Science.gov

Sample records for gene therapy treatment

  1. Treatment of ocular disorders by gene therapy.

    PubMed

    Solinís, M Ángeles; del Pozo-Rodríguez, Ana; Apaolaza, Paola S; Rodríguez-Gascón, Alicia

    2015-09-01

    Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although beginning to show encouraging results. Currently 33 clinical trials have been approved, are in progress, or have been completed. The most promising results have been obtained in clinical trials of ocular gene therapy for Leber Congenital Amaurosis, which have prompted the study of several ocular diseases that are good candidates to be treated with gene therapy: glaucoma, age-related macular degeneration, retinitis pigmentosa, or choroideremia. The success of gene therapy relies on the efficient delivery of the genetic material to target cells, achieving optimum long-term gene expression. Although viral vectors have been widely used, their potential risk associated mainly with immunogenicity and mutagenesis has promoted the design of non-viral vectors. In this review, the main administration routes and the most studied delivery systems, viral and non-viral, for ocular gene therapy are presented. The primary ocular disease candidates to be treated with gene therapy have been also reviewed, including the genetic basis and the most relevant preclinical and clinical studies.

  2. Gene Therapy Applications to Cancer Treatment

    PubMed Central

    2003-01-01

    Over the past ten years significant advances have been made in the fields of gene therapy and tumour immunology, such that there now exists a considerable body of evidence validating the proof in the principle of gene therapy based cancer vaccines. While clinical benefit has so far been marginal, data from preclinical and early clinical trials of gene therapy combined with standard therapies are strongly suggestive of additional benefit. Many reasons have been proposed to explain the paucity of clinical responses to single agent vaccination strategies including the poor antigenicity of tumour cells and the development of tolerance through down-regulation of MHC, costimulatory, signal transduction, and other molecules essential for the generation of strong immune responses. In addition, there is now evidence from animal models that the growing tumour may actively inhibit the host immune response. Removal of the primary tumour prior to T cell transfer from the spleen of cancer bearing animals, led to effective tumour cell line specific immunity in the recipient mouse suggesting that there is an ongoing tumour-host interaction. This model also illustrates the potential difficulties of clinical vaccine trials in patients with advanced stage disease. PMID:12686721

  3. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    PubMed

    Wykes, R C; Lignani, G

    2017-05-28

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    PubMed Central

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  5. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders.

    PubMed

    Gessler, Dominic J; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.

  6. Upcoming treatments in Parkinson's disease, including gene therapy.

    PubMed

    Rodnitzky, Robert L

    2012-01-01

    Progress is being made in the development of three categories of therapy for Parkinson's disease: (1) Symptomatic, (2) Neuroprotective, (3) Neurorestorative. Evolving approaches to symptomatic therapy, already in clinical trials, include the use of adenosine 2(A) antagonists, novel glutamate antagonists, and serotonin receptor antagonists, the latter for the therapy of Parkinson's psychosis and/or levodopa-induced dyskinesias. Examples of promising neuroprotective therapies under evaluation include the administration of creatine, urate-inducing compounds, calcium channel blockers, and pioglitazone, a peroxisome proliferator-activated receptor agonist. Cell-based restorative therapies are not the subject of this presentation, but various forms of gene therapy have shown promise in human Parkinson's disease trials. These protocols typically involve gene transfer into the CNS through the use of viral vectors. Currently, the most advanced studies of this technique involve delivery of an adeno-associated viral vector encoding glutamic acid decarboxylase into the subthalamic nucleus. This treatment has shown modest benefit in early clinical trials. Other gene therapies, in various stages of human clinical trials, include gene transfer for the production of trophic factors, for aromatic amino acid decarboxylase alone, and most recently, a lentiviral vector transfer of an enzymatic dopamine "factory" consisting of three essential enzymes required for production for this neurotransmitter.

  7. Gene therapy.

    PubMed

    Williamson, B

    1982-07-29

    Gene therapy is not yet possible, but may become feasible soon, particularly for well understood gene defects. Although treatment of a patient raises no ethical problems once it can be done well, changing the genes of an early embryo is more difficult, controversial and unlikely to be required clinically.

  8. Ex vivo gene therapy for HIV-1 treatment.

    PubMed

    Scherer, Lisa J; Rossi, John J

    2011-04-15

    Until recently, progress in ex vivo gene therapy (GT) for human immunodeficiency virus-1 (HIV-1) treatment has been incremental. Long-term HIV-1 remission in a patient who received a heterologous stem cell transplant for acquired immunodeficiency syndrome-related lymphoma from a CCR5(-/-) donor, even after discontinuation of conventional therapy, has energized the field. We review the status of current approaches as well as future directions in the areas of therapeutic targets, combinatorial strategies, vector design, introduction of therapeutics into stem cells and enrichment/expansion of gene-modified cells. Finally, we discuss recent advances towards clinical application of HIV-1 GT.

  9. GENE THERAPY FOR THE TREATMENT OF PITUITARY TUMORS

    PubMed Central

    Rodriguez, Silvia S.; Castro, Maria G.; Brown, Oscar A.; Goya, Rodolfo G.; Console, Gloria M.

    2010-01-01

    Pituitary adenomas constitute the most frequent neuroendocrine pathology in humans. Current therapies include surgery, radiotherapy and pharmacological approaches. Although useful, none of them offers a permanent cure. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental adenomas with adenoviral vector-mediated transfer of the suicide gene for thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. Although the efficiency and safety of current viral vectors must be optimized before clinical use, they remain as highly promising therapeutic tools. PMID:20186255

  10. Potential of Gene Therapy for the Treatment of Pituitary Tumors

    PubMed Central

    Goya, R G.; Sarkar, D.K.; Brown, O.A.; Hereñú, C.B.

    2010-01-01

    Pituitary adenomas constitute the most frequent neuroendocrine pathology, comprising up to 15% of primary intracranial tumors. Current therapies for pituitary tumors include surgery and radiotherapy, as well as pharmacological approaches for some types. Although all of these approaches have shown a significant degree of success, they are not devoid of unwanted side effects, and in most cases do not offer a permanent cure. Gene therapy—the transfer of genetic material for therapeutic purposes—has undergone an explosive development in the last few years. Within this context, the development of gene therapy approaches for the treatment of pituitary tumors emerges as a promising area of research. We begin by presenting a brief account of the genesis of prolactinomas, with particular emphasis on how estradiol induces prolactinomas in animals. In so doing, we discuss the role of each of the recently discovered growth inhibitory and growth stimulatory substances and their interactions in estrogen action. We also evaluate the cell-cell communication that may govern these growth factor interactions and subsequently promote the growth and survival of prolactinomas. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental prolactinomas or somatomammotropic tumors with adenoviral vector-mediated transfer of the suicide gene for the herpes simplex type 1 (HSV1) thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters, like the human prolactin or human growth hormone promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. In a different type of approach, an adenoviral vector, encoding the human retinoblastoma suppressor oncogene, has been successfully used to rescue the phenotype of spontaneous pituitary

  11. Gene Therapy

    PubMed Central

    Scheller, E.L.; Krebsbach, P.H.

    2009-01-01

    Gene therapy is defined as the treatment of disease by transfer of genetic material into cells. This review will explore methods available for gene transfer as well as current and potential applications for craniofacial regeneration, with emphasis on future development and design. Though non-viral gene delivery methods are limited by low gene transfer efficiency, they benefit from relative safety, low immunogenicity, ease of manufacture, and lack of DNA insert size limitation. In contrast, viral vectors are nature’s gene delivery machines that can be optimized to allow for tissue-specific targeting, site-specific chromosomal integration, and efficient long-term infection of dividing and non-dividing cells. In contrast to traditional replacement gene therapy, craniofacial regeneration seeks to use genetic vectors as supplemental building blocks for tissue growth and repair. Synergistic combination of viral gene therapy with craniofacial tissue engineering will significantly enhance our ability to repair and replace tissues in vivo. PMID:19641145

  12. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    PubMed

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID.

  13. To Your Health: NLM update transcript - First gene therapy cancer treatment

    MedlinePlus

    ... html To Your Health: NLM update Transcript First gene therapy cancer treatment : 09/11/2017 To use ... to follow up on weekly topics. The first gene therapy treatment for cancer recently was approved by ...

  14. [Gene therapy for the treatment of inborn errors of metabolism].

    PubMed

    Pérez-López, Jordi

    2014-06-16

    Due to the enzymatic defect in inborn errors of metabolism, there is a blockage in the metabolic pathways and an accumulation of toxic metabolites. Currently available therapies include dietary restriction, empowering of alternative metabolic pathways, and the replacement of the deficient enzyme by cell transplantation, liver transplantation or administration of the purified enzyme. Gene therapy, using the transfer in the body of the correct copy of the altered gene by a vector, is emerging as a promising treatment. However, the difficulty of vectors currently used to cross the blood brain barrier, the immune response, the cellular toxicity and potential oncogenesis are some limitations that could greatly limit its potential clinical application in human beings.

  15. Gene Therapy.

    PubMed

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  16. [Gene therapy in Parkinson disease: a promising future treatment?].

    PubMed

    Golé, Claire; Reboul, Romain; Pisano, Pascale

    2011-01-01

    Parkinson disease is a neurodegenerative pathology with high incidence. Current treatments ease the symptoms but don't stop the development of the disease and aren't without any major side effects. Although this pathology is not specifically caused by genetic abnormalities, the involvement of numerous proteins in the pathophysiological process enables us to give an interest to gene therapy. This hypothesis has been upheld by positive results on animals and by five phase I trials on humans but may be attenuated by the first phase II trial recently published showing modest efficiency and multiple side effects. However, these preliminary results will need to be reinforced by more important trials in order to be sure of the safety and get efficacy data, which will allow us to give an opinion upon this new way of treatment.

  17. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  18. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    PubMed

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.

  19. Gene Therapy

    MedlinePlus

    ... cells in an effort to treat or stop disease. Genes contain your DNA — the code that controls much of your body's form and function, from making you grow taller to regulating your body systems. Genes that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds ...

  20. Gene Therapy Approaches For The Treatment Of Retinal Disorders

    PubMed Central

    Petit, Lolita; Punzo, Claudio

    2016-01-01

    There is an impelling need to develop effective therapeutic strategies for patients with retinal disorders. Gleaning from the large quantity of information gathered over the past two decades on the mechanisms governing degeneration of the retina, it is now possible to devise innovative therapies based on retinal gene transfer. Different gene-based approaches are under active investigation. They include strategies to correct the specific genetic defect in inherited retinal diseases, strategies to delay the onset of blindness independently of the disease-causing mutations and strategies to reactivate residual cells at late stages of the diseases. In this review, we discuss the status of application of these technologies, outlining the future therapeutic potential for many forms of retinal blinding diseases. PMID:27875674

  1. Gene therapy.

    PubMed

    Drugan, A; Miller, O J; Evans, M I

    1987-01-01

    Severe genetic disorders are potentially correctable by the addition of a normal gene into tissues. Although the technical problems involving integration, stable expression, and insertional damage to the treated cell are not yet fully solved, enough scientific progress has already been made to consider somatic cell gene therapy acceptable from both the ethical and scientific viewpoints. The resolutions to problems evolving from somatic cell gene therapy will help to overcome the technical difficulties encountered presently with germ line gene manipulation. This procedure would then become morally permissible as it will cause, in time, a reduction in the pool of abnormal genes in the population. Enhancement genetic engineering is technically feasible but morally unacceptable. Eugenic genetic engineering is not technically possible or ethically permissible in the foreseeable future.

  2. Gene therapy for haemophilia.

    PubMed

    Sharma, Akshay; Easow Mathew, Manu; Sriganesh, Vasumathi; Neely, Jessica A; Kalipatnapu, Sasank

    2014-11-14

    Haemophilia is a genetic disorder which is characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 06 November 2014. Eligible trials included randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. No trials of gene therapy for haemophilia were found. No trials of gene therapy for haemophilia were identified. No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the effects of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.

  3. A Novel Combination of Thermal Ablation and Heat-Inducible Gene Therapy for Breast Cancer Treatment

    DTIC Science & Technology

    2007-04-01

    and Heat-Inducible Gene Therapy for Breast Cancer Treatment PRINCIPAL INVESTIGATOR: Yunbo Liu...Breast Cancer Treatment 5b. GRANT NUMBER W81XWH-06-1-0461 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Yunbo Liu Pei Zhong...therapy (via the control of hsp70B-heat shock promoter) to improve the overall efficiency of breast cancer treatment . In the first year of the project

  4. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma.

    PubMed

    Kane, J Robert; Miska, Jason; Young, Jacob S; Kanojia, Deepak; Kim, Julius W; Lesniak, Maciej S

    2015-03-01

    Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and "intelligent" carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists.

  5. Immunotherapy and gene therapy in prostate cancer treatment

    PubMed Central

    Grozescu, T; Popa, F

    2017-01-01

    There are few methods bringing several relatively recent advances in therapy of certain types of prostate cancer. Belonging to personalized therapies, they use cells (normal or pathologic) from the patient, modify and reintroduce them in the patient’s body, leading to an increased efficiency against the neoplastic tissue, proving to increase the patient’s lifespan and/ or tumor progression. PMID:28255378

  6. Gene therapy for the treatment of AIDS: animal models and human clinical experience.

    PubMed

    Amado, R G; Mitsuyasu, R T; Zack, J A

    1999-05-15

    Although antiretroviral drug therapy has had a significant impact on the natural history of HIV infection, complete virus eradication still remains an unattainable goal. Drug-mediated virological control only occurs transiently, in part as a result of the development of drug resistance. Gene therapy for the treatment of AIDS is a promising area of research that has as its goal the replacement of the HIV-infected cellular pool with cells engineered to resist virus replication. A variety of anti-HIV genes have been designed and tested in laboratory systems, and available results from pilot clinical trials demonstrate the safety and feasibility of this approach. Obstacles to effective application of this technology include partial protection of HIV resistance genes, lack of effective vectoring systems, and unregulated gene expression. Herein, we review recent advances in transduction methods, data from in vivo preclinical studies in relevant animal models, and emerging results derived from pilot clinical gene therapy studies.

  7. New gene therapy strategies for cancer treatment: a review of recent patents.

    PubMed

    Ortiz, Raúl; Melguizo, Consolación; Prados, José; Álvarez, Pablo J; Caba, Octavio; Rodríguez-Serrano, Fernando; Hita, Fidel; Aránega, Antonia

    2012-09-01

    Cancer is the second leading cause of death in the Western world. The limited successes of available treatments for cancer mean that new strategies need to be developed. The possibility of modifying the cancer cell with the introduction of genetic material opens the way to a new approach based on gene therapy. There are still many technical difficulties to be overcome, but recent advances in the molecular and cellular biology of gene transfer have made it likely that gene therapy will soon start to play an increasing role in clinical practice, particularly in the treatment of cancer. Gene therapy will probably be the therapeutic option in cases in which conventional treatments such as surgery, radiotherapy and chemotherapy have failed. The development of modified vectors, and an improved understanding of interactions between the vector and the human host, are generating inventions that are being protected by patents due to the considerable interest of industry for their possible commercialization. We review the latest strategies, patented and/or under clinical trial, in cancer gene therapy. These include patents that cover the use of modified vectors to increase the security and specificity, recombining adenovirus that leads to loss or gain of gene function, activation of the patient's own immune cells to eliminate cancer cells by expression of molecules that enhance immune responses, silencing genes related to the development of drug resistance in patients, inhibition of angiogenesis of solid tumors by targeting the tumor vasculature, and the development of enzymes that destroy viral or cancerous genetic material.

  8. Antiangiogenic Eye Gene Therapy.

    PubMed

    Corydon, Thomas J

    2015-08-01

    The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.

  9. Human gene therapy.

    PubMed

    Sandhu, J S; Keating, A; Hozumi, N

    1997-01-01

    Human gene therapy and its application for the treatment of human genetic disorders, such as cystic fibrosis, cancer, and other diseases, are discussed. Gene therapy is a technique in which a functioning gene is inserted into a human cell to correct a genetic error or to introduce a new function to the cell. Many methods, including retroviral vectors and non-viral vectors, have been developed for both ex vivo and in vivo gene transfer into cells. Vectors need to be developed that efficiently transfer genes to target cells, and promoter systems are required that regulate gene expression according to physiologic needs of the host cell. There are several safety and ethical issues related to manipulating the human genome that need to be resolved. Current gene therapy efforts focus on gene insertion into somatic cells only. Gene therapy has potential for the effective treatment of genetic disorders, and gene transfer techniques are being used for basic research, for example, in cancer, to examine the underlying mechanism of disease. There are still many technical obstacles to be overcome before human gene therapy can become a routine procedure. The current human genome project provides the sequences of a vast number of human genes, leading to the identification, characterization, and understanding of genes that are responsible for many human diseases.

  10. Gene therapy in an era of emerging treatment options for hemophilia B.

    PubMed

    Monahan, P E

    2015-06-01

    Factor IX deficiency (hemophilia B) is less common than factor VIII deficiency (hemophilia A), and innovations in therapy for hemophilia B have generally lagged behind those for hemophilia A. Recently, the first sustained correction of the hemophilia bleeding phenotype by clotting factor gene therapy has been described using recombinant adeno-associated virus (AAV) to deliver factor IX. Despite this success, many individuals with hemophilia B, including children, men with active hepatitis, and individuals who have pre-existing natural immunity to AAV, are not eligible for the current iteration of hemophilia B gene therapy. In addition, recent advances in recombinant factor IX protein engineering have led some hemophilia treaters to reconsider the urgency of genetic cure. Current clinical and preclinical approaches to advancing AAV-based and alternative approaches to factor IX gene therapy are considered in the context of current demographics and treatment of the hemophilia B population. © 2015 International Society on Thrombosis and Haemostasis.

  11. The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy.

    PubMed

    Youjin, Shen; Jun, Yin

    2009-03-01

    Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.

  12. Gene therapy in an era of emerging treatment options for hemophilia B

    PubMed Central

    Monahan, P. E.

    2016-01-01

    Summary Factor IX deficiency (hemophilia B) is less common than factor VIII deficiency (hemophilia A) and innovations in therapy for hemophilia B have generally lagged behind those for hemophilia A. Recently the first sustained correction of the hemophilia bleeding phenotype by clotting factor gene therapy has been described using recombinant adeno-associated virus (AAV) to deliver factor IX. Despite this success, many individuals with hemophilia B, including children, men with active hepatitis, and individuals who have pre-existing natural immunity to AAV are not eligible for the current iteration of hemophilia B gene therapy. In addition, recent advances in recombinant factor IX protein engineering have led some hemophilia treaters to reconsider the urgency of genetic cure. Current clinical and preclinical approaches to advancing AAV-based and alternative approaches to factor IX gene therapy are considered in the context of current demographics and treatment of the hemophilia B population. PMID:26149016

  13. Gene therapy for haemophilia.

    PubMed

    Sharma, Akshay; Easow Mathew, Manu; Sriganesh, Vasumathi; Reiss, Ulrike M

    2016-12-20

    Haemophilia is a genetic disorder characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. This is an update of a published Cochrane Review. To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 18 August 2016. Eligible trials include randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation for individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. No trials of gene therapy for haemophilia were found. No trials of gene therapy for haemophilia were identified. No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the safety and efficacy of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.

  14. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  15. Gene therapy for Parkinson's disease: state-of-the-art treatments for neurodegenerative disease.

    PubMed

    Douglas, Michael R

    2013-06-01

    Pharmacological and surgical treatments offer symptomatic benefits to patients with Parkinson's disease; however, as the condition progresses, patients experience gradual worsening in symptom control, with the development of a range of disabling complications. In addition, none of the currently available therapies have convincingly shown disease-modifying effects - either in slowing or reversing the disease. These problems have led to extensive research into the possible use of gene therapy as a treatment for Parkinson's disease. Several treatments have reached human clinical trial stages, providing important information on the risks and benefits of this novel therapeutic approach, and the tantalizing promise of improved control of this currently incurable neurodegenerative disorder.

  16. IL2 treatment for cancer: from biology to gene therapy.

    PubMed Central

    Foa, R.; Guarini, A.; Gansbacher, B.

    1992-01-01

    In this review we shall discuss the biological rationale and the clinical findings obtained using Interleukin 2 (IL2)-based immunotherapy in the management of cancer patients. Objective and long-lived clinical responses have been documented in a proportion of cases, particularly renal cell carcinoma, melanoma and acute myeloid leukaemia. Though encouraging, the clinical use of IL2 has so far been limited by toxicity, as well as by the heterogeneous and unpredictable responses and by the lack of specific anti-tumour effect. These considerations have led to the belief that more sophisticated technologies aimed at introducing the IL2 gene into the neoplastic cells may potentially overcome some of the limitations coupled to the in vivo infusion of high doses of IL2. The data accumulated in animal models and, more recently, also with human tumour cells indicate that the IL2 gene may be successfully inserted into neoplastic cells. The constitutive secretion of IL2 by the tumour cells leads to a reduced or abrogated tumorigenicity in several different tumour models. The evidence that in some experimental tumours the transduction of the IL2 gene into the neoplastic cells may elicit a specific cytotoxic response and confer anti-tumour memory, suggests that vaccination protocols based on this innovative strategy may represent a potential new tool in the management of cancer patients. PMID:1457368

  17. Preclinical evaluation of a gene therapy treatment for transitional cell carcinoma.

    PubMed

    Zhang, X; Godbey, W T

    2011-01-01

    Three drugs were compared for their efficacy in treating murine transitional cell carcinoma (TCC) of the bladder. Intravesical gene therapy treatments utilizing expression-targeted plasmids, where the murine cyclooxygenase-2 (Cox-2) promoter was used to drive the expression of exogenously inducible forms of caspases 3 and 9, were compared with treatment modalities employing Bacille Calmette-Guérin (BCG) and celecoxib. When administered via lavage, only the gene therapy regimen was found to be effective at restricting tumor progression following a 7-day incubation of tumor tissues. Celecoxib was also administered via the diet to allow for systemic delivery of the drug. The most efficacious celecoxib use tested yielded tumors with masses of (18.3±8.4 mg) versus the gene delivery method, which yielded tumors with masses of (3.6±7.7 mg). The difference was significant (t-test, n≥4, P<0.025). The results showed that the Cox-2 expression-targeted gene therapy system could efficiently bypass the bladder permeability barrier and more effectively inhibit tumor growth and development than either BCG or celecoxib treatments. Long-term data further demonstrated that the gene therapy system could effectively inhibit tumor growth and elongate life expectancy.

  18. [Gene therapy and ethics].

    PubMed

    Müller, H; Rehmann-Sutter, C

    1995-01-10

    Gene therapy represents a new strategy to treat human disorders. It was originally conceived as a cure for severe monogenetic disorders. Since its conception, the spectrum of possible application for gene therapy has been to include the treatment of acquired diseases, such as various forms of cancer and some viral infections, most notably human immune deficiency virus (HIV) and hepatitis B virus. Since somatic gene therapy does not cause substantially new ethical problems, it has gained broad approval. This is by no means the case with germ-line gene therapy. Practically all bodies who were evaluating the related ethical aspects wanted to ban its medical application on grounds of fundamental and pragmatic considerations. In this review, practical and ethical views concerning gene therapy are summarized which were presented at the "Junitagung 1994" of the Swiss Society for Biomedical Ethics in Basle.

  19. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy.

    PubMed

    Yang, Shuo; Ma, Si-Qi; Wan, Xing; He, Heng; Pei, Han; Zhao, Min-Jian; Chen, Chen; Wang, Dao-Wen; Dong, Xiao-Yan; Yuan, Jia-Jia; Li, Bin

    2016-08-01

    Leber's hereditary optic neuropathy (LHON) is a disease that leads to blindness. Gene therapy has been investigated with some success, and could lead to important advancements in treating LHON. This was a prospective, open-label trial involving 9 LHON patients at Tongji Hospital, Wuhan, China, from August 2011 to December 2015. The purpose of this study was to evaluate the long-term outcomes of gene therapy for LHON. Nine LHON patients voluntarily received an intravitreal injection of rAAV2-ND4. Systemic examinations and visual function tests were performed during the 36-month follow-up period to determine the safety and efficacy of this gene therapy. Based on successful experiments in an animal model of LHON, 1 subject also received an rAAV2-ND4 injection in the second eye 12months after gene therapy was administered in the first eye. Recovery of visual acuity was defined as the primary outcome of this study. Changes in the visual field, visual evoked potential (VEP), optical coherence tomography findings, liver and kidney function, and antibodies against AAV2 were defined as secondary endpoints. Eight patients (Patients 2-9) received unilateral gene therapy and visual function improvement was observed in both treated eyes (Patients 4, 6, 7, and 8) and untreated eyes (Patients 2, 3, 4, 6 and 8). Visual regression fluctuations, defined as changes in visual acuity greater than or equal to 0.3 logMAR, were observed in Patients 2 and 9. Age at disease onset, disease duration, and the amount of remaining optic nerve fibers did not have a significant effect on the visual function improvement. The visual field and pattern reversal VEP also improved. The patient (Patient 1) who received gene therapy in both eyes had improved visual acuity in the injected eye after the first treatment. Unfortunately, visual acuity in this eye decreased 3months after he received gene therapy in the second eye. Animal experiments suggested that ND4 expression remains stable in the

  20. Expanding the therapeutic index of radiation therapy by combining in situ gene therapy in the treatment of prostate cancer.

    PubMed

    Tetzlaff, Michael T; Teh, Bin S; Timme, Terry L; Fujita, Tetsuo; Satoh, Takefumi; Tabata, Ken-Ichi; Mai, Wei-Yuan; Vlachaki, Maria T; Amato, Robert J; Kadmon, Dov; Miles, Brian J; Ayala, Gustavo; Wheeler, Thomas M; Aguilar-Cordova, Estuardo; Thompson, Timothy C; Butler, E Brian

    2006-02-01

    The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.

  1. Parkinson's disease: gene therapies.

    PubMed

    Coune, Philippe G; Schneider, Bernard L; Aebischer, Patrick

    2012-04-01

    With the recent development of effective gene delivery systems, gene therapy for the central nervous system is finding novel applications. Here, we review existing viral vectors and discuss gene therapy strategies that have been proposed for Parkinson's disease. To date, most of the clinical trials were based on viral vectors to deliver therapeutic transgenes to neurons within the basal ganglia. Initial trials used genes to relieve the major motor symptoms caused by nigrostriatal degeneration. Although these new genetic approaches still need to prove more effective than existing symptomatic treatments, there is a need for disease-modifying strategies. The investigation of the genetic factors implicated in Parkinson's disease is providing precious insights in disease pathology that, combined with innovative gene delivery systems, will hopefully offer novel opportunities for gene therapy interventions to slow down, or even halt disease progression.

  2. Regulated Gene Therapy.

    PubMed

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  3. Gene Therapy for the Treatment of Chronic Peripheral Nervous System Pain

    PubMed Central

    Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2012-01-01

    Chronic pain is a major health concern affecting 80 million Americans at some time in their lives with significant associated morbidity and effects on individual quality of life. Chronic pain can result from a variety of inflammatory and nerve damaging events that include cancer, infectious diseases, autoimmune-related syndromes and surgery. Current pharmacotherapies have not provided an effective long-term solution as they are limited by drug tolerance and potential abuse. These concerns have led to the development and testing of gene therapy approaches to treat chronic pain. The potential efficacy of gene therapy for pain has been reported in numerous pre-clinical studies that demonstrate pain control at the level of the spinal cord. This promise has been recently supported by a Phase-I human trial in which a replication-defective herpes simplex virus (HSV) vector was used to deliver the human pre-proenkephalin (hPPE) gene, encoding the natural opioid peptides met- and leu-enkephalin (ENK), to cancer patients with intractable pain resulting from bone metastases (Fink et al., 2011). The study showed that the therapy was well tolerated and that patients receiving the higher doses of therapeutic vector experienced a substantial reduction in their overall pain scores for up to a month post vector injection. These exciting early clinical results await further patient testing to demonstrate treatment efficacy and will likely pave the way for other gene therapies to treat chronic pain. PMID:22668775

  4. Gene therapy for hemophilia.

    PubMed

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.

  5. Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment.

    PubMed

    Pierce, G F; Lillicrap, D; Pipe, S W; Vandendriessche, T

    2007-05-01

    The World Federation of Hemophilia estimates that of the 400,000 individuals worldwide with hemophilia, 300,000 receive either no, or very sporadic, treatment. Thus, considerable innovation will be required to provide cost-effective therapies/cures for all affected individuals. The high cost of prophylactic regimens hampers their widespread use, which further justifies the search for novel cost-effective therapies and ultimately a cure. Five gene transfer phase I clinical trials have been conducted using either direct in vivo gene delivery with viral vectors or ex vivo plasmid transfections and reimplantation of gene-engineered cells. Although there was evidence of gene transfer and therapeutic effects in some of these trials, stable expression of therapeutic factor VIII or FIX levels has not yet been obtained. Further improvements of the vectors and a better understanding of the immune consequences of gene transfer is warranted, as new trials are being initiated. Bioengineered clotting factors with increased stability and/or activity are being validated further in preclinical studies. Novel clotting factor formulations based on PEGylated liposomes with prolonged activities are being tested in the clinic, and are yielding encouraging results.

  6. [Gene therapy. Methods and applications].

    PubMed

    Jonassen, T O; Grinde, B; Orstavik, I

    1994-04-10

    Modern techniques in molecular biology and cell biology will probably make gene therapy, i.e. therapeutic transfer of genes to the patient's cells, available for treatment of many genetic diseases, cancer, cardiovascular diseases and infectious diseases. For genetic diseases the treatment will involve the transfer of a functional copy of the defect gene. The strategy for treatment of cancer may include the transfer of genes that induce the death of cancer cells via toxic molecules, and genes that enhance the immune response to tumour cells. After several years of preclinical studies, the National Institutes of Health in the USA has, up to February 1994, approved 56 protocols for clinical trials in human gene therapy. Most of the protocols include use of viruses to aid gene delivery. This paper briefly reviews the scientific basis for gene therapy, and discusses some clinical applications of somatic gene therapy in humans.

  7. Gene therapy for malignant glioma.

    PubMed

    Okura, Hidehiro; Smith, Christian A; Rutka, James T

    2014-01-01

    Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.

  8. Development of gene therapy for treatment of age-related macular degeneration.

    PubMed

    Askou, Anne Louise

    2014-07-01

    Intraocular neovascular diseases are the leading cause of blindness in the Western world in individuals over the age of 50. Age-related macular degeneration (AMD) is one of these diseases. Exudative AMD, the late-stage form, is characterized by abnormal neovessel development, sprouting from the choroid into the avascular subretinal space, where it can suddenly cause irreversible damage to the vulnerable photoreceptor (PR) cells essential for our high-resolution, central vision. The molecular basis of AMD is not well understood, but several growth factors have been implicated including vascular endothelial growth factor (VEGF), and the advent of anti-VEGF therapy has markedly changed the outcome of treatment. However, common to all current therapies for exudative AMD are the complications of repeated monthly intravitreal injections, which must be continued throughout one's lifetime to maintain visual benefits. Additionally, some patients do not benefit from established treatments. Strategies providing long-term suppression of inappropriate ocular angiogenesis are therefore needed, and gene therapy offers a potential powerful technique. This study aimed to develop a strategy based on RNA interference (RNAi) for the sustained attenuation of VEGF. We designed a panel of anti-VEGF short hairpin RNAs (shRNA), and based on the most potent shRNAs, microRNA (miRNA)-mimicked hairpins were developed. We demonstrated an additive VEGF silencing effect when we combined the miRNAs in a tricistronic miRNA cluster. To meet the requirements for development of medical treatments for AMD with long-term effects, the shRNA/miRNA is expressed from vectors based on adeno-associated virus (AAV) or lentivirus (LV). Both vector systems have been found superior in terms of transduction efficiency and persistence in gene expression in retinal cells. The capacity of AAV-encoded RNAi effector molecules to silence endogenous VEGF gene expression was evaluated in mouse models, including the model

  9. Novel diabetes mellitus treatment: mature canine insulin production by canine striated muscle through gene therapy.

    PubMed

    Niessen, S J M; Fernandez-Fuente, M; Mahmoud, A; Campbell, S C; Aldibbiat, A; Huggins, C; Brown, A E; Holder, A; Piercy, R J; Catchpole, B; Shaw, J A M; Church, D B

    2012-07-01

    Muscle-targeted gene therapy using insulin genes has the potential to provide an inexpensive, low maintenance alternative or adjunctive treatment method for canine diabetes mellitus. A canine skeletal muscle cell line was established through primary culture, as well as through transdifferentiation of canine fibroblasts after infection with a myo-differentiation gene containing adenovirus vector. A novel mutant furin-cleavable canine preproinsulin gene insert (cppI4) was designed and created through de novo gene synthesis. Various cell lines, including the generated canine muscle cell line, were transfected with nonviral plasmids containing cppI4. Insulin and desmin immunostaining were used to prove insulin production by muscle cells and specific canine insulin ELISA to prove mature insulin secretion into the medium. The canine myoblast cultures proved positive on desmin immunostaining. All cells tolerated transfection with cppI4-containing plasmid, and double immunostaining for insulin and desmin proved present in the canine cells. Canine insulin ELISA assessment of medium of cppI4-transfected murine myoblasts and canine myoblast and fibroblast mixture proved presence of mature fully processed canine insulin, 24 and 48 h after transfection. The present study provides proof of principle that canine muscle cells can be induced to produce and secrete canine insulin on transfection with nonviral plasmid DNA containing a novel mutant canine preproinsulin gene that produces furin-cleavable canine preproinsulin. This technology could be developed to provide an alternative canine diabetes mellitus treatment option or to provide a constant source for background insulin, as well as C-peptide, alongside current treatment options.

  10. Gene Therapy for Autoimmune Disease.

    PubMed

    Shu, Shang-An; Wang, Jinjun; Tao, Mi-Hua; Leung, Patrick S C

    2015-10-01

    Advances in understanding the immunological and molecular basis of autoimmune diseases have made gene therapy a promising approach to treat the affected patients. Gene therapy for autoimmune diseases aims to regulate the levels of proinflammatory cytokines or molecules and the infiltration of lymphocytes to the effected sites through successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain the immune tolerance to the relevant autoantigens and improve clinical outcomes for patients. Here, we summarize the recent progress in identifying genes responsible for autoimmune diseases and present examples where gene therapy has been applied as treatments or prevention in autoimmune diseases both in animal models and the clinical trials. Discussion on the advantages and pitfalls of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of autoimmune diseases.

