still very limited. We report the identification and characterization of two chitin synthase genes, AgCHS1 and AgCHS2, in African malaria mosquito, Anopheles gambiae. AgCHS1 and AgCHS2 were predicted to encode proteins of 1,578 and 1,586 amino acid residues, respectively. Their deduced amino acid sequences show high similarities to other insect chitin synthases. Transcriptional analysis indicated that AgCHS1 was expressed in egg, larval, pupal and adult stages whereas AgCHS2 appeared to be expressed at relatively low levels, particularly during the larval stages as examined by reverse transcription (RT)-PCR and real-time quantitative PCR. Relatively high expression was detected in the carcass followed by the foregut and hindgut for AgCHS1, and the foregut (cardia included) followed by the midgut for AgCHS2. Fluorescence in situ hybridization (FISH) and immunohistochemical analysis revealed new information including the localization of the two enzymes in the ommatidia of the compound eyes, and AgCHS2 in the thoracic and abdominal inter-segmental regions of pupal integument. PMID:22683441

  7. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities.

    PubMed

    Gouas, L; Goumy, C; Véronèse, L; Tchirkov, A; Vago, P

    2008-09-01

    Cytogenetics is the part of genetics that deals with chromosomes, particularly with numerical and structural chromosome abnormalities, and their implications in congenital or acquired genetic disorders. Standard karyotyping, successfully used for the last 50 years in investigating the chromosome etiology in patients with infertility, fetal abnormalities and congenital disorders, is constrained by the limits of microscopic resolution and is not suited for the detection of subtle chromosome abnormalities. The ability to detect submicroscopic chromosomal rearrangements that lead to copy-number changes has escalated progressively in recent years with the advent of molecular cytogenetic techniques. Here, we review various gene dosage methods such as FISH, PCR-based approaches (MLPA, QF-PCR, QMPSF and real time PCR), CGH and array-CGH, that can be used for the identification and delineation of copy-number changes for diagnostic purposes. Besides comparing their relative strength and weakness, we will discuss the impact that these detection methods have on our understanding of copy number variations in the human genome and their implications in genetic counseling. PMID:18513889

  8. [Identification of tetracenomycin X from a marine-derived Saccharothrix sp. guided by genes sequence analysis].

    PubMed

    Liu, Bin; Tan, Yi; Gan, Mao-Luo; Zhou, Hong-Xia; Wang, Yi-Guang; Ping, Yu-Hui; Li, Bin; Yang, Zhao-Yong; Xiao, Chun-Ling

    2014-02-01

    The crude extracts of the fermentation broth from a marine sediment-derived actinomycete strain, Saccharothrix sp. 10-10, showed significant antibacterial activities against drug-resistant pathogens. A genome-mining PCR-based experiment targeting the genes encoding key enzymes involved in the biosynthesis of secondary metabolites indicated that the strain 10-10 showed the potential to produce tetracenomycin-like compounds. Further chemical investigation of the cultures of this strain led to the identification of two antibiotics, including a tetracenomycin (Tcm) analogs, Tcm X (1), and a tomaymycin derivative, oxotomaymycin (2). Their structures were identified by spectroscopic data analysis, including UV, 1D-NMR, 2D-NMR and MS spectra. Tcm X (1) showed moderate antibacterial activities against a number of drug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) pathogens, with the MIC values in the range of 32-64 microg x mL(-1). In addition, 1 also displayed significant cytotoxic activities against human cancer cell lines, including HL60 (leukemia), HepG2 (liver), and MCF-7 (breast) with the IC 50 values of 5.1, 9.7 and 18.0 micromol x L(-1), respectively. Guided by the PCR-based gene sequence analysis, Tcm X (1) and oxotomaymycin (2) were identified from the genus of Saccharothrix and their 13C NMR data were correctly assigned on the basis of 2D NMR spectroscopic data analysis for the first time. PMID:24761614

  9. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    PubMed

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  10. Identification and validation of genes involved in gastric tumorigenesis

    PubMed Central

    2010-01-01

    Background Gastric cancer is one of the common cancers seen in south India. Unfortunately more than 90% are advanced by the time they report to a tertiary centre in the country. There is an urgent need to characterize these cancers and try to identify potential biomarkers and novel therapeutic targets. Materials and methods We used 24 gastric cancers, 20 Paired normal (PN) and 5 apparently normal gastric tissues obtained from patients with non-gastric cancers (Apparently normal - AN) for the microarray study followed by validation of the significant genes (n = 63) by relative quantitation using Taqman Low Density Array Real Time PCR. We then used a custom made Quantibody protein array to validate the expression of 15 proteins in gastric tissues (4 AN, 9 PN and 9 gastric cancers). The same array format was used to study the plasma levels of these proteins in 58 patients with gastric cancers and 18 from patients with normal/non-malignant gastric conditions. Results Seventeen genes (ASPN, CCL15/MIP-1δ, MMP3, SPON2, PRSS2, CCL3, TMEPAI/PMEPAI, SIX3, MFNG, SOSTDC1, SGNE1, SST, IGHA1, AKR1B10, FCGBP, ATP4B, NCAPH2) were shown to be differentially expressed between the tumours and the paired normal, for the first time. EpCAM (p = 0.0001), IL8 (p = 0.0003), CCL4/MIP-1β (p = 0.0026), CCL20/MIP-3α (p = 0.039) and TIMP1 (p = 0.0017) tissue protein levels were significantly different (Mann Whitney U test) between tumours versus AN & PN. In addition, median plasma levels of IL8, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, PDGFR-B and TIMP1 proteins were significantly different between the non-malignant group and the gastric cancer group. The post-surgical levels of EpCAM, IGFBP3, IL8, CXCL10/IP10, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, SPP1/OPN and PDGFR-B showed a uniform drop in all the samples studied. Conclusions Our study has identified several genes differentially expressed in gastric cancers, some for the first time. Some of these have been confirmed at the protein level

  11. ThioFinder: A Web-Based Tool for the Identification of Thiopeptide Gene Clusters in DNA Sequences

    PubMed Central

    He, Xinyi; Duan, Lian; Wu, Guojun; Bi, Dexi; Deng, Zixin; Liu, Wen; Ou, Hong-Yu

    2012-01-01

    Thiopeptides are a growing class of sulfur-rich, highly modified heterocyclic peptides that are mainly active against Gram-positive bacteria including various drug-resistant pathogens. Recent studies also reveal that many thiopeptides inhibit the proliferation of human cancer cells, further expanding their application potentials for clinical use. Thiopeptide biosynthesis shares a common paradigm, featuring a ribosomally synthesized precursor peptide and conserved posttranslational modifications, to afford a characteristic core system, but differs in tailoring to furnish individual members. Identification of new thiopeptide gene clusters, by taking advantage of increasing information of DNA sequences from bacteria, may facilitate new thiopeptide discovery and enrichment of the unique biosynthetic elements to produce novel drug leads by applying the principle of combinatorial biosynthesis. In this study, we have developed a web-based tool ThioFinder to rapidly identify thiopeptide biosynthetic gene cluster from DNA sequence using a profile Hidden Markov Model approach. Fifty-four new putative thiopeptide biosynthetic gene clusters were found in the sequenced bacterial genomes of previously unknown producing microorganisms. ThioFinder is fully supported by an open-access database ThioBase, which contains the sufficient information of the 99 known thiopeptides regarding the chemical structure, biological activity, producing organism, and biosynthetic gene (cluster) along with the associated genome if available. The ThioFinder website offers researchers a unique resource and great flexibility for sequence analysis of thiopeptide biosynthetic gene clusters. ThioFinder is freely available at http://db-mml.sjtu.edu.cn/ThioFinder/. PMID:23029291

  12. Identification and characterization of rat Ankrd6 gene in silico.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2005-02-01

    WNT signals are transduced to the beta-catenin pathway or the planar cell polarity (PCP) pathway. Drosophila Frizzled (Fz), Starry night (Stan), Van Gogh (Vang), Prickle (Pk) and Diego (Dgo) are PCP signaling molecules. Human FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9 and FZD10 are Fz homologs. Human CELSR1, CELSR2 and CELSR3 are Stan homologs. Human VANGL1 and VANGL2 are Vang homologs. Human PRICKLE1 and PRICKLE2 are Pk homologs. Human ANKRN6 is a Dgo homolog. Here, we identified and characterized rat Ankrd6 gene by using bioinformatics. Ankrd6 gene, consisting of 15 exons, was located within AC105547.5 genome sequence derived from rat chromosome 5q21. Rat Ankrd6 mRNA was expressed in corpus-striatum, eye, lung, and kidney. Rat Ankrd6 (714 aa) with six ankyrin (Ank) repeats and two coiled-coil regions showed 95.0, 84.2 and 53.4% total-amino-acid identity with mouse, human and zebrafish orthologs, respectively. Ser 340 of rat Ankrd6, conserved among mammalian Ankrd6 orthologs, was a protein kinase A (PKA) phosphotylation and 14-3-3 interaction site. Ank repeats are putative binding domains for Prickle1, Prickle2, Vangl1, and Vangl2. Central coiled-coil region is located within binding domain for Casein kinase I epsilon (CkIe). C-terminal coiled-coil region is located within binding domain for Axin1 and Axin2. Fourth to sixth Ank repeats of vertebrate Ankrd6 orthologs (codon 141-239) were highly conserved in Drosophila Dgo; however, two coiled-coil regions of vertebrate Ankrd6 orthologs were absent in Drosophila Dgo. Due to the molecular evolution, functions of vertebrate Ankrd6 orthologs were predicted to partially differ from those of Drosophila Dgo.

  13. Challenges and solutions for gene identification in the presence of familial locus heterogeneity

    PubMed Central

    Rehman, Atteeq U; Santos-Cortez, Regie Lyn P; Drummond, Meghan C; Shahzad, Mohsin; Lee, Kwanghyuk; Morell, Robert J; Ansar, Muhammad; Jan, Abid; Wang, Xin; Aziz, Abdul; Riazuddin, Saima; Smith, Joshua D; Wang, Gao T; Ahmed, Zubair M; Gul, Khitab; Shearer, A Eliot; Smith, Richard J H; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Hinnant, John; Khan, Shaheen N; Fisher, Rachel A; Ahmad, Wasim; Friderici, Karen H; Riazuddin, Sheikh; Friedman, Thomas B; Wilch, Ellen S; Leal, Suzanne M

    2015-01-01

    Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees), which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants and thereby increase the success rate of gene identification. PMID:25491636

  14. p63 gene structure in the phylum mollusca.

    PubMed

    Baričević, Ana; Štifanić, Mauro; Hamer, Bojan; Batel, Renato

    2015-08-01

    Roles of p53 family ancestor (p63) in the organisms' response to stressful environmental conditions (mainly pollution) have been studied among molluscs, especially in the genus Mytilus, within the last 15 years. Nevertheless, information about gene structure of this regulatory gene in molluscs is scarce. Here we report the first complete genomic structure of the p53 family orthologue in the mollusc Mediterranean mussel Mytilus galloprovincialis and confirm its similarity to vertebrate p63 gene. Our searches within the available molluscan genomes (Aplysia californica, Lottia gigantea, Crassostrea gigas and Biomphalaria glabrata), found only one p53 family member present in a single copy per haploid genome. Comparative analysis of those orthologues, additionally confirmed the conserved p63 gene structure. Conserved p63 gene structure can be a helpful tool to complement or/and revise gene annotations of any future p63 genomic sequence records in molluscs, but also in other animal phyla. Knowledge of the correct gene structure will enable better prediction of possible protein isoforms and their functions. Our analyses also pointed out possible mis-annotations of the p63 gene in sequenced molluscan genomes and stressed the value of manual inspection (based on alignments of cDNA and protein onto the genome sequence) for a reliable and complete gene annotation.

  15. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks

    PubMed Central

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-01-01

    The diverse, specialized genes present in today’s lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins’ binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes’ evolutionary properties. Slowly evolving (“cold”), old genes tend to interact with each other, as do rapidly evolving (“hot”), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN’s community structures and its genes’ evolutionary properties provide new perspectives for understanding evolutionary genetics. PMID:27359334

  16. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    PubMed

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  17. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  18. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  19. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues.

    PubMed

    Mangeot-Peter, Lauralie; Legay, Sylvain; Hausman, Jean-Francois; Esposito, Sergio; Guerriero, Gea

    2016-01-01

    Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L.), whose tissues (isolated bast fibres and core) are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp. PMID:27649158

  20. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues

    PubMed Central

    Mangeot-Peter, Lauralie; Legay, Sylvain; Hausman, Jean-Francois; Esposito, Sergio; Guerriero, Gea

    2016-01-01

    Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L.), whose tissues (isolated bast fibres and core) are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp. PMID:27649158

  1. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  2. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues.