  11. Gene therapy in pancreatic cancer.

    PubMed

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-10-07

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.

  12. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  13. Efficient gene therapy based targeting system for the treatment of inoperable tumors.

    PubMed

    Wirth, Thomas; Pikkarainen, Jere Tuomas; Samaranayake, Haritha Dhammika; Lehtolainen-Dalkilic, Pauliina; Lesch, Hanna Pirita; Airenne, Kari Juhani; Marjomäki, Varpu; Ylä-Herttuala, Seppo Pasi Antero

    2012-04-01

    A considerable percentage of tumors are not amenable to surgery. We have designed a simple and powerful targeting system that offers an alternative option for the multi-component pre-targeting strategies used clinically. This targeting system can be used for any type of solid tumors independent of the tumor type, thereby omitting the need to engineer unique antibodies for each specific application or tumour type. In the present study, we show the expression of a chimeric fusion protein, which contains the low-density lipoprotein receptor transmembrane domains and avidin, after local gene transfer and its ability to bind biotinylated compounds in vivo. Semliki Forest virus and lentivirus vectors were used to express the fusion protein with a high affinity binding site for biotinylated compounds in the tumor. Three different animal models and imaging modalities were used for the demonstration of the functionality and efficacy of the targeting system in vitro and in vivo. We demonstrate targeting of biotinylated compounds after local gene transfer in vivo using two different gene transfer vectors. The findings were confirmed by immunohistochemistry, single-photon emission computed tomography and magnetic resonance imaging. The therapeutic efficacy was tested in a syngeneic rat glioma model by injecting biotinylated-(90) Yttrium into the tail vein of glioma bearing rats. The study demonstrates that animals, which were treated by using the gene therapy based targeting system, lived significantly longer than control animals. Our gene therapy based targeting system is a promising tool for the treatment of inoperable tumors and other disease conditions, as well as diagnostic imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia.

    PubMed

    Breda, Laura; Rivella, Stefano; Zuccato, Cristina; Gambari, Roberto

    2013-06-01

    β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to a low or absent production of adult hemoglobin (HbA). Two major therapeutic approaches have recently been proposed: gene therapy and induction of fetal hemoglobin (HbF) with the objective of achieving clinically relevant levels of Hbs. The objective of this article is to describe the development of therapeutic strategies based on a combination of gene therapy and induction of HbFs. An increase of β-globin gene expression in β-thalassemia cells can be achieved by gene therapy, although de novo production of clinically relevant levels of adult Hb may be difficult to obtain. On the other hand, an increased production of HbF is beneficial in β-thalassemia. The combination of gene therapy and HbF induction appears to be a pertinent strategy to achieve clinically relevant results.

  15. Gene therapy for blindness.

    PubMed

    Sahel, José-Alain; Roska, Botond

    2013-07-08

    Sight-restoring therapy for the visually impaired and blind is a major unmet medical need. Ocular gene therapy is a rational choice for restoring vision or preventing the loss of vision because most blinding diseases originate in cellular components of the eye, a compartment that is optimally suited for the delivery of genes, and many of these diseases have a genetic origin or genetic component. In recent years we have witnessed major advances in the field of ocular gene therapy, and proof-of-concept studies are under way to evaluate the safety and efficacy of human gene therapies. Here we discuss the concepts and recent advances in gene therapy in the retina. Our review discusses traditional approaches such as gene replacement and neuroprotection and also new avenues such as optogenetic therapies. We conjecture that advances in gene therapy in the retina will pave the way for gene therapies in other parts of the brain.

  16. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer.

    PubMed

    Sachdeva, M; Sachdeva, N; Pal, M; Gupta, N; Khan, I A; Majumdar, M; Tiwari, A

    2015-11-01

    Although varied drugs and therapies have been developed for lung cancer treatment, in the past 5 years overall survival rates have not improved much. It has also been reported that lung cancer is diagnosed in most of the patients when it is already in the advanced stages with heterogeneous tumors where single therapy is mostly ineffective. A combination of therapies are being administered and specific genes in specific tissues are targeted while protecting normal cell, but most of the therapies face drawbacks for the development of resistance against them and tumor progression. Therefore, therapeutic implications for various therapies need to be complemented by divergent strategies. This review frames utilization of CRISPR/Cas9 for molecular targeted gene therapy leading to long-term repression and activation or inhibition of molecular targets linked to lung cancer, avoiding the cycles of therapy.

  17. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  18. Gene therapy research in Asia.

    PubMed

    Deng, H-X; Wang, Y; Ding, Q-R; Li, D-L; Wei, Yu-Quan

    2017-09-07

    Gene therapy has shown great potential for the treatment of diseases that previously were either untreatable or treatable but not curable with conventional schemes. Recent progress in clinical gene therapy trials has emerged in various severe diseases, including primary immunodeficiencies, leukodystrophies, Leber's congenital amaurosis, haemophilia, as well as retinal dystrophy. The clinical transformation and industrialization of gene therapy in Asia have been remarkable and continue making steady progress. A total of six gene therapy-based products have been approved worldwide, including two drugs from Asia. This review aims to highlight recent progress in gene therapy clinical trials and discuss the prospects for the future in China and wider Asia.Gene Therapy advance online publication, 7 September 2017; doi:10.1038/gt.2017.62.

  19. Women and Heart Disease - Physiologic Regulation of Gene Delivery and Expression: Bioreducible Polymers and Ischemia-Inducible Gene Therapies for the Treatment of Ischemic Heart Disease

    PubMed Central

    Yockman, James W.; Bull, David A.

    2009-01-01

    Ischemic heart disease (IHD) is the leading cause of death in the United States today. This year over 750,000 women will have a new or recurrent myocardial infarction. Currently, the mainstay of therapy for IHD is revascularization. Increasing evidence, however, suggests that revascularization alone is insufficient for the longer-term management of many patients with IHD. To address these issues, innovative therapies that extend beyond revascularization to protection of the myocyte and preservation of ventricular function are required. The emergence of gene therapy and proteomics offers the potential for innovative prophylactic and treatment strategies for IHD. The goal of our research is to develop therapeutic gene constructs for the treatment of myocardial ischemia that are clinically safe and effective. Toward this end, we describe the development of physiologic regulation of gene delivery and expression using bioreducible polymers and ischemia-inducible gene therapies for the potential treatment of ischemic heart disease in women. PMID:19422868

  20. [Basic principles of gene therapy].

    PubMed

    Vieweg, J

    1996-09-01

    The rapid development of recombinant DNA technology and our enhanced understanding of the genetic basis of human disease has facilitated the development of new molecular therapeutic modalities, termed gene therapy. Gene therapy involves the transfer of functional genes into somatic cells and their expression in target tissues in order to replace absent genes, correct defective genes, or induce antitumoral activity in the tumor-bearing host. Currently, an increasing number of gene therapy strategies are being investigated in experimental and clinical trials. Despite substantial progress, a number of technical and logistical hurdles must still be overcome before gene therapy can be safety and effectively applied in the human patient. Since gene therapy involves complex cell processing and can be time consuming and costly, simplifications or even alternative approaches will be necessary in order to establish this therapy as suitable for clinical use. This report reviews various gene therapy strategies and gene delivery techniques currently under clinical or experimental investigation. Special emphasis is given to cytokine gene therapy using gene-modified tumor vaccines for cancer treatment.

  1. The Future of Hemophilia Treatment: Longer-Acting Factor Concentrates versus Gene Therapy.

    PubMed

    Giangrande, Paul

    2016-07-01

    Gene therapy is the only novel technology that currently offers the prospect of a lasting cure for hemophilia and freedom from the burden of repeated injections. Recent data from a handful of patients who have undergone gene therapy for hemophilia B are very encouraging with a sustained factor IX (FIX) level of 0.05 IU/mL maintained for over 4 years. While this level is above the current usual target trough levels, it falls well short of the level that patients on prophylaxis with longer-acting products can expect. Prophylaxis is also associated with high peak levels, which permits patients to maintain an active lifestyle. A major barrier to widespread adoption of gene therapy is a high seroprevalence of antibodies to adeno-associated virus (AAV) vectors in the general population. Young children would be the best candidates for gene therapy in view of much lower seroprevalence to AAV in infants. A stable level of FIX early in life would prevent the onset of joint bleeds and the development of arthropathy. The recent experience with apolipoprotein tiparvovec (Glybera; uniQure, Amsterdam, the Netherlands) indicates that gene therapy is unlikely to prove to be a cheap therapeutic option. It is also quite possible that other new technologies that do not require viral vectors (such as stem cell therapy) may overtake gene therapy during development and make it redundant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Gene therapy review.

    PubMed

    Moss, Joseph Anthony

    2014-01-01

    The use of genes to treat disease, more commonly known as gene therapy, is a valid and promising tool to manage and treat diseases that conventional drug therapies cannot cure. Gene therapy holds the potential to control a wide range of diseases, including cystic fibrosis, heart disease, diabetes, cancer, and blood diseases. This review assesses the current status of gene therapy, highlighting therapeutic methodologies and applications, terminology, and imaging strategies. This article presents an overview of roadblocks associated with each therapeutic methodology, along with some of the scientific, social, and ethical issues associated with gene therapy.

  3. The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges

    PubMed Central

    Goodman, Michael A.; Malik, Punam

    2016-01-01

    Hemoglobinopathies, including β-thalassemia and sickle cell disease (SCD), are a heterogeneous group of commonly inherited disorders affecting the function or levels of hemoglobin. Disease phenotype can be severe with substantial morbidity and mortality. Bone marrow transplantation is curative, but limited to those patients with an appropriately matched donor. Genetic therapy, which utilizes a patient’s own cells, is thus an attractive therapeutic option. Numerous therapies are currently in clinical trials or in development, including therapies utilizing gene replacement therapy using lentiviruses and the latest gene editing techniques. In addition, methods are being developed that may be able to expand gene therapies to those with poor access to medical care, potentially significantly decreasing the global burden of disease. PMID:27695619

  4. The role of pharmacogenetics and advances in gene therapy in the treatment of diabetic retinopathy.

    PubMed

    Agarwal, Aniruddha; Ingham, Sally A; Harkins, Keegan A; Do, Diana V; Nguyen, Quan Dong

    2016-02-01

    Diabetic retinopathy (DR) and its complications such as diabetic macular edema continue to remain a major cause for legal blindness in the developed world. While the introduction of anti-tVEGF agents has significantly improved visual outcomes of patients with DR, unpredictable response, largely due to genetic polymorphisms, appears to be a challenge with this therapy. With advances in identification of various genetic biomarkers, novel therapeutic strategies consisting of gene transfer are being developed and tested for patients with DR. Application of pharmacogenetic principles appears to be a promising futuristic strategy to attenuate diabetes-mediated retinal vasculopathy. In this comprehensive review, data from recent studies in the field of pharmacogenomics for the treatment of DR have been provided.

  5. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2008-02-01

    We evaluated the safety, efficacy and anti-tumor effects of a surgery adjuvant treatment on canine patients with malignant melanoma. This approach combined suicide gene therapy with a subcutaneous vaccine composed by formolized tumor cells and irradiated xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. The post-surgical margin of the cavity was infiltrated with lipid-complexed thymidine kinase suicide gene coadministrated with ganciclovir. Toxicity was minimal or absent in all patients. With respect to surgery-treated controls (SC), this combined treatment (CT) significantly increased the fraction of patients local disease-free from 6 to 58% and distant metastases-free from 43 to 78% (Fisher's Exact test). In addition, CT significantly improved both SC overall 78 (23-540) and metastasis-free survival 112 (0-467) days to more than 1312 days (respective ranges: 43-1312 and 0-1312) (Kaplan-Meier analysis). In those patients subjected to partial surgery or presenting local recurrence, the efficacy of CT was verified by a 49% of objective responses that averaged 85% of tumor mass loss, while 22% displayed tumor progression as 94% of SC did. Therefore, surgery adjuvant CT controlled tumor growth, delaying or preventing post-surgical recurrence and distant metastasis, significantly extending survival and recovering the quality of life.

  6. Multicomponent nanoparticles as nonviral vectors for the treatment of Fabry disease by gene therapy

    PubMed Central

    Ruiz de Garibay, Aritz Pérez; Delgado, Diego; del Pozo-Rodríguez, Ana; Solinís, María Ángeles; Gascón, Alicia Rodríguez

    2012-01-01

    Purpose: Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease (FD). The objective of the present study was to demonstrate the potential applications of solid lipid nanoparticle (SLN)-based nonviral vectors for the treatment of FD. Methods: SLNs containing the pR-M10-αGal A plasmid that encodes the α-Galactosidase A (α-Gal A) enzyme were prepared and their in vitro transfection efficacy was studied in Hep G2 cells. We also studied the cellular uptake of the vectors and the intracellular disposition of the plasmid. Results: The enzymatic activity of the cells treated with the vectors increased significantly relative to the untreated cells, regardless of the formulation assayed. When the SLNs were prepared with protamine or dextran and protamine, the activity of the α-Gal A enzyme by the transfected Hep G2 cells increased up to 12-fold compared to that of untreated cells. Conclusion: With this work we have revealed in Hep G2 cells the ability of a multicomponent system based on SLNs to act as efficient nonviral vectors to potentially correct low α-Gal A activity levels in FD with gene therapy. PMID:23118528

  7. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease

    PubMed Central

    Hoban, Megan D.; Bauer, Daniel E.

    2016-01-01

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development. PMID:26758916

  8. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    PubMed

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development. © 2016 by The American Society of Hematology.

  9. Gene Therapy for Pituitary Tumors

    PubMed Central

    Seilicovich, Adriana; Pisera, Daniel; Sciascia, Sandra A.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Jaita, Gabriela; Castro, Maria G.

    2009-01-01

    Pituitary tumors are the most common primary intracranial neoplasms. Although most pituitary tumors are considered typically benign, others can cause severe and progressive disease. The principal aims of pituitary tumor treatment are the elimination or reduction of the tumor mass, normalization of hormone secretion and preservation of remaining pituitary function. In spite of major advances in the therapy of pituitary tumors, for some of the most difficult tumors, current therapies that include medical, surgical and radiotherapeutic methods are often unsatisfactory and there is a need to develop new treatment strategies. Gene therapy, which uses nucleic acids as drugs, has emerged as an attractive therapeutic option for the treatment of pituitary tumors that do not respond to classical treatment strategies if the patients become intolerant to the therapy. The development of animal models for pituitary tumors and hormone hypersecretion has proven to be critical for the implementation of novel treatment strategies and gene therapy approaches. Preclinical trials using several gene therapy approaches for the treatment of anterior pituitary diseases have been successfully implemented. Several issues need to be addressed before clinical implementation becomes a reality, including the development of more effective and safer viral vectors, uncovering novel therapeutic targets and development of targeted expression of therapeutic transgenes. With the development of efficient gene delivery vectors allowing long-term transgene expression with minimal toxicity, gene therapy will become one of the most promising approaches for treating pituitary adenomas. PMID:16457646

  10. Suicide gene therapy using reducible poly (oligo-D-arginine) for the treatment of spinal cord tumors.

    PubMed

    Won, Young-Wook; Kim, Kyung-Min; An, Sung Su; Lee, Minhyung; Ha, Yoon; Kim, Yong-Hee

    2011-12-01

    Suicide gene therapy based on a combination of herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) has obstacles to achieving a success in clinical use for the treatment of cancer due to inadequate thymidine kinase (TK) expression. The primary concern for improving anticancer efficacy of the suicide gene therapy is to develop an appropriate carrier that highly expresses TK in vivo. Despite great advances in the development of non-viral vectors, none has been used in cancer suicide gene therapy, not even in experimental challenge. Reducible poly (oligo-D-arginine) (rPOA), one of the effective non-viral carriers working in vivo, was chosen to deliver HSV-tk to spinal cord tumors which are appropriate targets for suicide gene therapy. Since the system exerts toxicity only in dividing cells, cells in the central nervous system, which are non-proliferative, are not sensitive to the toxic metabolites. In the present study, we demonstrated that the locomotor function of the model rat was maintained through the tumor suppression resulting from the tumor-selective suicide activity by co-administration of rPOA/HSV-tk and GCV. Thus, rPOA plays a crucial role in suicide gene therapy for cancer, and an rPOA/HSV-tk and GCV system could help promote in vivo trials of suicide gene therapy.

  11. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy

    PubMed Central

    Farzad, Lisa; Cerullo, Vincenzo; Yagyu, Shigeki; Bertin, Terry; Hemminki, Akseli; Rooney, Cliona; Lee, Brendan; Suzuki, Masataka

    2014-01-01

    Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy. PMID:27119096

  12. Nanoparticles for Retinal Gene Therapy

    PubMed Central

    Conley, Shannon M.; Naash, Muna I.

    2010-01-01

    Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber’s congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics. PMID:20452457

  13. Small RNA- and DNA-based gene therapy for the treatment of liver cirrhosis, where we are?

    PubMed

    Kim, Kyung-Hyun; Park, Kwan-Kyu

    2014-10-28

    Chronic liver diseases with different aetiologies rely on the chronic activation of liver injuries which result in a fibrogenesis progression to the end stage of cirrhosis and liver failure. Based on the underlying cellular and molecular mechanisms of a liver fibrosis, there has been proposed several kinds of approaches for the treatment of liver fibrosis. Recently, liver gene therapy has been developed as an alternative way to liver transplantation, which is the only effective therapy for chronic liver diseases. The activation of hepatic stellate cells, a subsequent release of inflammatory cytokines and an accumulation of extracellular matrix during the liver fibrogenesis are the major obstacles to the treatment of liver fibrosis. Several targeted strategies have been developed, such as antisense oligodeoxynucleotides, RNA interference and decoy oligodeoxynucleotides to overcome this barriers. With this report an overview will be provided of targeted strategies for the treatment of liver cirrhosis, and particularly, of the targeted gene therapy using short RNA and DNA segments.

  14. Small RNA- and DNA-based gene therapy for the treatment of liver cirrhosis, where we are?

    PubMed Central

    Kim, Kyung-Hyun; Park, Kwan-Kyu

    2014-01-01

    Chronic liver diseases with different aetiologies rely on the chronic activation of liver injuries which result in a fibrogenesis progression to the end stage of cirrhosis and liver failure. Based on the underlying cellular and molecular mechanisms of a liver fibrosis, there has been proposed several kinds of approaches for the treatment of liver fibrosis. Recently, liver gene therapy has been developed as an alternative way to liver transplantation, which is the only effective therapy for chronic liver diseases. The activation of hepatic stellate cells, a subsequent release of inflammatory cytokines and an accumulation of extracellular matrix during the liver fibrogenesis are the major obstacles to the treatment of liver fibrosis. Several targeted strategies have been developed, such as antisense oligodeoxynucleotides, RNA interference and decoy oligodeoxynucleotides to overcome this barriers. With this report an overview will be provided of targeted strategies for the treatment of liver cirrhosis, and particularly, of the targeted gene therapy using short RNA and DNA segments. PMID:25356032

  15. Cell and gene therapy.

    PubMed

    Rao, Rajesh C; Zacks, David N

    2014-01-01

    Replacement or repair of a dysfunctional gene combined with promoting cell survival is a two-pronged approach that addresses an unmet need in the therapy of retinal degenerative diseases. In this chapter, we discuss various strategies toward achieving both goals: transplantation of wild-type cells to replace degenerating cells and to rescue gene function, sequential gene and cell therapy, and in vivo reprogramming of rods to cones. These approaches highlight cutting-edge advances in cell and gene therapy, and cellular lineage conversion in order to devise new therapies for various retinal degenerative diseases.

  16. Hematopoietic stem cell gene therapy as a treatment for autoimmune diseases.

    PubMed

    Alderuccio, Frank; Nasa, Zeyad; Chung, Jieyu; Ko, Hyun-Ja; Chan, James; Toh, Ban-Hock

    2011-10-03

    A key function of the immune system is to protect us from foreign pathogens such as viruses, bacteria, fungi and multicellular parasites. However, it is also important in many other aspects of human health such as cancer surveillance, tissue transplantation, allergy and autoimmune disease. Autoimmunity can be defined as a chronic immune response that targets self-antigens leading to tissue pathology and clinical disease. Autoimmune diseases, as a group of diseases that include type 1 diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, have no effective cures, and treatment is often based on long-term broad-spectrum immunosuppressive regimes. While a number of strategies aimed at providing disease specific treatments are being explored, one avenue of study involves the use of hematopoietic stem cells to promote tolerance. In this manuscript, we will review the literature in this area but in particular examine the relatively new experimental field of gene therapy and hematopoietic stem cell transplantation as a molecular therapeutic strategy to combat autoimmune disease.

  17. [Remote results of treatment of patients with chronic lower-limb ischaemia by means of indirect revascularization and gene therapy].

    PubMed

    Chervyakov, Yu V; Staroverov, I N; Vlasenko, O N; Nersesyan, E G; Isaev, A A; Deev, R V

    2016-01-01

    Presented herein are comparative remote results of combined surgical treatment of 121 patients with stage IIB-III lower limb chronic ischaemia (LLCI) by means of indirect revascularization (lumbar sympathectomy--LSE and revascularizing osteotrepanation of the tibial bone--ROT) and gene therapy using the first registered Russian gene therapeutic agent Neovasculgen®. Depending on the LLCI degree and the method of treatment, during 3 years we assessed such parameters as the limb salvage rate, pain-free walk distance (PFWD), ankle-brachial index (ABI) and linear blood velocity (LBV). An increase in the PFWD in patients with initial stage IIB LLCI in the group of gene therapy was considerably higher than in other types of treatment (p=0.0001-0.0004). Using indirect methods of revascularization was accompanied and followed by less positive alterations in the PFWD values which by the end of the third year of follow up were observed to decrease. The values of PFWD after ROT at 2 and 3 years were higher than after LSE (p=0.006). During the first year of follow up the highest increment of the ABI was observed after ROT. At two years, the ABI values after ROT and gene therapy became equal. The worst result during 3 years as compared with other methods of treatment was demonstrated by LSE (p=0.006). Changes in ABI after gene therapy were statistically significant at all terms of follow up (p=0.008-0.02). There were no limb amputations in the remote period of follow up in patients with the initial stage IIB of the disease. Patients with initial stage III LLCI also showed a considerably better result by the increment of increased PFWD after gene-therapeutic treatment (p=0.001-0.0005). A small increment of the PFWD after LSE maintained during 1 year and after LSE during 2 years. The ABI values in all periods of follow up were higher after gene therapy (p=0.01-0.003). During the 2- and 3-year period the increment of this parameter after ROT was more significant than after LSE (p

  18. Transposons for gene therapy!

    PubMed

    Ivics, Zoltán; Izsvák, Zsuzsanna

    2006-10-01

    Gene therapy is a promising strategy for the treatment of several inherited and acquired human diseases. Several vector platforms exist for the delivery of therapeutic nucleic acids into cells. Vectors based on viruses are very efficient at introducing gene constructs into cells, but their use has been associated with genotoxic effects of vector integration or immunological complications due to repeated administration in vivo. Non-viral vectors are easier to engineer and manufacture, but their efficient delivery into cells is a major challenge, and the lack of their chromosomal integration precludes long-term therapeutic effects. Transposable elements are non-viral gene delivery vehicles found ubiquitously in nature. Transposon-based vectors have the capacity of stable genomic integration and long-lasting expression of transgene constructs in cells. Molecular reconstruction of Sleeping Beauty, an ancient transposon in fish, represents a cornerstone in applying transposition-mediated gene delivery in vertebrate species, including humans. This review summarizes the state-of-the-art in the application of transposable elements for therapeutic gene transfer, and identifies key targets for the development of transposon-based gene vectors with enhanced efficacy and safety for human applications.

  19. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS.

    PubMed

    Chung, Janet; DiGiusto, David L; Rossi, John J

    2013-03-01

    HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.

  20. Gene Therapy in Heart Failure.

    PubMed

    Fargnoli, Anthony S; Katz, Michael G; Bridges, Charles R; Hajjar, Roger J

    2016-10-28

    Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.

  1. Gene Therapy for Infectious Diseases

    PubMed Central

    Bunnell, Bruce A.; Morgan, Richard A.

    1998-01-01

    Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent. PMID:9457428

  2. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  3. Leber Congenital Amaurosis due to RPE65 Mutations and its Treatment with Gene Therapy

    PubMed Central

    Cideciyan, Artur V.

    2010-01-01

    Leber congenital amaurosis (LCA) is a rare hereditary retinal degeneration caused by mutations in more than a dozen genes. RPE65, one of these mutated genes, is highly expressed in the retinal pigment epithelium where it encodes the retinoid isomerase enzyme essential for the production of chromophore which forms the visual pigment in rod and cone photoreceptors of the retina. Congenital loss of chromophore production due to RPE65-deficiency together with progressive photoreceptor degeneration cause severe and progressive loss of vision. RPE65-associated LCA recently gained recognition outside of specialty ophthalmic circles due to early success achieved by three clinical trials of gene therapy using recombinant adeno-associated virus (AAV) vectors. The trials were built on multitude of basic, pre-clinical and clinical research defining the pathophysiology of the disease in human subjects and animal models, and demonstrating the proof-of-concept of gene (augmentation) therapy. Substantial gains in visual function of clinical trial participants provided evidence for physiologically relevant biological activity resulting from a newly introduced gene. This article reviews the current knowledge on retinal degeneration and visual dysfunction in animal models and human patients with RPE65 disease, and examines the consequences of gene therapy in terms of improvement of vision reported. PMID:20399883

  4. Gene therapy in the treatment of Fanconi anemia, a progressive bone marrow failure syndrome.

    PubMed

    Williams, David A; Croop, James; Kelly, Patrick

    2005-10-01

    Fanconi anemia (FA) is a genetic disease characterized by progressive, fatal bone marrow failure, congenital anomalies and predisposition to cancer. Although stem cell transplantation is therapeutic, human leukocyte antigen-identical sibling donors are available to a minority of patients. In murine models and human cells in vitro, gene transfer corrects the FA cellular phenotype of chromosomal breakage in response to DNA-damaging agents, suggesting therapeutic use of gene transfer is possible. However, disease-specific characteristics make application of viral vector technology difficult. Multiple studies are currently underway to develop a gene therapy approach for treating this disease, including phase I trials.

  5. Discovery of a Linear Peptide for Improving Tumor Targeting of Gene Products and Treatment of Distal Tumors by IL-12 Gene Therapy

    PubMed Central

    Cutrera, Jeffry; Dibra, Denada; Xia, Xueqing; Hasan, Azeem; Reed, Scott; Li, Shulin

    2011-01-01

    Like many effective therapeutics, interleukin-12 (IL-12) therapy often causes side effects. Tumor targeted delivery may improve the efficacy and decrease the toxicity of systemic IL-12 treatments. In this study, a novel targeting approach was investigated. A secreted alkaline phosphatase (SEAP) reporter gene-based screening process was used to identify a mini-peptide which can be produced in vivo to target gene products to tumors. The coding region for the best peptide was inserted into an IL-12 gene to determine the antitumor efficacy. Affinity chromatography, mass spectrometry analysis, and binding studies were used to identify a receptor for this peptide. We discovered that the linear peptide VNTANST increased the tumor accumulation of the reporter gene products in five independent tumor models including one human xenogeneic model. The product from VNTANST-IL-12 fusion gene therapy increased accumulation of IL-12 in the tumor environment, and in three tumor models, VNTANST-IL-12 gene therapy inhibited distal tumor growth. In a spontaneous lung metastasis model, inhibition of metastatic tumor growth was improved compared to wild-type IL-12 gene therapy, and in a squamous cell carcinoma model, toxic liver lesions were reduced. The receptor for VNTANST was identified as vimentin. These results show the promise of using VNTANST to improve IL-12 treatments. PMID:21386825

  6. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer

    PubMed Central

    Yin, Perry T.; Shah, Shreyas; Pasquale, Nicholas J.; Garbuzenko, Olga B.; Minko, Tamara; Lee, Ki-Bum

    2015-01-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. PMID:26720500

  7. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    PubMed

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo.

  8. [Cell and ex vivo gene therapy: advances in the treatment of central nervous system disorders].

    PubMed

    Mejía-Toiber, J; Castillo, C G; Giordano, M

    The direct application of different types of cells to the central nervous system (CNS) by means of transplants, so-called cell therapy, is an experimental approach that promotes the characterisation of the cell and molecular mechanisms involved in the development, plasticity and regeneration of damage to the CNS. Knowledge of the pathology and aetiology of neurodegenerative diseases, which are frequently related to the neurodegeneration of selected types of cells and/or deficiency of particular neurotransmitters, has led to research on means to obtain cell lines with specific characteristics. In some cases these cells become genetically transformed to produce large amounts of neurotransmitters or neurotrophic factors, the well-known ex vivo gene therapy, so that they can be used as therapeutic alternatives in pathologies affecting the CNS. For example, reports have been published of the beneficial effects of these therapies in studies with humans and in different models of neurodegenerative diseases, such as Huntington's disease and Parkinson's disease, and in epilepsy. The aim of this work is to review the different studies in which transplants of neuronal and non-neuronal cells have been used and which have served to further our knowledge of the CNS, of diseases that affect it and of possible therapeutic alternatives. Ex vivo cell therapy and gene therapy have helped to expand our knowledge about plasticity and the mechanisms and factors that promote cell integration within the central nervous system. Although behavioural improvements have been reported in animal and human models, further work is still required on these studies to clear up a number of dubious points. Ex vivo cell therapy and gene therapy in the nervous system constitute an important methodological tool with therapeutic possibilities that deserve further study.

  9. Safe Gene Therapy for Type 1 Diabetes

    DTIC Science & Technology

    2010-10-01

    Safe Gene Therapy for Type 1 Diabetes PRINCIPAL INVESTIGATOR: Massimo Trucco, M.D...4. TITLE AND SUBTITLE Safe Gene Therapy for Type 1 Diabetes New Advanced Technology to Improve Prediction and Prevention 5a. CONTRACT NUMBER...scientific skepticism, the prospect of gene therapy -based treatments remains intriguing and the use of human stem cell research carries with it enor- mous

  10. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  11. Gene therapy for hemophilia.

    PubMed

    Rogers, Geoffrey L; Herzog, Roland W

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.

  12. Gene therapy for hemophilia

    PubMed Central

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  13. Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms

    PubMed Central

    Kamran, Neha; Candolfi, Marianela; Baker, Gregory J.; Ayala, Mariela Moreno; Dzaman, Marta; Lowenstein, Pedro R.; Castro, Maria G.

    2015-01-01

    Summary Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with a median survival of 16.2 to 21.2 months post diagnosis [1]. Because of its location, complete surgical resection is impossible; additionally because GBM is also resistant to chemotherapeutic and radiotherapy approaches, development of novel therapies is urgently needed. In this chapter we describe the development of preclinical animal models and a conditionally cytotoxic and immune-stimulatory gene therapy strategy that successfully causes tumor regression in several rodent GBM models. PMID:26611605

  14. A Novel Combination of Thermal Ablation and Heat-Inducible Gene Therapy for Breast Cancer Treatment

    DTIC Science & Technology

    2008-04-01

    STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT High intensity focused ultrasound ...focused ultrasound (HIFU) thermal ablation and HIFU-induced gene therapy represents a promising approach in improving the overall efficacy and quality...R3230Ac cells with concentration from 0.5x106 /ml to 5x106/ml. The speed of sound and attenuation were measured in a broadband transmission ultrasound

  15. Gene therapy for hemophilia.

    PubMed

    Hortelano, G; Chang, P L

    2000-01-01

    Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.

  16. Gene Therapy for Metabolic Diseases

    PubMed Central

    Chandler, Randy J.; Venditti, Charles P.

    2016-01-01

    SUMMARY Gene therapy has recently shown great promise as an effective treatment for a number of metabolic diseases caused by genetic defects in both animal models and human clinical trials. Most of the current success has been achieved using a viral mediated gene addition approach, but gene-editing technology has progressed rapidly and gene modification is being actively pursued in clinical trials. This review focuses on viral mediated gene addition approaches, because most of the current clinical trials utilize this approach to treat metabolic diseases. PMID:27853673

  17. [An experimental research on the combination treatment of sFLK-1 gene therapy combined with gamma knife].

    PubMed

    Chen, Jing; Wang, Zheng-rong; Li, Hao; Wei, Yu-quan; Wang, Wei; Zhu, Bin

    2006-09-01

    To evaluate whether the sustained expression by adenovirus-mediated gene (sFLK-1) transfer can enhance the treatment efficacy of gamma knife radiosurgery. The mouse sFLK-1 gene was cloned to construct the recombinant adenovirus. The gliomata growing in BALB/c female nude mice with an initial mean volume of (109.3 +/- 20.5) mm3 were treated with gamma knife alone (13 Gy on day 12), sFLK-1 adenovirus alone (1 x 10(9) plaque-forming units, PFU was given to two mouse tail vein by injections, 7 and 14 days), gamma knife associated with sFLK-1 adenovirus or control adenovirus (1 x 10(9) PFU was given to two mouse tail vein by injections, 13 and 17 days). After the completion of therapy, the tumor size was recorded. The microvessel density (MVD) and tumor apoptosis were evaluated by immunohistochemical means. As comparing with three other control groups, the combination treatment group with sFLK-1 gene therapy and gamma knife not only significantly reduced tumor volume and prolonged the life span of tumor burden mice as well. In addition, the average tumor weights were lower in sFLK-1 combined with gamma knife group than in any other control group. Immunohistochemical analysis of glioma demonstrated a decreased MVD and a high apoptosis cell rate in sFLK-1 combined with gamma knif group. The antitumor effect of gamma knife can be potentiated by sFLK-1 gene therapy. Thus the combination of sFLK-1 gene therapy and gamma knife results an additive effect of antitumor. The observation may provide an important strategy for treatment cancer metastasis.

  18. Gene therapy for carcinoma of the breast

    PubMed Central

    Stoff-Khalili, MA; Dall, P; Curiel, DT

    2007-01-01

    In view of the limited success of available treatment modalities for breast cancer, alternative and complementary strategies need to be developed. The delineation of the molecular basis of breast cancer provides the possibility of specific intervention by gene therapy through the introduction of genetic material for therapeutic purposes. In this regard, several gene therapy approaches for carcinoma of the breast have been developed. These approaches can be divided into six broad categories: (1) mutation compensation, (2) molecular chemotherapy, (3) proapoptotic gene therapy, (4) antiangiogenic gene therapy, (5) genetic immunopotentiation, and (6) genetic modulation of resistance/sensitivity. Clinical trials for breast cancer have been initiated to evaluate safety, toxicity, and efficacy. Combined modality therapy with gene therapy and chemotherapy or radiation therapy has shown promising results. It is expected that as new therapeutic targets and approaches are identified and advances in vector design are realized, gene therapy will play an increasing role in clinical breast cancer treatment. PMID:16410823

  19. Gene therapy in periodontics.

    PubMed

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  20. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.