    PubMed

    Mangeot-Peter, Lauralie; Legay, Sylvain; Hausman, Jean-Francois; Esposito, Sergio; Guerriero, Gea

    2016-09-15

    Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L.), whose tissues (isolated bast fibres and core) are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp.

  3. Identification of suitable grapevine reference genes for qRT-PCR derived from heterologous species.

    PubMed

    Tashiro, Rebecca M; Philips, Joshua G; Winefield, Christopher S

    2016-02-01

    Identification and validation of suitable reference genes that exhibit robust transcriptional stability across many sample types is an absolute requirement of all qRT-PCR experiments. Often, however, only small numbers of reference genes, validated across limited sample types, are available for non-model species. This points to a clear need to assess and validate a wider range of potential reference genes than is currently available. We therefore looked to test and validate a large number of potential reference genes across a wide range of tissue types and treatments to determine the applicability of these reference genes for use in grapevine and other non-model plant species. Potential reference genes were selected based on stability of gene transcription in the model plant species Arabidopsis or due to their common use in the grapevine community. The selected reference genes were analyzed across two datasets consisting of a range of either 'Sauvignon blanc' or 'Pinot noir' tissues. A total of 11 potential reference genes were screened across the two datasets. Gene stability was analyzed by GeNorm, a widely used Excel application, or an ANOVA-based method developed in red clover. Both analysis methods showed that all 11 potential reference genes are stably expressed in the datasets tested, but the rankings of gene stability differed based on the datasets and analysis method used. Furthermore, the transcript stability of these genes, initially identified in Arabidopsis and now validated in grapevine, suggests applicability across a wide range of non-model plant species in addition to their utility in grapevine.

  4. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish

    PubMed Central

    2013-01-01

    Background The genomic basis of teleost phenotypic complexity remains obscure, despite increasing availability of genome and transcriptome sequence data. Fish-specific genome duplication cannot provide sufficient explanation for the morphological complexity of teleosts, considering the relatively large number of extinct basal ray-finned fishes. Results In this study, we performed comparative genomic analysis to discover the Conserved Teleost-Specific Genes (CTSGs) and orphan genes within zebrafish and found that these two sets of lineage-specific genes may have played important roles during zebrafish embryogenesis. Lineage-specific genes within zebrafish share many of the characteristics of their counterparts in other species: shorter length, fewer exon numbers, higher GC content, and fewer of them have transcript support. Chromosomal location analysis indicated that neither the CTSGs nor the orphan genes were distributed evenly in the chromosomes of zebrafish. The significant enrichment of immunity proteins in CTSGs annotated by gene ontology (GO) or predicted ab initio may imply that defense against pathogens may be an important reason for the diversification of teleosts. The evolutionary origin of the lineage-specific genes was determined and a very high percentage of lineage-specific genes were generated via gene duplications. The temporal and spatial expression profile of lineage-specific genes obtained by expressed sequence tags (EST) and RNA-seq data revealed two novel properties: in addition to being highly tissue-preferred expression, lineage-specific genes are also highly temporally restricted, namely they are expressed in narrower time windows than evolutionarily conserved genes and are specifically enriched in later-stage embryos and early larval stages. Conclusions Our study provides the first systematic identification of two different sets of lineage-specific genes within zebrafish and provides valuable information leading towards a better

  5. Automated identification of elemental ions in macromolecular crystal structures

    SciTech Connect

    Echols, Nathaniel Morshed, Nader; Afonine, Pavel V.; McCoy, Airlie J.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-04-01

    The solvent-picking procedure in phenix.refine has been extended and combined with Phaser anomalous substructure completion and analysis of coordination geometry to identify and place elemental ions. Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.

  6. Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis

    PubMed Central

    2014-01-01

    Background Prostate cancer is one of the most common malignant diseases and is characterized by heterogeneity in the clinical course. To date, there are no efficient morphologic features or genomic biomarkers that can characterize the phenotypes of the cancer, especially with regard to metastasis – the most adverse outcome. Searching for effective surrogate genes out of large quantities of gene expression data is a key to cancer phenotyping and/or understanding molecular mechanisms underlying prostate cancer development. Results Using the maximum relevance minimum redundancy (mRMR) method on microarray data from normal tissues, primary tumors and metastatic tumors, we identifed four genes that can optimally classify samples of different prostate cancer phases. Moreover, we constructed a molecular interaction network with existing bioinformatic resources and co-identifed eight genes on the shortest-paths among the mRMR-identified genes, which are potential co-acting factors of prostate cancer. Functional analyses show that molecular functions involved in cell communication, hormone-receptor mediated signaling, and transcription regulation play important roles in the development of prostate cancer. Conclusion We conclude that the surrogate genes we have selected compose an effective classifier of prostate cancer phases, which corresponds to a minimum characterization of cancer phenotypes on the molecular level. Along with their molecular interaction partners, it is fairly to assume that these genes may have important roles in prostate cancer development; particularly, the un-reported genes may bring new insights for the understanding of the molecular mechanisms. Thus our results may serve as a candidate gene set for further functional studies. PMID:25151146

  7. Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani.

    PubMed

    Ghosh, Srayan; Gupta, Santosh Kumar; Jha, Gopaljee

    2014-11-01

    Rhizoctonia solani is an important necrotrophic fungal pathogen which causes disease on diverse plant species. It has been classified into 14 genetically distinct anastomosis groups (AGs), however, very little is known about their genomic diversity. AG1-IA causes sheath blight disease in rice and controlling this disease remains a challenge for sustainable rice cultivation. Recently the draft genome sequences of AG1-IA (rice isolate) and AG1-IB (lettuce isolate) had become publicly available. In this study, using comparative genomics, we report identification of 3,942 R. solani genes that are uniquely present in AG1-IA. Many of these genes encode important biological, molecular functions and exhibit dynamic expression during in-planta growth of the pathogen in rice. Based upon sequence similarity with genes that are required for plant and human/zoonotic diseases, we identified several putative virulence/pathogenicity determinants amongst AG1-IA specific genes. While studying the expression of 19 randomly selected genes, we identified three genes highly up-regulated during in-planta growth. The detailed in silico characterization of these genes and extent of their up-regulation in different rice genotypes, having variable degree of disease susceptibility, suggests their importance in rice-Rhizoctonia interactions. In summary, the present study reports identification, functional characterization of AG1-IA specific genes and predicts important virulence determinants that might enable the pathogen to grow inside hostile plant environment. Further characterization of these genes would shed useful insights about the pathogenicity mechanism of AG1-IA on rice.

  8. High-Throughput Identification of Unique Structure Prototypes in the Inorganic Crystal Structure Database

    NASA Astrophysics Data System (ADS)

    Hicks, David; Toher, Cormac; Levy, Ohad; Curtarolo, Stefano

    High-throughput computational assessment of materials properties is currently a major component of the effort to develop new useful materials by uncovering trends and correlations between structures, compositions, and functionalities. Efficient implementation of this approach thus requires a systematic identification of distinct material structure prototypes. We have developed a robust algorithm that calculates the level of similarity between crystal structures independent of the unit cell representation, using the comparison method proposed by Burzlaff. This algorithm has been implemented in the high-throughput framework, Automatic Flow (AFLOW), and applied to the Inorganic Crystal Structure Database (ICSD) entries in the AFLOWLIB.org online repository. We have determined the uniqueness statistics for the ICSD and have created a comprehensive set of the unique structural prototypes represented in it.

  9. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  10. Identification of housekeeping genes suitable for gene expression analysis in Jian carp (Cyprinus carpio var. jian).

    PubMed

    Tang, Yong-kai; Yu, Ju-hua; Xu, Pao; Li, Jian-lin; Li, Hong-xia; Ren, Hong-tao

    2012-10-01

    Jian carp (Cyprinus carpio var. jian) is an important economic fish species cultured in China. In this report, we performed a systematic analysis to identify an appropriate housekeeping (HK) gene for the study of gene expression in Jian carp. For this purpose, partial DNA sequences of four potential candidate genes (elongation factor 1 alpha (EF-1α), glyceraldehyde-3-phosphate (GAPDH), beta-actin (ACTB), and 18S ribosomal RNA (18S rRNA) were isolated, and their expression levels were studied using RNA extracted from nine tissues (forebrain, hypothalamus, liver, fore-intestine, hind-intestine, ovary, muscle, heart, kidney) in juvenile and adult Jian carp. Gene expression levels were quantified by quantitative real time RT-PCR (qRT-PCR), and expression stability was evaluated by comparing the coefficients of variation (CV) of the Ct values. The results showed that EF-1α was the most suitable HK gene in all tissues of juvenile and adult Jian carp. However, at distinct juvenile and adult developmental stages, there was not a single optimal gene for normalization of expression levels in all tissues. EF-1α was the most stable gene only in forebrain, hypothalamus, liver, heart, and kidney. These results provide data that can be expected to aid gene expression analysis in Jian carp research, but underline the importance of identifying the optimal HK gene for each new experimental paradigm. PMID:22789712

  11. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds

    PubMed Central

    Ates, Duygu; Sever, Tugce; Aldemir, Secil; Yagmur, Bulent; Temel, Hulya Yilmaz; Kaya, Hilal Betul; Alsaleh, Ahmad; Kahraman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin

    2016-01-01

    Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross “PI 320937” × “Eston” grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3–16.9% of the phenotypic variation. PMID:26978666

  12. Tenebrio molitor antifreeze protein gene identification and regulation.

    PubMed

    Qin, Wensheng; Walker, Virginia K

    2006-02-15

    The yellow mealworm, Tenebrio molitor, is a freeze susceptible, stored product pest. Its winter survival is facilitated by the accumulation of antifreeze proteins (AFPs), encoded by a small gene family. We have now isolated 11 different AFP genomic clones from 3 genomic libraries. All the clones had a single coding sequence, with no evidence of intervening sequences. Three genomic clones were further characterized. All have putative TATA box sequences upstream of the coding regions and multiple potential poly(A) signal sequences downstream of the coding regions. A TmAFP regulatory region, B1037, conferred transcriptional activity when ligated to a luciferase reporter sequence and after transfection into an insect cell line. A 143 bp core promoter including a TATA box sequence was identified. Its promoter activity was increased 4.4 times by inserting an exotic 245 bp intron into the construct, similar to the enhancement of transgenic expression seen in several other systems. The addition of a duplication of the first 120 bp sequence from the 143 bp core promoter decreased promoter activity by half. Although putative hormonal response sequences were identified, none of the five hormones tested enhanced reporter activity. These studies on the mechanisms of AFP transcriptional control are important for the consideration of any transfer of freeze-resistance phenotypes to beneficial hosts.

  13. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds.

    PubMed

    Ates, Duygu; Sever, Tugce; Aldemir, Secil; Yagmur, Bulent; Temel, Hulya Yilmaz; Kaya, Hilal Betul; Alsaleh, Ahmad; Kahraman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin

    2016-01-01

    Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross "PI 320937" × "Eston" grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3-16.9% of the phenotypic variation.

  14. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds.

    PubMed

    Ates, Duygu; Sever, Tugce; Aldemir, Secil; Yagmur, Bulent; Temel, Hulya Yilmaz; Kaya, Hilal Betul; Alsaleh, Ahmad; Kahraman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin

    2016-01-01

    Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross "PI 320937" × "Eston" grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3-16.9% of the phenotypic variation. PMID:26978666

  15. Identification of the major capsid protein gene of human cytomegalovirus.

    PubMed Central

    Chee, M; Rudolph, S A; Plachter, B; Barrell, B; Jahn, G

    1989-01-01

    The coding region for the major capsid protein (MCP) of human cytomegalovirus (HCMV) was identified by comparing the protein sequence with the respective sequences of herpes simplex virus (HSV), Epstein-Barr virus, and varicella-zoster virus. The predicted length of the HCMV MCP was 1,370 amino acids. Comparison of the MCP sequences of the different human herpesviruses showed a homology of 25% to the MCP of HSV type 1, a homology of 29% to the MCP of Epstein-Barr virus, and a homology of 23% to the MCP of varicella-zoster virus. A subfragment of the HSV type 1 KpnI i fragment encoding the MCP VP5 cross-hybridized with the HCMV HindIII U fragment containing part of the MCP gene. Northern (RNA) blot analyses with subclones out of the coding region for the HCMV MCP detected one large transcript of about 8 kilobases. A portion of the open reading frame was expressed in Escherichia coli plasmid pBD2 IC2OH as a beta-galactosidase fusion protein and was used to generate polyclonal antibodies in New Zealand White rabbits. The obtained antisera reacted in Western immunoblots with the MCP of purified HCMV virions. A monoclonal antibody against the human MCP and a monospecific rabbit antiserum against strain Colburn of simian cytomegalovirus detected the fusion protein as well as the MCP of purified virions in immunoblots. Images PMID:2536837

  16. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    PubMed

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  17. Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae

    PubMed Central

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property. PMID:23383298

  18. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    SciTech Connect

    Hayakawa, Kazuo; Ikeya, Makoto; Fukuta, Makoto; Woltjen, Knut; Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo; Otsuka, Takanobu; Toguchida, Junya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  19. Identification of Suitable Reference Genes for Gene Expression Studies of Shoulder Instability

    PubMed Central

    Leal, Mariana Ferreira; Belangero, Paulo Santoro; Cohen, Carina; Figueiredo, Eduardo Antônio; Loyola, Leonor Casilla; Pochini, Alberto Castro; Smith, Marília Cardoso; Andreoli, Carlos Vicente; Belangero, Sintia Iole; Ejnisman, Benno; Cohen, Moises

    2014-01-01

    Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC) in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially HPRT1 and B2M, is a

  20. Behavioral pattern identification for structural health monitoring in complex systems

    NASA Astrophysics Data System (ADS)

    Gupta, Shalabh

    Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special

  1. BSSV: Bayesian based somatic structural variation identification with whole genome DNA-seq data.

    PubMed

    Chen, Xi; Shi, Xu; Shajahan, Ayesha N; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2014-01-01

    High coverage whole genome DNA-sequencing enables identification of somatic structural variation (SSV) more evident in paired tumor and normal samples. Recent studies show that simultaneous analysis of paired samples provides a better resolution of SSV detection than subtracting shared SVs. However, available tools can neither identify all types of SSVs nor provide any rank information regarding their somatic features. In this paper, we have developed a Bayesian framework, by integrating read alignment information from both tumor and normal samples, called BSSV, to calculate the significance of each SSV. Tested by simulated data, the precision of BSSV is comparable to that of available tools and the false negative rate is significantly lowered. We have also applied this approach to The Cancer Genome Atlas breast cancer data for SSV detection. Many known breast cancer specific mutated genes like RAD51, BRIP1, ER, PGR and PTPRD have been successfully identified.

  2. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.

    PubMed

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-06-20

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  3. [The application of genome editing in identification of plant gene function and crop breeding].

    PubMed

    Xiangchun, Zhou; Yongzhong, Xing

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  4. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  5. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data

    PubMed Central

    Jang, Ho; Hur, Youngmi; Lee, Hyunju

    2016-01-01

    DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes. PMID:27156852

  6. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  7. Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank.

    PubMed

    Piovesan, Allison; Caracausi, Maria; Ricci, Marco; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2015-12-01

    We have developed GeneBase, a full parser of the National Center for Biotechnology Information (NCBI) Gene database, which generates a fully structured local database with an intuitive user-friendly graphic interface for personal computers. Features of all the annotated eukaryotic genes are accessible through three main software tables, including for each entry details such as the gene summary, the gene exon/intron structure and the specific Gene Ontology attributions. The structuring of the data, the creation of additional calculation fields and the integration with nucleotide sequences allow users to make many types of comparisons and calculations that are useful for data retrieval and analysis. We provide an original example analysis of the existing introns across all the available species, through which the classic biological problem of the 'minimal intron' may find a solution using available data. Based on all currently available data, we can define the shortest known eukaryotic GT-AG intron length, setting the physical limit at the 30 base pair intron belonging to the human MST1L gene. This 'model intron' will shed light on the minimal requirement elements of recognition used for conventional splicing functioning. Remarkably, this size is indeed consistent with the sum of the splicing consensus sequence lengths.

  8. Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank

    PubMed Central

    Piovesan, Allison; Caracausi, Maria; Ricci, Marco; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2015-01-01

    We have developed GeneBase, a full parser of the National Center for Biotechnology Information (NCBI) Gene database, which generates a fully structured local database with an intuitive user-friendly graphic interface for personal computers. Features of all the annotated eukaryotic genes are accessible through three main software tables, including for each entry details such as the gene summary, the gene exon/intron structure and the specific Gene Ontology attributions. The structuring of the data, the creation of additional calculation fields and the integration with nucleotide sequences allow users to make many types of comparisons and calculations that are useful for data retrieval and analysis. We provide an original example analysis of the existing introns across all the available species, through which the classic biological problem of the ‘minimal intron’ may find a solution using available data. Based on all currently available data, we can define the shortest known eukaryotic GT-AG intron length, setting the physical limit at the 30 base pair intron belonging to the human MST1L gene. This ‘model intron’ will shed light on the minimal requirement elements of recognition used for conventional splicing functioning. Remarkably, this size is indeed consistent with the sum of the splicing consensus sequence lengths. PMID:26581719

  9. Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1985-01-01

    Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments.

  10. Expansion and orthogonalization of measured modes for structure identification

    NASA Technical Reports Server (NTRS)

    Smith, Suzanne Weaver

    1989-01-01

    The purpose was to investigate a new simultaneous expansion/orthogonalization method in comparison with two previously published expansion methods and a widely used orthogonalization technique. Each expansion method uses data from an analytical model of the structure to complete the estimate of the mode shape vectors. Berman and Nagy used Guyan expansion in their work with improving analytical models. In this method, modes are expanded one at a time, producing a set not orthogonal with respect to the mass matrix. Baruch and Bar Itzhack's optimal orthogonalization procedure was used to subsequently adjust the expanded modes. A second expansion technique was presented by O'Callahan, Avitabile, and Reimer and separately by Kammer. Again, modes are expanded individually and orthogonalized after expansion with the same optimal technique as above. Finally, a simultaneous expansion/orthogonalization method was developed from the orthogonal Procrustes problem of computational mathematics. In this method modes are optimally expanded as a set and orthogonal with respect to the mass matrix as a result. Two demonstation problems were selected for the comparison of the methods described. The first problem is an 8 degree of freedom spring-mass problem first presented by Kabe. Several conditions were examined for expansion method including the presence of errors in the measured data and in the analysis models. As a second demonstration problem, data from tests of laboratory scale model truss structures was expanded for system identification. Tests with a complete structure produced a correlated analysis model and the stiffness and mass matrices. Tests of various damaged configurations produced measured data for 6 modes at 14 dof locations.

  11. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis.

    PubMed

    Midorikawa, Yutaka; Tsutsumi, Shuichi; Taniguchi, Hirokazu; Ishii, Masami; Kobune, Yuko; Kodama, Tatsuhiko; Makuuchi, Masatoshi; Aburatani, Hiroyuki

    2002-06-01

    To identify the genes associated with dedifferentiation of hepatocellular carcinoma (HCC), gene expression profiles of HCCs of well-and moderately differentiated grades were compared by means of oligonucleotide arrays. One tumor showed a nodule-in-nodule appearance (NIN), which is occasionally observed in the course of progression of HCC from well to less differentiated grade, when an inner, moderately differentiated tumor (MD) develops sequentially from the outer, well-differentiated tumor (WD). Seventy-six genes were identified to be up-regulated more than 3-fold and 33 genes were down-regulated in the inner nodule in NIN. By statistical analysis of the profiles from 10 individual additional liver tumors, 5 WDs and 5 MDs, we were able to identify 12 genes, LAMA3, PPIB, ADAR, PSMD4, NDUFS8, D9SVA, CCT3, GBAP, ARD1, RDBP, CSRP2, and TLE1, with significantly elevated expression, and 4 genes, CP, IL7R, CD48, and PLGL, with decreased expression in MD. These selected genes were further validated using another 12 tumors, 5 WDs and 7 MDs, with semi-quantitative RT-PCR. We also applied neighborhood analysis to list the genes with high predictability values as most closely correlated with WD-MD distinction. Seven genes, ADAR, PSMD4, D9SVA, CCT3, GBAP, RDBP, and CSRP2, whose expression was elevated and one gene, IL7R, whose expression was decreased, were included among the top 50 predictor genes. These genes are likely to be associated with dedifferentiation of HCC and their identification may help to elucidate the mechanism of liver cancer progression. PMID:12079511

  12. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    PubMed

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  13. Identification of Common Prognostic Gene Expression Signatures with Biological Meanings from Microarray Gene Expression Datasets

    PubMed Central

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W. K. Alfred; Weinstein, John N.

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures. PMID:23029298

  14. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.

    PubMed

    Guelke, Eileen; Bucan, Vesna; Liebsch, Christina; Lazaridis, Andrea; Radtke, Christine; Vogt, Peter M; Reimers, Kerstin

    2015-04-10

    For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained. PMID:25637570

  15. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.

    PubMed

    Guelke, Eileen; Bucan, Vesna; Liebsch, Christina; Lazaridis, Andrea; Radtke, Christine; Vogt, Peter M; Reimers, Kerstin

    2015-04-10

    For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained.

  16. Integrated identification and robust control tuning for large space structures

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1990-01-01

    System identification is studied for the explicit purpose of supporting modern H-infinity robust control design objectives. In the analysis, the true plant is not assumed to be in the identification model set. An integrated identification/robust control problem is posed in which the optimal solution guarantees the best robust performance relative to the system information contained in a given experimental data set. A numerical example demonstrating an approximate solution to the problem indicates the usefulness of the approach.

  17. Genomic structure of the human prion protein gene.

    PubMed Central

    Puckett, C; Concannon, P; Casey, C; Hood, L

    1991-01-01

    Creutzfeld-Jacob disease and Gerstmann-Sträussler syndrome are rare degenerative disorders of the nervous system which have been genetically linked to the prion protein (PrP) gene. The PrP gene encodes a host glycoprotein of unknown function and is located on the short arm of chromosome 20, a region with few known genes or anonymous markers. The complete structure of the PrP gene in man has not been determined despite considerable interest in its relationship to these unusual disorders. We have determined that the human PrP gene has the same simple genomic structure seen in the hamster gene and consists of two exons and a single intron. In contrast to the hamster PrP gene the human gene appears to have a single major transcriptional start site. The region immediately 5' of the transcriptional start site of the human PrP gene demonstrates the GC-rich features commonly seen in housekeeping genes. Curiously, the genomic clone we have isolated contains a 24-bp deletion that removes one of five octameric peptide repeats predicted to form a B-pleated sheet in this region of the PrP. We have also identified 5' of the PrP gene an RFLP which has a high degree of heterozygosity and which should serve as a useful marker for the pter-12 region of human chromosome 20. Images Figure 3 Figure 5 PMID:1678248

  18. Identification of a new DMD gene deletion by ectopic transcript analysis.

    PubMed Central

    Rininsland, F; Hahn, A; Niemann-Seyde, S; Slomski, R; Hanefeld, F; Reiss, J

    1992-01-01

    The detailed genetic analysis of the Duchenne/Becker muscular dystrophy gene is hindered by the large number of exons involved and their separation by huge introns. These problems can be overcome by the analysis of mRNA rather than genomic DNA and ectopic transcripts derived from peripheral blood lymphocytes provide a convenient source of material. Using reverse transcription and nested PCR, we show here a comprehensive strategy for the rapid and complete analysis of the coding sequences from complex genes and illustrate its potential by the identification of a hitherto undescribed single exon deletion. Images PMID:1383546

  19. Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts.

    PubMed

    Pandian, Ganesh N; Sato, Shinsuke; Anandhakumar, Chandran; Taniguchi, Junichi; Takashima, Kazuhiro; Syed, Junetha; Han, Le; Saha, Abhijit; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2014-12-19

    A nontransgenic approach to reprogram mouse somatic cells into induced pluripotent stem cells using only small molecules got achieved to propose a potential clinical-friendly cellular reprogramming strategy. Consequently, the screening and identification of small molecules capable of inducing pluripotency genes in human cells are increasingly a focus of research. Because cellular reprogramming is multifactorial in nature, there is a need for versatile small molecules capable of modulating the complicated gene networks associated with pluripotency. We have developed a targeting small molecule called SAHA-PIP comprising the histone deacetylase inhibitor SAHA and the sequence-specific DNA binding pyrrole-imidazole polyamides for modulating distinct gene networks. Here, we report the identification of a SAHA-PIP termed Ì that could trigger genome-wide epigenetic reprogramming and turn ON the typically conserved core pluripotency gene network. Through independent lines of evidence, we report for the first time a synthetic small molecule inducer that target and activate the OCT-3/4 regulated pluripotency genes in human dermal fibroblasts.

  20. Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts.