  1. Gene therapy for hemophilia.

    PubMed

    Ponder, Katherine P

    2006-09-01

    This review will highlight the progress achieved in the past 2 years on using gene therapy to treat hemophilia in animals and humans. There has been substantial progress in using gene therapy to treat animals with hemophilia. Novel approaches for hemophilia A in mice include expression of Factor VIII in blood cells or platelets derived from ex-vivo transduced hematopoietic stem cells, or in-vivo transfer of transposons expressing Factor VIII into endothelial cells or hepatocytes. Advances in large-animal models include the demonstration that neonatal administration of a retroviral vector expressing canine Factor VIII completely corrected hemophilia A in dogs, and that double-stranded adeno-associated virus vectors resulted in expression of Factor IX that is 28-fold that obtained using single-stranded adeno-associated virus vectors. In humans, one hemophilia B patient achieved 10% of normal activity after liver-directed gene therapy with a single-stranded adeno-associated virus vector expressing human Factor IX. Expression fell at 1 month, however, which was likely due to an immune response to the modified cells. Gene therapy has been successful in a patient with hemophilia B, but expression was unstable due to an immune response. Abrogating immune responses is the next major hurdle for achieving long-lasting gene therapy.

  2. Gene therapy in the cornea.

    PubMed

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  3. Gene therapy for newborns.

    PubMed

    Kohn, D B; Parkman, R

    1997-07-01

    Application of gene therapy to treat genetic and infectious diseases may have several advantages if performed in newborns. Because of the minimal adverse effect of the underlying disease on cells of the newborn, the relatively small size of infants, and the large amount of future growth, gene therapy may be more successful in newborns than in older children or adults. The presence of umbilical cord blood from newborns provides a unique and susceptible target for the genetic modification of hematopoietic stem cells. In our first trial of gene therapy in newborns, we inserted a normal adenosine deaminase gene into umbilical cord blood cells of three neonates with a congenital immune deficiency. The trial demonstrated the successful transduction and engraftment of stem cells, which continue to contribute to leukocyte production more than 3 years later. A similar approach may be taken to insert genes that inhibit replication of HIV-1 into umbilical cord blood cells of HIV-1-infected neonates. Many other metabolic and infectious disorders could be treated by gene therapy during the neonatal period if prenatal diagnoses are made and the appropriate technical and regulatory requirements have been met.

  4. Episome-Based Gene Therapy Strategy for Treatment of Human Breast Cancer

    DTIC Science & Technology

    1997-01-01

    geneeg, with oligonucleotide- psoralen conjugates. 28 Even in sequence into the plasmid. Our results are similar to this case, the cross-links can be...levels in human MCF-7 breast 0 cancer cells following treatment of the cells with a psoralen -linked triplet-forming oligonucleotide.3 1 More- Figure 5...Lebl6u B, LUonetti J-P. Revers- 41. Scott RW, Bergman BL, Bajpai A, et al. Protease nexin. ible inhibition of gene expression by psoralen functional- J

  5. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  6. Hematopoietic Stem Cell Expansion and Gene Therapy

    PubMed Central

    Watts, Korashon Lynn; Adair, Jennifer; Kiem, Hans-Peter

    2012-01-01

    Hematopoietic stem cell (HSC) gene therapy remains a highly attractive treatment option for many disorders including hematologic conditions, immunodeficiencies including HIV/AIDS, and other genetic disorders like lysosomal storage diseases, among others. In this review, we discuss the successes, side effects, and limitations of current gene therapy protocols. In addition, we describe the opportunities presented by implementing ex vivo expansion of gene-modified HSCs, as well as summarize the most promising ex vivo expansion techniques currently available. We conclude by discussing how some of the current limitations of HSC gene therapy could be overcome by combining novel HSC expansion strategies with gene therapy. PMID:21999373

  7. Gene Therapy for Skin Diseases

    PubMed Central

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab

    2014-01-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically. PMID:24692191

  8. Alphaviruses in Gene Therapy

    PubMed Central

    Lundstrom, Kenneth

    2015-01-01

    Alphavirus vectors present an attractive approach for gene therapy applications due to the rapid and simple recombinant virus particle production and their broad range of mammalian host cell transduction. Mainly three types of alphavirus vectors, namely naked RNA, recombinant particles and DNA/RNA layered vectors, have been subjected to preclinical studies with the goal of achieving prophylactic or therapeutic efficacy, particularly in oncology. In this context, immunization with alphavirus vectors has provided protection against challenges with tumor cells. Moreover, alphavirus intratumoral and systemic delivery has demonstrated substantial tumor regression and significant prolonged survival rates in various animal tumor models. Recent discoveries of the strong association of RNA interference and disease have accelerated gene therapy based approaches, where alphavirus-based gene delivery can play an important role. PMID:25961488

  9. Gene therapy for Down syndrome.

    PubMed

    Fillat, Cristina; Altafaj, Xavier

    2012-01-01

    The presence of an additional copy of HSA21 chromosome in Down syndrome (DS) individuals leads to the overexpression of 30-50% of HSA21 genes. This upregulation can, in turn, trigger a deregulation on the expression of non-HSA21 genes. Moreover, the overdose of HSA21 microRNAs (miRNAs) may result in the downregulation of its target genes. Additional complexity can also arise from epigenetic changes modulating gene expression. Thus, a myriad of transcriptional and posttranscriptional alterations participate to produce abnormal phenotypes in almost all tissues and organs of DS individuals. The study of the physiological roles of genes dysregulated in DS, as well as their characterization in murine models with gene(s) dosage imbalance, pointed out several genes, and functional noncoding elements to be particularly critical in the etiology of DS. Recent findings indicate that gene therapy strategies-based on the introduction of genetic elements by means of delivery vectors-toward the correction of phenotypic abnormalities in DS are also very promising tool to identify HSA21 and non-HSA21 gene candidates, contributing to DS phenotype. In this chapter, we focus on the impact of normalizing the expression levels of up or downregulated genes to rescue particular phenotypes of DS. Attempts toward gene-based treatment approaches in mouse models will be discussed as new opportunities to ameliorate DS alterations.

  10. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy.

    PubMed

    Callejas, David; Mann, Christopher J; Ayuso, Eduard; Lage, Ricardo; Grifoll, Iris; Roca, Carles; Andaluz, Anna; Ruiz-de Gopegui, Rafael; Montané, Joel; Muñoz, Sergio; Ferre, Tura; Haurigot, Virginia; Zhou, Shangzhen; Ruberte, Jesús; Mingozzi, Federico; High, Katherine A; Garcia, Felix; Bosch, Fatima

    2013-05-01

    Diabetes is associated with severe secondary complications, largely caused by poor glycemic control. Treatment with exogenous insulin fails to prevent these complications completely, leading to significant morbidity and mortality. We previously demonstrated that it is possible to generate a "glucose sensor" in skeletal muscle through coexpression of glucokinase and insulin, increasing glucose uptake and correcting hyperglycemia in diabetic mice. Here, we demonstrate long-term efficacy of this approach in a large animal model of diabetes. A one-time intramuscular administration of adeno-associated viral vectors of serotype 1 encoding for glucokinase and insulin in diabetic dogs resulted in normalization of fasting glycemia, accelerated disposal of glucose after oral challenge, and no episodes of hypoglycemia during exercise for >4 years after gene transfer. This was associated with recovery of body weight, reduced glycosylated plasma proteins levels, and long-term survival without secondary complications. Conversely, exogenous insulin or gene transfer for insulin or glucokinase alone failed to achieve complete correction of diabetes, indicating that the synergistic action of insulin and glucokinase is needed for full therapeutic effect. This study provides the first proof-of-concept in a large animal model for a gene transfer approach to treat diabetes.

  11. Gene therapy for obesity: progress and prospects.

    PubMed

    Gao, Mingming; Liu, Dexi

    2014-06-01

    Advances in understanding the molecular basis of obesity and obesity-associated diseases have made gene therapy a vital approach in coping with this world-wide epidemic. Gene therapy for obesity aims to increase or decrease gene product in favor of lipolysis and energy expenditure, leading toward fat reduction and loss of body weight. It involves successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain energy homeostasis. Here we summarize progress made in recent years in identifying genes responsible for obesity and present examples where the gene therapy approach has been applied to treating or preventing obesity. Discussion on advantages and limitations of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of obesity and obesity-associated diseases.

  12. Gene therapy by electroporation for the treatment of chronic renal failure in companion animals.

    PubMed

    Brown, Patricia A; Bodles-Brakhop, Angela M; Pope, Melissa A; Draghia-Akli, Ruxandra

    2009-01-16

    Growth hormone-releasing hormone (GHRH) plasmid-based therapy for the treatment of chronic renal failure and its complications was examined. Companion dogs (13.1+/-0.8 years, 29.4+/-5.01 kg) and cats (13.2+/-0.9 years, 8.5+/-0.37 kg) received a single 0.4 mg or 0.1 mg species-specific plasmid injection, respectively, intramuscularly followed by electroporation, and analyzed up to 75 days post-treatment; controls underwent electroporation without plasmid administration. Plasmid-treated animals showed an increase in body weight (dogs 22.5% and cats 3.2%) compared to control animals, and displayed improved quality of life parameters including significant increases in appetite, activity, mentation and exercise tolerance levels. Insulin-like growth factor I (IGF-I, the downstream effector of GHRH) levels were increased in the plasmid treated animals. Hematological parameters were also significantly improved. Protein metabolism changes were observed suggesting a shift from a catabolic to an anabolic state in the treated animals. Blood urea nitrogen and creatinine did not show any significant changes suggesting maintenance of kidney function whereas the control animal's renal function deteriorated. Treated animals survived longer than control animals with 70% of dogs and 80% of cats surviving until study day 75. Only 17% and 40% of the control dogs and cats, respectively, survived to day 75. Improved quality of life, survival and general well-being indicate that further investigation is warranted, and show the potential of a plasmid-based therapy by electroporation in preventing and managing complications of renal insufficiency.

  13. Gene therapy by electroporation for the treatment of chronic renal failure in companion animals

    PubMed Central

    Brown, Patricia A; Bodles-Brakhop, Angela M; Pope, Melissa A; Draghia-Akli, Ruxandra

    2009-01-01

    Background Growth hormone-releasing hormone (GHRH) plasmid-based therapy for the treatment of chronic renal failure and its complications was examined. Companion dogs (13.1 ± 0.8 years, 29.4 ± 5.01 kg) and cats (13.2 ± 0.9 years, 8.5 ± 0.37 kg) received a single 0.4 mg or 0.1 mg species-specific plasmid injection, respectively, intramuscularly followed by electroporation, and analyzed up to 75 days post-treatment; controls underwent electroporation without plasmid administration. Results Plasmid-treated animals showed an increase in body weight (dogs 22.5% and cats 3.2%) compared to control animals, and displayed improved quality of life parameters including significant increases in appetite, activity, mentation and exercise tolerance levels. Insulin-like growth factor I (IGF-I, the downstream effector of GHRH) levels were increased in the plasmid treated animals. Hematological parameters were also significantly improved. Protein metabolism changes were observed suggesting a shift from a catabolic to an anabolic state in the treated animals. Blood urea nitrogen and creatinine did not show any significant changes suggesting maintenance of kidney function whereas the control animal's renal function deteriorated. Treated animals survived longer than control animals with 70% of dogs and 80% of cats surviving until study day 75. Only 17% and 40% of the control dogs and cats, respectively, survived to day 75. Conclusion Improved quality of life, survival and general well-being indicate that further investigation is warranted, and show the potential of a plasmid-based therapy by electroporation in preventing and managing complications of renal insufficiency. PMID:19149896

  14. Recent progress in cerebrovascular gene therapy.

    PubMed

    Sato, Naoyuki; Shimamura, Munehisa; Morishita, Ryuichi

    2005-07-01

    Gene therapy provides a potential strategy for the treatment of cardiovascular disease such as peripheral arterial disease, myocardial infarction, restenosis after angioplasty, and vascular bypass graft occlusion. Currently, more than 20 clinical studies of gene therapy for cardiovascular disease are in progress. Although cerebrovascular gene therapy has not proceeded to clinical trials, in contrast to cardiovascular gene therapy, there have been several trials in experimental models. Three major potential targets for cerebrovascular gene therapy are vasospasm after subarachnoid hemorrhage (SAH), ischemic cerebrovascular disease, and restenosis after angioplasty, for which current therapy is often inadequate. In experimental SAH models, strategies using genes encoding a vasodilating protein or decoy oligodeoxynucleotides have been reported to be effective against vasospasm after SAH. In experimental ischemic cerebrovascular disease, gene therapy using growth factors, such as Brain-derived neurotrophic factor (BDNF), Fibroblast growth factor-2 (FGF-2), or Hepatocyte growth factor (HGF), has been reported to be effective for neuroprotection and angiogenesis. Nevertheless, cerebrovascular gene therapy for clinical human treatment still has some problems, such as transfection efficiency and the safety of vectors. Development of an effective and safe delivery system for a target gene will make human cerebrovascular gene therapy possible.

  15. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy and ... by a "bad" gene. continue Two Types of Gene Therapy The two forms of gene therapy are: Somatic ...

  16. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1.

    PubMed

    Touzot, Fabien; Moshous, Despina; Creidy, Rita; Neven, Bénédicte; Frange, Pierre; Cros, Guilhem; Caccavelli, Laure; Blondeau, Johanna; Magnani, Alessandra; Luby, Jean-Marc; Ternaux, Brigitte; Picard, Capucine; Blanche, Stéphane; Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana, Marina

    2015-06-04

    During the last decade, gene therapy via ex vivo gene transfer into autologous hematopoietic stem cells has emerged as a convincing therapy for severe combined immunodeficiency caused by ILR2G mutation (SCID-X1) despite the occurrence of genotoxicity caused by the integration of first-generation retroviral vectors. However, the place of gene therapy among the therapeutic armamentarium remains to be defined. We retrospectively analyze and compare clinical outcomes and immune reconstitution in 13 consecutive SCID-X1 patients having undergone haploidentical hematopoietic stem cell transplantation (HSCT) and 14 SCID-X1 patients treated with gene therapy over the same period at a single center level: the Necker Children's Hospital (Paris, France). Our results show a clear advantage in terms of T-cell development of gene therapy over HSCT with a mismatched donor. Patients treated with gene therapy display a faster T-cell reconstitution and a better long-term thymic output. Interestingly, this advantage of gene therapy vs haploidentical HSCT seems to be independent of the existence of clinical graft-versus-host disease in the latter condition. If data of safety are confirmed over the long term, gene therapy for SCID-X1 appears to be an equal, if not superior, alternative to haploidentical HSCT.

  17. The ethics of gene therapy.

    PubMed

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  18. Gene therapy for primary immunodeficiencies.

    PubMed

    Thrasher, Adrian J

    2008-05-01

    Primary immunodeficiencies are a group of disorders that are highly amenable to gene therapy because of their defined pathophysiology and the accessibility of the hematopoietic system to molecular intervention. The development of this new therapeutic modality has been driven by the established morbidity and mortality associated with conventional allogeneic stem cell transplantation, particularly in the human leukocyte antigen-mismatched setting. Recently, several clinical studies have shown that gamma retroviral gene transfer technology can produce major beneficial therapeutic effects, but, as for all cellular and pharmacologic treatment approaches, with a finite potential for toxicity. Newer developments in vector design showing promise in overcoming these issues are likely to establish gene therapy as an efficacious strategy for many forms of primary immunodeficiencies.

  19. Towards a rAAV-based gene therapy for ADA-SCID: from ADA deficiency to current and future treatment strategies.

    PubMed

    Silver, Jared N; Flotte, Terence R

    2008-07-01

    Adenosine deaminase deficiency fosters a rare, devastating pediatric immune deficiency with concomitant opportunistic infections, metabolic anomalies and multiple organ system pathology. The standard of care for adenosine deaminase deficient severe combined immune deficiency (ADA-SCID) includes enzyme replacement therapy or bone marrow transplantation. Gene therapies for ADA-SCID over nearly two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoetic progenitors. These groundbreaking gene therapies represent a revolution in clinical medicine, but come with several challenges, including the risk of insertional mutagenesis. An alternative gene therapy for ADA-SCID may utilize recombinant adeno-associated virus vectors in vivo, with numerous target tissues, to foster ectopic expression and secretion of adenosine deaminase. This review endeavors to describe ADA-SCID, the traditional treatments, previous retroviral gene therapies, and primarily, alternative recombinant adeno-associated virus-based strategies to remedy this potentially fatal genetic disease.

  20. Gene therapy for mucopolysaccharidosis

    PubMed Central

    Ponder, Katherine P; Haskins, Mark E

    2012-01-01

    Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved. PMID:17727324

  1. Cardiac gene therapy: are we there yet?

    PubMed

    Matkar, P N; Leong-Poi, H; Singh, K K

    2016-08-01

    The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality.

  2. Gene based therapies for kidney regeneration.

    PubMed

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-11-05

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  3. The future of epilepsy treatment: focus on adeno-associated virus vector gene therapy.

    PubMed

    McCown, Thomas J

    2010-06-01

    Adeno-associated virus (AAV) vectors support long-term, nontoxic gene expression in the central nervous system, and these AAV properties prove particularly applicable to the treatment of focal epilepsies, especially intractable temporal lobe epilepsy. A number of clinical studies have employed AAV vectors and to date, no known adverse effects have been directly associated with these treatments, particularly AAV serotype 2 (AAV2). Although other AAV serotypes may confer an advantage in the future, extensive studies on the inhibitory neuropeptides, galanin and neuropeptide Y, have generated enough preclinical evidence of efficacy to warrant AAV2-based clinical trials in the near future. Beyond these trials, emerging evidence suggests that AAV-mediated manipulation of adenosine can significantly impact limbic seizure activity. Thus, with appropriate nonhuman primate transduction patterns and favorable overall toxicology studies, AAV-based manipulation of adenosine could follow the AAV-neuropeptide clinical studies. Finally, recent findings using AAV capsid shuffling and directed evolution have identified a hybrid AAV vector that can selectively cross the seizure compromised blood-brain barrier and transduce cells after peripheral, intravenous administration. Thus, in the more distant future, AAV therapeutics for focal epilepsies may be delivered without any neurosurgical interventions.

  4. Efficient electrogene therapy for pancreatic adenocarcinoma treatment using the bacterial purine nucleoside phosphorylase suicide gene with fludarabine.

    PubMed

    Deharvengt, Sophie; Rejiba, Soukaina; Wack, Séverine; Aprahamian, Marc; Hajri, Amor

    2007-06-01

    The aim of this study was to demonstrate the potential of electrogene therapy with the bacterial purine nucleoside phosphorylase gene (ePNP), on pancreatic carcinoma (PC) large tumors. The in vivo electroporation (EP) conditions and efficacy were investigated on both subcutaneous xenografts of human PC cells in immunocompromised mice and orthotopic intrapancreatic grafts of rat PC cells in syngenic rats. After intratumoral injection of naked plasmid DNA, EP was performed using a two-needle array with 25-msec pulses and either a 300 V/cm field strength for subcutaneous or a 500 V/cm field strength for orthotopic PC, parameters providing the best electrotransfer as reflected by the measurements of both luciferase activity and ePNP mRNA. As expected, tumors developed sensitivity to prodrug treatment (6-methylpurine deoxyribose or fludarabine phosphate). We observed both significant inhibition of tumor growth and extended survival of treated mice. In fact, after prodrug treatment, PC growth in the subcutaneous model was delayed by 50-70% for ePNP-expressing tumors. In an orthotopic pancreatic tumor model, the animal survival was significantly prolonged after ePNP electrogene transfer followed by fludarabine treatment, with one animal out of 10 being tumor-free 6 months thereafter. The current study demonstrates for the first time on PC the in vivo feasibility of electrogene transfer and its therapeutic efficiency using the suicide gene/prodrug system, ePNP/fludarabine. These findings suggest that electrogene therapy strategy must be considered for pancreatic cancer treatment, particularly at advanced stages of the disease.

  5. Gene therapy: Myth or reality?

    PubMed

    Fischer, Alain

    2016-01-01

    Gene therapy has become a reality, although still a fragile one. Clinical benefit has been achieved over the last 17years in a limited number of medical conditions for which pathophysiological studies determined that they were favorable settings. They include inherited disorders of the immune system, leukodystrophies, possibly hemoglobinopathies, hemophilia B, and retinal dystrophies. Advances in the treatment of B-cell leukemias and lymphomas have also been achieved. Advances in vector development and possible usage of gene editing may lead to significant advances over the next years.

  6. All-trans retinoic acid enhances bystander effect of suicide gene therapy in the treatment of breast cancer.

    PubMed

    Kong, Heng; Liu, Xia; Yang, Liucheng; Qi, Ke; Zhang, Haoyun; Zhang, Jingwen; Huang, Zonghai; Wang, Hongxian

    2016-03-01

    All-trans retinoic acid (ATRA) has been shown to enhance the expression of connexin 43 (Cx43) and the bystander effect (BSE) in suicide gene therapy. These in turn improve effects of suicide gene therapies for several tumor types. However, whether ATRA can improve BSE remains unclear in suicide gene therapy for breast cancer. In the present study, MCF-7, human breast cancer cells were treated with ATRA in combination with a VEGFP-TK/CD gene suicide system developed by our group. We found that this combination enhances the efficiency of cell killing and apoptosis of breast cancer by strengthening the BSE in vitro. ATRA also promotes gap junction intercellular communication (GJIC) in MCF-7 cells by upregulation of the connexin 43 mRNA and protein in MCF-7 cells. These results indicate that enhancement of GJIC by ATRA in suicide gene system might serve as an attractive and cost-effective strategy of therapy for breast cancer cells.

  7. Using HSV-TK/GCV suicide gene therapy to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification

    PubMed Central

    Jiang, Yong-Xiang; Liu, Tian-Jing; Yang, Jin; Chen, Yan; Fang, Yan-Wen

    2011-01-01

    Purpose To establish a novel, targeted lentivirus-based HSV-tk (herpes simplex virus thymidine kinase)/GCV (ganciclovir) gene therapy system to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification (PCO) after cataract surgery. Methods An enhanced Cre recombinase (Cre/loxP) system with a lentiviral vector expressing Cre under the control of the lens-specific promoter LEP503 (Lenti-LEP503-HSVtk-Cre [LTKCRE]) was constructed, as well as another lentiviral vector containing a switching unit. The latter vector contains a stuffer sequence encoding EGFP (Lenti-hPGK-Loxp-EGFP-pA-Loxp-HSVtk [PGFPTK]) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-tk) gene, both under the control of the human posphoglycerate kinase (hPGK) promoter. Expression of the downstream gene (HSV-tk) is activated by co-expression of Cre. Human lens epithelial cells (HLECs) or retinal pigmental epithelial cells (RPECs) were co-infected with LTKCRE and PGFPTK. The inhibitory effects on HLECs and RPECs infected by the enhanced specific lentiviral vector combination at the concentration of 20 µg/ml GCV were assayed and compared. Results The specific gene expression of Cre and HSV-tk in HLECs is activated by the LEP503 promoter. LTKCRE and PGFPTK co-infected HLECs, but not RPECs, expressed high levels of the HSV-tk protein. After 96 h of GCV treatment, the percentage of apoptotic HLECs infected by the enhanced specific lentiviral vector combination was 87.23%, whereas that of apoptotic RPECs was only 10.12%. Electron microscopy showed that GCV induced apoptosis and necrosis of the infected HLECs. Conclusions The enhanced specific lentiviral vector combination selectively and effectively expressed HSV-tk in HLECs. A concentration of 20 µg/ml, GCV is effective against the proliferation of HLECs in vitro. This cell-type-specific gene therapy using a Cre/loxP lentivirus system may be a

  8. Gene therapy prospects--intranasal delivery of therapeutic genes.

    PubMed

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  9. Orthopedic Gene Therapy in 2008

    PubMed Central

    Evans, Christopher H; Ghivizzani, Steven C; Robbins, Paul D

    2008-01-01

    Orthopedic disorders, although rarely fatal, are the leading cause of morbidity and impose a huge socioeconomic burden. Their prevalence will increase dramatically as populations age and gain weight. Many orthopedic conditions are difficult to treat by conventional means; however, they are good candidates for gene therapy. Clinical trials have already been initiated for arthritis and the aseptic loosening of prosthetic joints, and the development of bone-healing applications is at an advanced, preclinical stage. Other potential uses include the treatment of Mendelian diseases and orthopedic tumors, as well as the repair and regeneration of cartilage, ligaments, and tendons. Many of these goals should be achievable with existing technologies. The main barriers to clinical application are funding and regulatory issues, which in turn reflect major safety concerns and the opinion, in some quarters, that gene therapy should not be applied to nonlethal, nongenetic diseases. For some indications, advances in nongenetic treatments have also diminished enthusiasm. Nevertheless, the preclinical and early clinical data are impressive and provide considerable optimism that gene therapy will provide straightforward, effective solutions to the clinical management of several common debilitating disorders that are otherwise difficult and expensive to treat. PMID:19066598

  10. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  11. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  12. Current status of gene therapy for cancer.

    PubMed

    Walther, Wolfgang; Schlag, Peter M

    2013-11-01

    In recent years, remarkable progress has been made in the development of cancer gene therapy into an applicable treatment modality for immunogene, suicide, gene correction and oncolytic therapies. New exciting developments for gene suppression or miRNA therapies are under way. The efforts are focused on more efficient and specific attack at known and novel targets, improvement of vector delivery and therapeutic efficacy. In this review, promising and new gene therapy approaches and clinical studies are briefly discussed to highlight important future directions of preclinical and clinical efforts. Apart from progress for vector development and even more important, improvements for suicide, T-cell-based, oncolytic virus therapies were achieved. In addition, new emerging therapies are successfully developed, which are particularly promising for siRNA-based technologies applied to gene suppression therapy. Novel approaches, such as transcription factor ODN-based decoy, complement the spectrum of current cancer gene therapy. In summary, cancer gene therapy has made remarkable progress in the improvement/refinement of existing strategies and delivery systems. The field is moving toward a therapeutic option, which will also be applicable for the treatment of disseminated metastases. Furthermore, numerous new approaches are about to be translated in clinical trials.

  13. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  14. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  15. Application of HSVtk suicide gene to X-SCID gene therapy: ganciclovir treatment offsets gene corrected X-SCID B cells.

    PubMed

    Uchiyama, Toru; Kumaki, Satoru; Ishikawa, Yoshinori; Onodera, Masafumi; Sato, Miki; Du, Wei; Sasahara, Yoji; Tanaka, Nobuyuki; Sugamura, Kazuo; Tsuchiya, Shigeru

    2006-03-10

    Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human gamma c chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the gamma c chain, the cells were treated with ganciclovir (GCV). The gamma c chain positive cells were eliminated under low concentration without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the gamma c chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial.

  16. Application of HSVtk suicide gene to X-SCID gene therapy: Ganciclovir treatment offsets gene corrected X-SCID B cells

    SciTech Connect

    Uchiyama, Toru; Kumaki, Satoru . E-mail: kumakis@idac.tohoku.ac.jp; Ishikawa, Yoshinori; Onodera, Masafumi; Sato, Miki; Du, Wei; Sasahara, Yoji; Tanaka, Nobuyuki; Sugamura, Kazuo; Tsuchiya, Shigeru

    2006-03-10

    Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human {gamma}c chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the {gamma}c chain, the cells were treated with ganciclovir (GCV). The {gamma}c chain positive cells were eliminated under low concentration without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the {gamma}c chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial.

  17. Gaining the hard yard: pre-clinical evaluation of lentiviral-mediated gene therapy for the treatment of beta-thalassemia.

    PubMed

    Milsom, Michael D; Williams, David A

    2010-08-01

    Gene therapy is one potential novel therapeutic avenue for the treatment of inherited monogenic disorders. Diseases of the blood are frequent targets for gene therapy because it is relatively easy to harvest haematopoiesis stem cells (HSCs) from the bone marrow, genetically modify the cells ex vivo, and then re-administer the corrected cells back into the patient via intra-venous injection. In this Closeup, Milsom and Williams discuss the work of Roselli et al, who describe the pre-clinical evaluation of the treatment for beta-thalassemia in erythroid cells via the genetic correction of patient HSCs using a lentiviral vector.

  18. Engineering Factor Viii for Hemophilia Gene Therapy

    PubMed Central

    Roberts, Sean A.; Dong, Biao; Firrman, Jenni A.; Moore, Andrea R.; Sang, Nianli; Xiao, Weidong

    2012-01-01

    Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and discussed their pros and cons in human gene therapy of hemophilia A. PMID:23565342

  19. Gene Therapy: A Paradigm Shift in Dentistry

    PubMed Central

    Siddique, Nida; Raza, Hira; Ahmed, Sehrish; Khurshid, Zohaib; Zafar, Muhammad Sohail

    2016-01-01

    Gene therapy holds a promising future for bridging the gap between the disciplines of medicine and clinical dentistry. The dynamic treatment approaches of gene therapy have been advancing by leaps and bounds. They are transforming the conventional approaches into more precise and preventive ones that may limit the need of using drugs and surgery. The oral cavity is one of the most accessible areas for the clinical applications of gene therapy for various oral tissues. The idea of genetic engineering has become more exciting due to its advantages over other treatment modalities. For instance, the body is neither subjected to an invasive surgery nor deep wounds, nor is it susceptible to systemic effects of drugs. The aim of this article is to review the gene therapy applications in the field of dentistry. In addition, therapeutic benefits in terms of treatment of diseases, minimal invasion and maximum outcomes have been discussed. PMID:27834914

  20. Gene Therapy: A Paradigm Shift in Dentistry.

    PubMed

    Siddique, Nida; Raza, Hira; Ahmed, Sehrish; Khurshid, Zohaib; Zafar, Muhammad Sohail

    2016-11-10

    Gene therapy holds a promising future for bridging the gap between the disciplines of medicine and clinical dentistry. The dynamic treatment approaches of gene therapy have been advancing by leaps and bounds. They are transforming the conventional approaches into more precise and preventive ones that may limit the need of using drugs and surgery. The oral cavity is one of the most accessible areas for the clinical applications of gene therapy for various oral tissues. The idea of genetic engineering has become more exciting due to its advantages over other treatment modalities. For instance, the body is neither subjected to an invasive surgery nor deep wounds, nor is it susceptible to systemic effects of drugs. The aim of this article is to review the gene therapy applications in the field of dentistry. In addition, therapeutic benefits in terms of treatment of diseases, minimal invasion and maximum outcomes have been discussed.

  1. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  2. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  3. Gene regulation in cancer gene therapy strategies.

    PubMed

    Scanlon, Ian; Lehouritis, Panos; Niculescu-Duvaz, Ion; Marais, Richard; Springer, Caroline J

    2003-10-01

    Regulation of expression in gene therapy is considered to be a very desirable goal, preventing toxic effects and improving biological efficacy. A variety of systems have been reported in an ever widening range of applications, this paper describes these systems with specific reference to cancer gene therapy.

  4. Cancer gene therapy targeting cellular apoptosis machinery.

    PubMed

    Jia, Lin-Tao; Chen, Si-Yi; Yang, An-Gang

    2012-11-01

    The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.

  5. Gene therapy for psychiatric disorders.

    PubMed

    Gelfand, Yaroslav; Kaplitt, Michael G

    2013-01-01

    Gene therapy has become of increasing interest in clinical neurosurgery with the completion of numerous clinical trials for Parkinson disease, Alzheimer disease, and pediatric genetic disorders. With improved understanding of the dysfunctional circuitry mediating various psychiatric disorders, deep brain stimulation for refractory psychiatric diseases is being increasingly explored in human patients. These factors are likely to facilitate development of gene therapy for psychiatric diseases. Because delivery of gene therapy agents would require the same surgical techniques currently being employed for deep brain stimulation, neurosurgeons are likely to lead the development of this field, as has occurred in other areas of clinical gene therapy for neurologic disorders. We review the current state of gene therapy for psychiatric disorders and focus specifically on particular areas of promising research that may translate into human trials for depression, drug addiction, obsessive-compulsive disorder, and schizophrenia. Issues that are relatively unique to psychiatric gene therapy are also discussed.

  6. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

    PubMed Central

    Motas, Sandra; Haurigot, Virginia; Garcia, Miguel; Marcó, Sara; Ribera, Albert; Roca, Carles; Sánchez, Víctor; Molas, Maria; Bertolin, Joan; Maggioni, Luca; León, Xavier; Ruberte, Jesús; Bosch, Fatima

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment. PMID:27699273

  7. Gene therapy for heart failure.

    PubMed

    Greenberg, Barry

    2017-04-01

    Novel strategies are needed to treat the growing population of heart failure patients. While new drug and device based therapies have improved outcomes over the past several decades, heart failure patients continue to experience amongst the lowest quality of life of any chronic disease, high likelihood of being hospitalized and marked reduction in survival. Better understanding of many of the basic mechanisms involved in the development of heart failure has helped identify abnormalities that could potentially be targeted by gene transfer. Despite success in experimental animal models, translating gene transfer strategies from the laboratory to the clinic remains at an early stage. This review provides an introduction to gene transfer as a therapy for treating heart failure, describes some of the many factors that need to be addressed in order for it to be successful and discusses some of the recent studies that have been carried out in heart failure patients. Insights from these studies highlight both the enormous promise of gene transfer and the obstacles that still need to be overcome for this treatment approach to be successful. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Advanced Gene Therapy for Treatment of Cardiomyopathy and Respiratory Insufficiency in Duchenne Muscular Dystrophy

    DTIC Science & Technology

    2014-09-01

    lasting and elevated gene expression in cardiac and skeletal muscles in murine, canine, and rhesus monkey models, suggesting the feasibility of using...patients. Juvenile GRMD dogs will be administered a single dose of vector to the intrapleural space and serially assessed for respiratory function

  9. Gene therapy for deafness.

    PubMed

    Kohrman, D C; Raphael, Y

    2013-12-01

    Hearing loss is the most common sensory deficit in humans and can result from genetic, environmental or combined etiologies that prevent normal function of the cochlea, the peripheral sensory organ. Recent advances in understanding the genetic pathways that are critical for the development and maintenance of cochlear function, as well as the molecular mechanisms that underlie cell trauma and death, have provided exciting opportunities for modulating these pathways to correct genetic mutations, to enhance the endogenous protective pathways for hearing preservation and to regenerate lost sensory cells with the possibility of ameliorating hearing loss. A number of recent animal studies have used gene-based therapies in innovative ways toward realizing these goals. With further refinement, some of the protective and regenerative approaches reviewed here may become clinically applicable.