    PubMed

    Pandian, Ganesh N; Sato, Shinsuke; Anandhakumar, Chandran; Taniguchi, Junichi; Takashima, Kazuhiro; Syed, Junetha; Han, Le; Saha, Abhijit; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2014-12-19

    A nontransgenic approach to reprogram mouse somatic cells into induced pluripotent stem cells using only small molecules got achieved to propose a potential clinical-friendly cellular reprogramming strategy. Consequently, the screening and identification of small molecules capable of inducing pluripotency genes in human cells are increasingly a focus of research. Because cellular reprogramming is multifactorial in nature, there is a need for versatile small molecules capable of modulating the complicated gene networks associated with pluripotency. We have developed a targeting small molecule called SAHA-PIP comprising the histone deacetylase inhibitor SAHA and the sequence-specific DNA binding pyrrole-imidazole polyamides for modulating distinct gene networks. Here, we report the identification of a SAHA-PIP termed Ì that could trigger genome-wide epigenetic reprogramming and turn ON the typically conserved core pluripotency gene network. Through independent lines of evidence, we report for the first time a synthetic small molecule inducer that target and activate the OCT-3/4 regulated pluripotency genes in human dermal fibroblasts. PMID:25366962

  1. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.

  2. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here. PMID:18384725

  3. [PCR-derived technology in gene identification and typing of Yersinia pestis].

    PubMed

    Wang, Mei; Tang, Xinyuan; Wang, Zuyun

    2015-01-01

    Application of the PCR-derived technology in gene identification and genotypes of different ecotype Yersinia pestis to make the high-throughput experimental results can reflect the epidemic history and compare the diversity in genome, pathogenicity, so that results from these experiments provide an important basis for clinical diagnosis, treatment and origin. But the experiment should be considered typing ability, practicality, budget and other experimental factors or conditions, because each PCR-derivative technology has advantages and disadvantages.

  4. Identification of Differential Gene Expression in Brassica rapa Nectaries through Expressed Sequence Tag Analysis

    PubMed Central

    Hampton, Marshall; Xu, Wayne W.; Kram, Brian W.; Chambers, Emily M.; Ehrnriter, Jerad S.; Gralewski, Jonathan H.; Joyal, Teresa; Carter, Clay J.

    2010-01-01

    Background Nectaries are the floral organs responsible for the synthesis and secretion of nectar. Despite their central roles in pollination biology, very little is understood about the molecular mechanisms underlying nectar production. This project was undertaken to identify genes potentially involved in mediating nectary form and function in Brassica rapa. Methodology and Principal Findings Four cDNA libraries were created using RNA isolated from the median and lateral nectaries of B. rapa flowers, with one normalized and one non-normalized library being generated from each tissue. Approximately 3,000 clones from each library were randomly sequenced from the 5′ end to generate a total of 11,101 high quality expressed sequence tags (ESTs). Sequence assembly of all ESTs together allowed the identification of 1,453 contigs and 4,403 singleton sequences, with the Basic Localized Alignment Search Tool (BLAST) being used to identify 4,138 presumptive orthologs to Arabidopsis thaliana genes. Several genes differentially expressed between median and lateral nectaries were initially identified based upon the number of BLAST hits represented by independent ESTs, and later confirmed via reverse transcription polymerase chain reaction (RT PCR). RT PCR was also used to verify the expression patterns of eight putative orthologs to known Arabidopsis nectary-enriched genes. Conclusions/Significance This work provided a snapshot of gene expression in actively secreting B. rapa nectaries, and also allowed the identification of differential gene expression between median and lateral nectaries. Moreover, 207 orthologs to known nectary-enriched genes from Arabidopsis were identified through this analysis. The results suggest that genes involved in nectar production are conserved amongst the Brassicaceae, and also supply clones and sequence information that can be used to probe nectary function in B. rapa. PMID:20098697

  5. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species.

    PubMed

    Patel, Rohan V; Nahal, Hardeep K; Breit, Robert; Provart, Nicholas J

    2012-09-01

    Large numbers of sequences are now readily available for many plant species, allowing easy identification of homologous genes. However, orthologous gene identification across multiple species is made difficult by evolutionary events such as whole-genome or segmental duplications. Several developmental atlases of gene expression have been produced in the past couple of years, and it may be possible to use these transcript abundance data to refine ortholog predictions. In this study, clusters of homologous genes between seven plant species - Arabidopsis, soybean, Medicago truncatula, poplar, barley, maize and rice - were identified. Following this, a pipeline to rank homologs within gene clusters by both sequence and expression profile similarity was devised by determining equivalent tissues between species, with the best expression profile match being termed the 'expressolog'. Five electronic fluorescent pictograph (eFP) browsers were produced as part of this effort, to aid in visualization of gene expression data and to complement existing eFP browsers at the Bio-Array Resource (BAR). Within the eFP browser framework, these expression profile similarity rankings were incorporated into an Expressolog Tree Viewer to allow cross-species homolog browsing by both sequence and expression pattern similarity. Global analyses showed that orthologs with the highest sequence similarity do not necessarily exhibit the highest expression pattern similarity. Other orthologs may show different expression patterns, indicating that such genes may require re-annotation or more specific annotation. Ultimately, it is envisaged that this pipeline will aid in improvement of the functional annotation of genes and translational plant research.

  6. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    PubMed Central

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  7. Rapid direct identification of Cryptococcus neoformans from pigeon droppings by nested PCR using CNLAC1 gene.

    PubMed

    Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S

    2012-08-01

    Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.

  8. Two Drosophila melanogaster tropomyosin genes: structural and functional aspects.

    PubMed Central

    Karlik, C C; Fyrberg, E A

    1986-01-01

    We compared the structure and function of the two Drosophila melanogaster tropomyosin genes. The most striking structural aspect was their size disparity. Codons 1 through 257 of gene 2 occupied 833 nucleotides and contained only one intron, whereas the corresponding region of gene 1 occupied 17.5 kilobases and was interrupted by eight introns. The intron-exon arrangement of gene 1 reflected evolutionary expansion of tropomyosin via 42- and 49-residue duplications, which are probably actin-binding domains. Functionally, gene 1 was considerably more complex than gene 2; it was active in both muscle and nonmuscle cell lineages, had at least five variable exons, and specified a minimum of five developmentally regulated isoforms. Two of these isoforms, which accumulated only in flight muscles, were unprecedented fusion proteins in which the tropomyosin sequence was joined to a carboxy-terminal proline-rich domain. Images PMID:3097506

  9. The putative phytocyanin genes in Chinese cabbage (Brassica rapa L.): genome-wide identification, classification and expression analysis.

    PubMed

    Li, Jun; Gao, Guizhen; Zhang, Tianyao; Wu, Xiaoming

    2013-02-01

    Phytocyanins (PCs) are a plant-specific family of small copper-containing electron transfer proteins. PCs may bind with a single copper atom to function as electron transporters in various biological systems, such as copper trafficking and plant photosynthesis. Evidence indicates that PCs may also be involved in plant developmental processes and stress responses. Many PCs possess arabinogalactan protein-like regions and are therefore termed chimeric arabinogalactan proteins (CAGPs). Previously, 38 and 62 PC genes have been identified in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), respectively. The recent release of the Chinese cabbage genome (B. rapa ssp. Pekinensis line Chiifu-401-42) enabled us to perform a genome-wide identification and analysis. In this study we identified 84 putative PC genes in the B. rapa genome. All of the Brassica rapa phytocyanins (BrPCs) described here could be divided, based on motif constitution, into the following three main subclasses: 52 early nodulin-like proteins (ENODLs), 16 uclacyanin-like proteins (UCLs), and 11 stellacyanin-like proteins (SCLs). A structural analysis predicted that 71 BrPCs contained N-terminal secretion signals and 45 BrPCs may be glycosylphosphatidylinositol-anchored to the plasma membrane. Glycosylation prediction revealed that 48 BrPCs were CAGPs with putative arabinogalactan glycomodules, and 57 BrPCs had N-glycosylation sites. Additionally, gene duplication analysis demonstrated that almost all of the duplicated BrPC genes shared the same conserved collinear blocks and that segmental duplications play an important role in the diversification of this gene family. Surprisingly, all BrUCL genes were duplicated except for BrUCL16. Expression analyses indicated that BrENODL22/27 and BrSCL8/9 were highly expressed in reproductive organs; BrUCL6/16 was strongly expressed in roots and even more strongly expressed in stems. The genome-wide identification, classification and expression analysis of

  10. Deterministic-stochastic subspace identification method for identification of nonlinear structures as time-varying linear systems

    NASA Astrophysics Data System (ADS)

    Moaveni, Babak; Asgarieh, Eliyar

    2012-08-01

    This paper proposes the use of the deterministic-stochastic subspace identification (DSI) method, an input-output parametric linear system identification method, for characterization of nonlinear dynamic structural systems based on their time-varying amplitude-dependent instantaneous (i.e., based on short time-windows) modal parameters. Performance of the DSI method for estimation of instantaneous modal parameters of nonlinear systems is investigated using numerical as well as experimental data. In this study, DSI is used for extracting instantaneous modal parameters of single degree-of-freedom (SDOF) as well as 7-DOF systems with different hysteretic material behavior. Nonlinear responses of the SDOF and 7-DOF systems are simulated due to different seismic excitations using the OpenSees structural analysis software. Modal identification results are compared with those obtained using wavelet transform and the exact values. Effects of four input factors are studied on the variability of identified instantaneous modal parameters: (1) type of material nonlinearity, (2) level of nonlinearity, (3) input excitation, and (4) length of data windows used in the identification. The accuracy of the identified instantaneous modal parameters is evaluated along the response time history while varying the above mentioned input factors. Overall, DSI outperforms the wavelet transform for short-time/instantaneous modal identification of nonlinear structural systems and provides reasonably accurate results especially when the material hysteretic behavior is smooth such as the considered Giuffré-Menegotto-Pinto hysteretic model. Finally, DSI has been applied for short-time modal identification of a full-scale seven-story reinforced concrete shear wall structure based on its measured response to different seismic base excitations on a shake table. The identified instantaneous natural frequencies of the first vibration mode can accurately track the variation in the structure

  11. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression.

    PubMed Central

    McLachlin, J R; Miller, L K

    1994-01-01

    We have identified a gene required for strong expression of the polyhedrin gene by characterizing a mutant, tsB837, of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) which is temperature sensitive (ts) for occluded virus production at the nonpermissive temperature. Marker rescue experiments utilizing an overlapping set of AcMNPV genomic clones revealed that the gene responsible for the ts mutant phenotype mapped to a region between 46 and 48 map units. Fragments (2.2 kb) from both wild-type AcMNPV and tsB837 genomes spanning the mutated region were sequenced, and a single nucleotide difference was observed. This mutation is predicted to substitute a single amino acid within a 44.4-kDa polypeptide. Analysis of protein synthesis in wild-type- and mutant-infected cells at the nonpermissive temperature indicated that polyhedrin synthesis was dramatically reduced in the mutant. Northern (RNA) blot analysis revealed that the mutant had markedly reduced levels of polyhedrin transcripts. Transcripts of another very late gene, p10, were also reduced but to a lesser degree. The transcription of two late genes (603 ORF and vp39) was neither reduced nor temporally delayed. Thus, the gene encoding this very late expression factor, designated vlf-1, regulates the levels of very late gene transcripts, and the tsB837 mutation affects the levels of polyhedrin gene transcripts more strongly than those of p10 transcripts. The product of the newly identified gene has a surprising but significant relationship to a family of integrases and resolvases. Images PMID:7966564

  12. Identification of genes associated with renal cell carcinoma using gene expression profiling analysis

    PubMed Central

    YAO, TING; WANG, QINFU; ZHANG, WENYONG; BIAN, AIHONG; ZHANG, JINPING

    2016-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and accounts for ~80% of all kidney cancer cases. However, the pathogenesis of RCC has not yet been fully elucidated. To interpret the pathogenesis of RCC at the molecular level, gene expression data and bio-informatics methods were used to identify RCC associated genes. Gene expression data was downloaded from Gene Expression Omnibus (GEO) database and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in RCC patients compared with controls. In addition, a regulatory network was constructed using the known regulatory data between transcription factors (TFs) and target genes in the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) and the regulatory impact factor of each TF was calculated. A total of 258,0427 pairs of DCGs were identified. The regulatory network contained 1,525 pairs of regulatory associations between 126 TFs and 1,259 target genes and these genes were mainly enriched in cancer pathways, ErbB and MAPK. In the regulatory network, the 10 most strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, ERG and MYB serve important roles in RCC while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential genes associated with RCC. In conclusion, the present study constructed a regulatory network and screened out several TFs that may be used as molecular biomarkers of RCC. However, future studies are needed to confirm the findings of the present study. PMID:27347102

  13. Identification of hub subnetwork based on topological features of genes in breast cancer.

    PubMed

    Zhuang, Da-Yong; Jiang, Li; He, Qing-Qing; Zhou, Peng; Yue, Tao

    2015-03-01

    The aim of this study was to provide functional insight into the identification of hub subnetworks by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We applied a protein network-based approach to identify subnetworks which may provide new insight into the functions of pathways involved in breast cancer rather than individual genes. Five groups of breast cancer data were downloaded and analyzed from the Gene Expression Omnibus (GEO) database of high-throughput gene expression data to identify gene signatures using the genome-wide global significance (GWGS) method. A PPI network was constructed using Cytoscape and clusters that focused on highly connected nodes were obtained using the molecular complex detection (MCODE) clustering algorithm. Pathway analysis was performed to assess the functional relevance of selected gene signatures based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Topological centrality was used to characterize the biological importance of gene signatures, pathways and clusters. The results revealed that, cluster1, as well as the cell cycle and oocyte meiosis pathways were significant subnetworks in the analysis of degree and other centralities, in which hub nodes mostly distributed. The most important hub nodes, with top ranked centrality, were also similar with the common genes from the above three subnetwork intersections, which was viewed as a hub subnetwork with more reproducible than individual critical genes selected without network information. This hub subnetwork attributed to the same biological process which was essential in the function of cell growth and death. This increased the accuracy of identifying gene interactions that took place within the same functional process and was potentially useful for the development of biomarkers and networks for breast cancer. PMID:25573623

  14. Identification of material constants for a composite shell structure

    SciTech Connect

    Carne, T.G.; Martinez, D.R.

    1987-03-01

    One of the basic requirements of an engineering analysis is the development of an adequate mathematical model describing the system. Frequently, comparisons with test data are used as a measure of the model's adequacy, or the test data are directly used to update or modify the model. For nonmetallic structures, the modeling task is often more difficult due to uncertainties in the elastic constants. System identification provides a methodology for systematically updating the mathematical model for improved correlation with test data. In this work a finite element model of a composite shell was created. The model includes uncertain orthotropic elastic constants. To identify these constants, a modal survey was performed on an actual shell. The resulting modal data along with the finite element model of the shell were used in a Bayes estimation algorithm. Values of the elastic constants were estimated which minimized the differences between the test results and the finite element predictions. The estimation procedure employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  15. Viridans Group Streptococci Clinical Isolates: MALDI-TOF Mass Spectrometry versus Gene Sequence-Based Identification

    PubMed Central

    Angeletti, Silvia; Dicuonzo, Giordano; Avola, Alessandra; Crea, Francesca; Dedej, Etleva; Vailati, Francesca; Farina, Claudio; De Florio, Lucia

    2015-01-01

    Viridans Group Streptococci (VGS) species-level identification is fundamental for patients management. Matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) has been used for VGS identification but discrimination within the Mitis group resulted difficult. In this study, VGS identifications with two MALDI-TOF instruments, the Biotyper (Bruker) and the VITEK MS (bioMérieux) have been compared to those derived from tuf, soda and rpoB genes sequencing. VGS isolates were clustered and a dendrogram constructed using the Biotyper 3.0 software (Bruker). RpoB gene sequencing resulted the most sensitive and specific molecular method for S. pneumonia identification and was used as reference method. The sensitivity and the specificity of the VITEK MS in S. pneumonia identification were 100%, while the Biotyper resulted less specific (92.4%). In non pneumococcal VGS strains, the group-level correlation between rpoB and the Biotyper was 100%, while the species-level correlation was 61% after database upgrading (than 37% before upgrading). The group-level correlation between rpoB and the VITEK MS was 100%, while the species-level correlation was 36% and increases at 69% if isolates identified as S. mitis/S. oralis are included. The less accurate performance of the VITEK MS in VGS identification within the Mitis group was due to the inability to discriminate between S. mitis and S. oralis. Conversely, the Biotyper, after the release of the upgraded database, was able to discriminate between the two species. In the dendrogram, VGS strains from the same group were grouped into the same cluster and had a good correspondence with the gene-based clustering reported by other authors, thus confirming the validity of the upgraded version of the database. Data from this study demonstrated that MALDI-TOF technique can represent a rapid and cost saving method for VGS identification even within the Mitis group but improvements of spectra database are

  16. Construction of a BAC library and identification of Dmrt1 gene of the rice field eel, Monopterus albus

    SciTech Connect

    Jang Songhun; Zhou Fang; Xia Laixin; Zhao Wei; Cheng Hanhua . E-mail: hhcheng@whu.edu.cn; Zhou Rongjia . E-mail: rjzhou@whu.edu.cn

    2006-09-22

    A bacterial artificial chromosome (BAC) library was constructed using nuclear DNA from the rice field eel (Monopterus albus). The BAC library consists of a total of 33,000 clones with an average insert size of 115 kb. Based on the rice field eel haploid genome size of 600 Mb, the BAC library is estimated to contain approximately 6.3 genome equivalents and represents 99.8% of the genome of the rice field eel. This is first BAC library constructed from this species. To estimate the possibility of isolating a specific clone, high-density colony hybridization-based library screening was performed using Dmrt1 cDNA of the rice field eel as a probe. Both library screening and PCR identification results revealed three positive BAC clones which were overlapped, and formed a contig covering the Dmrt1 gene of 195 kb. By sequence comparisons with the Dmrt1 cDNA and sequencing of first four intron-exon junctions, Dmrt1 gene of the rice field eel was predicted to contain four introns and five exons. The sizes of first and second intron are 1.5 and 2.6 kb, respectively, and the sizes of last two introns were predicted to be about 20 kb. The Dmrt1 gene structure was conserved in evolution. These results also indicate that the BAC library is a useful resource for BAC contig construction and molecular isolation of functional genes.

  17. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi.

    PubMed

    Bai, Hua; Palli, Subba R

    2010-08-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action.

  18. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    PubMed

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.

  19. Parameter identification methods for improving structural dynamic models. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1988-01-01

    There is an increasing need to develop Parameter Identification methods for improving structural dynamic models, based on the inability of engineers to produce mathematical models which correlate with experimental data. This research explores the efficiency of combining Component Mode Synthesis (substructuring) methods with Parameter Identification procedures in order to improve analytical modeling of structural components and their connections. Improvements are computed in terms of physical stiffness and damping parameters in order that the physical characteristics of the model can be better understood. Connections involving both viscous and friction damping are investigated. Substructuring methods are utilized to reduce the complexity of the identification problem. Component and inter-component structural connection properties are evaluated and identified independently, thus simplifying the identification problem. It is shown that modal test data is effective for identifying modeling problems associated with structural components, and for determining the stiffness and damping properties of intercomponent connections. In general, Parameter Identification is improved when greater quantities of experimental data are available.

  20. Identification, cDNA Cloning, and Characterization of Luteinizing Hormone Beta Subunit (lhb) Gene in Catla catla.

    PubMed

    Rather, Mohd Ashraf; Bhat, Irfan Ahmad; Sharma, Rupam

    2016-01-01

    Reproductive hormones play a significant role in the gonadal development and gametogenesis process of animals. In the present study luteinizing hormone beta, (lhb) subunit gene was cloned and characterized from the brain of Catla catla. The lhb full-length of cDNA sequence is 629 bp which consists of 43bp 5'-UTR (untranslated region) 447bp, ORF(open reading frame) and 139 bp of 3'-UTR respectively. The coding region of lhb gene encoded a peptide of 148 amino acids. The coding sequence of lhb gene consist of a single N-linked glycosylation site (NET) and 12 cysteine knot residues. Phylogenetic analysis of C. catla Lhβ deduced amino acid sequence showed high similarity with Carassius auratus followed by Gobiocypris rarus. 3D structure Lhβ protein comprises of five β-sheets and six coils/loops. The qPCR results revealed lhb mRNA is mainly expressed in the pituitary, ovary while moderate expression was observed in brain and testis. To best our knowledge, this is the first report on the identification, molecular characterization and structural information regarding luteinizing hormone in Indian major carp. PMID:26980432

  1. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite.

    PubMed

    Borodovsky, Mark; Lomsadze, Alex

    2014-01-01

    This unit describes how to use several gene-finding programs from the GeneMark line developed for finding protein-coding ORFs in genomic DNA of prokaryotic species, in genomic DNA of eukaryotic species with intronless genes, in genomes of viruses and phages, and in prokaryotic metagenomic sequences, as well as in EST sequences with spliced-out introns. These bioinformatics tools were demonstrated to have state-of-the-art accuracy, and have been frequently used for gene annotation in novel nucleotide sequences. An additional advantage of these sequence-analysis tools is that the problem of algorithm parameterization is solved automatically, with parameters estimated by iterative self-training (unsupervised training). PMID:24510847

  2. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence

    PubMed Central

    Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  3. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  4. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.

  5. Genome-wide identification and evolution of HECT genes in soybean.

    PubMed

    Meng, Xianwen; Wang, Chen; Rahman, Siddiq Ur; Wang, Yaxu; Wang, Ailan; Tao, Shiheng

    2015-04-16

    Proteins containing domains homologous to the E6-associated protein (E6-AP) carboxyl terminus (HECT) are an important class of E3 ubiquitin ligases involved in the ubiquitin proteasome pathway. HECT-type E3s play crucial roles in plant growth and development. However, current understanding of plant HECT genes and their evolution is very limited. In this study, we performed a genome-wide analysis of the HECT domain-containing genes in soybean. Using high-quality genome sequences, we identified 19 soybean HECT genes. The predicted HECT genes were distributed unevenly across 15 of 20 chromosomes. Nineteen of these genes were inferred to be segmentally duplicated gene pairs, suggesting that in soybean, segmental duplications have made a significant contribution to the expansion of the HECT gene family. Phylogenetic analysis showed that these HECT genes can be divided into seven groups, among which gene structure and domain architecture was relatively well-conserved. The Ka/Ks ratios show that after the duplication events, duplicated HECT genes underwent purifying selection. Moreover, expression analysis reveals that 15 of the HECT genes in soybean are differentially expressed in 14 tissues, and are often highly expressed in the flowers and roots. In summary, this work provides useful information on which further functional studies of soybean HECT genes can be based.

  6. Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses.

    PubMed

    Belén Flórez, Ana; Alegría, Ángel; Rossi, Franca; Delgado, Susana; Felis, Giovanna E; Torriani, Sandra; Mayo, Baltasar

    2014-01-01

    Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants. PMID:25302306

  7. SFM: A novel sequence-based fusion method for disease genes identification and prioritization.

    PubMed

    Yousef, Abdulaziz; Moghadam Charkari, Nasrollah

    2015-10-21

    The identification of disease genes from human genome is of great importance to improve diagnosis and treatment of disease. Several machine learning methods have been introduced to identify disease genes. However, these methods mostly differ in the prior knowledge used to construct the feature vector for each instance (gene), the ways of selecting negative data (non-disease genes) where there is no investigational approach to find them and the classification methods used to make the final decision. In this work, a novel Sequence-based fusion method (SFM) is proposed to identify disease genes. In this regard, unlike existing methods, instead of using a noisy and incomplete prior-knowledge, the amino acid sequence of the proteins which is universal data has been carried out to present the genes (proteins) into four different feature vectors. To select more likely negative data from candidate genes, the intersection set of four negative sets which are generated using distance approach is considered. Then, Decision Tree (C4.5) has been applied as a fusion method to combine the results of four independent state-of the-art predictors based on support vector machine (SVM) algorithm, and to make the final decision. The experimental results of the proposed method have been evaluated by some standard measures. The results indicate the precision, recall and F-measure of 82.6%, 85.6% and 84, respectively. These results confirm the efficiency and validity of the proposed method.