  10. Immunotherapy and gene therapy.

    PubMed

    Simpson, Elizabeth

    2004-02-01

    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  11. Gene therapy for childhood immunological diseases.

    PubMed

    Kohn, D B

    2008-01-01

    Gene therapy using autologous hematopoietic stem cells (HSC) that are corrected with the normal gene may have a beneficial effect on blood cell production or function, without the immunologic complications of allogeneic HSC transplantation. Childhood immunological diseases are highly favorable candidates for responses to gene therapy using HSC. Hemoglobinopathies, lysosomal and metabolic disorders and defects of hematopoietic stem and progenitor cells should also be ameliorated by gene therapy using autologous HSC. At present, gene therapy has been beneficial for patients with XSCID, ADA-deficient SCID and chronic granulomatous disease. The principle that partial marrow conditioning increases engraftment of gene-corrected HSC has been demonstrated. Clinical trials are being developed in Europe and the United States to treat several other genetic blood cell disorders. This progress is tempered by the serious complication observed in XSCID patients developing T lymphoproliferative disease. New methods for gene transfer (lentiviral and foamy viral vectors, semi-viral systems and gene correction) may retain or further increase the efficacy and decrease the risks from gene therapy using HSC. Ultimately, the relative benefits and risks of autologous gene therapy will be weighed against other available options (for example, allogeneic HSCT) to determine the treatment of choice.

  12. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy ... that don't respond to conventional therapies. About Genes Our genes help make us unique. Inherited from ...

  13. Psoriasis treatment: traditional therapy

    PubMed Central

    Lebwohl, M; Ting, P; Koo, J

    2005-01-01

    Even before the recent development of biological agents, a long list of effective treatments has been available for patients with psoriasis. Topical therapies such as corticosteroids, vitamin D analogues, and retinoids are used for localised disease. Phototherapy including broadband ultraviolet B (UVB), narrowband UVB, PUVA, and climatotherapy are effective for more extensive disease. Systemic therapies such as methotrexate, retinoids, and ciclosporin are effective for patients with refractory or extensive cutaneous disease. PMID:15708945

  14. Gene therapy: a primer for neurosurgeons.

    PubMed

    Chiocca, E Antonio

    2003-08-01

    Gene therapy involves the transfer of genes into cells with therapeutic intent. Although several methods can accomplish this, vectors based on viruses still provide the most efficient approach. For neurosurgical purposes, preclinical and clinical applications in the areas of glioma therapy, spinal neurosurgery, and neuroprotection for treatment of Parkinson's disease and cerebral ischemia are reviewed. In general, therapies applied in the neurosurgical realm have proven relatively safe, despite occasional, well-publicized cases of morbidity and death in non-neurosurgical trials. However, continued clinical and preclinical research in this area is critical, to fully elucidate potential toxicities and to generate truly effective treatments that can be applied in neurological diseases.

  15. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs.

  16. Gene therapy for heart failure.

    PubMed

    Greenberg, Barry

    2015-09-01

    Heart failure is a major public health problem throughout the world and it is likely that its prevalence will continue to grow over the next several decades. Despite advances in the treatment of heart failure, morbidity and mortality remain unacceptably high. Gene transfer therapy provides a novel strategy for targeting abnormalities in cardiac cells that adversely affect cardiac function. New vectors for gene delivery, mainly adeno-associated viruses (AAVs) that are preferentially taken up by cardiomyocytes, can result in sustained transgene expression. The cardiac isoform of sarco(endo)plasmic reticulum Ca(2+)ATPase (SERCA2a) plays a major role in regulating calcium levels in cardiomyocytes. Abnormal calcium handling by the failing heart caused by a reduction in SERCA2a activity adversely affects both systolic and diastolic function. The Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) study was a Phase 2a double-blind, randomized, placebo-controlled, dose-finding study that was performed in patients with advanced heart failure due to systolic dysfunction. Eligible patients received AAV/SERCA2a or placebo by direct antegrade infusion into the coronary circulation. At the end of 12 months, patients receiving high-dose therapy (i.e. 1×10(13) DNase Resistant Particles) had evidence of favorable changes in several clinically relevant domains compared to patients treated with placebo. There were no safety concerns at any dose of AAV/SERCA2a. Patients treated with AAV/SERCA2a exhibited a striking reduction in cardiovascular events that persisted through 36 months of follow-up compared to patients who received placebo. Transgene expression was detected in the myocardium of patients receiving AAV/SERCA2a gene therapy as long as 31 months after delivery. A second Phase 2b study, CUPID 2, designed to confirm this favorable effect on heart failure events, is currently underway with the results expected to be presented later in

  17. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma.

    PubMed

    Finocchiaro, Liliana M E; Fondello, Chiara; Gil-Cardeza, María L; Rossi, Úrsula A; Villaverde, Marcela S; Riveros, María D; Glikin, Gerardo C

    2015-06-01

    We present here a nonviral immunogene therapy trial for canine malignant melanoma, an aggressive disease displaying significant clinical and histopathological overlapping with human melanoma. As a surgery adjuvant approach, it comprised the co-injection of lipoplexes bearing herpes simplex virus thymidine kinase and canine interferon-β genes at the time of surgery, combined with the periodic administration of a subcutaneous genetic vaccine composed of tumor extracts and lipoplexes carrying the genes of human interleukin-2 and human granulocyte-macrophage colony-stimulating factor. Following complete surgery (CS), the combined treatment (CT) significantly raised the portion of local disease-free canine patients from 11% to 83% and distant metastases-free (M0) from 44% to 89%, as compared with surgery-only-treated controls (ST). Even after partial surgery (PS), CT better controlled the systemic disease (M0: 82%) than ST (M0: 48%). Moreover, compared with ST, CT caused a significant 7-fold (CS) and 4-fold (PS) rise of overall survival, and >17-fold (CS) and >13-fold (PS) rise of metastasis-free survival. The dramatic increase of PS metastasis-free survival (>1321 days) and CS recurrence- and metastasis-free survival (both >2251 days) demonstrated that CT was shifting a rapidly lethal disease into a chronic one. In conclusion, this surgery adjuvant CT was able of significantly delaying or preventing postsurgical recurrence and distant metastasis, increasing disease-free and overall survival, and maintaining the quality of life. The high number of canine patients involved in CT (301) and the extensive follow-up (>6 years) with minimal or absent toxicity warrant the long-term safety and efficacy of this treatment. This successful clinical outcome justifies attempting a similar scheme for human melanoma.

  18. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma

    PubMed Central

    Fondello, Chiara; Gil-Cardeza, María L.; Rossi, Úrsula A.; Villaverde, Marcela S.; Riveros, María D.; Glikin, Gerardo C.

    2015-01-01

    Abstract We present here a nonviral immunogene therapy trial for canine malignant melanoma, an aggressive disease displaying significant clinical and histopathological overlapping with human melanoma. As a surgery adjuvant approach, it comprised the co-injection of lipoplexes bearing herpes simplex virus thymidine kinase and canine interferon-β genes at the time of surgery, combined with the periodic administration of a subcutaneous genetic vaccine composed of tumor extracts and lipoplexes carrying the genes of human interleukin-2 and human granulocyte-macrophage colony-stimulating factor. Following complete surgery (CS), the combined treatment (CT) significantly raised the portion of local disease-free canine patients from 11% to 83% and distant metastases-free (M0) from 44% to 89%, as compared with surgery-only-treated controls (ST). Even after partial surgery (PS), CT better controlled the systemic disease (M0: 82%) than ST (M0: 48%). Moreover, compared with ST, CT caused a significant 7-fold (CS) and 4-fold (PS) rise of overall survival, and >17-fold (CS) and >13-fold (PS) rise of metastasis-free survival. The dramatic increase of PS metastasis-free survival (>1321 days) and CS recurrence- and metastasis-free survival (both >2251 days) demonstrated that CT was shifting a rapidly lethal disease into a chronic one. In conclusion, this surgery adjuvant CT was able of significantly delaying or preventing postsurgical recurrence and distant metastasis, increasing disease-free and overall survival, and maintaining the quality of life. The high number of canine patients involved in CT (301) and the extensive follow-up (>6 years) with minimal or absent toxicity warrant the long-term safety and efficacy of this treatment. This successful clinical outcome justifies attempting a similar scheme for human melanoma. PMID:25762364

  19. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    PubMed

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  20. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    PubMed Central

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  1. Vectors--shuttle vehicles for gene therapy.

    PubMed

    Wilson, J M

    1997-01-01

    Gene therapy is being considered for the treatment of various inherited and acquired disorders. The basic premise of this new therapeutic modality is manipulation of gene expression towards a therapeutic end. The early development of the field focused on a technique called ex vivo gene therapy in which autologous cells are genetically manipulated in culture prior to transplantation. Recent advances have stimulated the development of in vivo gene therapy approaches based on direct delivery of the therapeutic gene to cells in vivo. The rate-limiting technologies of gene therapy are the gene delivery vehicles, called vectors, used to accomplish gene transfer. The most efficient vectors are based on recombinant versions of viruses with retroviral vectors serving as prototypes. This viral vector system has been exploited in ex vivo approaches of gene therapy in which cultured, dividing cells are transduced with the recombinant virus resulting in integration of the proviral DNA into the chromosomal DNA of the recipient cell. The use of retroviral vectors in gene therapy has been restricted to ex vivo approaches because of difficulties in purifying the virion and the requirement that the target cell is dividing at the time of transduction. More recently, vectors based on adenoviruses have been developed for in vivo gene therapy. These viruses can be grown in large quantities and highly purified. Importantly, they efficiently transduce the recombinant genome into non-dividing cells. Applications include in vivo gene delivery to a variety of targets such as muscle, lung, liver and the central nervous system. Clinical trials of in vivo delivery with adenoviruses have been undertaken for the treatment of cystic fibrosis.

  2. Noncoding RNA for Cancer Gene Therapy.

    PubMed

    Zhong, Xiaomin; Zhang, Dongmei; Xiong, Minmin; Zhang, Lin

    Gene therapy is a prospective strategy to modulate gene expression level in specific cells to treat human inherited diseases, cancers, and acquired disorders. A subset of noncoding RNAs, microRNAs (miRNAs) and small interference RNAs (siRNAs), compose an important class of widely used effectors for gene therapy, especially in cancer treatment. Functioning through the RNA interference (RNAi) mechanism, miRNA and siRNA show potent ability in silencing oncogenic factors for cancer gene therapy. For a better understanding of this field, we reviewed the mechanism and biological function, the principles of design and synthesis, and the delivery strategies of noncoding RNAs with clinical potentials in cancer gene therapy.

  3. Recent advances in fetal gene therapy.

    PubMed

    Buckley, Suzanne M K; Rahim, Ahad A; Chan, Jerry K Y; David, Anna L; Peebles, Donald M; Coutelle, Charles; Waddingtont, Simon N

    2011-04-01

    Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.

  4. Candidate diseases for prenatal gene therapy.

    PubMed

    David, Anna L; Waddington, Simon N

    2012-01-01

    Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before irreparable tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application may target genes to a large population of stem cells, and the smaller fetal size allows a higher vector to target cell ratio to be achieved. Early gestation delivery may allow the development of immune tolerance to the transgenic protein, which would facilitate postnatal repeat vector administration if needed. Moreover, early delivery would avoid anti-vector immune responses which are often acquired in postnatal life. The NIH Recombinant DNA Advisory Committee considered that a candidate disease for prenatal gene therapy should pose serious morbidity and mortality risks to the fetus or neonate, and not have any effective postnatal treatment. Prenatal gene therapy would therefore be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy. If deemed safer and more efficacious, prenatal gene therapy may be applicable for nonlethal conditions if adult gene transfer is unlikely to be of benefit. Many candidate diseases will be inherited congenital disorders such as thalassaemia or lysosomal storage disorders. However, obstetric conditions such as fetal growth restriction may also be treated using a targeted gene therapy approach. In each disease, the condition must be diagnosed prenatally, either via antenatal screening and prenatal diagnosis, for example, in the case of hemophilias, or by ultrasound assessment of the fetus, for example, congenital diaphragmatic hernia. In this chapter, we describe some examples of the candidate diseases and discuss how a prenatal gene therapy approach might work.

  5. Gene therapy for allergic diseases.

    PubMed

    Chuang, Ya-Hui; Yang, Yao-Hsu; Wu, Si-Jie; Chiang, Bor-Luen

    2009-06-01

    Allergic diseases, such as allergic asthma, allergic rhinitis, atopic dermatitis, conjunctivitis, urticaria, food allergy, and/or anaphylaxis, are associated with the skewing of immune responses towards a T helper 2 (TH2) phenotype, resulting in eosinophilic inflammation. TH2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13, promote IgE production, mast cell differentiation, and eosinophil growth, migration and activation which then lead to the pathologic abnormalities in allergic diseases. Moreover, the impaired function of regulatory T cells has been noted in allergic diseases. To date, treatments for allergic diseases, such as antihistamines, corticosteroids, bronchodilators and some allergen-specific immunotherapy, are effective but costly and require long-term and recurrent drug administration. Gene therapy has been shown to be an easy, effective, and convenient treatment by delivering the allergen or the therapeutic protein in the form of plasmid DNA in vivo to modulate allergic immune responses. We summarize here the recent advances of gene therapy in allergic diseases and discuss the challenges in clinical application.

  6. Episome-Based Gene Therapy Strategy for Treatment of Human Breast Cancer

    DTIC Science & Technology

    1998-01-01

    Levitssky HI, Jaffee LM, Karasuyama H , Baker M and Pardoll DM (1991). Treatment of established renal cancer by tumor cells engineered to secrete...Osteolytic bone metastasis in breast cancer. Breast Can Res Trest 32: 73-84. 24 Appendix I M Figure 1A. Apoptosis of non-adherent antisense IGF-IR...al., 1996). The labeled DNA was electrophoresed on a 1.5% agarose gel and visualized by autoradiography. Lane M : Molecular marker XEcoKUHindlll

  7. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    DTIC Science & Technology

    2009-04-01

    11. Khokhlova, V.A., et al., Effects of nonlinear propagation, cavitation , and boiling in lesion formation by high intensity focused ultrasound in...intensity focused ultrasound (HIFU) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...Concepts, Seattle, WA) operating at its fundamental frequency (1.1 MHz) or its third harmonics (3.3 MHz). The ultrasound imaging system was a 5/7

  8. Apolipoprotein A-V gene therapy for disease prevention / treatment: a critical analysis.

    PubMed

    Forte, Trudy M; Sharma, Vineeta; Ryan, Robert O

    2016-03-01

    Apolipoprotein (apo) A-V is a novel member of the class of exchangeable apo's involved in triacylglycerol (TG) homeostasis. Whereas a portion of hepatic-derived apoA-V is secreted into plasma and functions to facilitate lipoprotein lipase-mediated TG hydrolysis, another portion is recovered intracellularly, in association with cytosolic lipid droplets. Loss of apoA-V function is positively correlated with elevated plasma TG and increased risk of cardiovascular disease. Single nucleotide polymorphisms (SNP) in the APOA5 locus can affect transcription efficiency or introduce deleterious amino acid substitutions. Likewise, rare mutations in APOA5 that compromise functionality are associated with increased plasma TG and premature myocardial infarction. Genetically engineered mouse models and human population studies suggest that, in certain instances, supplementation with wild type (WT) apoA-V may have therapeutic benefit. It is hypothesized that individuals that manifest elevated plasma TG owing to deleterious APOA5 SNPs or rare mutations would respond to WT apoA-V supplementation with improved plasma TG clearance. On the other hand, subjects with hypertriglyceridemia of independent origin (unrelated to apoA-V function) may not respond to apoA-V augmentation in this manner. Improvement in the ability to identify individuals predicted to benefit, advances in gene transfer technology and the strong connection between HTG and heart disease, point to apoA-V supplementation as a viable disease prevention / therapeutic strategy. Candidates would include individuals that manifest chronic TG elevation, have low plasma apoA-V due to an APOA5 mutation/polymorphism and not have deleterious mutations/polymorphisms in other genes known to influence plasma TG levels.

  9. Cancer suicide gene therapy: a patent review.

    PubMed

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  10. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A.

    PubMed

    Siddiq, Ishita; Park, Eugene; Liu, Elaine; Spratt, S Kaye; Surosky, Richard; Lee, Gary; Ando, Dale; Giedlin, Marty; Hare, Gregory M T; Fehlings, Michael G; Baker, Andrew J

    2012-11-20

    Vascular endothelial growth factor (VEGF) plays a role in angiogenesis and has been shown to be neuroprotective following central nervous system trauma. In the present study we evaluated the pro-angiogenic and neuroprotective effects of an engineered zinc-finger protein transcription factor transactivator targeting the vascular endothelial growth factor A (VEGF-ZFP). We used two virus delivery systems, adeno-virus and adeno-associated virus, to examine the effects of early and delayed VEGF-A upregulation after brain trauma, respectively. Male Sprague-Dawley rats were subject to a unilateral fluid percussion injury (FPI) of moderate severity (2.2-2.5 atm) followed by intracerebral microinjection of either adenovirus vector (Adv) or an adeno-associated vector (AAV) carrying the VEGF-ZFP construct. Adv-VEGF-ZFP-treated animals had significantly fewer TUNEL positive cells in the injured penumbra of the cortex (p<0.001) and hippocampus (p=0.001) relative to untreated rats at 72 h post-injury. Adv-VEGF-ZFP treatment significantly improved fEPSP values (p=0.007) in the CA1 region relative to injury alone. Treatment with AAV2-VEGF-ZFP resulted in improved post-injury microvascular diameter and improved functional recovery on the balance beam and rotarod task at 30 days post-injury. Collectively, the results provide supportive evidence for the concept of acute and delayed treatment following TBI using VEGF-ZFP to induce angiogenesis, reduce cell death, and enhance functional recovery.

  11. Gene Therapy Techniques for Peripheral Arterial Disease

    SciTech Connect

    Manninen, Hannu I.; Maekinen, Kimmo

    2002-03-15

    Somatic gene therapy is the introduction of new genetic material into selective somatic cells with resulting therapeutic benefits. Vascular wall and, subsequently, cardiovascular diseases have become an interesting target for gene therapy studies.Arteries are an attractive target for gene therapy since vascular interventions, both open surgical and endovascular, are well suited for minimally invasive, easily monitored gene delivery. Promising therapeutic effects have been obtained in animal models in preventing post-angioplasty restenosis and vein graft thickening, as well as increasing blood flow and collateral development in ischemic limbs.First clinical trials suggest a beneficial effect of vascular endothelial growth factor in achieving therapeutic angiogenesis in chronic limb ischemia and the efficacy of decoy oligonucleotides to prevent infrainguinal vein graft stenosis. However, further studies are mandatory to clarify the safety issues, to develop better gene delivery vectors and delivery catheters, to improve transgene expression, as well as to find the most effective and safe treatment genes.

  12. Gene therapy in metachromatic leukodystrophy.

    PubMed

    Sevin, C; Cartier-Lacave, N; Aubourg, P

    2009-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A. Deficiency of this enzyme results in intralysosomal storage of sphingolipid cerebroside 3-sulfates (sulfatides), which are abundant in myelin and neurons. A pathological hallmark of MLD is demyelination and neurodegeneration, causing various and ultimately lethal neurological symptoms. This review discusses the potential therapeutic application of hematopoietic stem cell gene therapy and intracerebral gene transfer (brain gene therapy) in patients with MLD.

  13. Methods to monitor gene therapy with molecular imaging.

    PubMed

    Waerzeggers, Yannic; Monfared, Parisa; Viel, Thomas; Winkeler, Alexandra; Voges, Jürgen; Jacobs, Andreas H

    2009-06-01

    Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.

  14. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications.

    PubMed

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-26

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  15. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    NASA Astrophysics Data System (ADS)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  16. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    PubMed Central

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-01-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26113394

  17. Human Studies of Angiogenic Gene Therapy

    PubMed Central

    Gupta, Rajesh; Tongers, Jörn; Losordo, Douglas W.

    2009-01-01

    Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early pre-clinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we will examine the clinical development of angiogenic therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials. PMID:19815827

  18. Gene therapy: progress and predictions.

    PubMed

    Collins, Mary; Thrasher, Adrian

    2015-12-22

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. © 2015 The Authors.

  19. Local, non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment.

    PubMed

    Janát-Amsbury, Margit Maria; Yockman, James W; Lee, Minhyung; Kern, Steven; Furgeson, Darin Y; Bikram, Malavosklish; Kim, Sung Wan

    2005-01-03

    Development of improved gene transfer methods is needed for gene therapy to achieve its clinical potential. The use of biocompatible polymeric gene carriers has shown effectiveness in overcoming the current problems associated with viral vectors in safety, immunogenicity and mutagenesis. Previous work has demonstrated that repeated, local, non-viral interleukin-12 (IL-12) gene delivery successfully slows down tumor progression, while improving immunogenicity. Combining IL-12 gene delivery with systemic paclitaxel (PCT) chemotherapy as a treatment for various subcutaneous mouse mammary carcinomas, we used PCT with either a biodegradable polymeric solubilizer, HySolv or Cremophor EL for systemic treatment and injected water soluble lipopolymer (WSLP)/plasmid-encoding IL-12 gene (p2CMVmIL-12) complexes local once every week. The amount of lung metastases being essential for survival as well as subcutaneous tumor volume were compared against untreated controls. We showed inhibition of tumor growth and decreased lung metastases in the combined WSLP/p2CMVmIL-12/HySolv group compared to the controls and the PCT only treated groups. Compared to Cremophor, HySolv performed better alone or in combination with IL-12. Using polymeric vectors as gene carrier systems in combination with improved systemic therapies provide evidence for the efficacy and feasibility of polymer-based drug delivery systems. Especially local cytokine gene delivery showed augmentation of systemic chemotherapy while reducing the hosts risk for further systemic toxicity.

  20. Cardiovascular gene therapy for myocardial infarction

    PubMed Central

    Scimia, Maria C; Gumpert, Anna M; Koch, Walter J

    2014-01-01

    Introduction Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. Areas covered In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). Expert opinion We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE). PMID:24328708

  1. What Is Next for Retinal Gene Therapy?

    PubMed

    Vandenberghe, Luk H

    2015-04-15

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective therapy in neuroendocrine tumor cells.

    PubMed

    Schipper, Meike L; Weber, Alexander; Béhé, Martin; Göke, Rüdiger; Joba, Werner; Schmidt, Harald; Bert, Till; Simon, Babette; Arnold, Rudolf; Heufelder, Armin E; Behr, Thomas M

    2003-03-15

    This study evaluates the possibility of treating Bon1 and QGP pancreatic neuroendocrine tumor cells with radioactive iodide ((131)I) after stable transfection with the thyroid sodium iodide symporter (NIS). NIS expression was driven either by the strong viral cytomegalovirus promoter or by the tissue-specific chromogranin A promoter. Using either approach, NIS expression was confirmed by reverse transcription-PCR and Western blotting. Uptake of radioactive iodide was increased approximately 20-fold by chromogranin A promoter-driven NIS expression and approximately 50-fold by cytomegalovirus promoter-driven NIS expression. Maximal uptake was reached within 15 min in QGP cells and 30 min in Bon1 cells. Effective half-life was 5 min in QGP and 30 min in Bon1 cells. No evidence of organification was detected by high-performance liquid chromatography and gel filtration chromatography. (131)I was a highly effective treatment in NIS-expressing QGP and Bon1 cells, reducing clone formation by 99.83 and 98.75%, respectively, in the in vitro clonogenic assay. In contrast, clone formation was not reduced in QGP and Bon1 cells without NIS expression after incubation with the same activity concentration of (131)I as compared with mock treated cells. Absorbed doses to QGP and Bon1 cells are up to 150 and 30 Gy, respectively. In addition, a direct cytotoxic effect of radioiodide was demonstrated in NIS-expressing Bon1 cells after (131)I incubation. In conclusion, radioiodide treatment after NIS gene transfer appears to be a promising novel approach in the therapy of neuroendocrine tumors if its highly encouraging in vitro effectiveness can be transferred to the in vivo situation.

  3. Gene therapy: proceed with caution.

    PubMed

    Grobstein, C; Flower, M

    1984-04-01

    On 6 February 1984 the Recombinant DNA Advisory Committee of the National Institutes of Health approved a recommendation that the committee provide prior review of research protocols involving human gene therapy. Grobstein and Flower trace the development of public policy in response to concerns about the dangers of gene therapy, especially as it applies to germ line alteration. They offer guidelines and propose principles for an oversight body to confront the immediate and long term technical, social, and ethical implications of human genetic modification. An accompanying article presents a plea for the development of gene therapy by the mother of three children who have sickle cell anemia.

  4. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2000-10-01

    The results of this study show that particle-mediated IL-12 gene therapy was effective against mammary tumors in mouse models. IL-12 gene therapy of...combination with IL-12 gene therapy , IL-18 and ICE genes were found to be more effective in treatment of established TS/A mammary tumor than IL-12 alone. These...results suggest that particle-mediated IL-12 gene therapy , alone or in combination with other immunological approaches, may be effective for

  5. The promise of gene therapy.

    PubMed

    Pergament, Eugene

    2016-04-01

    The promise of gene therapy performed in the preimplantation and prenatal periods of pregnancy is rapidly becoming a reality. New technologies capable of making designed changes in single nucleotides make germline gene therapy possible. The article reviews the ethical and technical challenges of germline gene therapy. Clustered regularly interspaced short palindromic repeats and related technologies are capable of deleting and inserting specific DNA sequences in mutated genes so as to correct the targeted DNA. The ability to target specific gene mutations will offer unique opportunities to at risk families, particularly those whose genotypes prevent any chance of a normal pregnancy outcome. Other applications of gene-modifying technologies on gametes, zygotes, and embryos are likely in the near future. There will be renewed debates on the potentially controversial applications of these technologies because of their capability to genetically alter the human germline and thereby future generations.

  6. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  7. Clinical applications of retinal gene therapy.

    PubMed

    Lipinski, Daniel M; Thake, Miriam; MacLaren, Robert E

    2013-01-01

    Many currently incurable forms of blindness affecting the retina have a genetic etiology and several others, such as those resulting from retinal vascular disturbances, respond to repeated, potentially indefinite administration of molecular based treatments. The recent clinical advances in retinal gene therapy have shown that viral vectors can deliver genes safely to the retina and the promising initial results from a number of clinical trials suggest that certain diseases may potentially be treatable. Gene therapy provides a means of expressing proteins within directly transduced cells with far greater efficacy than might be achieved by traditional systemic pharmacological approaches. Recent developments have demonstrated how vector gene expression may be regulated and further improvements to vector design have limited side effects and improved safety profiles. These recent steps have been most significant in bringing gene therapy into the mainstream of ophthalmology. Nevertheless translating retinal gene therapy from animal research into clinical trials is still a lengthy process, including complexities in human retinal diseases that have been difficult to model in the laboratory. The focus of this review is to summarize the genetic background of the most common retinal diseases, highlight current concepts of gene delivery technology, and relate those technologies to pre-clinical and clinical gene therapy studies.

  8. Novel Cell and Gene Therapies for HIV

    PubMed Central

    Hoxie, James A.; June, Carl H.

    2012-01-01

    Highly active antiretroviral therapy dramatically improves survival in HIV-infected patients. However, persistence of HIV in reservoirs has necessitated lifelong treatment that can be complicated by cumulative toxicities, incomplete immune restoration, and the emergence of drug-resistant escape mutants. Cell and gene therapies offer the promise of preventing progressive HIV infection by interfering with HIV replication in the absence of chronic antiviral therapy. Individuals homozygous for a deletion in the CCR5 gene (CCR5Δ32) are largely resistant to infection from R5-topic HIV-1 strains, which are most commonly transmitted. A recent report that an HIV-infected patient with relapsed acute myelogenous leukemia was effectively cured from HIV infection after transplantation of hematopoietic stem/progenitor cells (HSC) from a CCR5Δ32 homozygous donor has generated renewed interest in developing treatment strategies that target viral reservoirs and generate HIV resistance in a patient’s own cells. Although the development of cell-based and gene transfer therapies has been slow, progress in a number of areas is evident. Advances in the fields of gene-targeting strategies, T-cell-based approaches, and HSCs have been encouraging, and a series of ongoing and planned trials to establish proof of concept for strategies that could lead to successful cell and gene therapies for HIV are under way. The eventual goal of these studies is to eliminate latent viral reservoirs and the need for lifelong antiretroviral therapy. PMID:23028130

  9. [Gene therapy--hopes and fears].

    PubMed

    Pietrzyk, J J

    1998-01-01

    Gene therapy assumes the correction of a genetic defect by the delivery of a correct DNA sequence to the target cells. Depending on the target cells two types gene therapy have been defined: somatic and germinal. By July 1998, 351 protocols of somatic therapy were approved by the Recombinant DNA Advisory Committee. The majority of protocols focus on cancer therapy and monogenic diseases. By now, still there is more unfulfilled expectation than clinically sound achievements, since no effective prevention or successful treatment for genetic diseases or cancer have been developed. Germline genetic modification is considered as the treatment of choice for such a diseases like retinoblastoma. Tay-Sachs, Lesch-Nyhan and metachromatic leuko-dystrophy. This approach which is still illegal or prohibited by rules in many European countries, is gathering more and more advocates. Once we learn how to control gene expression the perspectives for clinical application of gene therapy might be enormous. The safety of genetic modification of gametes or embryonal stem cells remains to be properly addressed and successfully solved. The ethical issues of germinal gene therapy are still the subject of controversial opinions among the scientists, lawyers and philosophers.

  10. Gene Therapy for Childhood Neurofibromatosis

    DTIC Science & Technology

    2014-05-01

    AD_________________ Award Number: W81XWH-13-1-0101 TITLE: Gene Therapy for Childhood ...May 2014 4. TITLE AND SUBTITLE Gene Therapy for Childhood Neurofibromatosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0101 5c...technology. This approach still represents a plausible and very different way to treat childhood neurofibromatosis, as well as other solid tumors

  11. Nanotechnology Cancer Therapy and Treatment

    Cancer.gov

    Nanotechnology offers the means to target therapies directly and selectively to cancerous cells and neoplasms. With these tools, clinicians can safely and effectively deliver chemotherapy, radiotherapy, and the next generation of immuno- and gene therapi

  12. Employment of Salmonella in Cancer Gene Therapy.

    PubMed

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  13. Potential of adenovirus-mediated REIC/Dkk-3 gene therapy for use in the treatment of pancreatic cancer.

    PubMed

    Uchida, Daisuke; Shiraha, Hidenori; Kato, Hironari; Nagahara, Teruya; Iwamuro, Masaya; Kataoka, Junro; Horiguchi, Shigeru; Watanabe, Masami; Takaki, Akinobu; Nouso, Kazuhiro; Nasu, Yasutomo; Yagi, Takahito; Kumon, Hiromi; Yamamoto, Kazuhide

    2014-05-01

    The reduced expression in immortalized cells REIC/the dickkopf 3 (Dkk-3) gene, tumor suppressor gene, is downregulated in various malignant tumors. In a prostate cancer study, an adenovirus vector carrying the REIC/Dkk-3 gene (Ad-REIC) induces apoptosis. In the current study, we examined the effects of REIC/Dkk-3 gene therapy in pancreatic cancer. REIC/Dkk-3 expression was assessed by immunoblotting and immunohistochemistry in the pancreatic cancer cell lines (ASPC1, MIAPaCa2, Panc1, BxPC3, SUIT-2, KLM1, and T3M4) and pancreatic cancer tissues. The Ad-REIC agent was used to investigate the apoptotic effect in vitro and antitumor effects in vivo. We also assessed the therapeutic effects of Ad-REIC therapy with gemcitabine. The REIC/Dkk-3 expression was lost in the pancreatic cancer cell lines and decreased in pancreatic cancer tissues. Ad-REIC induced apoptosis and inhibited cell growth in the ASPC1 and MIAPaCa2 lines in vitro, and Ad-REIC inhibited tumor growth in the mouse xenograft model using ASPC1 cells. The antitumor effect was further enhanced in combination with gemcitabine. This synergistic effect may be caused by the suppression of autophagy via the enhancement of mammalian target of rapamycin signaling. Ad-REIC induces apoptosis and inhibits tumor growth in pancreatic cancer cell lines. REIC/Dkk-3 gene therapy is an attractive therapeutic tool for pancreatic cancer. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  14. Progress in gene therapy for neurological disorders.

    PubMed

    Simonato, Michele; Bennett, Jean; Boulis, Nicholas M; Castro, Maria G; Fink, David J; Goins, William F; Gray, Steven J; Lowenstein, Pedro R; Vandenberghe, Luk H; Wilson, Thomas J; Wolfe, John H; Glorioso, Joseph C

    2013-05-01

    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy.

  15. Progress in gene therapy for neurological disorders

    PubMed Central

    Simonato, Michele; Bennett, Jean; Boulis, Nicholas M.; Castro, Maria G.; Fink, David J.; Goins, William F.; Gray, Steven J.; Lowenstein, Pedro R.; Vandenberghe, Luk H.; Wilson, Thomas J.; Wolfe, John H.; Glorioso, Joseph C.

    2013-01-01

    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy. PMID:23609618

  16. Gene therapy for human genetic disease?

    PubMed

    Friedmann, T; Roblin, R

    1972-03-03

    In our view, gene therapy may ameliorate some human genetic diseases in the future. For this reason, we believe that research directed at the development of techniques for gene therapy should continue. For the foreseeable future, however, we oppose any further attempts at gene therapy in human patients because (i) our understanding of such basic processes as gene regulation and genetic recombination in human cells is inadequate; (ii) our understanding of the details of the relation between the molecular defect and the disease state is rudimentary for essentially all genetic diseases; and (iii) we have no information on the short-range and long-term side effects of gene therapy. We therefore propose that a sustained effort be made to formulate a complete set of ethicoscientific criteria to guide the development and clinical application of gene therapy techniques. Such an endeavor could go a long way toward ensuring that gene therapy is used in humans only in those instances where it will prove beneficial, and toward preventing its misuse through premature application. Two recent papers have provided new demonstrations of directed genetic modification of mammalian cells. Munyon et al. (44) restored the ability to synthesize the enzyme thymidine kinase to thymidine kinase-deficient mouse cells by infection with ultraviolet-irradiated herpes simplex virus. In their experiments the DNA from herpes simplex virus, which contains a gene coding for thymidine kinase, may have formed a hereditable association with the mouse cells. Merril et al. (45) reported that treatment of fibroblasts from patients with galactosemia with exogenous DNA caused increased activity of a missing enzyme, alpha-D-galactose-l-phosphate uridyltransferase. They also provided some evidence that the change persisted after subculturing the treated cells. If this latter report can be confirmed, the feasibility of directed genetic modification of human cells would be clearly demonstrated, considerably

  17. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  18. Update on gene therapy for immunodeficiencies.

    PubMed

    Kohn, Donald B

    2010-05-01

    Primary immune deficiencies (PID) are due to blood cell defects and can be treated with transplantation of normal hematopoietic stem cells (HSC) from another person (allogeneic). Gene therapy in which a patient's autologous HSC are genetically corrected represents an alternative treatment for patients with PID, which could avoid the immunologic risks of allogeneic HSCT and confer similar benefits. Recent clinical trials using gene therapy have led to immune restoration in patients with X-linked severe combined immune deficiency (XSCID), adenosine deaminase (ADA)-deficient SCID and chronic granulomatous disease (CGD). However, severe complications arose in several of the patients in whom the integrated retroviral vectors led to leukoproliferative disorders. New approaches using safer integrating vectors or direct correction of the defective gene underlying the PID are being developed and may lead to safer and effective gene therapy for PID.

  19. Cell Targeting in Anti-Cancer Gene Therapy

    PubMed Central

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene therapy research and its application in relation to anti-cancer treatment. PMID:22977356

  20. Approaches to mitochondrial gene therapy.

    PubMed

    D'Souza, Gerard G M; Weissig, Volkmar

    2004-09-01

    Since their discovery during the end of the 80's the number of diseases found to be associated with defects in the mitochondrial genome has grown significantly. Organs affected by mutations in mitochondrial DNA (mtDNA) include in decreasing order of vulnerability the brain, skeletal muscle, heart, kidney and liver. Hence neuromuscular and neurodegenerative diseases represent the two largest groups of mtDNA diseases. Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is however no satisfactory treatment available to the vast majority of patients. This is largely due to the fact that most of these patients have respiratory chain defects, i.e. defects that involve the final common pathway of oxidative metabolism, making it impossible to bypass the defect by administering alternative metabolic carriers of energy. Conventional biochemical treatment having reached an impasse, the exploration of gene therapeutic approaches for patients with mtDNA defects is warranted. For now mitochondrial gene therapy appears to be only theoretical and speculative. Any possibility for gene replacement is dependent on the development of an efficient mitochondrial transfection vector. In this review we describe the current state of the development of mitochondria-specific DNA delivery systems. We summarize our own efforts in exploring the properties of dequalinium and other similar cationic bolaamphiphiles with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells. Further, we outline some unique hurdles that need to be overcome if the development of such delivery systems is to progress.

  1. Separate and combined effects of genetic variants and pre-treatment whole blood gene expression on response to exposure-based cognitive behavioural therapy for anxiety disorders.

    PubMed

    Coleman, Jonathan R I; Lester, Kathryn J; Roberts, Susanna; Keers, Robert; Lee, Sang Hyuck; De Jong, Simone; Gaspar, Héléna; Teismann, Tobias; Wannemüller, André; Schneider, Silvia; Jöhren, Peter; Margraf, Jürgen; Breen, Gerome; Eley, Thalia C

    2017-04-01

    Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for anxiety disorders. Response varies between individuals. Gene expression integrates genetic and environmental influences. We analysed the effect of gene expression and genetic markers separately and together on treatment response. Adult participants (n ≤ 181) diagnosed with panic disorder or a specific phobia underwent eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity rating was assessed across treatment, and between baseline and a 6-month follow-up. Associations with treatment response were assessed using expression data from 3,233 probes, and expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic variants were used to predict treatment response alone and combined in polygenic risk scores. Genotype and expression data were combined in expression quantitative trait loci (eQTL) analyses. Expression levels were not associated with either treatment phenotype in any analysis. A total of 1,492 eQTLs were identified with q < 0.05, but interactions between genetic variants and treatment response did not affect expression levels significantly. Genetic variants did not significantly predict treatment response alone or in polygenic risk scores. We assessed gene expression alone and alongside genetic variants. No associations with treatment outcome were identified. Future studies require larger sample sizes to discover associations.

  2. Gene Therapy in Heart Failure

    PubMed Central

    Vinge, Leif Erik; Raake, Philip W.; Koch, Walter J.

    2008-01-01

    With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality. PMID:18566312

  3. Fetal gene therapy: opportunities and risks.

    PubMed

    Wagner, Anna M; Schoeberlein, Andreina; Surbek, Daniel

    2009-08-10

    Advances in human prenatal medicine and molecular genetics have allowed the diagnosis of many genetic diseases early in gestation. In-utero transplantation of allogeneic hematopoietic stem cells (HSC) has been successfully used as a therapy in different animal models and recently also in human fetuses. Unfortunately, clinical success of this novel treatment is limited by the lack of donor cell engraftment in non-immunocompromised hosts and is thus restricted to diseases where the fetus is affected by severe immunodeficiency. Gene therapy using genetically modified autologous HSC circumvents allogeneic HLA barriers and constitutes one of the most promising new approaches to correct genetic deficits in the fetus. Recent developments of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells include the use of new vector constructs and transduction protocols. These improvements open new perspectives for gene therapy in general and for prenatal gene transfer in particular. The fetus may be especially susceptible for successful gene therapy due to the immunologic naiveté of the immature hematopoietic system during gestation, precluding an immune reaction towards the transgene. Ethical issues, in particular those regarding treatment safety, must be taken into account before clinical trials with fetal gene therapy in human pregnancies can be initiated.

  4. Gene and Cell Therapy for Heart Failure

    PubMed Central

    2009-01-01

    Abstract Cardiac gene and cell therapy have both entered clinical trials aimed at ameliorating ventricular dysfunction in patients with chronic congestive heart failure. The transduction of myocardial cells with viral constructs encoding a specific cardiomyocyte Ca2+ pump in the sarcoplasmic reticulum (SR), SRCa2+-ATPase has been shown to correct deficient Ca2+ handling in cardiomyocytes and improvements in contractility in preclinical studies, thus leading to the first clinical trial of gene therapy for heart failure. In cell therapy, it is not clear whether beneficial effects are cell-type specific and how improvements in contractility are brought about. Despite these uncertainties, a number of clinical trials are under way, supported by safety and efficacy data from trials of cell therapy in the setting of myocardial infarction. Safety concerns for gene therapy center on inflammatory and immune responses triggered by viral constructs, and for cell therapy with myoblast cells, the major concern is increased incidence of ventricular arrhythmia after cell transplantation. Principles and mechanisms of action of gene and cell therapy for heart failure are discussed, together with the potential influence of reactive oxygen species on the efficacy of these treatments and the status of myocardial-delivery techniques for viral constructs and cells. Antioxid. Redox Signal. 11, 2025–2042. PMID:19416058

  5. Haemophilia gene therapy: Progress and challenges.

    PubMed

    Lheriteau, Elsa; Davidoff, Andrew M; Nathwani, Amit C

    2015-09-01

    Current treatment for haemophilia entails life-long intravenous infusion of clotting factor concentrates. This is highly effective at controlling and preventing haemorrhage and its associated complications. Clotting factor replacement therapy is, however, demanding, exceedingly expensive and not curative. In contrast, gene therapy for haemophilia offers the potential of a cure as a result of continuous endogenous expression of biologically active factor VIII (FVIII) or factor IX (FIX) proteins following stable transfer of a normal copy of the respective gene. Our group has recently established the first clear proof-of-concept for a gene therapy approach to the treatment of severe haemophilia B. This entails a single intravenous administration of an adeno-associated virus vector encoding an optimised FIX gene, resulting in a long-term (>4 years) dose dependent increase in plasma FIX levels at therapeutic levels without persistent or late toxicity. Gene therapy therefore has the potential to change the treatment paradigm for haemophilia but several hurdles need to be overcome before this can happen. This review provides a summary of the progress made to date and discusses the remaining changes.

  6. Clinical adenoviral gene therapy for prostate cancer.

    PubMed

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  7. Apoptotic genes in cancer therapy.

    PubMed

    Opalka, Bertram; Dickopp, Alexandra; Kirch, Hans-Christoph

    2002-01-01

    Induction of apoptosis in malignant cells is a major goal of cancer therapy in general and of certain cancer gene therapy strategies in particular. Numerous apoptosis-regulating genes have been evaluated for this purpose. Besides the most prominent p53 gene others include p16, p21, p27, E2F genes, FHIT, PTEN and CASPASE genes. Recently, the potential for therapy of an adenoviral gene, E1A, known for a long time for its apoptosis-inducing activity, has been discovered. In experimental settings, these genes have proven their tumor-suppressive and apoptosis-inducing activity. Clinical trials are currently being performed with selected genes. By far the most studies transfer the p53 gene using retro- or adenoviral vectors. Disease stabilization or other benefits were observed in a limited number of patients when p53 was applied alone or in combination with cytotoxic drugs. A second proapoptotic gene that has entered clinical trials is adenovirus E1A. Here, too, disease stabilization as well as/or local regression in one case have been demonstrated in selected patients. In all cases, side effects were tolerable. To further improve E1A as a therapeutic transgene, we have deleted transforming domains from the adenovirus 5 and 12 13S cDNAs. Mutants were derived which had completely lost their transforming activity in combination with the E1B oncogene but retained a pronounced tumor-suppressive activity. Cells transduced with these constructs showed a highly reduced ability to grow in soft agar, and tumor growth in nude mice could be substantially suppressed. Outgrowing tumors had lost E1A expression when analyzed in Western blots. These E1A constructs may represent valuable tools for cancer gene therapy in the future.

  8. Gene therapy in dentistry: present and future.

    PubMed

    Baum, Bruce J

    2014-12-01

    Gene therapy is one of several novel biological treatments under active study for a wide variety of clinical applications, including many relevant to dentistry. This review will provide some background on this therapeutic approach, assess the current state of its applications generally, and in the oral cavity, and suggest the implications for its use in the next 25 years.

  9. Gene therapy for bone regeneration.

    PubMed

    Luo, Jeffrey; Sun, Michael H; Kang, Quan; Peng, Ying; Jiang, Wei; Luu, Hue H; Luo, Qing; Park, Jae Yoon; Li, Yien; Haydon, Rex C; He, Tong-Chuan

    2005-04-01

    Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone has the unique ability to regenerate and continuously remodel itself throughout life. However, clinical situations arise when bone is unable to heal itself, as with segmental bone loss, fracture non-union, and failed spinal fusion. This leads to significant morbidity and mortality. Current attempts at improved bone healing have been met with limited success, fueling the development of improved techniques. Gene therapy in many ways represents an ideal approach for augmenting bone regeneration. Gene therapy allows specific gene products to be delivered to a precise anatomic location. In addition, the level of transgene expression as well as the duration of expression can be regulated with current techniques. For bone regeneration, the gene of interest should be delivered to the fracture site, expressed at appropriate levels, and then deactivated once the fracture has healed. Delivery of biological factors, mostly bone morphogenetic proteins (BMPs), has yielded promising results both in animal and clinical studies. There has also been tremendous work on discovering new growth factors and exploring previously defined ones. Finally, significant advances are being made in the delivery systems of the genes, ranging from viral and non-viral vectors to tissue engineering scaffolds. Despite some public hesitation to gene therapy, its use has great potential to expand our ability to treat a variety of human bone and musculoskeletal disorders. It is conceivable that in the near future gene therapy can be utilized to induce bone formation in virtually any region of the body in a minimally invasive manner. As bone biology and gene therapy research progresses, the goal of successful human gene transfer for augmentation of bone regeneration draws nearer.

  10. Delivery systems for gene therapy.

    PubMed

    Mali, Shrikant

    2013-01-01

    The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  11. Molecular imaging and cancer gene therapy.

    PubMed

    Saadatpour, Z; Bjorklund, G; Chirumbolo, S; Alimohammadi, M; Ehsani, H; Ebrahiminejad, H; Pourghadamyari, H; Baghaei, B; Mirzaei, H R; Sahebkar, A; Mirzaei, H; Keshavarzi, M

    2016-11-18

    Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.

  12. Nonviral gene therapy approaches to hemophilia.

    PubMed

    Gómez-Vargas, Andrew; Hortelano, Gonzalo

    2004-04-01

    The goal of hemophilia gene therapy is to obtain long-term therapeutic levels of factor VIII (FVIII) or factor IX (FIX) without stimulating an immune response against the transgene product or the vector. The success of gene therapy is largely dependent on the development of appropriate gene delivery vectors. Both viral vectors and nonviral vectors have been considered for the development of hemophilia gene therapy. In general, viral vectors are far more efficient than nonviral gene delivery approaches and resulted in long-term therapeutic levels of FVIII or FIX in preclinical animal models. However, there are several reasons why a nonviral treatment would still be desirable, particularly because some viral vectors are associated with inflammatory reactions, that render transgene expression transient, or with an increased risk of insertional oncogenesis when random integrating vectors are used. Nonviral vectors may obviate some of these concerns. Since nonviral vectors are typically assembled in cell-free systems from well-defined components, they have significant manufacturing advantages over viral vectors. The continued development of improved nonviral gene delivery approaches offers new perspectives for gene therapy of chronic diseases including hemophilia.

  13. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life.

  14. [Genetic basis of head and neck cancers and gene therapy].

    PubMed

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  15. Human germline gene therapy reconsidered.

    PubMed

    Resnik, D B; Langer, P J

    2001-07-20

    This paper reevaluates the notion of human germline gene therapy (HGLGT) in light of developments in biomedicine, biotechnology, and ethical and policy analysis. The essay makes the following key points. First, because the distinction among "therapy," "prevention," and "enhancement" is not clear in human genetics, "gene therapy" is an inadequate descriptor of the process and goals of germline genetic alterations. The alternate use of the phrase "human germline genome modification" (HGLGM) could avoid a misleading label. Second, procedures that could be construed as genetic "enhancement" may not be as morally problematic as some have supposed, once one understands that the boundaries between therapy, prevention, and enhancement are not obvious in genetic medicine. Third, HGLGM might be the medically and morally most appropriate way of avoiding the birth of a child with a genetic disease in only a small range of cases. Fourth, there are still many ethical and scientific problems relating to the safety and efficacy of HGLGM.

  16. [Gene therapy and hospital strategy].

    PubMed

    Leclercq, B

    1993-10-01

    Gene therapy raises strong interrogations among hospital managers. Actually, hospital environment is disturbed and moving as well in a legislative political and statutory level as in an economical (competition, consumerism, proximity of the establishments) and demographic one (ageing, new pathologies). The fast development of medical technologies amplifies this disturbance. In front of that environment, the hospital has to anticipate the arriving of gene therapy without underestimating the deontological, medical, economical and judicial risks. The decisions of implantation have to be taken in a collective way, and seriously planned and estimated on a medical and economical level. The way to train people and to forecast their careers don't have to be underestimated in consideration of the challenge which is represented by the gene therapy.

  17. Stem cell based cancer gene therapy.

    PubMed

    Cihova, Marina; Altanerova, Veronika; Altaner, Cestmir

    2011-10-03

    The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Suicide gene therapy using genetically engineered mesenchymal stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. This review provides an explanation of the stem cell-targeted prodrug cancer gene therapy principle, with focus on the choice of prodrug, properties of bone marrow and adipose tissue-derived mesenchymal stem and neural stem cells as well as the mechanisms of their tumor homing ability. Therapeutic achievements of the cytosine deaminase/5-fluorocytosine prodrug system and Herpes simplex virus thymidine kinase/ganciclovir are discussed. In addition, delivery of immunostimulatory cytokines, apoptosis inducing genes, nanoparticles and antiangiogenic proteins by stem cells to tumors and metastases is discussed as a promising approach for antitumor therapy. Combinations of traditional, targeted and stem cell-directed gene therapy could significantly advance the treatment of cancer.

  18. A Comprehensive Review of Retinal Gene Therapy

    PubMed Central

    Boye, Shannon E; Boye, Sanford L; Lewin, Alfred S; Hauswirth, William W

    2013-01-01

    Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement. PMID:23358189

  19. Gene therapy via inducible nitric oxide synthase: a tool for the treatment of a diverse range of pathological conditions.

    PubMed

    McCarthy, Helen O; Coulter, Jonathan A; Robson, Tracy; Hirst, David G

    2008-08-01

    Nitric oxide (NO(.)) is a reactive nitrogen radical produced by the NO synthase (NOS) enzymes; it affects a plethora of downstream physiological and pathological processes. The past two decades have seen an explosion in the understanding of the role of NO(.) biology, highlighting various protective and damaging modes of action. Much of the controversy surrounding the role of NO(.) relates to the differing concentrations generated by the three isoforms of NOS. Both calcium-dependent isoforms of the enzyme (endothelial and neuronal NOS) generate low-nanomolar/picomolar concentrations of NO(.). By contrast, the calcium-independent isoform (inducible NOS (iNOS)) generates high concentrations of NO(.), 2-3 orders of magnitude greater. This review summarizes the current literature in relation to iNOS gene therapy for the therapeutic benefit of various pathological conditions, including various states of vascular disease, wound healing, erectile dysfunction, renal dysfunction and oncology. The available data provide convincing evidence that manipulation of endogenous NO(.) using iNOS gene therapy can provide the basis for future clinical trials.

  20. [Development of gene therapy in major brain diseases].

    PubMed

    Fan, Li; Jiang, Xin-guo

    2010-09-01

    In recent years, the development of molecular biology and medicine has prompted the research of gene therapy for brain diseases. In this review, we summarized the current gene therapy approaches of major brain diseases. Against the pathogenesis of major brain diseases, including brain tumors, Parkinson's disease, Alzheimer's disease and cerebrovascular disorders, there are several effective gene therapy strategies. It is no doubt that, gene therapy, as a novel treatment, is of great significance for understanding the causes, as well as comprehensive treatment for brain diseases.

  1. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    PubMed

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment.

  2. Renal diseases as targets of gene therapy.

    PubMed

    Phillips, Brett; Giannoukakis, Nick; Trucco, Massimo

    2008-01-01

    A number of renal pathologies exist that have seen little or no improvement in treatment methods over the past 20 years. These pathologies include acute and chronic kidney diseases as well as posttransplant kidney survival and host rejection. A novel approach to treatment methodology may provide new insight to further progress our understanding of the disease and overall patient outcome. Recent advances in human genomics and gene delivery systems have opened the door to possible cures through the direct modulation of cellular genes. These techniques of gene therapy have not been extensively applied to renal pathologies, but clinical trials on other organ systems and kidney research in animal models hold promise. Techniques have employed viral and nonviral vectors to deliver gene modulating compounds directly into the cell. These vectors have the capability to replace defective alleles, express novel genes, or suppress the expression of pathogenic genes in a wide variety of kidney cell types. Focus has also been placed on ex vivo modification of kidney tissue to promote allograft survival and limit the resulting immune response to the transplanted organ. This could prove a valuable alternative to current immunosuppressive drugs and their deleterious effects on patients. While continued research and clinical trials are needed to identify a robust system of gene delivery, gene therapy techniques have great potential to treat kidney disease at the cellular level and improve patient quality of life.

  3. Therapeutic genes for anti-HIV/AIDS gene therapy.

    PubMed

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  4. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  5. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  6. Cancer gene therapy using mesenchymal stem cells.

    PubMed

    Uchibori, Ryosuke; Tsukahara, Tomonori; Ohmine, Ken; Ozawa, Keiya

    2014-04-01

    Cellular and gene therapies represent promising treatment strategies at the frontier of medicine. Hematopoietic stem cells, lymphocytes, and mesenchymal stem cells (MSCs) can all serve as sources of cells for use in such therapies. Strategies for gene therapy are often based on those of cell therapy, and it is anticipated that some examples will be put to practical use in the near future. Given their ability to support hematopoiesis, MSCs may be useful for the enhancement of stem cell engraftment, and the acceleration of hematopoietic reconstitution. Furthermore, MSCs may advance the treatment of severe graft-versus-host disease, based on their immunosuppressive ability. This application is also based on the homing behavior of MSCs to sites of injury and inflammation. Interestingly, MSCs possess tumor-homing ability, opening up the possibility of applications in the targeted delivery of anti-cancer genes to tumors. Many reports have indicated that MSCs can be utilized to target tumors and to deliver anti-cancer molecules locally, as tumors are recognized as non-healing wounds with inflammatory tissue. Here, we review both the potential of MSCs as cellular vehicles for targeted cancer therapy and the molecular mechanisms underlying MSC accumulation at tumor sites.

  7. Progresses towards safe and efficient gene therapy vectors.

    PubMed

    Chira, Sergiu; Jackson, Carlo S; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A; Berindan-Neagoe, Ioana

    2015-10-13

    The emergence of genetic engineering at the beginning of the 1970's opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.

  8. Aptamer-mediated cancer gene therapy.

    PubMed

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Zhou, Shu-Feng; Li, Yong; Wei, Ming Q; Qiao, Liang; Shamaileh, Hadi Al; Zhu, Yimin; Zheng, Conglong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

  9. Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now?

    PubMed

    Daliri, Karim; Ljubimov, Alexander V; Hekmatimoghaddam, Seyedhossein

    2017-08-31

    Glaucoma is the second most common cause of blindness, affecting 70~80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.

  10. [Gene therapy and Alzheimer's disease].

    PubMed

    Li, Jian; Li, Wenwen; Zhou, Jun

    2015-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the presence of extracellular β-amyloid in the senile plaques, intracellular aggregates of abnormal phosphorylation of tau protein in the neurofibrillary tangles, neuronal loss and cerebrovascular amyloidosis. The manifestations of clinical symptoms include memory impairment, cognitive decline, altered behavior and language deficit. Currently available drugs in AD therapy consist of acetylcholinesterase inhibitors, NMDA receptor antagonists, non-steroidal anti-inflammatory drugs, etc. These drugs can only alleviate the symptoms of AD. Gene therapy is achieved by vector-mediated gene transfer technology, which can delivery DNA or RNA into target cells to promote the expression of a protective or therapeutic protein and silence certain virulence genes.

  11. Gene Therapy for Hemophilia.

    PubMed

    Nienhuis, Arthur W; Nathwani, Amit C; Davidoff, Andrew M

    2016-04-01

    Adeno-associated viral vectors have been developed for the treatment of hemophilia A and B. Derivation of vector particles is achieved after multiplasmid transfection of cells that package the vector genome to yield vector particles. To date, three clinical trials have been performed for hemophilia B. The results of these trials are described. The trial that we conducted with our collaborators has yielded evidence of clinical efficacy for hemophilia B. A vector for treating hemophilia A has been developed and a clinical trial is planned.

  12. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    PubMed

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  13. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  14. Gene Therapy Shows Promise for Aggressive Lymphoma

    MedlinePlus

    ... fullstory_163824.html Gene Therapy Shows Promise for Aggressive Lymphoma Over one-third of patients appeared disease- ... 2017 (HealthDay News) -- An experimental gene therapy for aggressive non-Hodgkin lymphoma beat back more than a ...

  15. Transcriptional Targeting in Cancer Gene Therapy

    PubMed Central

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future. PMID:12721516

  16. The gene therapy revolution in ophthalmology

    PubMed Central

    Al-Saikhan, Fahad I.

    2013-01-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber’s Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red–green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable. PMID:24227970

  17. The gene therapy revolution in ophthalmology.

    PubMed

    Al-Saikhan, Fahad I

    2013-04-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber's Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red-green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable.

  18. Development of a Nanotechnology Platform for Prostate Cancer Gene Therapy

    DTIC Science & Technology

    2012-07-01

    metastatic and characterized to be CAR¯/HER2¯. This means that they are not a good candidate for adenoviral gene therapy or Herceptin anti-HER2...and can potentially be used in the treatment of the patients that do not respond to adenoviral gene therapy or Herceptin immunotherapy.     5

  19. Regulatory considerations for translating gene therapy: a European Union perspective.

    PubMed

    Galli, Maria Cristina

    2009-11-11

    A preclinical study on a gene therapy approach for treatment of the severe muscle weakness associated with a variety of neuromuscular disorders provides a forum to discuss the translational challenges of gene therapy from a regulatory point of view. In this Perspective, the findings are considered from the view of European regulatory requirements for first clinical use.

  20. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  1. Gene and cell therapy for pancreatic cancer.

    PubMed

    Singh, Hans Martin; Ungerechts, Guy; Tsimberidou, Apostolia M

    2015-04-01

    The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.

  2. Gene therapy and targeted toxins for glioma.

    PubMed

    Castro, Maria G; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D; Curtin, James F; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Ghulam Muhammad, A K M; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R

    2011-06-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.

  3. Foamy Virus Vectors for HIV Gene Therapy

    PubMed Central

    Olszko, Miles E.; Trobridge, Grant D.

    2013-01-01

    Highly active antiretroviral therapy (HAART) has vastly improved outcomes for patients infected with HIV, yet it is a lifelong regimen that is expensive and has significant side effects. Retroviral gene therapy is a promising alternative treatment for HIV/AIDS; however, inefficient gene delivery to hematopoietic stem cells (HSCs) has so far limited the efficacy of this approach. Foamy virus (FV) vectors are derived from non-pathogenic viruses that are not endemic to the human population. FV vectors have been used to deliver HIV-inhibiting transgenes to human HSCs, and they have several advantages relative to other retroviral vectors. These include an attractive safety profile, broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. In addition, the titers of FV vectors are not reduced by anti-HIV transgenes that affect the production of lentivirus (LV) vectors. Thus FV vectors are very promising for anti-HIV gene therapy. This review covers the advantages of FV vectors and describes their preclinical development for anti-HIV gene therapy. PMID:24153061

  4. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    PubMed

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  5. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas

    PubMed Central

    Chung, Taemoon; Na, Juri; Kim, Young-il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy. PMID:27446484

  6. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2004-06-01

    From the studies performed during the last one year, we determined the effects of AAV-mediated anti-angiogenic gene therapy as a combination therapy...angiogenic gene therapy in combination with chemotherapy. In the next year, we will determine whether such a combination therapy would provide regression of established tumors.

  7. Gene Therapy for Primary Immunodeficiencies

    PubMed Central

    Rivat, Christine; Santilli, Giorgia; Gaspar, H. Bobby

    2012-01-01

    Abstract For over 40 years, primary immunodeficiencies (PIDs) have featured prominently in the development and refinement of human allogeneic hematopoietic stem cell transplantation. More recently, ex vivo somatic gene therapy using autologous cells has provided remarkable evidence of clinical efficacy in patients without HLA-matched stem cell donors and in whom toxicity of allogeneic procedures is likely to be high. Together with improved preclinical models, a wealth of information has accumulated that has allowed development of safer, more sophisticated technologies and protocols that are applicable to a much broader range of diseases. In this review we summarize the status of these gene therapy trials and discuss the emerging application of similar strategies to other PIDs. PMID:22691036

  8. American Society of Gene & Cell Therapy

    MedlinePlus

    ... Join ASGCT! Job Bank Donate Media The American Society of Gene & Cell Therapy The American Society of Gene & Cell Therapy is the primary professional membership organization for gene and cell therapy. The Society's members are scientists, physicians, patient advocates, and other ...

  9. Treatment of inoperable coronary disease and refractory angina: spinal stimulators, epidurals, gene therapy, transmyocardial laser, and counterpulsation.

    PubMed

    Svorkdal, Nelson

    2004-03-01

    Intractable angina from refractory coronary disease is a severe form of myocardial ischemia for which revascularization provides no prognostic benefit. Inoperable coronary disease is also accompanied by a "vicious cycle" of myocardial dystrophy from a chronic alteration of the cardiac sympathetic tone and sensitization of damaged cardiac tissues. Several adjunctive treatments have demonstrated efficacy when revascularization is either unsuccessful or contraindicated. Spinal cord stimulation modifies the neurologic input and output of the heart by delivering a very low dose of electrical current to the dorsal columns of the high thoracic spinal cord. Neural fibers then release CGRP and other endogenous peptides to the coronary circulation reducing myocardial oxygen demand and enhancing vasodilation of collaterals to improve the myocardial blood flow of the most diseased regions of the heart. Randomized study has shown the survival data at five years is comparable to bypass for high-risk patients. Transmyocardial laser revascularization creates small channels into ischemic myocardium in an effort to enhance flow though studies have shown no improvement in prognosis over medical therapy alone. Enhanced external counterpulsation uses noninvasive pneumatic compression of the legs to improve diastolic filling of the coronary vessels and promote development of collateral flow. The compressor regimen requires thirty-five hours of therapy over a seven-week treatment period. Therapeutic angiogenesis requires injection of cytokines to promote neovascularization and improve myocardial perfusion into the regions affected by chronic ischemia. Phase 3 trials are pending. High thoracic epidural blockade produces a rapid and potent sympatholysis, coronary vasodilation and reduced myocardial oxygen demand in refractory coronary disease. This technique can be used as an adjunct to bypass surgery or medical therapy in chronic or acute unstable angina. Epidurals are easy to perform and

  10. Gene therapy of benign gynecological diseases☆

    PubMed Central

    Hassan, Memy H.; Othman, Essam E.; Hornung, Daniela; Al-Hendy, Ayman

    2015-01-01

    Gene therapy is the introduction of genetic material into patient’s cells to achieve therapeutic benefit. Advances in molecular biology techniques and better understanding of disease pathogenesis have validated the use of a variety of genes as potential molecular targets for gene therapy based approaches. Gene therapy strategies include: mutation compensation of dysregulated genes; replacement of defective tumor-suppressor genes; inactivation of oncogenes; introduction of suicide genes; immunogenic therapy and antiangiogenesis based approaches. Preclinical studies of gene therapy for various gynecological disorders have not only shown to be feasible, but also showed promising results in diseases such as uterine leiomyomas and endometriosis. In recent years, significant improvement in gene transfer technology has led to the development of targetable vectors, which have fewer side-effects without compromising their efficacy. This review provides an update on developing gene therapy approaches to treat common gynecological diseases such as uterine leiomyoma and endometriosis. PMID:19446586

  11. Cancer gene therapy: challenges and opportunities.

    PubMed

    Scanlon, Kevin J

    2004-01-01

    Understanding the molecular basis of human disease has been the corner-stone of rationally designed molecular therapies. Medicine has a long history of treating patients with cell therapies (i.e., blood transfusions) and protein therapies (i.e., growth factors and cytokines). Gene therapies are the newest therapeutic strategy for treating human diseases. Where will gene therapy be in five years after the euphoria and frustrations of the last 14 years? This is a complex question, but the primary challenge for gene therapy will be to successfully deliver an efficacious dose of a therapeutic gene to the defective tissue. Will the delivery systems return to the early clinical trials of ex vivo gene therapy or will there still be a high demand for systemic therapy? Will systemic therapy continue to depend on viral vectors, or will non-viral and nano-particles become the new mode for gene delivery? The future success of gene therapy will be built on achievements in other fields, such as medical devices, cell therapy, protein therapy and nano-particle technology. This review describes the advances being made in the gene therapy field, as well as addressing the challenges of the near future for cancer gene therapy.

  12. tgAAG76, an adeno-associated virus delivered gene therapy for the potential treatment of vision loss caused by RPE65 gene abnormalities.

    PubMed

    Stieger, Knut

    2010-08-01

    The gene therapy vector tgAAG76 (rAAV 2/2.hRPE65p.hRPE65) is in joint development by Targeted Genetics Corp, Moorfields Eye Hospital and the University of London. The vector is a recombinant adeno-associated virus vector that contains the human RPE65 gene under the control of the human RPE65 promoter region and the bovine growth hormone polyadenylation signal. The vector was designed for administration into the subretinal space of patients affected by a hereditary blinding disorder, Leber congenital amaurosis type 2, which is caused by mutations in the RPE65 gene. Interim results from an ongoing phase I/II clinical trial assessing tgAAG76 in three patients with Leber congenital amaurosis type 2 were considered to accomplish the primary outcome of the trial, which was the safety of the procedure, with no severe side effects observed to date. One of the three patients had a significant increase in sensitivity to light and the better capacity to ambulate an obstacle course under dim light conditions compared with baseline. Completion of the clinical trial was anticipated in the second half of 2010.

  13. Sleep Eduction: Treatment & Therapy

    MedlinePlus

    ... Treatment Jet Lag Overview Symptoms & Self Test Treatment Narcolepsy Overview & Facts Symptoms Self-Tests & Diagnosis Treatment Restless ... Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient Sleep Syndrome Long Sleeper Sleep Breathing Disorders ...

  14. Is cancer gene therapy an empty suit?

    PubMed Central

    Brenner, Malcolm K; Gottschalk, Stephen; Leen, Ann M; Vera, Juan F

    2014-01-01

    Gene therapy as a treatment for cancer is regarded as high in promise, but low in delivery, a deficiency that has become more obvious with ever-increasing reports of the successful correction of monogenic disorders by this approach. We review the commercial and scientific obstacles that have led to these delays and describe how they are progressively being overcome. Recent and striking successes and correspondingly increased commercial involvement suggest that gene transfer could finally become a powerful method for development of safe and effective cancer therapeutic drugs. PMID:24079872

  15. Cocaine hydrolase gene therapy for cocaine abuse

    PubMed Central

    Brimijoin, Stephen; Gao, Yang

    2013-01-01

    Rapid progress in the past decade with re-engineering of human plasma butyrylcholinesterase has led to enzymes that destroy cocaine so efficiently that they prevent or interrupt drug actions in the CNS even though confined to the blood stream. Over the same time window, improved gene-transfer technology has made it possible to deliver such enzymes by endogenous gene transduction at high levels for periods of a year or longer after a single treatment. This article reviews recent advances in this field and considers prospects for development of a robust therapy aimed at aiding recovering drug users avoid addiction relapse. PMID:22300095

  16. Engineering HSV-1 vectors for gene therapy.

    PubMed

    Goins, William F; Huang, Shaohua; Cohen, Justus B; Glorioso, Joseph C

    2014-01-01

    Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications, and with the approval of Glybera (alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20: 1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme, a fatal form of brain cancer, and in malignant melanoma. In fact, T-VEC (talimogene laherparepvec, formerly known as OncoVex GM-CSF) displayed efficacy in a recent Phase III trial when compared to standard GM-CSF treatment alone (Andtbacka et al. J Clin Oncol 31: sLBA9008, 2013) and may soon become the second FDA-approved gene therapy product used in standard patient care. In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy, and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are totally replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.