  8. Identification of toxigenic Clostridium difficile strains by using a toxin A gene-specific probe.

    PubMed Central

    Wren, B W; Clayton, C L; Castledine, N B; Tabaqchali, S

    1990-01-01

    A 4.5-kilobase PstI fragment encoding part of the toxin A gene was isolated and used as a DNA probe in colony hybridization studies with 58 toxigenic and 17 nontoxigenic Clostridium difficile strains. All 58 toxigenic strains showed positive hybridization, in contrast to the 17 nontoxigenic strains. Southern blot analysis with the toxin A gene probe showed hybridization to a single fragment of equal intensities for HindIII-digested genomic DNAs isolated from C. difficile strains of wide-ranging toxin production. The positive hybridization signals were due to fragments of heterogeneous lengths (9 to 13 kilobases) for toxigenic strains of different types but were absent for the nontoxigenic strains. These results suggest the presence of a single copy of the toxin A gene on the genome of C. difficile strains, and the wide variation of toxin expression is not a reflection of gene copy number. The lack of toxin activity for nontoxigenic strains can be explained by the absence of at least part of the toxin A gene. The toxin A gene probe was tested against clostridial strains from 18 other species, of which only toxigenic C. sordellii strains showed positive hybridization. The specificity of the toxin A gene probe for toxigenic strains may lead to improved methods for the specific identification of toxigenic C. difficile strains from clinical specimens. Images PMID:2118549

  9. Identification of Differentially Expressed Genes in Pituitary Adenomas by Integrating Analysis of Microarray Data

    PubMed Central

    Zhao, Peng; Hu, Wei; Wang, Hongyun; Yu, Shengyuan; Li, Chuzhong; Bai, Jiwei; Gui, Songbai; Zhang, Yazhuo

    2015-01-01

    Pituitary adenomas, monoclonal in origin, are the most common intracranial neoplasms. Altered gene expression as well as somatic mutations is detected frequently in pituitary adenomas. The purpose of this study was to detect differentially expressed genes (DEGs) and biological processes during tumor formation of pituitary adenomas. We performed an integrated analysis of publicly available GEO datasets of pituitary adenomas to identify DEGs between pituitary adenomas and normal control (NC) tissues. Gene function analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) networks analysis was conducted to interpret the biological role of those DEGs. In this study we detected 3994 DEGs (2043 upregulated and 1951 downregulated) in pituitary adenoma through an integrated analysis of 5 different microarray datasets. Gene function analysis revealed that the functions of those DEGs were highly correlated with the development of pituitary adenoma. This integrated analysis of microarray data identified some genes and pathways associated with pituitary adenoma, which may help to understand the pathology underlying pituitary adenoma and contribute to the successful identification of therapeutic targets for pituitary adenoma. PMID:25642247

  10. Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses

    PubMed Central

    Flórez, Ana Belén; Alegría, Ángel; Delgado, Susana

    2014-01-01

    Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log⁡10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants. PMID:25302306

  11. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  12. Large-scale identification of encystment-related proteins and genes in Pseudourostyla cristata

    PubMed Central

    Gao, Xiuxia; Chen, Fenfen; Niu, Tao; Qu, Ruidan; Chen, Jiwu

    2015-01-01

    The transformation of a ciliate into cyst is an advance strategy against an adverse situation. However, the molecular mechanism for the encystation of free-living ciliates is poorly understood. A large-scale identification of the encystment-related proteins and genes in ciliate would provide us with deeper insights into the molecular mechanisms for the encystations of ciliate. We identified the encystment-related proteins and genes in Pseudourostyla cristata with shotgun LC-MS/MS and scale qRT-PCR, respectively, in this report. A total of 668 proteins were detected in the resting cysts, 102 of these proteins were high credible proteins, whereas 88 high credible proteins of the 724 total proteins were found in the vegetative cells. Compared with the vegetative cell, 6 specific proteins were found in the resting cyst. However, the majority of high credible proteins in the resting cyst and the vegetative cell were co-expressed. We compared 47 genes of the co-expressed proteins with known functions in both the cyst and the vegetative cell using scale qRT-PCR. Twenty-seven of 47 genes were differentially expressed in the cyst compared with the vegetative cell. In our identifications, many uncharacterized proteins were also found. These results will help reveal the molecular mechanism for the formation of cyst in ciliates. PMID:26079518

  13. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene.

    PubMed

    Muangprom, A; Osborn, T C

    2004-05-01

    Dwarf genes have been valuable for improving harvestable yield of several crop plants and may be useful in oilseed Brassica. We evaluated a dwarf gene, dwf2, from Brassica rapa in order to determine its phenotypic effects and genetic characteristics. The dwf2 mutant was insensitive to exogenous GA(3) for both plant height and flowering time, suggesting that it is not a mutation in the gibberellin biosynthesis pathway. The dwarf phenotype was controlled by a semidominant allele at a single locus. Near-isogenic lines that were homozygous or heterozygous for dwf2 had 47.4% or 30.0% reduction in plant height, respectively, compared to the tall wild-type line, and the reduction was due to reduced internode length and number of nodes. The dwf2 homozygous and heterozygous lines had the same or significantly higher numbers of primary branches than the wild-type line, but did not differ in flowering time. The DWF2 gene was mapped to the bottom of linkage group R6, in a region having homology to the top of Arabidopsis thaliana chromosome 2. The map position of DWF2 in comparison to markers in A. thaliana suggests it is a homolog of RGA ( repressor of ga1-3), which is a homolog of the wheat "Green Revolution" gene. This dwarf gene could be used to gain more insight on the gibberellin pathway and to reduce lodging problems in hybrid oilseed Brassica cultivars.

  14. Identification of Ramie Genes in Response to Pratylenchus coffeae Infection Challenge by Digital Gene Expression Analysis.

    PubMed

    Yu, Yongting; Zeng, Liangbin; Yan, Zhun; Liu, Touming; Sun, Kai; Zhu, Taotao; Zhu, Aiguo

    2015-09-11

    Root lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs. In this study, the transcriptome of the resistant ramie cultivar Qingdaye was characterized using Illumina sequence technology. About 46.3 million clean pair end (PE) reads were generated and assembled into 40,826 unigenes with a mean length of 830 bp. Digital gene expression (DGE) analysis was performed on both the control roots (CK) and P. coffeae-challenged roots (CH), and the differentially expressed genes (DEGs) were identified. Approximately 10.16 and 8.07 million cDNA reads in the CK and CH cDNA libraries were sequenced, respectively. A total of 137 genes exhibited different transcript abundances between the two libraries. Among them, the expressions of 117 and 20 DEGs were up- and down-regulated in P. coffeae-challenged ramie, respectively. The expression patterns of 15 candidate genes determined by qRT-PCR confirmed the results of DGE analysis. Time-course expression profiles of eight defense-related genes in susceptible and resistant ramie cultivars were different after P. coffeae inoculation. The differential expression of protease inhibitors, pathogenesis-related proteins (PRs), and transcription factors in resistant and susceptible ramie during P. coffeae infection indicated that cystatin likely plays an important role in nematode resistance.

  15. Identification of Ramie Genes in Response to Pratylenchus coffeae Infection Challenge by Digital Gene Expression Analysis

    PubMed Central

    Yu, Yongting; Zeng, Liangbin; Yan, Zhun; Liu, Touming; Sun, Kai; Zhu, Taotao; Zhu, Aiguo

    2015-01-01

    Root lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs. In this study, the transcriptome of the resistant ramie cultivar Qingdaye was characterized using Illumina sequence technology. About 46.3 million clean pair end (PE) reads were generated and assembled into 40,826 unigenes with a mean length of 830 bp. Digital gene expression (DGE) analysis was performed on both the control roots (CK) and P. coffeae-challenged roots (CH), and the differentially expressed genes (DEGs) were identified. Approximately 10.16 and 8.07 million cDNA reads in the CK and CH cDNA libraries were sequenced, respectively. A total of 137 genes exhibited different transcript abundances between the two libraries. Among them, the expressions of 117 and 20 DEGs were up- and down-regulated in P. coffeae-challenged ramie, respectively. The expression patterns of 15 candidate genes determined by qRT-PCR confirmed the results of DGE analysis. Time-course expression profiles of eight defense-related genes in susceptible and resistant ramie cultivars were different after P. coffeae inoculation. The differential expression of protease inhibitors, pathogenesis-related proteins (PRs), and transcription factors in resistant and susceptible ramie during P. coffeae infection indicated that cystatin likely plays an important role in nematode resistance. PMID:26378527

  16. Damage identification method based on structural dynamic characteristics and strain measurements

    NASA Astrophysics Data System (ADS)

    Teng, Jun; Lu, Wei

    2009-03-01

    More and more large span structures have been built or are being built and their health is concerned about by civil engineers and investors, which arises to the problem of studying on several damage identification methods to give estimation on the health of the structure and the identification on damage location and damage degree. The damage identification methods in civil engineering are mostly based on dynamic characteristics, which have difficulties when applied to practical structures. Meanwhile, the strains of the structural important elements can give more exactly and more directly information for damage identification on damage location and damage degree. The information fusion for acceleration sensors and strain sensors is used for making a strategic decision on damage identification and the Dempster-Shafer evidence theory is used as the information fusion strategic decision, in which the strategic decision information fusion is a method to give the final decision based on the decision made by each kind of sensors according to some principle and some synthesized evaluation, that is, the final damage identification results are given based on the damage identification results using the structural dynamic characteristics and strain measurements. In addition, a finite element model of large span space shell structure is built and several damage cases of it are simulated, in the example, the structural dynamic characteristics damage index and strain measurements damage index are used to give the damage identification results, combining which the final damage identification result by strategic decision fusion is given too, while the method presented in the paper is proofed to be reliable and effective according to comparing the three kinds of damage identification results mentioned above.

  17. Gene promoter of apoptosis inhibitory protein IAP2: identification of enhancer elements and activation by severe hypoxia.

    PubMed Central

    Dong, Zheng; Nishiyama, Junichiro; Yi, Xiaolan; Venkatachalam, Manjeri A; Denton, Michael; Gu, Sumin; Li, Senlin; Qiang, Mei

    2002-01-01

    Inhibitors of apoptosis (IAPs) antagonize cell death and regulate the cell cycle. One mechanism controlling IAP expression is translation initiation through the internal ribosome entry sites. Alternatively, IAP expression can be regulated at the transcription level. We showed recently the activation of IAP2 transcription by severe hypoxia. To pursue this regulation, we have cloned the full-length cDNA of rat IAP2, and have isolated and analysed the promoter regions of this gene. The cDNA encodes a protein of 589 amino acids, exhibiting structural features of IAP. In rat tissues, a major IAP2 transcript of approximately 3.5 kb was detected. We subsequently isolated 3.3 kb of the proximal 5'-flanking regions of this gene, which showed significant promoter activity. Of interest, 5' sequential deletion of the promoter sequence identified an enhancer of approximately 200 bp. Deletion of cAMP-response-element-binding protein (CREB) sites in the enhancer sequence diminished its activity. Finally, the IAP2 gene promoter was activated significantly by severe hypoxia and not by CoCl(2) or desferrioxamine, pharmacological inducers of hypoxia-inducible factor-1. In conclusion, in this study we have cloned the full-length cDNA of rat IAP2, and for the first time we have isolated and analysed promoter sequences of this gene, leading to the identification of enhancer elements. Moreover, we have demonstrated activation of the gene promoter by severe hypoxia, a condition shown to induce IAP2. These findings provide a basis for further investigation of gene regulation of IAP2, a protein with multiple functions. PMID:12023884

  18. Automated frequency domain system identification of a large space structure

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.

    1989-01-01

    This paper presents the development and experimental results of an automated on-orbit system identification method for large flexible spacecraft that yields estimated quantities to support on-line design and tuning of robust high performance control systems. The procedure consists of applying an input to the plant, obtaining an output, and then conducting nonparametric identification to yield the spectral estimate of the system transfer function. A parametric model is determined by curve fitting the spectral estimate to a rational transfer function. The identification method has been demonstrated experimentally on the Large Spacecraft Control Laboratory in JPL.

  19. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus.

    PubMed

    Nakano, Chiaki; Oshima, Misaki; Kurashima, Nodoka; Hoshino, Tsutomu

    2015-03-23

    Diterpenoids are usually found in plants and fungi, but are rare in bacteria. We have previously reported new diterpenes, named tuberculosinol and isotuberculosinol, which are generated from the Mycobacterium tuberculosis gene products Rv3377c and Rv3378c. No homologous gene was found at that time, but we recently found highly homologous proteins in the Herpetosiphon aurantiacus ATCC 23779 genome. Haur_2145 was a class II diterpene cyclase responsible for the conversion of geranylgeranyl diphosphate into kolavenyl diphosphate. Haur_2146, homologous to Rv3378c, synthesized (+)-kolavelool through the nucleophilic addition of a water molecule to the incipient cation formed after the diphosphate moiety was released. Haur_2147 afforded (+)-O-methylkolavelool from (+)-kolavelool, so this enzyme was an O-methyltransferase. This new diterpene was indeed detected in H. aurantiacus cells. This is the first report of the identification of a (+)-O-methylkolavelool biosynthetic gene cluster.

  20. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  1. Structural diversity repertoire of gene silencing small interfering RNAs.

    PubMed

    Chang, Chan Il; Kim, Helena Andrade; Dua, Pooja; Kim, Soyoun; Li, Chiang J; Lee, Dong-ki

    2011-06-01

    Since the discovery of double-stranded (ds) RNA-mediated RNA interference (RNAi) phenomenon in Caenorhabditis elegans, specific gene silencing based upon RNAi mechanism has become a novel biomedical tool that has extended our understanding of cell biology and opened the door to an innovative class of therapeutic agents. To silence genes in mammalian cells, short dsRNA referred to as small interfering RNA (siRNA) is used as an RNAi trigger to avoid nonspecific interferon responses induced by long dsRNAs. An early structure-activity relationship study performed in Drosophila melanogaster embryonic extract suggested the existence of strict siRNA structural design rules to achieve optimal gene silencing. These rules include the presence of a 3' overhang, a fixed duplex length, and structural symmetry, which defined the structure of a classical siRNA. However, several recent studies performed in mammalian cells have hinted that the gene silencing siRNA structure could be much more flexible than that originally proposed. Moreover, many of the nonclassical siRNA structural variants reported improved features over the classical siRNAs, including increased potency, reduced nonspecific responses, and enhanced cellular delivery. In this review, we summarize the recent progress in the development of gene silencing siRNA structural variants and discuss these in light of the flexibility of the RNAi machinery in mammalian cells. PMID:21749289

  2. Identification and Characterization of Genes Required for Early Myxococcus xanthus Developmental Gene Expression

    PubMed Central

    Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.

    2000-01-01

    Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090

  3. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica▿ §

    PubMed Central

    Hoshino, Yasutaka; Chiba, Kazuhiro; Ishino, Keiko; Fukai, Toshio; Igarashi, Yasuhiro; Yazawa, Katsukiyo; Mikami, Yuzuru; Ishikawa, Jun

    2011-01-01

    We identified the biosynthetic gene clusters of the siderophore nocobactin NA. The nbt clusters, which were discovered as genes highly homologous to the mycobactin biosynthesis genes by the genomic sequencing of Nocardia farcinica IFM 10152, consist of 10 genes separately located at two genomic regions. The gene organization of the nbt clusters and the predicted functions of the nbt genes, particularly the cyclization and epimerization domains, were in good agreement with the chemical structure of nocobactin NA. Disruptions of the nbtA and nbtE genes, respectively, reduced and abolished the productivity of nocobactin NA. The heterologous expression of the nbtS gene revealed that this gene encoded a salicylate synthase. These results indicate that the nbt clusters are responsible for the biosynthesis of nocobactin NA. We also found putative IdeR-binding sequences upstream of the nbtA, -G, -H, -S, and -T genes, whose expression was more than 10-fold higher in the low-iron condition than in the high-iron condition. These results suggest that nbt genes are regulated coordinately by IdeR protein in an iron-dependent manner. The ΔnbtE mutant was found to be impaired in cytotoxicity against J774A.1 cells, suggesting that nocobactin NA production is required for virulence of N. farcinica. PMID:21097631

  4. Genome-wide analysis and identification of genes related to expansin gene family in indica rice.

    PubMed

    Hemalatha, N; Rajesh, M K; Narayanan, N K

    2011-01-01

    In this study, we carried out genome-wide analyses to explore expansin gene family in the genome of indica rice. Reference nucleotides were chosen as query sequences for searches in the indica rice genome database. Clones having genomic sequences similar to expansin were taken and converted to amino acid sequences. Putative sequences were subjected to PROSITE and Pfam databases, and 21 signature-sequences-related expansin gene family was obtained. The presence of transmembrane domains was also predicted for all 21 expansin proteins. A phylogenetic tree was generated from the alignments of the proteins sequences to examine the phylogenetic relationship of indica rice expansin proteins.

  5. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    PubMed Central

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  6. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    PubMed Central

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  7. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns.

    PubMed

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  8. Gene organization and structure of the Streptomyces lividans gal operon.

    PubMed Central

    Adams, C W; Fornwald, J A; Schmidt, F J; Rosenberg, M; Brawner, M E

    1988-01-01

    We present the gene organization and DNA sequence of the Streptomyces lividans galactose utilization genes. Complementation of Escherichia coli galE, galT, or galK mutants and DNA sequence analysis were used to demonstrate that the galactose utilization genes are organized within an operon with the gene order galT, galE, and galK. Comparison of the inferred protein sequences for the S. lividans gal gene products to the corresponding E. coli and Saccharomyces carlbergensis sequences identified regions of structural homology within each of the galactose utilization enzymes. Finally, we discuss a potential relationship between the gene organization of the operon and the functional roles of the gal enzymes in cellular metabolism. Images PMID:3335481

  9. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    PubMed

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  10. Identification of Genes in Thuja plicata Foliar Terpenoid Defenses1[C][W][OA

    PubMed Central

    Foster, Adam J.; Hall, Dawn E.; Mortimer, Leanne; Abercromby, Shelley; Gries, Regine; Gries, Gerhard; Bohlmann, Jörg; Russell, John; Mattsson, Jim

    2013-01-01

    Thuja plicata (western redcedar) is a long-lived conifer species whose foliage is rarely affected by disease or insect pests, but can be severely damaged by ungulate browsing. Deterrence to browsing correlates with high foliar levels of terpenoids, in particular the monoterpenoid α-thujone. Here, we set out to identify genes whose products may be involved in the production of α-thujone and other terpenoids in this species. First, we generated a foliar transcriptome database from which to draw candidate genes. Second, we mapped the storage of thujones and other terpenoids to foliar glands. Third, we used global expression profiling to identify more than 600 genes that are expressed at high levels in foliage with glands, but can either not be detected or are expressed at low levels in a natural variant lacking foliar glands. Fourth, we used in situ RNA hybridization to map the expression of a putative monoterpene synthase to the epithelium of glands and used enzyme assays with recombinant protein of the same gene to show that it produces sabinene, the monoterpene precursor of α-thujone. Finally, we identified candidate genes with predicted enzymatic functions for the conversion of sabinene to α-thujone. Taken together, this approach generated both general resources and detailed functional characterization in the identification of genes of foliar terpenoid biosynthesis in T. plicata. PMID:23388118

  11. Identification of Nitrogen Use Efficiency Genes in Barley: Searching for QTLs Controlling Complex Physiological Traits

    PubMed Central

    Han, Mei; Wong, Julia; Su, Tao; Beatty, Perrin H.; Good, Allen G.

    2016-01-01

    Over the past half century, the use of nitrogen (N) fertilizers has markedly increased crop yields, but with considerable negative effects on the environment and human health. Consequently, there has been a strong push to reduce the amount of N fertilizer used by maximizing the nitrogen use efficiency (NUE) of crops. One approach would be to use classical genetics to improve the NUE of a crop plant. This involves both conventional breeding and quantitative trait loci (QTL) mapping in combination with marker-assisted selection (MAS) to track key regions of the chromosome that segregate for NUE. To achieve this goal, one of initial steps is to characterize the NUE-associated genes, then use the profiles of specific genes to combine plant physiology and genetics to improve plant performance. In this study, on the basis of genetic homology and expression analysis, barley candidate genes from a variety of families that exhibited potential roles in enhancing NUE were identified and mapped. We then performed an analysis of QTLs associated with NUE in field trials and further analyzed their map-location data to narrow the search for these candidate genes. These results provide a novel insight on the identification of NUE genes and for the future prospects, will lead to a more thorough understanding of physiological significances of the diverse gene families that may be associated with NUE in barley.

  12. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.)

    PubMed Central

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M.; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  13. Identification of candidate lung cancer susceptibility genes in mouse using oligonucleotide arrays

    PubMed Central

    Lemon, W; Bernert, H; Sun, H; Wang, Y; You, M

    2002-01-01

    We applied microarray gene expression profiling to lungs from mouse strains having variable susceptibility to lung tumour development as a means to identify, within known quantitative trait loci (QTLs), candidate genes responsible for susceptibility or resistance to lung cancer. At least eight chromosomal regions of mice have been mapped and verified to be linked with lung tumour susceptibility or resistance. In this study, high density oligonucleotide arrays were used to measure the relative expression levels of >36 000 genes and ESTs in lung tissues of A/J, BALB/cJ, SM/J, C3H/HeJ, and C57BL/6J mice. A number of differentially expressed genes were found in each of the lung cancer susceptibility QTLs. Bioinformatic analysis of the differentially expressed genes located within QTLs produced 28 susceptibility candidates and 22 resistance candidates. These candidates may be extremely helpful in the ultimate identification of the precise genes responsible for lung tumour susceptibility or resistance in mice and, through follow up, humans. Complete data sets are available at http://thinker.med.ohio-state.edu. PMID:12205107

  14. Identification of Survival Genes in Human Glioblastoma Cells by Small Interfering RNA Screening

    PubMed Central

    Thaker, Nikhil G.; Zhang, Fang; McDonald, Peter R.; Shun, Tong Ying; Lewen, Michael D.; Pollack, Ian F.

    2009-01-01

    Target identification and validation remain difficult steps in the drug discovery process, and uncovering the core genes and pathways that are fundamental for cancer cell survival may facilitate this process. Glioblastoma represents a challenging form of cancer for chemotherapy. Therefore, we assayed 16,560 short interfering RNA (siRNA) aimed at identifying which of the 5520 unique therapeutically targetable gene products were important for the survival of human glioblastoma. We analyzed the viability of T98G glioma cells 96 h after siRNA transfection with two orthogonal statistical methods and identified 55 survival genes that encoded proteases, kinases, and transferases. It is noteworthy that 22% (12/55) of the survival genes were constituents of the 20S and 26S proteasome subunits. An expression survey of a panel of glioma cell lines demonstrated expression of the proteasome component PSMB4, and the validity of the proteasome complex as a target for survival inhibition was confirmed in a series of glioma and nonglioma cell lines by pharmacological inhibition and RNA interference. Biological networks were built with the other survival genes using a protein-protein interaction network, which identified clusters of cellular processes, including protein ubiquitination, purine and pyrimidine metabolism, nucleotide excision repair, and NF-κB signaling. The results of this study should broaden our understanding of the core genes and pathways that regulate cell survival; through either small molecule inhibition or RNA interference, we highlight the potential significance of proteasome inhibition. PMID:19783622

  15. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    PubMed

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-02-23

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish.

  16. The Identification and Differentiation between Burkholderia mallei and Burkholderia pseudomallei Using One Gene Pyrosequencing

    PubMed Central

    Gilling, Damian H.; Luna, Vicki Ann; Pflugradt, Cori

    2014-01-01

    The etiologic agents for melioidosis and glanders, Burkholderia mallei and Burkholderia pseudomallei respectively, are genetically similar making identification and differentiation from other Burkholderia species and each other challenging. We used pyrosequencing to determine the presence or absence of an insertion sequence IS407A within the flagellin P (fliP) gene and to exploit the difference in orientation of this gene in the two species. Oligonucleotide primers were designed to selectively target the IS407A-fliP interface in B. mallei and the fliP gene specifically at the insertion point in B. pseudomallei. We then examined DNA from ten B. mallei, ten B. pseudomallei, 14 B. cepacia, eight other Burkholderia spp., and 17 other bacteria. Resultant pyrograms encompassed the target sequence that contained either the fliP gene with the IS407A interruption or the fully intact fliP gene with 100% sensitivity and 100% specificity. These pyrosequencing assays based upon a single gene enable investigators to reliably identify the two species. The information obtained by these assays provides more knowledge of the genomic reduction that created the new species B. mallei from B. pseudomallei and may point to new targets that can be exploited in the future. PMID:27350960

  17. Identification and resolution of artifacts in the interpretation of imprinted gene expression

    PubMed Central

    Proudhon, Charlotte

    2010-01-01

    Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression. PMID:20829207

  18. Identification of Genes for Complex Diseases by Integrating Multiple Types of Genomic Data

    PubMed Central

    Cao, Hongbao; Lei, Shufeng; Deng, Hong-Wen; Wang, Yu-Ping

    2014-01-01

    Combining multi-type of genomic data for integrative analyses can take advantage of complementary information and thus can have higher power to identify genes/variables that would otherwise be impossible with individual data analysis. Here we proposed a sparse representation based clustering (SRC) method for integrative data analyses, and applied to the analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls) and expression data for 22283 genes in 80 subjects (40 cases and 40 controls) to identify significant genes for osteoporosis (OP). Comparing our results with previous studies, we identified some genes known related to OP risk, as well as some uncovered novel osteoporosis susceptible genes (‘DICER1’, ‘PTMA’, etc.) that may function importantly in osteoporosis etiology. In addition, the identified genes can lead to higher accuracy for the identification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact test, which further validate the proposed SRC approach for integrative analysis. PMID:23367184

  19. ZODET: Software for the Identification, Analysis and Visualisation of Outlier Genes in Microarray Expression Data

    PubMed Central

    Roden, Daniel L.; Sewell, Gavin W.; Lobley, Anna; Levine, Adam P.; Smith, Andrew M.; Segal, Anthony W.