  17. Fetal muscle gene therapy/gene delivery in large animals.

    PubMed

    Abi-Nader, Khalil N; David, Anna L

    2011-01-01

    Gene delivery to the fetal muscles is a potential strategy for the early treatment of muscular dystrophies. In utero muscle gene therapy can also be used to treat other genetic disorders such as hemophilia, where the missing clotting proteins may be secreted from the treated muscle. In the past few years, studies in small animal models have raised the hopes that a phenotypic cure can be obtained after fetal application of gene therapy. Studies of efficacy and safety in large animals are, however, essential before clinical application can be considered in the human fetus. For this reason, the development of clinically applicable strategies for the delivery of gene therapy to the fetal muscles is of prime importance. In this chapter, we describe the protocols for in utero ultrasound-guided gene delivery to the ovine fetal muscle in early gestation. In particular, procedures to inject skeletal muscle groups such as the thigh and thoracic musculature and targeting the diaphragm in the fetus are described in detail.

  18. Newer gene editing technologies toward HIV gene therapy.

    PubMed

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  19. Somatic gene therapy in otolaryngology-head and neck surgery.

    PubMed

    O'Malley, B W; Ledley, F D

    1993-11-01

    The initial clinical trials of somatic gene therapy have demonstrated that gene transfer can be performed safely in a clinical setting and with public acceptance. These trials have focused attention on the broad applications of this technology in routine medical and surgical practice. This article reviews the reasons why somatic gene therapy could lead to significant improvements in clinical practice as well as specific therapies in otolaryngology-head and neck surgery. Early applications include the treatment of inherited diseases such as cystic fibrosis, new approaches for treating malignancies, new methods for enhancing tissue repair, and regeneration after plastic and reconstructive surgery, and the potential for using the thyroid as a target for somatic gene therapy. The following review will illustrate how somatic gene therapy may have a significant impact not only on the treatment of rare genetic diseases but on managing the common problems encountered by physicians and patients in daily practice.

  20. Advancement and prospects of tumor gene therapy.

    PubMed

    Zhang, Chao; Wang, Qing-Tao; Liu, He; Zhang, Zhen-Zhu; Huang, Wen-Lin

    2011-03-01

    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucleotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  1. Recent progress in gene therapy for hemophilia.

    PubMed

    Chuah, Marinee K; Nair, Nisha; VandenDriessche, Thierry

    2012-06-01

    Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.

  2. [Application of gene therapy to oncologic ophthalmology].

    PubMed

    Philiponnet, A; Grange, J-D; Baggetto, L G

    2014-02-01

    Since the discovery of the structure of DNA in 1953 by Watson and Crick, our understanding of the genetic causes and the regulations involved in tumor development have hugely increased. The important amount of research developed since then has led to the development of gene therapy, which specifically targets and treats cancer cells by interacting with, and correcting their genetic material. This study is a review of the most accomplished research using gene therapy aimed at treating malignant ophthalmologic diseases, and focuses more specifically on uveal melanoma and retinoblastoma. Such approaches are remarkable regarding the efficiency and the cellular targeting specificity. However, gene therapy-based treatments are so recent that many long-term interrogations subsist. The majority of the reviewed studies are conducted in vitro or in murine models, thereby requiring several years before the resulting therapies become part of the daily ophthalmologists' arsenal. However, the recent spectacular developments based on advanced scientific knowledge justify an up-to-date review that would benefit the ophthalmologist community.

  3. Ex vivo gene therapy and vision.

    PubMed

    Gregory-Evans, Kevin; Bashar, A M A Emran; Tan, Malcolm

    2012-04-01

    Ex vivo gene therapy, a technique where genetic manipulation of cells is undertaken remotely and more safely since it is outside the body, is an emerging therapeutic strategy particularly well suited to targeting a specific organ rather than for treating a whole organism. The eye and visual pathways therefore make an attractive target for this approach. With blindness still so prevalent worldwide, new approaches to treatment would also be widely applicable and a significant advance in improving quality of life. Despite being a relatively new approach, ex vivo gene therapy has already achieved significant advances in the treatment of blindness in pre-clinical trials. In particular, advances are being achieved in corneal disease, glaucoma, retinal degeneration, stroke and multiple sclerosis through genetic re-programming of cells to replace degenerate cells and through more refined neuroprotection, modulation of inflammation and replacement of deficient protein. In this review we discuss the latest developments in ex vivo gene therapy relevant to the visual pathways and highlight the challenges that need to be overcome for progress into clinical trials.

  4. [Gene therapy for adenosine deaminase deficiency].

    PubMed

    Sakiyama, Yukio; Ariga, Tadashi; Ohtsu, Makoto

    2005-03-01

    A four year-old boy with adenosine deaminase (ADA-) deficient severe combined immunodeficiency(SCID) receiving PEG-ADA was treated under a gene therapy protocol targeting peripheral blood lymphocytes (PBLs) in 1995. After eleven infusions of autologous PBLs transduced with retroviral vector LASN encoding ADAcDNA, he exhibited increased levels of the CD8+ T lymphocytes, serum immunoglobulin, specific antibodies and delayed type hypersensitivity skin tests. Follow-up studies also provided evidence of long-term persistence and function of transduced PBLs with improvement in the immune function. However, the therapeutic effect of this gene therapy has been difficult to assess because of the concomitant treatment of PEG-ADA. Two ADA-SCID patients have been currently treated with autologous bone marrow CD34+ cells engineered with a retroviral vector GCsapM-ADA after discontinuation of PEG-ADA. The restoration of intracellular ADA enzymatic activity in lymphocytes and granulocytes resulted in correction of the systemic toxicity and liver function in the absence of PEG-ADA treatment. Both patients are at home where they are clinically well, and they do not experience adversed effect, with follow up being 12 months after CD34+ cells gene therapy.

  5. New approaches to gene and cell therapy for hemophilia.

    PubMed

    Ohmori, T; Mizukami, H; Ozawa, K; Sakata, Y; Nishimura, S

    2015-06-01

    Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques.

  6. [Oligodontia: treatment plan and therapy].

    PubMed

    Reitsma, J H; Meijer, H J A; van Oort, R P

    2005-09-01

    The aim of this retrospective study was to gain insight in treatment planning and therapy for patients with oligodontia. Records of 58 treated patients with oligodontia were screened using several parameters: gender, year and age of registration, symptoms, case history, treatment plan and therapy. Treatment plans were sorted into the following categories: tooth-supported overdentures, fixed or removable partial dentures and implant-supported restorations. Dependent on the complexity of oligodontia, it is advocated to make a treatment plan before the age of 12 years old and to follow the provided treatment conscientiously until the final prosthetic treatment. After analyzing the 58 treatment plans, the following conclusions could be made: the treatment plan was not in all cases made before the age of 12 years, it was not clear in all cases who was the coordinator of the treatment and dental implants are becoming more and more important in treating patients with oligodontia.

  7. Episomal vectors for gene therapy.

    PubMed

    Ehrhardt, Anja; Haase, Rudolf; Schepers, Aloys; Deutsch, Manuel J; Lipps, Hans Joachim; Baiker, Armin

    2008-06-01

    The increasing knowledge of the molecular and genetic background of many different human diseases has led to the vision that genetic engineering might be used one day for their phenotypic correction. The main goal of gene therapy is to treat loss-of-function genetic disorders by delivering correcting therapeutic DNA sequences into the nucleus of a cell, allowing its long-term expression at physiologically relevant levels. Manifold different vector systems for the therapeutic gene delivery have been described over the recent years. They all have their individual advantages but also their individual limitations and must be judged on a careful risk/benefit analysis. Integrating vector systems can deliver genetic material to a target cell with high efficiency enabling long-term expression of an encoded transgene. The main disadvantage of integrating vector systems, however, is their potential risk of causing insertional mutagenesis. Episomal vector systems have the potential to avoid these undesired side effects, since they behave as separate extrachromosomal elements in the nucleus of a target cell. Within this article we present a comprehensive survey of currently available episomal vector systems for the genetic modification of mammalian cells. We will discuss their advantages and disadvantages and their applications in the context of basic research, biotechnology and gene therapy.

  8. Stem cell directed gene therapy.

    PubMed

    Engel, B C; Kohn, D B

    1999-05-01

    A potential therapeutic approach to HIV-1 infection is the genetic modification of cells of a patient to make them resistant to HIV-1. Hematopoietic stem cells are an attractive target for gene therapy of AIDS because of their ability to generate a broad repertoire of mature T lymphocytes, as well as the monocytic cells (macrophages, dendritic cells and microglia) which are also involved in HIV-1 pathogenesis. A number of synthetic "anti-HIV-1 genes" have been developed which inhibit HIV-1 replication. However, current methods for gene transfer into human hematopoietic stem cells, using retroviral vectors derived from the Moloney murine leukemia virus, have been minimally effective. Clinical trials performed to date in which hematopoietic cells from HIV-1-positive patients have been transduced with retroviral vectors and then reinfused have produced low to undetectable levels of gene-containing peripheral blood leukocytes. New vector delivery systems, such as lentiviral vectors, need to be developed to ensure efficient gene transfer and persistent transgene expression to provide life-long resistance to the cells targeted by HIV-1.

  9. Gene Therapy for Duchenne muscular dystrophy

    PubMed Central

    Ramos, Julian; Chamberlain, Jeffrey S

    2015-01-01

    Introduction Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. Areas Covered Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. Expert Opinion Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response. PMID:26594599

  10. Cardiac gene therapy: from concept to reality.

    PubMed

    Kratlian, Razmig Garo; Hajjar, Roger J

    2012-03-01

    Heart failure is increasing in incidence throughout the world, especially in industrialized countries. Although the current therapeutic modalities have been successful in stabilizing the course of heart failure, morbidity and mortality remain quite high and there remains a great need for innovative breakthroughs that will offer new treatment strategies for patients with advanced forms of the disease. The past few years have witnessed a greater understanding of the molecular underpinnings of the failing heart, paving the way for novel strategies in modulating the cellular environment. As such, gene therapy has recently emerged as a powerful tool offering the promise of a new paradigm for alleviating heart failure. Current gene therapy research for heart failure is focused on exploring potential cellular targets and preclinical and clinical studies are ongoing toward the realization of this goal. Efforts also include the development of sophisticated viral vectors and vector delivery methods for efficient transduction of cardiomyocytes.

  11. Progress and prospects: hurdles to cardiovascular gene therapy clinical trials.

    PubMed

    Hedman, M; Hartikainen, J; Ylä-Herttuala, S

    2011-08-01

    Several gene therapy approaches have been designed for the treatment of cardiovascular diseases. A positive finding is that the safety of cardiovascular gene therapy has been excellent even in long-term follow-up. However, several hurdles to this field are still present. A major disappointing feature of the trials is that while preclinical and uncontrolled phase-I gene therapy trials have been positive, none of the randomized controlled phase-II/III cardiovascular gene therapy trials have shown clinically relevant positive effects. Low gene transfer efficiency seems to be associated with several trials. A sophisticated efficient delivery method for cardiovascular applications is still lacking and only low concentrations of the gene product are produced in the target tissues. Only a few gene therapy vectors can be produced in large scale. In addition, inflammatory reactions against vectors and inability to regulate gene expression are still present. Furthermore, a strong placebo effect is affecting the results in gene therapy trials, and long-term trials have become more difficult to conduct because of the multiplicity of therapies applied simultaneously on the patients. This review summarizes advances and obstacles of current cardiovascular clinical gene therapy trials.

  12. Alternative Strategies for Gene Therapy of Hemophilia

    PubMed Central

    Montgomery, Robert R.; Shi, Qizhen

    2012-01-01

    Hemophilia A and B are monogenic disorders that were felt to be ideal targets for initiation of gene therapy. Although the first hemophilia gene therapy trial has been over 10 years ago, few trials are currently actively recruiting. Although preclinical studies in animals were promising, levels achieved in humans did not achieve long-term expression at adequate levels to achieve cures. Transplantation as a source of cellular replacement therapy for both hemophilia A and B have been successful following liver transplantation in which the recipient produces normal levels of either factor VIII (FVIII) or factor IX (FIX). Most of these transplants have been conducted for the treatment of liver failure rather than for “curing” hemophilia. There are a variety of new strategies for delivering the missing clotting factor through ectopic expression of the deficient protein. One approach uses hematopoietic stem cells using either a nonspecific promoter or using a lineage-specific promoter. An alternative strategy includes enhanced expression in endothelial cells or blood-outgrowth endothelial cells. An additional approach includes the expression of FVIII or FIX intraarticularly to mitigate the intraarticular bleeding that causes much of the disability for hemophilia patients. Because activated factor VII (FVIIa) can be used to treat patients with inhibitory antibodies to replacement clotting factors, preclinical gene therapy has been performed using platelet- or liver-targeted FVIIa expression. All of these newer approaches are just beginning to be explored in large animal models. Whereas improved recombinant replacement products continue to be the hallmark of hemophilia therapy, the frequency of replacement therapy is beginning to be addressed through longer-acting replacement products. A safe cure of hemophilia is still the desired goal, but many barriers must still be overcome. PMID:21239794

  13. Alternative strategies for gene therapy of hemophilia.

    PubMed

    Montgomery, Robert R; Shi, Qizhen

    2010-01-01

    Hemophilia A and B are monogenic disorders that were felt to be ideal targets for initiation of gene therapy. Although the first hemophilia gene therapy trial has been over 10 years ago, few trials are currently actively recruiting. Although preclinical studies in animals were promising, levels achieved in humans did not achieve long-term expression at adequate levels to achieve cures. Transplantation as a source of cellular replacement therapy for both hemophilia A and B have been successful following liver transplantation in which the recipient produces normal levels of either factor VIII (FVIII) or factor IX (FIX). Most of these transplants have been conducted for the treatment of liver failure rather than for "curing" hemophilia. There are a variety of new strategies for delivering the missing clotting factor through ectopic expression of the deficient protein. One approach uses hematopoietic stem cells using either a nonspecific promoter or using a lineage-specific promoter. An alternative strategy includes enhanced expression in endothelial cells or blood-outgrowth endothelial cells. An additional approach includes the expression of FVIII or FIX intraarticularly to mitigate the intraarticular bleeding that causes much of the disability for hemophilia patients. Because activated factor VII (FVIIa) can be used to treat patients with inhibitory antibodies to replacement clotting factors, preclinical gene therapy has been performed using platelet- or liver-targeted FVIIa expression. All of these newer approaches are just beginning to be explored in large animal models. Whereas improved recombinant replacement products continue to be the hallmark of hemophilia therapy, the frequency of replacement therapy is beginning to be addressed through longer-acting replacement products. A safe cure of hemophilia is still the desired goal, but many barriers must still be overcome.

  14. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

    PubMed

    Broeren, Mathijs G A; de Vries, Marieke; Bennink, Miranda B; Arntz, Onno J; Blom, Arjen B; Koenders, Marije I; van Lent, Peter L E M; van der Kraan, Peter M; van den Berg, Wim B; van de Loo, Fons A J

    2016-03-01

    Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA.

  15. Advances in Gene Therapy for Diseases of the Eye

    PubMed Central

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-01-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  16. Gene therapy in the cornea: 2005--present.

    PubMed

    Mohan, Rajiv R; Tovey, Jonathan C K; Sharma, Ajay; Tandon, Ashish

    2012-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities has begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer toward establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea.

  17. Gene Therapy in the Cornea: 2005-present

    PubMed Central

    Mohan, Rajiv R.; Tovey, Jonathan C.K.; Sharma, Ajay; Tandon, Ashish

    2011-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities have begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer towards establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea. PMID:21967960

  18. Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate.

    PubMed

    Miki, K; Xu, M; Gupta, A; Ba, Y; Tan, Y; Al-Refaie, W; Bouvet, M; Makuuchi, M; Moossa, A R; Hoffman, R M

    2001-09-15

    In this study, we report a novel approach to gene-directed enzyme prodrug therapy for cancer. This gene therapy strategy exploits the toxic pro-oxidant property of methylselenol, which is released from selenomethionine (SeMET) by cancer cells with the adenoviral-delivered methionine alpha,gamma-lyase (MET) gene cloned from Pseudomonas putida. In MET-transduced tumor cells, the cytotoxicity of SeMET is increased up to 1000-fold compared with nontransduced cells. A strong bystander effect occurred because of methylselenol release from MET gene-transduced cells and uptake by surrounding tumor cells. Methylselenol damaged the mitochondria via oxidative stress and caused cytochrome c release into the cytosol, thereby activating the caspase cascade and apoptosis. Adenoviral MET-gene/SeMET treatment also inhibited tumor growth in rodents and significantly prolonged their survival. Recombinant adenovirus-encoding MET gene-SeMET treatment thereby offers a new paradigm for cancer gene therapy.

  19. Gene therapy for vision loss -- recent developments.

    PubMed

    Stieger, Knut; Lorenz, Birgit

    2010-11-01

    Retinal gene therapy mediated by adeno-associated virus (AAV) based gene transfer was recently proven to improve photoreceptor function in one form of inherited retinal blinding disorder associated with mutations in the RPE65 gene. Several clinical trials are currently ongoing, and more than 30 patients have been treated to date. Even though only a very limited number of patients will greatly benefit from this still experimental treatment protocol, the technique itself has been shown to be safe and will likely be used in other retinal disorders in the near future. A canine model for achromatopsia has been treated successfully as well as mouse models for different forms of Leber congenital amaurosis (LCA). For patients with autosomal dominant retinitis pigmentosa (adRP), a combined gene knockdown and gene addition therapy is being developed using RNA interference to block mRNA of the mutant allele. For those patients suffering from RP with unknown mutations, an AAV based transfer of bacterial forms of rhodopsin in the central retina might be an option to reactivate residual cones in the future.

  20. Gene therapy for bone healing.

    PubMed

    Evans, Christopher H

    2010-06-23

    Clinical problems in bone healing include large segmental defects, spinal fusions, and the nonunion and delayed union of fractures. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment.

  1. Gene therapy for bone healing

    PubMed Central

    Evans, Christopher H.

    2015-01-01

    Clinical problems in bone healing include large segmental defects, nonunion and delayed union of fractures, and spinal fusions. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment. PMID:20569532

  2. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  3. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  4. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1997-10-01

    immunogenic 4T1 tumor, primary tumor growth was not affected by IL-12 gene therapy , although lung metastasis was significantly reduced. The anti...metastatically effect in the 4T1 model appears to be T cell independent, and we are investigating its mechanism. These results suggest that a similar gene therapy protocol may be useful in human breast cancer treatment.

  5. Current status of gene therapy for rheumatoid arthritis.

    PubMed

    Reinecke, J; Koch, H; Meijer, H; Granrath, M; Schulitz, K P; Wehling, P

    1999-02-01

    Despite the high prevalence of the disease, at present little effective pharmacological treatment of rheumatoid arthritis is available. Novel approaches utilising biological agents have resulted in the development of new antiarthritic and antiinflammatory agents, such as tumour necrosis factor-alpha (TNFalpha)-specific antibodies and interleukin-1 receptor antagonist (IL-1ra). Local gene therapy not only allows the pharmaceutical use of these biologicals, but also allows for continuous drug supply, which is necessary for chronic diseases like rheumatoid arthritis. We discuss the basics of rheumatoid arthritis therapy, candidate genes and possible gene transfer methods. A current clinical gene therapy trial is focusing on the IL-1 system using IL-1ra as a transgene. The transfer system, clinical protocol and preliminary results are described. After treatment of 11 patients we feel that gene therapy will offer potential as a new avenue to treat rheumatoid arthritis.

  6. Vascular gene therapy in the 21st century.

    PubMed

    Clowes, A W

    1997-07-01

    The technology of gene transfer has developed rapidly and has been applied successfully as pharmacological therapy in animal models of human vascular disease. Human vascular gene therapy has not become a reality although clinical trials are starting. In the next century, gene therapy will find its place in the vascular physicians' armamentarium as new pharmacological targets are defined and new vectors devised for gene transfer. Vascular gene therapy, the use of gene transfer to treat diseases of the vascular system, excites the imagination and captures the public's attention because it promises at a single step almost magically to cure the previously uncurable. The goal has been elusive although the promise remains. What can we look forward to in the 21st century? Will the dream ever be realized or is it a fantasy that will always be out of reach? The sceptics argue that research into pharmacology continues to provide us with powerful drugs for the treatment of vascular disease. Why bother with gene transfer? Could not the same goals be achieved by more conventional means? These questions demand answers and adequate justification. In developing the response, we gain a clear understanding of the potential of gene therapy and thereby define a better set of objectives. Gene therapy in broad terms covers somatic cell and germ line gene therapy. Genetic manipulation of the germ line leads to the development of transgenic animals with specific genes that have been deleted or overexpressed; these animals are useful for the study of gene function. Their organs might also be of use for transplantation into humans. For example, transgenic pigs are being developed for this purpose(1). Although the study of transgenic animals and the field of germ line gene therapy are of great importance for vascular biology, they will not be covered here. This review will address vascular somatic gene therapy and will attempt to focus on potential targets, progress made in the last decade

  7. Curing genetic disease with gene therapy.

    PubMed

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  8. Curing Genetic Disease with Gene Therapy

    PubMed Central

    Williams, David A.

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile. PMID:25125725

  9. Cardiac gene therapy: Recent advances and future directions.

    PubMed

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Potential application of gene therapy to X-linked agammaglobulinemia.

    PubMed

    Moreau, Thomas; Calmels, Boris; Barlogis, Vincent; Michel, Gérard; Tonnelle, Cécile; Chabannon, Christian

    2007-08-01

    X-linked agammaglobulinemia (XLA), or Bruton's disease, is the most common human primary humoral immunodeficiency. XLA is caused by mutations of the Bruton's tyrosine kinase (BTK), a key regulator of B-cell physiology. Since the mid 80's, substitutive therapy by intravenous gammaglobulin infusions has significantly improved XLA patient survival and quality of life. Nevertheless, some frequent affections persist despite treatment, and lead to handicapping and further to morbid clinical complications for XLA individuals. Development of gene therapy by transfer of the BTK gene into hematopoietic progenitors could represent an alternative strategy for the treatment of Bruton's disease, with the advantage of a definitive cure for XLA patients. Gene therapy of XLA could be considered as a paradigm for future expansion of gene therapy approaches for many other diseases, since future utilization may be strictly dependent on a marked improvement of risk-benefit ratio compared to pre-existing treatments.

  11. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles

    PubMed Central

    2013-01-01

    Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865

  12. Immunomodulatory gene therapy in lysosomal storage disorders.

    PubMed

    Koeberl, Dwight D; Kishnani, Priya S

    2009-12-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders.

  13. Immunomodulatory gene therapy in lysosomal storage disorders

    PubMed Central

    Koeberl, D.D.; Kishnani, P.S.

    2010-01-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  14. Gene expression-targeted isoflavone therapy.

    PubMed

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  15. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma: 9 years of follow-up.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2012-12-01

    We present here the updated results after 9 years of the beginning of a trial on canine patients with malignant melanoma. This surgery adjuvant approach combined local suicide gene therapy with a subcutaneous vaccine composed by tumor cells extracts and xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. Toxicity was absent or minimal in all patients (0≤VCOG-CTCAE grade≤1). With respect to surgery-treated controls (ST), the complete surgery (CS) arm of this combined treatment (CT) significantly increased the fraction of local disease-free patients from 13 to 81% and distant metastases free from 32 to 84%. Even though less effective than the CS arm, the partial surgery (PS) arm of this CT was significantly better controlling the disease than only surgery (14% while PS-ST: 0%, P<0.01 and CS-ST: 5%, P<0.05). In addition, CT produced a significant sevenfold (CS) and threefold (PS) increase in overall survival. The CS-CT arm significantly improved both CS-ST metastasis-free- and melanoma overall survival from 99 days (respective ranges: 11-563 and 10-568) to >2848 days (81-2848 and 35-2848). Thus, more of 50% of our CT patients died of melanoma unrelated causes, transforming a lethal disease into a chronic one. Finally, surgery adjuvant CT delayed or prevented post-surgical recurrence and distant metastasis, significantly improved disease-free and overall survival maintaining the quality of life. Long-term safety and efficacy of this treatment are supported by the high number of CT patients (283) and extensive follow-up (>9 years). The successful clinical outcome encourages the further translation of similar approaches to human gene therapy trials.

  16. Ex vivo gene therapy cures a blistering skin disease.

    PubMed

    Featherstone, Carol; Uitto, Jouni

    2007-06-01

    A recent publication that describes gene therapy treatment of a patient with an inherited blistering skin disease, epidermolysis bullosa, demonstrates for the first time that gene therapy can cure a disease of solid tissue. The treatment relies on ex vivo transduction of autologous epidermal stem cells with a normal copy of the defective gene, followed by reconstitution of the patient's skin with epithelial sheets that are grown from these genetically corrected cells. This approach holds promise for treatment not only of inherited disorders of the skin but also of other solid tissues that are becoming amenable to tissue engineering.

  17. Gene therapy in The Netherlands: highlights from the Low Countries.

    PubMed

    Schenk-Braat, Ellen A M; Kaptein, Leonie C M; Hallemeesch, Marcella M; Bangma, Chris H; Hoeben, Rob C

    2007-10-01

    Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication-defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non-viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non-viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno-gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands. Copyright 2007 John Wiley & Sons, Ltd.

  18. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1998-08-01

    AD AWARD NUMBER DAMD17-97-1-7232 TITLE: Targeted Gene Therapy for Breast Cancer PRINCIPAL INVESTIGATOR: Jinha M. Park CONTRACTING ORGANIZATION...FUNDING NUMBERS Targeted Gene Therapy for Breast Cancer DAMD17-97-1-7232 6. AUTHOR(S) Jinha M. Park 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...of surface mAb has been internalized by receptor-mediated endocytosis. These mAbs show promise in the specific delivery of gene therapy vectors

  19. Type of Cancer Treatment: Targeted Therapy

    Cancer.gov

    Information about the role that targeted therapies play in cancer treatment. Includes how targeted therapies work against cancer, who receives targeted therapies, common side effects, and what to expect when having targeted therapies.

  20. Gene therapy for muscular dystrophy: current progress and future prospects.

    PubMed

    Trollet, Capucine; Athanasopoulos, Takis; Popplewell, Linda; Malerba, Alberto; Dickson, George

    2009-07-01

    Muscular dystrophies refer to a group of inherited disorders characterized by progressive muscle weakness, wasting and degeneration. So far, there is no effective treatment but new gene-based therapies are currently being developed with particular noted advances in using conventional gene replacement strategies, RNA-based approaches, or cell-based gene therapy with a main focus on Duchenne muscular dystrophy (DMD). DMD is the most common and severe form of muscular dystrophy and current treatments are far from adequate. However, genetic and cell-based therapies, in particular exon skipping induced by antisense strategies, and corrective gene therapy via functionally engineered dystrophin genes hold great promise, with several clinical trials ongoing. Proof-of-concept of exon skipping has been obtained in animal models, and most recently in clinical trials; this approach represents a promising therapy for a subset of patients. In addition, gene-delivery-based strategies exist both for antisense-induced reading frame restoration, and for highly efficient delivery of functional dystrophin mini- and micro-genes to muscle fibres in vivo and muscle stem cells ex-vivo. In particular, AAV-based vectors show efficient systemic gene delivery to skeletal muscle directly in vivo, and lentivirus-based vectors show promise of combining ex vivo gene modification strategies with cell-mediated therapies.

  1. Neural stem cell-based gene therapy for brain tumors.

    PubMed

    Kim, Seung U

    2011-03-01

    Advances in gene-based medicine since 1990s have ushered in new therapeutic strategy of gene therapy for inborn error genetic diseases and cancer. Malignant brain tumors such as glioblastoma multiforme and medulloblastoma remain virtually untreatable and lethal. Currently available treatment for brain tumors including radical surgical resection followed by radiation and chemotherapy, have substantially improved the survival rate in patients suffering from these brain tumors; however, it remains incurable in large proportion of patients. Therefore, there is substantial need for effective, low-toxicity therapies for patients with malignant brain tumors, and gene therapy targeting brain tumors should fulfill this requirement. Gene therapy for brain tumors includes many therapeutic strategies and these strategies can be grouped in two major categories: molecular and immunologic. The widely used molecular gene therapy approach is suicide gene therapy based on the conversion of non-toxic prodrugs into active anticancer agents via introduction of enzymes and genetic immunotherapy involves the gene transfer of immune-stimulating cytokines including IL-4, IL-12 and TRAIL. For both molecular and immune gene therapy, neural stem cells (NSCs) can be used as delivery vehicle of therapeutic genes. NSCs possess an inherent tumor tropism that supports their use as a reliable delivery vehicle to target therapeutic gene products to primary brain tumors and metastatic cancers throughout the brain. Significance of the NSC-based gene therapy for brain tumor is that it is possible to exploit the tumor-tropic property of NSCs to mediate effective, tumor-selective therapy for primary and metastatic cancers in the brain and outside, for which no tolerated curative treatments are currently available.

  2. Gene therapy for primary adaptive immune deficiencies.

    PubMed

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials.

  3. Update on clinical gene therapy in childhood

    PubMed Central

    Qasim, Waseem; Gaspar, H Bobby; Thrasher, Adrian J

    2007-01-01

    The successful use of gene therapy to correct rare immune system disorders has highlighted the enormous potential of such therapies. We review the current state of gene therapy for childhood immune system disorders, and consider why these conditions have been particularly amenable to genetic correction. As with all emerging therapies, there have been unexpected side effects and their underlying mechanisms are the subject of intense research. Minimising such risks through improved vector design will play an important role in developing the next generation of gene based therapies and extending their applicability. PMID:17954483

  4. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  5. Regulation of the CCN genes by vitamin D: A possible adjuvant therapy in the treatment of cancer and fibrosis.

    PubMed

    Piszczatowski, Richard T; Lents, Nathan H

    2016-10-01

    The CCN family is composed of six cysteine-rich, modular, and conserved proteins whose functions span a variety of tissues and include cell proliferation, adhesion, angiogenesis, and wound healing. Roles for the CCN proteins throughout the entire body including the skin, kidney, brain, blood vessels, hematopoietic compartment and others, are continuously being elucidated. Likewise, an understanding of the regulation of this important gene family is constantly becoming clearer, through identification of transcription factors that directly activate, repress, or respond to upstream cell signaling pathways, as well as other forms of gene expression control. Vitamin D (1,25-dihydroxyvitamin D3 or calcitriol), a vitamin essential for numerous biological processes, acts as a potent gene expression modulator. The regulation of the CCN gene family members by calcitriol has been described in many contexts. Here, we provide a concise and thorough overview of what is known about calcitriol and its regulation of the CCN genes, and argue that its regulation is of physiological importance in a wide breadth of tissues in which CCN genes function. In addition, we highlight the effects of vitamin D on CCN gene expression in the setting of two common pathologic conditions, fibrosis and cancer, and propose that the therapeutic effects of vitamin D3 described in these disease states may in part be attributable to CCN gene modulation. As vitamin D is perfectly safe in a wide range of doses and already showing promise as an adjuvant therapeutic agent, a deeper understanding of its control of CCN gene expression may have profound implications in clinical management of disease.

  6. [Gene therapy of SCID-X1].

    PubMed

    Baum, C; Schambach, A; Modlich, U; Thrasher, A

    2007-12-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited disease caused by inactivating mutations in the gene encoding the interleukin 2 receptor common gamma chain (IL2RG), which is located on the X-chromosome. Affected boys fail to develop two major effector cell types of the immune system (T cells and NK cells) and suffer from a functional B cell defect. Although drugs such as antibiotics can offer partial protection, the boys normally die in the first year of life in the absence of a curative therapy. For a third of the children, bone marrow transplantation from a fully matched donor is available and can cure the disease without major side effects. Mismatched bone marrow transplantation, however, is complicated by severe and potentially lethal side effects. Over the past decade, scientists worldwide have developed new treatments by introducing a correct copy of the IL2RG-cDNA. Gene therapy was highly effective when applied in young children. However, in a few patients the IL2RG-gene vector has unfortunately caused leukaemia. Activation of cellular proto-oncogenes by accidental integration of the gene vector has been identified as the underlying mechanism. In future clinical trials, improved vector technology in combination with other protocol modifications may reduce the risk of this side effect.

  7. Gene therapy returns to centre stage.

    PubMed

    Naldini, Luigi

    2015-10-15

    Recent clinical trials of gene therapy have shown remarkable therapeutic benefits and an excellent safety record. They provide evidence for the long-sought promise of gene therapy to deliver 'cures' for some otherwise terminal or severely disabling conditions. Behind these advances lie improved vector designs that enable the safe delivery of therapeutic genes to specific cells. Technologies for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.

  8. Vectors and strategies for nonviral cancer gene therapy.

    PubMed

    Pahle, Jessica; Walther, Wolfgang

    2016-01-01

    This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.

  9. Towards gene therapy for deafness.

    PubMed

    Di Domenico, Marina; Ricciardi, Carmela; Martone, Tiziana; Mazzarella, Nicoletta; Cassandro, Claudia; Chiarella, Giuseppe; D'Angelo, Luigi; Cassandro, Ettore

    2011-10-01

    Many hearing disorders are associated with the damage or loss of sensory hair cells (HC) which can produce a profound and irreversible deafness. Apoptosis pathway is reported to play an important role leading to rapid expansion of the HC lesion after exposure to intense noise. Furthermore, progress made over the last year in understanding molecular mechanisms involved in the proliferative and regenerative capacity of sensory cells in the mammalian inner ear has raised the possibility that targeted therapies might prevent the loss of these cells and preserve the patient's hearing. A first step towards the successful therapeutic exploitation is a better understanding of the different pathways that control survival and proliferation of sensory cells. In this review, we provide an overview of recent findings concerning the possibility to prevent apoptosis in auditory cells. We also show the current knowledge on the molecular mechanisms involved in the potential regenerative behavior of these cells and the progress of gene therapy to prevent deafness noise-induced.

  10. Bio and nanotechnological strategies for tumor-targeted gene therapy.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Katayama, Yoshiki

    2010-01-01

    Gene therapy is a new medical approach for the treatment of tumors. For safe and efficient gene therapy, therapeutic genes need to be delivered efficiently into the target tumor cells. Development of gene delivery systems to specifically recognize and target tumor cells and to distinguish them from normal cells, especially in the same tissue or organ, is one of the most important issues regarding the present gene delivery methodologies. The enhanced permeability and retention (EPR) effect using the characteristics of angiogenic tumor blood vessels, as well as gene delivery systems recognizing hyperactivated receptors or intracellular signals, is broadly applied to tumor-targeted gene therapy. In addition, bacterial vectors can be a useful means for targeting hypoxic or anoxic regions of a tumor.

  11. Large animal models of neurological disorders for gene therapy.

    PubMed

    Gagliardi, Christine; Bunnell, Bruce A

    2009-01-01

    he development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinsons disease, Huntingtons disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research.

  12. Stem-Cell-Based Gene Therapy for HIV Infection

    PubMed Central

    Zhen, Anjie; Kitchen, Scott

    2013-01-01

    Despite the enormous success of combined anti-retroviral therapy, HIV infection is still a lifelong disease and continues to spread rapidly worldwide. There is a pressing need to develop a treatment that will cure HIV infection. Recent progress in stem cell manipulation and advancements in humanized mouse models have allowed rapid developments of gene therapy for HIV treatment. In this review, we will discuss two aspects of HIV gene therapy using human hematopoietic stem cells. The first is to generate immune systems resistant to HIV infection while the second strategy involves enhancing anti-HIV immunity to eliminate HIV infected cells. PMID:24368413

  13. Stem-cell-based gene therapy for HIV infection.

    PubMed

    Zhen, Anjie; Kitchen, Scott

    2013-12-24

    Despite the enormous success of combined anti-retroviral therapy, HIV infection is still a lifelong disease and continues to spread rapidly worldwide. There is a pressing need to develop a treatment that will cure HIV infection. Recent progress in stem cell manipulation and advancements in humanized mouse models have allowed rapid developments of gene therapy for HIV treatment. In this review, we will discuss two aspects of HIV gene therapy using human hematopoietic stem cells. The first is to generate immune systems resistant to HIV infection while the second strategy involves enhancing anti-HIV immunity to eliminate HIV infected cells.

  14. Gene Therapy and Gene Editing for the Corneal Dystrophies.

    PubMed

    Williams, Keryn A; Irani, Yazad D

    2016-01-01

    Despite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.

  15. Gene therapy oversight: lessons for nanobiotechnology.

    PubMed

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology.

  16. Opportunities and challenges in combination gene cancer therapy.

    PubMed

    Nastiuk, Kent L; Krolewski, John J

    2016-03-01

    Treatment for solid tumor malignancies, which constitute the majority of human cancers, is still dominated by surgery and radiotherapies. This is especially true for many localized solid tumors, which are often curable with these treatments. However, metastatic cancers are beyond the reach of these therapies, and many localized cancers that are initially treated with surgery and radiation will recur and metastasize. Thus, for over 60years there has been a concerted effort to develop effective drug treatments for metastatic cancers. Combination therapies are an increasingly important part of the anti-cancer drug armamentarium. In the case of cytotoxic chemotherapy, multi-drug regimens rapidly became the norm, as the earliest single agents were relatively ineffective. In contrast to chemotherapy, where combination therapies were required in order to achieve treatment efficacy, for both hormonal and targeted therapies the impetus to move toward the use of combination therapies is to prevent or reverse the development of treatment resistance. In addition, emerging evidence suggests that combination therapy may also improve cancer treatment by neutralizing an emerging treatment side effect termed therapy-induced metastasis, which accompanies some effective single agent therapies. Finally, although gene therapy is still far from use in the clinic, we propose that combination therapies may enhance its effectiveness. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Gene therapy for heart failure: where do we stand?

    PubMed

    Naim, Charbel; Yerevanian, Armen; Hajjar, Roger J

    2013-02-01

    Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Multiple components of cardiac contractility, including the Beta-adrenergic system, the calcium channel cycling pathway, and cytokine mediated cell proliferation, have been identified as appropriate targets for gene therapy. The development of efficient and safe vectors such as adeno-associated viruses and polymer nanoparticles has provided an opportunity for clinical application for gene therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) has the potential to open a new era for gene therapy in the treatment of heart failure.

  18. Gene therapy: progress in childhood disease.

    PubMed

    Ginn, Samantha L; Alexander, Ian E

    2012-06-01

    The recent sequencing of the human genome combined with the development of massively high throughput genetic analysis technologies is driving unprecedented growth in our knowledge of the molecular basis of disease. While this has already had a major impact on our diagnostic power, the therapeutic benefits remain largely unrealised. This review examines progress in the exciting and challenging field of gene therapy. In particular we focus on the treatment of genetic disease in infants and children where the most significant successes have been observed to date, despite the majority of trial participants being adults. Notably, gene transfer to the haematopoietic compartment has provided the clearest examples of therapeutic benefit, particularly in the context of primary immunodeficiencies. The triumphs and tribulations of these successes are explored, and the key challenges confronting researchers as they seek to further advance the field are defined and discussed.

  19. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    PubMed

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  20. Gene, stem cell, and future therapies for orphan diseases.

    PubMed

    Phillips, M Ian

    2012-08-01

    There are an estimated 7,000 "orphan diseases," but treatments are currently available for only about 5% of them. Recent progress in the advanced platforms of gene therapy, stem cell therapy, gene modification, and gene correction offers possibilities for new therapies and cures for rare diseases. Many rare diseases are genetic in origin, and gene therapy is being successfully applied to treat them. Human stem cell therapy, apart from bone marrow transplants, is still experimental. Genetic modification of stem cells can make stem cell-based products more effective. Autologous induced pluripotent stem (iPS) cells, when combined with new classes of artificial nucleases, have great potential in the ex vivo repair of specific mutated DNA sequences (zinc-finger proteins and transactivator-like effector nucleases). Patient-specific iPS cells can be corrected and transplanted back into the patient. Stem cells secrete paracrine factors that could become new therapeutic tools in the treatment of orphan diseases. Gene therapy and stem cell therapy with DNA repair are promising approaches to the treatment of rare, intractable diseases.

  1. Gene therapy: regulations, ethics and its practicalities in liver disease.

    PubMed

    Jin, Xi; Yang, Yi-Da; Li, You-Ming

    2008-04-21

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases. By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity, inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  2. Imaging techniques: new avenues in cancer gene and cell therapy.

    PubMed

    Saadatpour, Z; Rezaei, A; Ebrahimnejad, H; Baghaei, B; Bjorklund, G; Chartrand, M; Sahebkar, A; Morovati, H; Mirzaei, H R; Mirzaei, H

    2017-01-01

    Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.

  3. Gene therapy for the fetus: is there a future?

    PubMed

    David, Anna L; Peebles, Donald

    2008-02-01

    Gene therapy uses the intracellular delivery of genetic material for the treatment of disease. A wide range of diseases - including cancer, vascular and neurodegenerative disorders and inherited genetic diseases - are being considered as targets for this therapy in adults. There are particular reasons why fetal application might prove better than application in the adult for treatment, or even prevention of early-onset genetic disorders such as cystic fibrosis and Duchenne muscular dystrophy. Research shows that gene transfer to the developing fetus targets rapidly expanding populations of stem cells, which are inaccessible after birth, and indicates that the use of integrating vector systems results in permanent gene transfer. In animal models of congenital disease such as haemophilia, studies show that the functionally immature fetal immune system does not respond to the product of the introduced gene, and therefore immune tolerance can be induced. This means that treatment could be repeated after birth, if that was necessary to continue to correct the disease. For clinicians and parents, fetal gene therapy would give a third choice following prenatal diagnosis of inherited disease, where termination of pregnancy or acceptance of an affected child are currently the only options. Application of this therapy in the fetus must be safe, reliable and cost-effective. Recent developments in the understanding of genetic disease, vector design, and minimally invasive delivery techniques have brought fetal gene therapy closer to clinical practice. However more research needs to be done in before it can be introduced as a therapy.

  4. Late changes in cutaneous gene expression patterns after adjuvant treatment of oral squamous cell carcinoma (OSCC) by radiation therapy.

    PubMed

    Mueller, Cornelia K; Thorwarth, Michael; Schultze-Mosgau, Stefan

    2010-05-01

    The objective of this study was to investigate radiation-induced late changes in cutaneous gene expression using a microarray platform and quantitative, real-time, reverse-transcriptase polymerase chain reaction (RT-PCR) validation. Paired irradiated and nonirradiated skin biopsies were obtained from 19 patients with a history of oral squamous cell carcinoma (OSCC) treated by surgery and adjuvant radiotherapy at the time of secondary corrective surgery. Topic-defined PIQOR (Parallel Identification and Quantification of RNAs) skin microarrays were used to compare gene expression profiles between control and irradiated skin sample in 8 patients. The data were validated for matrixmetalloproteinase (MMP)-1 and tissue-inhibitor of matrixmetalloproteinase (TIMP)-1 by RT-PCR for all patients. Irradiation markedly enhanced the expression of molecules associated with the transforming growth factor (TGF)-beta(1) signaling pathway, blood vessel development, as well as extracellular matrix constitution and turn-over. Our data suggest that radiation-induced late changes in cutaneous gene expression mainly affect molecules related to extracellular matrix (ECM)-constitution and-remodeling. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  5. Different gene therapy strategies: a overview for prostate cancer.

    PubMed

    Gomes de Souza, Aline; Bastos, Victor Alexandre Felix; Silva, Isaura Beatriz Borges; Marangoni, Karina; Goulart, Vivian Alonso

    2016-11-15

    Gene therapy emerged as a mighty alternative for conventional treatment of multiple diseases. It has been defined as a product "that mediate their effects by transcription and/or translation of transferred genetic material and/or by integrating into the host genome and that are administered as nucleic acids, viruses, or genetically engineered microorganisms. The products may be used to modify cells in vivo or transferred to cells ex vivo prior to administration to the recipient". The first therapeutic gene therapy human trial was conducted in 1990 by Michael R. Blaese, and besides its potential, the technique suffered a major drawback after the tragically dead of Jesse Gelsinger, caused by his immune response against the viral vector used in his treatment. To date, gene therapy has regained some popularity and more than 2000 clinical trials are ongoing, most of them related to the treatment or prevention of various types of cancer. Nevertheless, some types of cancer contain a rare population of stem-like cells, capable of differentiation into tumor cells, promoting the re-incidence of tumors. Those cells are generally more resilient to chemotherapy and radiotherapy and are related to tumor initiation, progression, recurrence and metastasis. The human prostate cancer (PCa) is highly heterogeneous and multifactorial, and even the markers are not precise enough to predict the clinical outcome. Furthermore, even though currently therapies can efficiently remove the tumors, the re-incidence rates are high. Gene therapy offers a handful of treatments that can halt oncogenes activation, promote the expression of suppressor genes or targeting cancer cells directly and inducing apoptosis. Besides the risks involved, gene therapy can be of great help in the treatment of cancers and other diseases. This review aims to address the safety and potential of different gene therapy strategies used in the treatment of cancers.

  6. Genetic basis and gene therapy trials for thyroid cancer.

    PubMed

    Al-Humadi, Hussam; Zarros, Apostolos; Al-Saigh, Rafal; Liapi, Charis

    2010-01-01

    Gene therapy is regarded as one of the most promising novel therapeutic approaches for hopeless cases of thyroid cancer and those not responding to traditional treatment. In the last two decades, many studies have focused on the genetic factors behind the origin and the development of thyroid cancer, in order to investigate and shed more light on the molecular pathways implicated in different differentiated or undifferentiated types of thyroid tumors. We, herein, review the current data on the main genes that have been proven to (or thought to) be implicated in thyroid cancer etiology, and which are involved in several well-known signaling pathways (such as the mitogen-activated protein kinase and phosphatidylinositol-3-kinase/Akt pathways). Moreover, we review the results of the efforts made through multiple gene therapy trials, via several gene therapy approaches/strategies, on different thyroid carcinomas. Our review leads to the conclusion that future research efforts should seriously consider gene therapy for the treatment of thyroid cancer, and, thus, should: (a) shed more light on the molecular basis of thyroid cancer tumorigenesis, (b) focus on the development of novel gene therapy approaches that can achieve the required antitumoral efficacy with minimum normal tissue toxicity, as well as (c) perform more gene therapy clinical trials, in order to acquire more data on the efficacy of the examined approaches and to record the provoked adverse effects.

  7. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    PubMed Central

    Barar, Jaleh; Omidi, Yadollah

    2012-01-01

    Introduction Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications. PMID:23678451

  8. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy.

    PubMed

    Oliván, Sara; Calvo, Ana C; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons "in vitro" and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

  9. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Oliván, Sara; Calvo, Ana C.; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F.; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons “in vitro” and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease. PMID:27605908

  10. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... gene therapy products for the treatment of retinal disorders. Topics to be considered include the...

  11. The interplay of post-translational modification and gene therapy

    PubMed Central

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. PMID:27013864

  12. Synergistic nanomedicine by combined gene and photothermal therapy.

    PubMed

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.

  13. The interplay of post-translational modification and gene therapy.

    PubMed

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery.

  14. The roles of traditional Chinese medicine in gene therapy.

    PubMed

    Ling, Chang-quan; Wang, Li-na; Wang, Yuan; Zhang, Yuan-hui; Yin, Zi-fei; Wang, Meng; Ling, Chen

    2014-03-01

    The field of gene therapy has been increasingly studied in the last four decades, and its clinical application has become a reality in the last 15 years. Traditional Chinese medicine (TCM), an important component of complementary and alternative medicine, has evolved over thousands of years with its own unique system of theories, diagnostics and therapies. TCM is well-known for its various roles in preventing and treating infectious and chronic diseases, and its usage in other modern clinical practice. However, whether TCM can be applied alongside gene therapy is a topic that has not been systematically examined. Here we provide an overview of TCM theories in relation to gene therapy. We believe that TCM theories are congruent with some principles of gene therapy. TCM-derived drugs may also act as gene therapy vehicles, therapeutic genes, synergistic therapeutic treatments, and as co-administrated drugs to reduce side effects. We also discuss in this review some possible approaches to combine TCM and gene therapy.

  15. Emerging biotechnological strategies for non-viral antiangiogenic gene therapy.

    PubMed

    Liu, Chunxi; Zhang, Na

    2012-12-01

    Angiogenesis has emerged as a promising target of cancer treatment. With the development of biotechnology, major progress has been made in the exploring effective therapies on targeting tumor angiogenesis over the last 20 years. Gene therapy has attracted considerable interest by virtue of the capabilities of expressing sustained levels of therapeutic agents within cells of the patients. However, the major challenge of gene therapy is the efficient delivery of therapeutic gene to the target site. Compared with viral strategies, non-viral strategies were more acceptable by their widely recognized security and lower side effects. This paper reviews the basic biology of angiogenesis, the potential advantages of antiangiogenic gene therapy, the therapeutic genetic drugs developed through biotechnology, as well as the biotechnological strategies that enhancing non-viral gene therapy targeting to tumor angiogenesis in a more controlled manner, with great respect to RNA interference, ligand-directed vascular targeting strategies, vascular endothelial growth factor pathway and tumor associated macrophages targeting. In conclusion, antiangiogenic gene therapy holds great promise in advancing cancer therapy. Developing better non-viral biotechnological platforms will benefit antiangiogenic targeted cancer gene therapeutic methods, support their evaluation in human clinical trials and realize the actual utilization in the near future.

  16. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    PubMed Central

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years. PMID:24312844

  17. Regulatory Oversight of Gene Therapy and Cell Therapy Products in Korea.

    PubMed

    Choi, Minjoung; Han, Euiri; Lee, Sunmi; Kim, Taegyun; Shin, Won

    2015-01-01

    The Ministry of Food and Drug Safety regulates gene therapy and cell therapy products as biological products under the authority of the Pharmaceutical Affairs Act. As with other medicinal products, gene therapy and cell therapy products are subject to approval for use in clinical trials and for a subsequent marketing authorization and to post-market surveillance. Research and development of gene therapy and cell therapy products have been progressing rapidly in Korea with extensive investment, offering great potential for the treatment of various serious diseases. To facilitate development of safe and effective products and provide more opportunities to patients suffering from severe diseases, several regulatory programs, such as the use of investigational products for emergency situations, fast-track approval, prereview of application packages, and intensive regulatory consultation, can be applied to these products. The regulatory approach for these innovative products is case by case and founded on science-based review that is flexible and balances the risks and benefits.

  18. Gene therapy for sickle cell disease.

    PubMed

    Olowoyeye, Abiola; Okwundu, Charles I

    2016-11-14

    Sickle cell disease encompasses a group of genetic disorders characterized by the presence of at least one hemoglobin S (Hb S) allele, and a second abnormal allele that could allow abnormal hemoglobin polymerisation leading to a symptomatic disorder.Autosomal recessive disorders (such as sickle cell disease) are good candidates for gene therapy because a normal phenotype can be restored in diseased cells with only a single normal copy of the mutant gene. This is an update of a previously published Cochrane Review. The objectives of this review are:to determine whether gene therapy can improve survival and prevent symptoms and complications associated with sickle cell disease;to examine the risks of gene therapy against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises of references identified from comprehensive electronic database searches and searching relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 15 August 2016. All randomised or quasi-randomised clinical trials (including any relevant phase 1, 2 or 3 trials) of gene therapy for all individuals with sickle cell disease, regardless of age or setting. No trials of gene therapy for sickle cell disease were found. No trials of gene therapy for sickle cell disease were reported. No randomised or quasi-randomised clinical trials of gene therapy for sickle cell disease were reported. Thus, no objective conclusions or recommendations in practice can be made on gene therapy for sickle cell disease. This systematic review has identified the need for well-designed, randomised controlled trials to assess the benefits and risks of gene therapy for sickle cell disease.

  19. [Gene therapy of neurological diseases].

    PubMed

    Kahn, A; Haase, G; Akli, S; Guidotti, J E

    1996-01-01

    transgenes transferred through adenoviral vectors, we have constructed vectors with cDNAs or genes for various neutrophic factors: CNTF, NT3, BDNF and GDNF. These vectors were biologically active on target cells, ex vivo and in vivo. In the pmn mouse model of progressive motor neuronal degeneration, some of these vectors, alone or combined, allowed for prolongation of life of homozygous animals by more than two fold, and for decrease in the demyelination of phrenic nerve axons. Finally, we have also constructed an adenoviral vector carrying the alpha-hexosaminidase cDNA, encoding the enzyme subunit deficient in Tay Sachs patients. This vector permitted to normalize ganglioside metabolism in Tay Sachs fibroblasts and is currently tested in knock out mice deficient in hexosaminidase A. In spite of all these encouraging results, we are nevertheless aware that progress in vector design and delivery strategies will be needed before gene therapy can become a realistic therapeutical strategy in humans.

  20. Preclinical studies for gene therapy of Duchenne muscular dystrophy.

    PubMed

    Odom, Guy L; Banks, Glen B; Schultz, Brian R; Gregorevic, Paul; Chamberlain, Jeffrey S

    2010-09-01

    The muscular dystrophies are a diverse group of genetic disorders without an effective treatment. Because they are caused by mutations in various genes, the most direct way to treat them involves correcting the underlying gene defect (ie, gene therapy). Such a gene therapy approach involves delivering a therapeutic gene cassette to essentially all the muscles of the body in a safe and efficacious manner. The authors describe gene delivery methods using vectors derived from adeno-associated virus that are showing great promise in preclinical studies for treatment of Duchenne muscular dystrophy. It is hoped that variations on these methods might be applicable for most, if not all, of the different types of muscular dystrophy.

  1. Gene therapy for B cell lymphomas.

    PubMed

    Fielding, A K; Russell, S J

    1997-01-01

    The use of genes or genetically modified cells for therapeutic benefit is likely to have a significant therapeutic role for patients with B cell lymphomas in the future. To date, most gene therapy strategies applicable to the therapy of these diseases have not reached the point of clinical study. Adoptive immunotherapy using donor leucocyte infusion to treat aggressive B cell neoplasms in immunosuppressed patients has, however, shown great promise clinically, and studies of idiotypic vaccination in patients with low grade B cell neoplasms are also under way. Results from in vitro and animal studies continue to suggest that it may become possible to use the immune system for therapeutic benefit, and many current basic research strategies in the gene therapy of B cell non-Hodgkin's lymphoma are based on immune modulation of T cells or tumour cells themselves. Other major approaches to gene therapy for B cell malignancies include the introduction of directly toxic or "suicide genes" into B cells or the chemoprotection of haemopoietic stem cells by the introduction of drug resistance genes. All of these approaches require efficient and accurate gene transfer as well as correct expression of the gene product within the target cell. Although some way from therapeutic use, specific targeting of gene delivery is an area of active investigation and will be of value in many of the gene therapy strategies applicable to B cell lymphomas.

  2. Investor Outlook: Gene Therapy Picking up Steam; At a Crossroads.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2016-09-01

    The gene therapy field continues to pick up steam with recent successes in a number of different therapeutic indications that highlight the potential for the platform. As the field continues to make progress, a growing data set of long-term safety and efficacy data will continue to define gene therapy's role, determining ultimately how widely it may be used beyond rare, serious diseases with high unmet needs. New technologies often take unanticipated twists and turns as patient exposure accumulates, and gene therapy may be no exception. That said, with many diseases that have no other treatment options beyond gene therapy and that present considerable morbidity and mortality, the field appears poised to withstand some minor and even major bumps in the road should they emerge.

  3. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  4. Developing an Outcome Measure With High Luminance for Optogenetics Treatment of Severe Retinal Degenerations and for Gene Therapy of Cone Diseases

    PubMed Central

    Cideciyan, Artur V.; Roman, Alejandro J.; Jacobson, Samuel G.; Yan, Boyuan; Pascolini, Michele; Charng, Jason; Pajaro, Simone; Nirenberg, Sheila

    2016-01-01

    Purpose To present stimuli with varied sizes, colors, and patterns over a large range of luminance. Methods The filter bar used in scotopic MP1 was replaced with a custom slide-in tray that introduces light from an external projector driven by an additional computer. MP1 software was modified to provide retinal tracking information to the computer driving the projector. Retinal tracking performance was evaluated by imaging the system input and the output simultaneously with a high-speed video system. Spatial resolution was measured with achromatic and chromatic grating/background combinations over scotopic and photopic ranges. Results The range of retinal illuminance achievable by the modification was up to 6.8 log photopic Trolands (phot-Td); however, in the current work, only a lower range over −4 to +3 log phot-Td was tested in human subjects. Optical magnification was optimized for low-vision testing with gratings from 4.5 to 0.2 cyc/deg. In normal subjects, spatial resolution driven by rods, short wavelength-sensitive (S-) cones, and long/middle wavelength-sensitive (L/M-) cones was obtained by the choice of adapting conditions and wavelengths of grating and background. Data from a patient with blue cone monochromacy was used to confirm mediation. Conclusions The modified MP1 can be developed into an outcome measure for treatments in patients with severe retinal degeneration, very low vision, and abnormal eye movements such as those for whom treatment with optogenetics is planned, as well as for patients with cone disorders such as blue cone monochromacy for whom treatment with gene therapy is planned to improve L/M-cone function above a normal complement of rod and S-cone function. PMID:27309625

  5. Developing an Outcome Measure With High Luminance for Optogenetics Treatment of Severe Retinal Degenerations and for Gene Therapy of Cone Diseases.

    PubMed

    Cideciyan, Artur V; Roman, Alejandro J; Jacobson, Samuel G; Yan, Boyuan; Pascolini, Michele; Charng, Jason; Pajaro, Simone; Nirenberg, Sheila

    2016-06-01

    To present stimuli with varied sizes, colors, and patterns over a large range of luminance. The filter bar used in scotopic MP1 was replaced with a custom slide-in tray that introduces light from an external projector driven by an additional computer. MP1 software was modified to provide retinal tracking information to the computer driving the projector. Retinal tracking performance was evaluated by imaging the system input and the output simultaneously with a high-speed video system. Spatial resolution was measured with achromatic and chromatic grating/background combinations over scotopic and photopic ranges. The range of retinal illuminance achievable by the modification was up to 6.8 log photopic Trolands (phot-Td); however, in the current work, only a lower range over -4 to +3 log phot-Td was tested in human subjects. Optical magnification was optimized for low-vision testing with gratings from 4.5 to 0.2 cyc/deg. In normal subjects, spatial resolution driven by rods, short wavelength-sensitive (S-) cones, and long/middle wavelength-sensitive (L/M-) cones was obtained by the choice of adapting conditions and wavelengths of grating and background. Data from a patient with blue cone monochromacy was used to confirm mediation. The modified MP1 can be developed into an outcome measure for treatments in patients with severe retinal degeneration, very low vision, and abnormal eye movements such as those for whom treatment with optogenetics is planned, as well as for patients with cone disorders such as blue cone monochromacy for whom treatment with gene therapy is planned to improve L/M-cone function above a normal complement of rod and S-cone function.

  6. Gene replacement therapy for genetic hepatocellular jaundice.

    PubMed

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  7. Progresses towards safe and efficient gene therapy vectors

    PubMed Central

    Chira, Sergiu; Jackson, Carlo S.; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S.; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A.; Berindan-Neagoe, Ioana

    2015-01-01

    The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors. PMID:26362400

  8. Prevailing public perceptions of the ethics of gene therapy.

    PubMed

    Robillard, Julie M; Roskams-Edris, Dylan; Kuzeljevic, Boris; Illes, Judy

    2014-08-01

    Gene therapy research is advancing rapidly, and hopes of treating a large number of brain disorders exist alongside ethical concerns. Most surveys of public attitudes toward these ethical issues are already dated and the content of these surveys has been researcher-driven. To examine current public perceptions, we developed an online instrument that is responsive and relevant to the latest research about ethics, gene therapy, and the brain. The 16-question survey was launched with the platform Amazon Mechanical Turk and was made available to residents of Canada and the United States. The survey was divided into six themes: (1) demographic information, (2) general opinions about gene therapy, (3) medical applications of gene therapy, (4) identity and moral/belief systems, (5) enhancement, and (6) risks. We received and analyzed responses from a total of 467 participants. Our results show that a majority of respondents (>90%) accept gene therapy as a treatment for severe illnesses such as Alzheimer disease, but this receptivity decreases for conditions perceived as less severe such as attention deficit hyperactivity disorder (79%), and for nontherapeutic applications (47%). The greatest area of concern for the application of gene therapy to brain conditions is the fear of not receiving sufficient information before undergoing the treatment. The main ethical concerns with enhancement were the potential for disparities in resource allocation, access to the procedure, and discrimination. When comparing these data with those from the 1990s, our findings suggest that the acceptability of gene therapy is increasing and that this trend is occurring despite lingering concerns over ethical issues. Providing the public and patients with up-to-date information and opportunities to engage in the discourse about areas of research in gene therapy is a priority.

  9. Development of gene and stem cell therapy for ocular neurodegeneration

    PubMed Central

    Zhang, Jing-Xue; Wang, Ning-Li; Lu, Qing-Jun

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology. PMID:26086019

  10. Current developments in anti-HIV/AIDS gene therapy.

    PubMed

    Tsygankov, Alexander Y

    2009-02-01

    Since the introduction of highly active retroviral therapy (HAART) in 1996, dramatic improvements in therapeutic treatment modalities for HIV type 1 (HIV-1) infection have occurred. Potent drug combinations in HAART regimens efficiently block HIV-1 replication in most patients; however, multiple shortcomings of HAART are apparent and require novel treatments that can be utilized in combination with HAART or as stand-alone therapies. Gene therapy of HIV-1 represents one such treatment and several strategies are currently under development. This review focuses on advancements in the gene therapy of HIV/AIDS by highlighting the progress made in selecting new therapeutic targets and developing novel tools to exert an effect on these targets. In addition, new trends emerging from this progress are summarized. This review is based primarily on literature published between 2006 and 2008.

  11. Gene therapy for age-related macular degeneration.

    PubMed

    Moore, Nicholas A; Bracha, Peter; Hussain, Rehan M; Morral, Nuria; Ciulla, Thomas A

    2017-10-01

    In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.

  12. Bone Marrow Gene Therapy for HIV/AIDS

    PubMed Central

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-01-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described. PMID:26193303

  13. Bone Marrow Gene Therapy for HIV/AIDS.

    PubMed

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-07-17

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  14. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  15. Tweaking the immune system: gene therapy-assisted autologous haematopoietic stem cell transplantation as a treatment for autoimmune disease.

    PubMed

    Alderuccio, Frank; Chan, James; Toh, Ban-Hock

    2008-12-01

    Autoimmune diseases represent a major challenge for medical research. The aberrant self-recognition by the immune system leads to a range of pathologies for which cures have not been forthcoming. Treatments are commonly non-specific and often lead to unwanted side-effects. A number of strategies are currently being explored to tackle autoimmunity; aimed at eliminating existing pathogenic clones and the induction of immune tolerance through resetting or regulating the immune system. Autologous haematopoietic stem cell transplantation (HSCT) is one such strategy and is being trailed in a number of autoimmune diseases. However, a common feature of this strategy is disease relapse and may indicate incomplete tolerance mechanisms. It is well known that bone marrow derived cells have a major influence on immune tolerance. It is also well documented that ectopic expression of antigens within the immune system can promote robust tolerance. This review considers these observations in the context of promoting a strategy involving genetic manipulation of haematopoietic stem cells together with HSCT to induce immune tolerance and tackle autoimmunity.

  16. In Vivo Noninvasive Imaging for Gene Therapy

    PubMed Central

    2003-01-01

    Gene therapy is reaching a stage where some clinical benefits have been demonstrated on patients involved in phase I/II clinical trials. However, in many cases, the clinical benefit is hardly measurable and progress in the improvement of gene therapy formulations is hampered by the lack of objective clinical endpoints to measure transgene delivery and to quantitate transgene expression. However, these endpoints rely almost exclusively on the analysis of biopsies by molecular and histopathological methods. These methods provide only a limited picture of the situation. Therefore, there is a need for a technology that would allow precise, spacio-temporal measurement of gene expression on a whole body scale upon administration of the gene delivery vector. In the field of gene therapy, a considerable effort is being invested in the development of noninvasive imaging of gene expression and this review presents the various strategies currently being developed. PMID:12721514

  17. [Gene therapy: current status and promise].

    PubMed

    Kaneda, Y

    2001-04-01

    As of summer 2000, more than 400 protocols developed for human gene therapy have been reported, and there have been recent successful applications in some diseases such as arteriosclerosis obliterance, immunodeficiency X-1 (SCID-X1) and hemophilia B. However, complications have also occurred. Successful gene therapy is dependent on the development of an effective gene delivery system. One approach is development of chimeric vector systems that combine at least two different vector systems. However, a perfect vector system has not yet been constructed. Difficulties of in vivo gene transfer appear to result from resistance of living cells to invasion by foreign materials and from interference of cellular functions. We should reevaluate what barriers in tissues affect in vivo gene transfection and how to solve these problems for gene therapy. Moreover, in Japan, there should be more extensive preparation of social systems to promote clinical trials based on basic research.

  18. The research of nanoparticles as gene vector for tumor gene therapy.

    PubMed

    Sun, Nian-feng; Liu, Zhan-ao; Huang, Wen-bai; Tian, Ai-ling; Hu, San-yuan

    2014-03-01

    With the development of molecular biology, the application of the gene therapy becomes a tendency in the development of oncotherapy. The gene therapy has been acknowledged as the major progress of modern medicine, also a focus in the oncotherapy research. Commonly vectors of the gene therapy mainly include two categories, namely, viral vectors and nonviral vectors. Nanoparticles gene vector of various different kinds of materials, which belong to non-viral carriers. It presents excellent abilities of adsorption, concentration and protection of DNA, which can be attributed as a main reason of the adsorption and operation of nano-gene vector on exogenous genes. In this article, we mainly reviewed the recent studies of the characteristics of nanoparticles, characteristics and transport mechanism of nanoparticles as gene vector, the progress on nanoparticles as gene vector in tumor gene therapy. Nano-gene vectors, as new drug and gene carriers, present characteristics such as the controlled-release, targeting, and the improvement of bioavailability. Nanoparticles for cancer imaging and therapy have evolved rapidly during the last decade and it is expected that more and more will become clinical practise. In the near future, as a new nanometer gene delivery vector will be in medical research and treatment play a bigger role.

  19. Biodegradable nanoparticles for gene therapy technology

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-07-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  20. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    PubMed

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  1. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    PubMed Central

    Wang, Dan; Gao, Guangping

    2015-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future. PMID:25227756

  2. The hair follicle as a target for gene therapy.

    PubMed

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  3. [Scientific ethics of gene therapy for individuals. The urgency for DNA gene surgery].

    PubMed

    Valenzuela, Carlos Y

    2003-10-01

    Gene therapy for individuals is mainly directed to somatic or germ cells. The present technology aims to insert a DNA segment in the recipient cells. This therapy is useful in Mendelian recessive diseases. There is an ethical moratorium to perform insertion gene therapy in germ cells, because this procedure increases the human genome. Somatic cell gene therapy cures individuals but increases the gene frequency of genetic diseases in the population. This occurs because the descendants of the cured patient should carry his or her "ill" genes. We denots by "DNA gene surgery" the procedure that replaces "ill" nucleotide(s) by healthy one(s) conserving the genome size and the gene context of expression and regulation. Several procedures for gene surgery have been applied to cells and animals. Those based on DNA repair as Chimeric RNA/DNA, one stranded oligonucleotides and tristranded DNA. Those based on DNA recombination with oligo DNA or one stranded DNA, and transposable DNA segments. Gene surgery can be applied to germ cell gene therapy without ethical contraindications. It can cure Mendelian dominant diseases and it can be applied to heterozygotes. It preserves the regulation and expression gene context. If a technical safe procedure is available, the entire mankind could be treated and cured of all the Mendelian diseases, in one generation. Susceptibilities for all diseases could also be treated. The moratorium for research on germ cell gene therapy by gene surgery should be interrupted. Safe gene surgery is a moral imperative for gene therapy of patients and their descendants, for the treatment of dominant genetic diseases and for heterozygous carriers of recessive disorders.