    2014-01-01

    Summary Complex human diseases can show significant heterogeneity between patients with the same phenotypic disorder. An outlier detection strategy was developed to identify variants at the level of gene transcription that are of potential biological and phenotypic importance. Here we describe a graphical software package (z-score outlier detection (ZODET)) that enables identification and visualisation of gross abnormalities in gene expression (outliers) in individuals, using whole genome microarray data. Mean and standard deviation of expression in a healthy control cohort is used to detect both over and under-expressed probes in individual test subjects. We compared the potential of ZODET to detect outlier genes in gene expression datasets with a previously described statistical method, gene tissue index (GTI), using a simulated expression dataset and a publicly available monocyte-derived macrophage microarray dataset. Taken together, these results support ZODET as a novel approach to identify outlier genes of potential pathogenic relevance in complex human diseases. The algorithm is implemented using R packages and Java. Availability The software is freely available from http://www.ucl.ac.uk/medicine/molecular-medicine/publications/microarray-outlier-analysis. PMID:24416128

  20. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis).

    PubMed

    Sun, Huayu; Li, Lichao; Lou, Yongfeng; Zhao, Hansheng; Gao, Zhimin

    2016-05-01

    Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics. PMID:26993482

  1. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    PubMed

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops.

  2. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods

    PubMed Central

    Nai, Wenqing; Threapleton, Diane; Lu, Jingbo; Zhang, Kewei; Wu, Hongyuan; Fu, You; Wang, Yuanyuan; Ou, Zejin; Shan, Lanlan; Ding, Yan; Yu, Yanlin; Dai, Meng

    2016-01-01

    Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the “immune response” and “muscle contraction” were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the “FcεRI-mediated signaling pathway”, while down-regulated genes were significantly enriched in the “transforming growth factor-β signaling pathway”. Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma. PMID:26742467

  3. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags.

    PubMed

    Liu, Zhanji; Feng, Suping; Pandey, Manish K; Chen, Xiaoping; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu

    2013-05-01

    Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.

  4. Identification of novel mutations in the RB1 gene in Mexican patients with retinoblastoma.

    PubMed

    Rodríguez, Maricela; Salcedo, Mauricio; González, Marina; Coral-Vazquez, Ramón; Salamanca, Fabio; Arenas, Diego

    2002-10-01

    Retinoblastoma (RB) is a childhood tumor of the eye with an average incidence of one case in every 15,000-20,000 live births and occurs in sporadic or hereditary form. This cancer results from loss or inactivation of the RB1 gene located at 13q14.1. This gene encodes for a 110 Kd nuclear phosphoprotein (pRB) that plays a major role in cell proliferation control. Different types of mutations in the RB1 gene have been reported, but point mutations are the most common. There are no molecular studies on RB1 gene mutation in Mexican patients. In this study, 19 patients with bilateral or unilateral RB were analyzed. Genetic and cytogenetic studies were carried out. Detection of RB1 gene mutations was done using single-strand conformational polymorphism (SSCP). Five conformational polymorphisms were identified in different exons. In all cases, SSCP sequence showed new non-described mutations that produced a frameshift on the open reading frame. The identification of mutations in the RB1 gene contributes to basic knowledge of this neoplasia and permits the possibility to offer adequate genetic counseling to relatives at risk.

  5. Identification and expression of an uncharacterized Ly-6 gene cluster in zebrafish Danio rerio.

    PubMed

    Guo, Quanyang; Ji, Dongrui; Wang, Man; Zhang, Shicui; Li, Hongyan

    2015-09-01

    The Ly-6/uPAR/CD59/neurotoxin superfamily (Ly-6SF) identified in most metazoan has been shown to play important roles in different biological processes including immunity, cellular adhesion, and cell signaling. Members of this superfamily contain one or more conserved domains known as Ly-6/uPAR (LU) domain, which harbors 8 or 10 conserved cysteine residues forming 4-5 disulfide bonds. In this study, we reported the identification of a novel zebrafish Ly-6 gene cluster on chromosome 21, which consists of seven genes ly21.1, ly21.2, ly21.3, ly21.4, ly21.5, ly21.6, and ly21.7 and their spatiotemporal expression pattern during development. All the seven genes possess features typical of the Ly-6/neurotoxin superfamily, and phylogenetic analysis shows that these genes form a single cluster branching form other members of Ly-6 family, suggesting that the seven genes evolved by an event of intra-chromosome gene duplication. However, deduced Ly21.1-7 proteins share little homology with Ly-6 family proteins from other species, no orthologs are identified in vertebrates, including teleosts, hinting that ly21.1-7 genes are evolutionarily a novel addition to zebrafish. Expression analyses show that maternal mRNAs of ly21.1-7 genes are detected during early developmental stages, but later in development, they exhibit tissue-specific expression. Except for ly21.2 which is expressed in the skin ionocytes, all the remaining six genes are mainly expressed in the developing brain.

  6. Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1985-01-01

    The results of a workshop on identification and control of flexible space structures are reported. This volume deals mainly with control theory and methodologies as they apply to space stations and large antennas. Integration and dynamics and control experimental findings are reported. Among the areas of control theory discussed were feedback, optimization, and parameter identification.

  7. Identification of four new gene members of the KAP6 gene family in sheep.

    PubMed

    Zhou, Huitong; Gong, Hua; Wang, Jiqing; Dyer, Jolon M; Luo, Yuzhu; Hickford, Jon G H

    2016-01-01

    KAP6 is a high glycine-tyrosine keratin-associated protein (HGT-KAP) family. This family is thought to contain multiple genes. In this study, we used a KRTAP6 coding sequence to search the Ovine Genome (v3.1) and identified five homologous regions (R1-R5). All these regions contained an open reading frame, and they were either identical to, or highly similar to, sheep skin Expressed Sequence Tags (ESTs). Phylogenetic analysis revealed that R1-R5 were clustered with KAP6 sequences from different species and formed a group distinct to other HGT-KAPs. R1 was very similar to the characterised KRTAP6-1 sequence, but the remaining genes appeared to be new. PCR primers were designed to amplify and confirm the presence of these new genes. Amplicons were obtained for all of the 96 sheep investigated. Six, five, three and six PCR-SSCP patterns representing six, five, three and six DNA sequences were observed for KRTAP6-2 to KRTAP6-5 respectively. KRTAP6-2 and KRTAP6-4 had five and three SNPs respectively. Three SNPs and a 45-bp insertion/deletion were detected for KRTAP6-3, and five SNPs and an 18-bp insertion/deletion were identified for KRTAP6-5. Allele frequencies for these KAP6 genes differed between Merino and Romney sheep. PMID:27045687

  8. Identification of four new gene members of the KAP6 gene family in sheep

    PubMed Central

    Zhou, Huitong; Gong, Hua; Wang, Jiqing; Dyer, Jolon M.; Luo, Yuzhu; Hickford, Jon G. H.

    2016-01-01

    KAP6 is a high glycine-tyrosine keratin-associated protein (HGT-KAP) family. This family is thought to contain multiple genes. In this study, we used a KRTAP6 coding sequence to search the Ovine Genome (v3.1) and identified five homologous regions (R1–R5). All these regions contained an open reading frame, and they were either identical to, or highly similar to, sheep skin Expressed Sequence Tags (ESTs). Phylogenetic analysis revealed that R1–R5 were clustered with KAP6 sequences from different species and formed a group distinct to other HGT-KAPs. R1 was very similar to the characterised KRTAP6-1 sequence, but the remaining genes appeared to be new. PCR primers were designed to amplify and confirm the presence of these new genes. Amplicons were obtained for all of the 96 sheep investigated. Six, five, three and six PCR-SSCP patterns representing six, five, three and six DNA sequences were observed for KRTAP6-2 to KRTAP6-5 respectively. KRTAP6-2 and KRTAP6-4 had five and three SNPs respectively. Three SNPs and a 45-bp insertion/deletion were detected for KRTAP6-3, and five SNPs and an 18-bp insertion/deletion were identified for KRTAP6-5. Allele frequencies for these KAP6 genes differed between Merino and Romney sheep. PMID:27045687

  9. Identification of microRNA-regulated gene networks by expression analysis of target genes

    PubMed Central

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-01-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs. PMID:22345618

  10. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity. PMID:27405166

  11. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.

  12. Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family.

    PubMed

    Schwartz, N B; Pirok, E W; Mensch, J R; Domowicz, M S

    1999-01-01

    Proteoglycans are complex macromolecules, consisting of a polypeptide backbone to which are covalently attached one or more glycosaminoglycan chains. Molecular cloning has allowed identification of the genes encoding the core proteins of various proteoglycans, leading to a better understanding of the diversity of proteoglycan structure and function, as well as to the evolution of a classification of proteoglycans on the basis of emerging gene families that encode the different core proteins. One such family includes several proteoglycans that have been grouped with aggrecan, the large aggregating chondroitin sulfate proteoglycan of cartilage, based on a high number of sequence similarities within the N- and C-terminal domains. Thus far these proteoglycans include versican, neurocan, and brevican. It is now apparent that these proteins, as a group, are truly a gene family with shared structural motifs on the protein and nucleotide (mRNA) levels, and with nearly identical genomic organizations. Clearly a common ancestral origin is indicated for the members of the aggrecan family of proteoglycans. However, differing patterns of amplification and divergence have also occurred within certain exons across species and family members, leading to the class-characteristic protein motifs in the central carbohydrate-rich region exclusively. Thus the overall domain organization strongly suggests that sequence conservation in the terminal globular domains underlies common functions, whereas differences in the central portions of the genes account for functional specialization among the members of this gene family.

  13. Polymerase Chain Reaction (PCR)-based methods for detection and identification of mycotoxigenic Penicillium species using conserved genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...

  14. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    PubMed Central

    Bashir, Yasir; Dar, Firdous Ahmad; Sekhar, M.

    2016-01-01

    This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. PMID:27403451

  15. The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes.

    PubMed

    Rodriguez-Nunez, Ivan; Wcisel, Dustin J; Litman, Ronda T; Litman, Gary W; Yoder, Jeffrey A

    2016-04-01

    Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor.

  16. The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes.

    PubMed

    Rodriguez-Nunez, Ivan; Wcisel, Dustin J; Litman, Ronda T; Litman, Gary W; Yoder, Jeffrey A

    2016-04-01

    Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor. PMID:26801775

  17. A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene.

    PubMed Central

    Oriol, R; Danilovs, J; Hawkins, B R

    1981-01-01

    The Se gene is classically considered as a regulatory gene controlling the expression of the structural gene H in external secretions. Under this hypothesis, Bombay (h/h) individuals should not be able to express the Se gene. Statistical analysis of the 44 published Bombay pedigrees suggests on the contrary that there is no suppression of Se in Bombay individuals, and that both Se and H loci can be fully expressed at the phenotypic level. Based on a lod score of 12.9 at 1% recombination units and the existence of two different acceptors for the biosynthesis of the H antigen, a new genetic model is proposed in which H and Se would be two closely linked structural genes coding for two different 2-alpha-L-fucosyltransferases. PMID:7246545

  18. Gene mining in halophytes: functional identification of stress tolerance genes in Lepidium crassifolium.

    PubMed

    Rigó, Gábor; Valkai, Ildikó; Faragó, Dóra; Kiss, Edina; Van Houdt, Sara; Van de Steene, Nancy; Hannah, Matthew A; Szabados, László

    2016-09-01

    Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non-destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full-length cDNAs encoding proteins with high homologies to GDSL-lipase/esterase or acyl CoA-binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications. PMID:27343166

  19. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    SciTech Connect

    Lind, Ulrika; Nilsson, Tina; McPheat, Jane; Stroemstedt, Per-Erik; Bamberg, Krister; Balendran, Clare; Kang, Daiwu . E-mail: Daiwu.Kang@astrazeneca.com

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  20. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae

    PubMed Central

    Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.

    2016-01-01

    Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905

  1. Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    PubMed Central

    Thimgan, Matthew S.; Seugnet, Laurent; Turk, John; Shaw, Paul J.

    2015-01-01

    , Seugnet L, Turk J, Shaw PJ. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila. SLEEP 2015;38(5):801–814. PMID:25409104

  2. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.

    PubMed

    Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P

    2016-09-01

    Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.

  3. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    PubMed

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.

  4. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  5. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  6. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was p