  4. Clinical Predictors of Response to Cognitive-Behavioral Therapy in Pediatric Anxiety Disorders: The Genes for Treatment (GxT) Study.

    PubMed

    Hudson, Jennifer L; Keers, Robert; Roberts, Susanna; Coleman, Jonathan R I; Breen, Gerome; Arendt, Kristian; Bögels, Susan; Cooper, Peter; Creswell, Cathy; Hartman, Catharina; Heiervang, Einar R; Hötzel, Katrin; In-Albon, Tina; Lavallee, Kristen; Lyneham, Heidi J; Marin, Carla E; McKinnon, Anna; Meiser-Stedman, Richard; Morris, Talia; Nauta, Maaike; Rapee, Ronald M; Schneider, Silvia; Schneider, Sophie C; Silverman, Wendy K; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly; Wergeland, Gro Janne; Lester, Kathryn J; Eley, Thalia C

    2015-06-01

    The Genes for Treatment study is an international, multisite collaboration exploring the role of genetic, demographic, and clinical predictors in response to cognitive-behavioral therapy (CBT) in pediatric anxiety disorders. The current article, the first from the study, examined demographic and clinical predictors of response to CBT. We hypothesized that the child's gender, type of anxiety disorder, initial severity and comorbidity, and parents' psychopathology would significantly predict outcome. A sample of 1,519 children 5 to 18 years of age with a primary anxiety diagnosis received CBT across 11 sites. Outcome was defined as response (change in diagnostic severity) and remission (absence of the primary diagnosis) at each time point (posttreatment, 3-, 6-, and/or 12-month follow-up) and analyzed using linear and logistic mixed models. Separate analyses were conducted using data from posttreatment and follow-up assessments to explore the relative importance of predictors at these time points. Individuals with social anxiety disorder (SoAD) had significantly poorer outcomes (poorer response and lower rates of remission) than those with generalized anxiety disorder (GAD). Although individuals with specific phobia (SP) also had poorer outcomes than those with GAD at posttreatment, these differences were not maintained at follow-up. Both comorbid mood and externalizing disorders significantly predicted poorer outcomes at posttreatment and follow-up, whereas self-reported parental psychopathology had little effect on posttreatment outcomes but significantly predicted response (although not remission) at follow-up. SoAD, nonanxiety comorbidity, and parental psychopathology were associated with poorer outcomes after CBT. The results highlight the need for enhanced treatments for children at risk for poorer outcomes. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Clinical Predictors of Response to Cognitive-Behavioral Therapy in Pediatric Anxiety Disorders: The Genes for Treatment (GxT) Study

    PubMed Central

    Hudson, Jennifer L.; Keers, Robert; Roberts, Susanna; Coleman, Jonathan R.I.; Breen, Gerome; Arendt, Kristian; Bögels, Susan; Cooper, Peter; Creswell, Cathy; Hartman, Catharina; Heiervang, Einar R.; Hötzel, Katrin; In-Albon, Tina; Lavallee, Kristen; Lyneham, Heidi J.; Marin, Carla E.; McKinnon, Anna; Meiser-Stedman, Richard; Morris, Talia; Nauta, Maaike; Rapee, Ronald M.; Schneider, Silvia; Schneider, Sophie C.; Silverman, Wendy K.; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly; Wergeland, Gro Janne; Lester, Kathryn J.; Eley, Thalia C.

    2015-01-01

    Objective The Genes for Treatment study is an international, multisite collaboration exploring the role of genetic, demographic, and clinical predictors in response to cognitive-behavioral therapy (CBT) in pediatric anxiety disorders. The current article, the first from the study, examined demographic and clinical predictors of response to CBT. We hypothesized that the child’s gender, type of anxiety disorder, initial severity and comorbidity, and parents’ psychopathology would significantly predict outcome. Method A sample of 1,519 children 5 to 18 years of age with a primary anxiety diagnosis received CBT across 11 sites. Outcome was defined as response (change in diagnostic severity) and remission (absence of the primary diagnosis) at each time point (posttreatment, 3-, 6-, and/or 12-month follow-up) and analyzed using linear and logistic mixed models. Separate analyses were conducted using data from posttreatment and follow-up assessments to explore the relative importance of predictors at these time points. Results Individuals with social anxiety disorder (SoAD) had significantly poorer outcomes (poorer response and lower rates of remission) than those with generalized anxiety disorder (GAD). Although individuals with specific phobia (SP) also had poorer outcomes than those with GAD at posttreatment, these differences were not maintained at follow-up. Both comorbid mood and externalizing disorders significantly predicted poorer outcomes at posttreatment and follow-up, whereas self-reported parental psychopathology had little effect on posttreatment outcomes but significantly predicted response (although not remission) at follow-up. Conclusion SoAD, nonanxiety comorbidity, and parental psychopathology were associated with poorer outcomes after CBT. The results highlight the need for enhanced treatments for children at risk for poorer outcomes. PMID:26004660

  6. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    PubMed

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  7. Gene Therapy for Diseases and Genetic Disorders

    MedlinePlus

    ... notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA-SCID) ADA- ... in preclinical animal models of this disease. Other genetic disorders After many years of laboratory and preclinical ...

  8. [Specific gene therapy for hereditary retinal dystrophies - an update].

    PubMed

    Stieger, K; Lorenz, B

    2014-03-01

    Treatment possibilities based on specific gene therapy strategies have become reality for a small number of patients with hereditary retinal dystrophies and are currently under investigation in several clinical trials worldwide. The most advanced studies are for patients suffering from mutations in the RPE65 gene. In addition, studies are ongoing for patients with disease causing mutations in the MERTK, REP1, ABCA4, or Myosin7A gene. Depending on the size of the gene copy to be transferred, two vectors are currently used in clinical trials: vectors based on adeno-associated virus (AAV) or on lentivirus (equine infectious anaemia virus, EIAV). An important aspect of current research includes the capacity to objectively measure the treatment effect in patients, since this is currently limited. This article gives an overview of the current state of specific gene therapy for hereditary retinal dystrophies. Georg Thieme Verlag KG Stuttgart · New York.

  9. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  10. Revertant mosaicism in skin: natural gene therapy

    PubMed Central

    Lai-Cheong, Joey E.; McGrath, John A.; Uitto, Jouni

    2011-01-01

    Revertant mosaicism is a naturally occurring phenomenon involving spontaneous correction of a pathogenic mutation in a somatic cell. Recent studies suggest that it is not a rare event and that it could be clinically relevant to phenotypic expression and patient treatment. Indeed, revertant cell therapy represents a potential “natural gene therapy” because in vivo reversion obviates the need for further genetic correction. Revertant mosaicism has been observed in several inherited conditions, including epidermolysis bullosa, a heterogeneous group of blistering skin disorders. These diseases provide a useful model for studying revertant mosaicism because of the visual and accessible nature of skin. This overview highlights the latest developments in revertant mosaicism and the translational implications germane to heritable skin disorders. PMID:21195026

  11. Gene Therapy for Post-Traumatic Osteoarthritis

    DTIC Science & Technology

    2015-10-01

    chronic, degenerative, often crippling disease that primarily affects large weight bearing joints. There is strong evidence that interleukin - 1 (IL- 1 ) is a...Osteoarthritis (OA) Gene Therapy Equine Adeno-Associated Virus (AAV) Interleukin - 1 Receptor Antagonist (IL-1Ra) Post-traumatic OA (PTOA) Self...AD______________ AWARD NUMBER: W81XWH-14- 1 -0498 TITLE: Gene Therapy for Post-Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Steven C

  12. Gene therapy for inherited retinal degenerations.

    PubMed

    Dalkara, Deniz; Sahel, José-Alain

    2014-03-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Progress over the past decade has moved proof-of-concept gene therapies from bench to bedside. The remarkable success in safety and efficacy, in the phase I/II clinical trials for the form of the severe childhood-onset blindness, Leber's Congenital Amaurosis (LCA) type II (due to mutations in the RPE65 gene) generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was due to combining the favorable features of both the retina as a target organ and adeno-associated virus (AAV) as a vector. The retina offers several advantages for gene therapy approaches. It is an anatomically defined structure that is readily accessible for therapy and has some degree of immune privilege, making it suitable for application of viral vectors. AAV, on the other hand, is a non-pathogenic helper dependent virus that has little immunogenicity. This viral vector transduces quiescent cells efficiently and thanks to its small size diffuses well in the interneural matrix, making it suitable for applications in neural tissue. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases. This article will discuss what are some of the most imminent targets for such therapies and what are the challenges that we face in moving these therapies to the clinic.

  13. Strategies in Gene Therapy for Glioblastoma

    PubMed Central

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy. PMID:24202446

  14. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  15. Gene therapy and tissue engineering for sports medicine.

    PubMed

    Huard, Johnny; Li, Yong; Peng, Hairong; Fu, Freddie H

    2003-02-01

    Sports injuries usually involve tissues that display a limited capacity for healing. The treatment of sports injuries has improved over the past 10 to 20 years through sophisticated rehabilitation programs, novel operative techniques, and advances in the field of biomechanical research. Despite this considerable progress, no optimal solution has been found for treatment of various sports-related injuries, including muscle injuries, ligament and tendon ruptures, central meniscal tears, cartilage lesions, and delayed bone fracture healing. New biological approaches focus on the treatment of these injuries with growth factors to stimulate and hasten the healing process. Gene therapy using the transfer of defined genes encoding therapeutic proteins represents a promising way to efficiently deliver suitable growth factors into the injured tissue. Tissue engineering, which may eventually be combined with gene therapy, may potentially result in the creation of tissues or scaffolds for regeneration of tissue defects following trauma. In this article we will discuss why gene therapy and tissue engineering are becoming increasingly important in modern orthopaedic sports medicine practice. We then will review recent research achievements in the area of gene therapy and tissue engineering for sports-related injuries, and highlight the potential clinical applications of this technology in the treatment of patients with musculoskeletal problems following sports-related injuries.

  16. Current status of gene therapy for brain tumors.

    PubMed

    Murphy, Andrea M; Rabkin, Samuel D

    2013-04-01

    Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.

  17. Progress in gene therapy of dystrophic heart disease.

    PubMed

    Lai, Y; Duan, D

    2012-06-01

    The heart is frequently afflicted in muscular dystrophy. In severe cases, cardiac lesion may directly result in death. Over the years, pharmacological and/or surgical interventions have been the mainstay to alleviate cardiac symptoms in muscular dystrophy patients. Although these traditional modalities remain useful, the emerging field of gene therapy has now provided an unprecedented opportunity to transform our thinking/approach in the treatment of dystrophic heart disease. In fact, the premise is already in place for genetic correction. Gene mutations have been identified and animal models are available for several types of muscular dystrophy. Most importantly, innovative strategies have been developed to effectively deliver therapeutic genes to the heart. Dystrophin-deficient Duchenne cardiomyopathy is associated with Duchenne muscular dystrophy (DMD), the most common lethal muscular dystrophy. Considering its high incidence, there has been a considerable interest and significant input in the development of Duchenne cardiomyopathy gene therapy. Using Duchenne cardiomyopathy as an example, here we illustrate the struggles and successes experienced in the burgeoning field of dystrophic heart disease gene therapy. In light of abundant and highly promising data with the adeno-associated virus (AAV) vector, we have specially emphasized on AAV-mediated gene therapy. Besides DMD, we have also discussed gene therapy for treating cardiac diseases in other muscular dystrophies such as limb-girdle muscular dystrophy.

  18. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    PubMed

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.

  19. Viral vectors for vascular gene therapy

    PubMed Central

    Fischer, Lukas; Preis, Meir; Weisz, Anat; Koren, Belly; Lewis, Basil S; Flugelman, Moshe Y

    2002-01-01

    Vascular gene therapy is the focus of multiple experimental and clinical research efforts. While several genes with therapeutic potential have been identified, the best method of gene delivery is unknown. Viral vectors have the capacity to transfer genes at high efficiency rates. Several viral-based vectors have been used in experimental vascular gene therapy for in vivo and ex vivo gene transfer. Adenoviral-based vectors are being used for the induction of angiogenesis in phase 1 and 2 clinical trials. In the present review, the characteristics of the ‘ideal’ viral vector are discussed and the major types of viral vectors used in vascular gene transfer are reviewed. Basic knowledge of the use of viral vectors for direct in vivo gene transfer (adenoviral-based vectors, etc) and for ex vivo gene transfer (retroviral-based vectors) is provided. New developments in the field of viral vectorology, such as pseudotyping of retroviral vectors and targeting of other viral vectors to a specific cell type, will enhance the more rapid transition of vascular gene therapy from the experimental arena to the clinical setting. PMID:19649233

  20. Human gene therapy and slippery slope arguments.

    PubMed Central

    McGleenan, T

    1995-01-01

    Any suggestion of altering the genetic makeup of human beings through gene therapy is quite likely to provoke a response involving some reference to a 'slippery slope'. In this article the author examines the topography of two different types of slippery slope argument, the logical slippery slope and the rhetorical slippery slope argument. The logical form of the argument suggests that if we permit somatic cell gene therapy then we are committed to accepting germ line gene therapy in the future because there is no logically sustainable distinction between them. The rhetorical form posits that allowing somatic cell therapy now will be taking the first step on a slippery slope which will ultimately lead to the type of genocide perpetrated by the Nazis. The author tests the validity of these lines of argument against the facts of human gene therapy and concludes that because of their dependence on probabilities that cannot be empirically proven they should be largely disregarded in the much more important debate on moral line-drawing in gene therapy. PMID:8778459

  1. Human gene therapy and slippery slope arguments.

    PubMed

    McGleenan, T

    1995-12-01

    Any suggestion of altering the genetic makeup of human beings through gene therapy is quite likely to provoke a response involving some reference to a 'slippery slope'. In this article the author examines the topography of two different types of slippery slope argument, the logical slippery slope and the rhetorical slippery slope argument. The logical form of the argument suggests that if we permit somatic cell gene therapy then we are committed to accepting germ line gene therapy in the future because there is no logically sustainable distinction between them. The rhetorical form posits that allowing somatic cell therapy now will be taking the first step on a slippery slope which will ultimately lead to the type of genocide perpetrated by the Nazis. The author tests the validity of these lines of argument against the facts of human gene therapy and concludes that because of their dependence on probabilities that cannot be empirically proven they should be largely disregarded in the much more important debate on moral line-drawing in gene therapy.

  2. Alphavirus vectors for cancer gene therapy (review).

    PubMed

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  3. Insulin gene therapy for type 1 diabetes mellitus.

    PubMed

    Handorf, Andrew M; Sollinger, Hans W; Alam, Tausif

    2015-04-01

    Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of pancreatic β cells. Current treatments for patients with type 1 diabetes mellitus include daily insulin injections or whole pancreas transplant, each of which are associated with profound drawbacks. Insulin gene therapy, which has shown great efficacy in correcting hyperglycemia in animal models, holds great promise as an alternative strategy to treat type 1 diabetes mellitus in humans. Insulin gene therapy refers to the targeted expression of insulin in non-β cells, with hepatocytes emerging as the primary therapeutic target. In this review, we present an overview of the current state of insulin gene therapy to treat type 1 diabetes mellitus, including the need for an alternative therapy, important features dictating the success of the therapy, and current obstacles preventing the translation of this treatment option to a clinical setting. In so doing, we hope to shed light on insulin gene therapy as a viable option to treat type 1 diabetes mellitus.

  4. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    PubMed

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.

  5. Gene replacement therapy for hereditary emphysema

    SciTech Connect

    Skolnick, A.

    1989-11-10

    Investigators suggest that human trials of gene therapy to correct a genetic disorder that usually leads to emphysema early in life may be only a few years away. Speaking at the American Lung Association's Second Annual Science Writers' Forum, R. G. Crystal, chief of the Pulmonary Branch of the National Heart, Lung, and Blood Institute offered an explanation of how hereditary emphysema may be more amenable to genetic therapy than other such diseases. In persons who lack a functioning gene for alpha{sup 1}-antitrypsin, a proteolytic enzyme, neutrophil elastase, attacks the walls of the lungs' alveoli, eventually leading to progressive pulmonary function loss. Two animal models of gene insertion are described.

  6. What is the status of gene therapy for primary immunodeficiency?

    PubMed

    Blaese, R Michael

    2007-01-01

    The efforts to find satisfactory treatments for seriously ill patients with primary immunodeficiency have resulted in the development of important new therapeutic procedures with benefits reaching far beyond the relatively small number of patients affected with these rare disorders. Allogeneic bone marrow transplantation, immunoglobulin and enzyme replacement treatments and more recently gene therapy have all been introduced into clinical medicine as treatments for one or more of the primary immunodeficiency diseases. Beginning in 1990, gene-corrected T cells were first used to treat ADA deficiency SCID. With this demonstration that the gene-transfer procedure could be safely used to introduce functional transgenes into patient cells, clinical trials for a broad range of inherited disorders and cancer were started in the mid 90s. Of all these early clinical experiments, those addressing primary immunodeficiency have also been the most successful. Both ADA and X-SCID have now been cured using gene insertion into autologous bone marrow stem cells. In addition some patients with chronic granulomatous disease (CGD) have shown an unexpectedly high level of functionally corrected granulocytes in their blood following infusion of autologous gene-corrected bone marrow. There remain however a great many significant challenges to be overcome before gene therapy becomes the treatment of choice for these and other disorders. The use of genes as medicines is the most complex therapeutic system ever attempted and it may rake several more decades of work before its real potential as a treatment for both inherited and sporadic disorders if finally realized.

  7. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    PubMed

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  8. Virotherapy: cancer gene therapy at last?

    PubMed Central

    Bilsland, Alan E.; Spiliopoulou, Pavlina; Evans, T. R. Jeffry

    2016-01-01

    For decades, effective cancer gene therapy has been a tantalising prospect; for a therapeutic modality potentially able to elicit highly effective and selective responses, definitive efficacy outcomes have often seemed out of reach. However, steady progress in vector development and accumulated experience from previous clinical studies has finally led the field to its first licensed therapy. Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec) received US approval as a treatment for cutaneous and subcutaneous melanoma in October 2015, followed several weeks later by its European authorisation. These represent the first approvals for an oncolytic virotherapy. Imlygic is an advanced-generation herpesvirus-based vector optimised for oncolytic and immunomodulatory activities. Many other oncolytic agents currently remain in development, providing hope that current success will be followed by other diverse vectors that may ultimately come to constitute a new class of clinical anti-cancer agents. In this review, we discuss some of the key oncolytic viral agents developed in the adenovirus and herpesvirus classes, and the prospects for further enhancing their efficacy by combining them with novel immunotherapeutic approaches. PMID:27635234

  9. Prospectives for gene therapy of retinal degenerations.

    PubMed

    Thumann, Gabriele

    2012-08-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  10. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  11. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo

    PubMed Central

    Yang, Xiao-Ping; Liu, Ling; Wang, Ping; Ma, Sheng-Lin

    2015-01-01

    Background: Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line, HepG2, in vitro and in vivo. Methods: Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. Results: A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. Conclusions: Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC. PMID:25963362

  12. Adenovirus-derived vectors for prostate cancer gene therapy.

    PubMed

    de Vrij, Jeroen; Willemsen, Ralph A; Lindholm, Leif; Hoeben, Rob C; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Dautzenberg, Iris J C; de Ridder, Corrina; Dzojic, Helena; Erbacher, Patrick; Essand, Magnus; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Jennings, Ian; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nugent, Regina; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schenk-Braat, Ellen; Schooten, Erik; Seymour, Len; Slade, Michael; Szyjanowicz, Pio; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; van der Weel, Laura; van Weerden, Wytske; Wagner, Ernst; Zuber, Guy

    2010-07-01

    Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.

  13. The case for intrauterine gene therapy.

    PubMed

    Mattar, Citra N; Waddington, Simon N; Biswas, Arijit; Davidoff, Andrew M; Choolani, Mahesh; Chan, Jerry K Y; Nathwani, Amit C

    2012-10-01

    Single-gene disorders can cause perinatal mortality or severe permanent morbidity. Intrauterine gene therapy seeks to correct the genetic defect in the early stages of pathogenesis through delivery of a vector system expressing the therapeutic transgene to the fetus. Advantages of intrauterine gene therapy include prevention of irreversible organ damage, potentially inducing central tolerance and wider bio-distribution, including the brain after delivery of vector. Already, proof-of-cure has been demonstrated in knockout animal models for several diseases. Long-term outcomes pertaining to efficacy and durability of transgene expression and safety are under investigation in clinically relevant non-human primate models. Bystander effects in the mother from transplacental vector trafficking require further assessment. In this chapter, we discuss the candidate diseases amenable to intrauterine gene therapy, current state-of-the-art evidence, and potential clinical applications.

  14. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  15. Gene set analysis of purine and pyrimidine antimetabolites cancer therapies.

    PubMed

    Fridley, Brooke L; Batzler, Anthony; Li, Liang; Li, Fang; Matimba, Alice; Jenkins, Gregory D; Ji, Yuan; Wang, Liewei; Weinshilboum, Richard M

    2011-11-01

    Responses to therapies, either with regard to toxicities or efficacy, are expected to involve complex relationships of gene products within the same molecular pathway or functional gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true underlying biology and may be more appropriate units for analysis of pharmacogenomic studies. Application of such methods to pharmacogenomic studies may enable the detection of more subtle effects of multiple genes in the same pathway that may be missed by assessing each gene individually. A gene set analysis of 3821 gene sets is presented assessing the association between basal messenger RNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell lines for two classes of drugs: pyrimidines [gemcitabine (dFdC) and arabinoside] and purines [6-thioguanine and 6-mercaptopurine]. The gene set nucleoside-diphosphatase activity was found to be significantly associated with both dFdC and arabinoside, whereas gene set γ-aminobutyric acid catabolic process was associated with dFdC and 6-thioguanine. These gene sets were significantly associated with the phenotype even after adjusting for multiple testing. In addition, five associated gene sets were found in common between the pyrimidines and two gene sets for the purines (3',5'-cyclic-AMP phosphodiesterase activity and γ-aminobutyric acid catabolic process) with a P value of less than 0.0001. Functional validation was attempted with four genes each in gene sets for thiopurine and pyrimidine antimetabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1, ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene sets. In summary, results from the gene set analysis of pyrimidine and purine therapies, used often in the treatment of various cancers, provide novel insight into the relationship between genomic variation and drug response.

  16. Gene set analysis of purine and pyrimidine antimetabolites cancer therapies

    PubMed Central

    Fridley, Brooke L.; Batzler, Anthony; Li, Liang; Li, Fang; Matimba, Alice; Jenkins, Gregory D.; Ji, Yuan; Wang, Liewei; Weinshilboum, Richard M.

    2011-01-01

    Objective Responses to therapies, either with regards to toxicities or efficacy, are expected to involve complex relationships of gene products within the same molecular pathway or functional gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true underlying biology and may be more appropriate units for analysis of pharmacogenomic studies. Application of such methods to pharmacogenomic studies may enable the detection of more subtle effects of multiple genes in the same pathway that may be missed by assessing each gene individually. Methods A gene set analysis of 3,821 gene sets is presented assessing the association between basal mRNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell lines for two classes of drugs: pyrimidines (dFdC and AraC) and purines (6-TG and 6-MP). Results The gene set nucleoside-diphosphatase activity was found to be significantly associated with both dFdC and AraC, while gene set gamma-aminobutyric acid catabolic process was associated with dFdC and 6-TG. These gene sets were significantly associated with the phenotype even after adjusting for multiple testing. In addition, five associated gene sets were found in common between the pyrimidines and two gene sets for the purines (3′,5′-cyclic-AMP phosphodiesterase activity and gamma-aminobutyric acid catabolic process) with p < 0.0001. Functional validation was attempted with 4 genes each in gene sets for thiopurine and pyrimidine anti-metabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1, ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene sets. Conclusions In summary, results from the gene set analysis of pyrimidine and purine therapies, used often in the treatment of various cancers, provide novel insight into the relationship between genomic variation and drug response. PMID:21869733

  17. Gene therapy for inhereted metabolic disorders in companion animals.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Brown, Talmage; Chen, Y T

    2009-01-01

    Scientists first described inborn errors of metabolism, also termed inherited disorders of metabolism, early in the 20th century and since then have determined the biochemical and genetic bases of a great number of these disorders both in humans and in an increasing number of companion animals. The availability of metabolic screening tests has advanced the biochemical and genetic characterization in affected breeds of companion animals of inherited metabolic disorders involving amino acid, carbohydrate, fatty acid, and metal metabolism. Advances in gene therapy have led to the development of new treatments for inherited disorders of metabolism, and animal models have played a critical role in this research. For example, glycogen storage disease type Ia in dogs was highly responsive to adeno-associated viral vectormediated gene therapy, which prolonged survival and for more than a year prevented hypoglycemia during fasting. Gene therapy for other glycogen storage diseases and metabolic disorders will also be feasible. The establishment of a breeding colony and the ability to sustain affected animals are critical steps toward evaluating the safety and efficacy of gene therapy with clinically relevant endpoints. The further development of gene therapy for inherited disorders of metabolism could lead to curative therapy for affected humans and animals alike.

  18. Photodynamic Therapy Treatment to Enhance Fracture Healing

    DTIC Science & Technology

    2012-10-01

    AD_________________ Award Number: W81XWH-10-1-0997 TITLE: Photodynamic Therapy treatment to...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Photodynamic Therapy treatment to Enhance Fracture Healing 5b. GRANT NUMBER W81XWH-10-1-0997 5c...13. SUPPLEMENTARY NOTES 14. ABSTRACT Long bone fractures resulting from high impact trauma can result in delayed healing. Photodynamic therapy

  19. Gene therapy in Alzheimer's disease - potential for disease modification.

    PubMed

    Nilsson, Per; Iwata, Nobuhisa; Muramatsu, Shin-ichi; Tjernberg, Lars O; Winblad, Bengt; Saido, Takaomi C

    2010-04-01

    Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.

  20. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... infections. This is refered to as immunotherapy . Intraoperative Radiation Therapy Radiation therapy given during surgery is called ...

  1. Gene therapy for cancer: regulatory considerations for approval

    PubMed Central

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-01-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA. PMID:26584531

  2. Gene Therapies for Cancer: Strategies, Challenges and Successes

    PubMed Central

    DAS, SWADESH K.; MENEZES, MITCHELL E.; BHATIA, SHILPA; WANG, XIANG-YANG; EMDAD, LUNI; SARKAR, DEVANAND; FISHER, PAUL B.

    2015-01-01

    Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level. PMID:25196387

  3. Gene therapy for cancer: regulatory considerations for approval.

    PubMed

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-12-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.

  4. Gene therapy for hemophilia: past, present and future.

    PubMed

    George, Lindsey A; Fogarty, Patrick F

    2016-01-01

    After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Prospects and limitations of T cell receptor gene therapy.

    PubMed

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A; Schumacher, Ton N M

    2011-08-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining molecule in T cell function, adoptive transfer of TCR genes into patient T cells may be used as an alternative approach for the transfer of tumor-specific T cell immunity. On theoretical grounds, TCR gene therapy has two substantial advantages over conventional cellular transfer. First, it circumvents the demanding process of in vitro generation of large numbers of specific immune cells. Second, it allows the use of a set of particularly effective TCR genes in large patient groups. Conversely, TCR gene therapy may be associated with a number of specific problems that are not confronted during classical cellular therapy. Here we review our current understanding of the potential and possible problems of TCR gene therapy, as based on in vitro experiments, mouse model systems and phase I clinical trials. Furthermore, we discuss the prospects of widespread clinical application of this gene therapy approach for the treatment of human cancer.

  6. Development of mitochondrial gene replacement therapy.

    PubMed

    Khan, Shaharyar M; Bennett, James P

    2004-08-01

    Many "classic" mitochondrial diseases have been described that arise from single homoplasmic mutations in mitochondrial DNA (mtDNA). These diseases typically affect nonmitotic tissues (brain, retina, muscle), present with variable phenotypes, can appear sporadically, and are untreatable. Evolving evidence implicates mtDNA abnormalities in diseases such as Alzheimer's, Parkinson's, and type II diabetes, but specific causal mutations for these conditions remain to be defined. Understanding the mtDNA genotype-phenotype relationships and developing specific treatment for mtDNA-based diseases is hampered by inability to manipulate the mitochondrial genome. We present a novel protein transduction technology ("protofection") that allows insertion and expression of the human mitochondrial genome into mitochondria of living cells. With protofection, the mitochondrial genotype can be altered, or exogenous genes can be introduced to be expressed and either retained in mitochondria or be directed to other organelles. Protofection also delivers mtDNA in vivo, opening the way to rational development of mitochondrial gene replacement therapy of mtDNA-based diseases.

  7. Current status of haemophilia gene therapy.

    PubMed

    High, K H; Nathwani, A; Spencer, T; Lillicrap, D

    2014-05-01

    After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future. © 2014 John Wiley & Sons Ltd.

  8. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  9. Gene therapy legislation in The Netherlands.

    PubMed

    Bleijs, D A; Haenen, I T W C; Bergmans, J E N

    2007-10-01

    Several regulatory organisations are involved in the assessment of clinical gene therapy trials involving genetically modified organisms (GMOs) in The Netherlands. Medical, ethical and scientific aspects are, for instance, evaluated by the Central Committee on Research Involving Human Subjects (CCMO). The Ministry of Housing, Spatial Planning and the Environment (VROM) is the competent authority for the environmental risk assessment according to the deliberate release Directive 2001/18/EC. A Gene Therapy Office has been established in order to streamline the different national review processes and to enable the official procedures to be completed as quickly as possible. Although the Gene Therapy Office improved the application process at the national level, there is a difference of opinion between the EU member states with respect to the EU Directive according to which gene therapy trials are assessed, that urges for harmonisation. This review summarises the gene therapy legislation in The Netherlands and in particular The Netherlands rationale to follow Directive 2001/18/EC for the environmental risk assessment.

  10. Gene therapy in the inner ear. Mechanisms and clinical implications.

    PubMed

    Van de Water, T R; Staecker, H; Halterman, M W; Federoff, H J

    1999-11-28

    The application of gene therapy to the inner ear is an emerging field of study. Most studies report the expression of marker genes (e.g., galactosidase) within the tissues of the cochlea. The first biologic response of an inner ear tissue (i.e., auditory neurons) to transduction by a gene therapy vector expressing a therapeutic gene (a herpes amplicon vector containing a BDNF gene) was observed in spiral explants obtained from early postnatal rat cochleae. This study was important because it demonstrated the feasibility of a gene augmentation approach to treat traumatized cochleae. Long-term expression of transduced or transfected genes in cochlear tissues have been obtained with adenovirus, adeno-associated virus, and herpes amplicon vectors. The herpes amplicon vector (i.e., HSVbdnflac) that evoked a biologic response in vitro has also been successfully used to support the survival of auditory neurons in vivo following loss of the auditory hair cells (i.e., loss of trophic factor). Gene therapy has been successfully applied to the cochlea of a laboratory animal, and future studies will define the types of vectors and therapeutic genes that will work best for the treatment of inner ear diseases in the clinic.

  11. New tools in regenerative medicine: gene therapy.

    PubMed

    Muñoz Ruiz, Miguel; Regueiro, José R

    2012-01-01

    Gene therapy aims to transfer genetic material into cells to provide them with new functions. A gene transfer agent has to be safe, capable of expressing the desired gene for a sustained period of time in a sufficiently large population of cells to produce a biological effect. Identifying a gene transfer tool that meets all of these criteria has proven to be a difficult objective. Viral and nonviral vectors, in vivo, ex vivo and in situ strategies co-exist at present, although ex vivo lenti-or retroviral vectors are presently the most popular.Natural stem cells (from embryonic, hematopoietic, mesenchymal, or adult tissues) or induced progenitor stem (iPS) cells can be modified by gene therapy for use in regenerative medicine. Among them, hematopoietic stem cells have shown clear clinical benefit, but iPS cells hold humongous potential with no ethical concerns.

  12. Gene therapy for human osteoarthritis: principles and clinical translation.

    PubMed

    Madry, Henning; Cucchiarini, Magali

    2016-01-01

    Osteoarthritis (OA) is the most prevalent chronic joint disease. Its key feature is a progressive articular cartilage loss. Gene therapy for OA aims at delivering gene-based therapeutic agents to the osteoarthritic cartilage, resulting in a controlled, site-specific, long-term presence to rebuild the damaged cartilage. An overview is provided of the principles of gene therapy for OA based on a PubMed literature search. Gene transfer to normal and osteoarthritic cartilage in vitro and in animal models in vivo is reviewed. Results from recent clinical gene therapy trials for OA are discussed and placed into perspective. Recombinant adeno-associated viral (rAAV) vectors enable to directly transfer candidate sequences in human articular chondrocytes in situ, providing a potent tool to modulate the structure of osteoarthritic cartilage. However, few preclinical animal studies in OA models have been performed thus far. Noteworthy, several gene therapy clinical trials have been carried out in patients with end-stage knee OA based on the intraarticular injection of human juvenile allogeneic chondrocytes overexpressing a cDNA encoding transforming growth factor-beta-1 via retroviral vectors. In a recent placebo-controlled randomized trial, clinical scores were improved compared with placebo. These translational results provide sufficient reason to proceed with further clinical testing of gene transfer protocols for the treatment of OA.

  13. Gene therapy, fundamental rights, and the mandates of public health.

    PubMed

    Lynch, John

    2004-01-01

    Recent and near-future developments in the field of molecular biology will make possible the treatment of genetic disease on an unprecedented scale. The potential applications of these developments implicate important public policy considerations. Among the questions that may arise is the constitutionality of a state-mandated program of gene therapy for the purpose of eradicating certain genetic diseases. Though controversial, precedents of public health jurisprudence suggest that such a program could survive constitutional scrutiny. This article provides an overview of gene therapy in the context of fundamental rights and the mandates of public health.

  14. Hematopoietic stem cell-based gene therapy for HIV disease

    PubMed Central

    Kiem, Hans-Peter; Jerome, Keith R.; Deeks, Steven G.; McCune, Joseph M.

    2012-01-01

    Although combination antiretroviral therapy can dramatically reduce the circulating viral load in those infected with HIV, replication-competent virus persists. To eliminate the need for indefinite treatment, there is growing interest in creating a functional HIV-resistant immune system through the use of gene-modified hematopoietic stem cells (HSC). Proof-of-concept for this approach has been provided in the instance of an HIV-infected adult transplanted with allogeneic stem cells from a donor lacking the HIV co-receptor, CCR5. Here, we review this and other strategies for HSC-based gene therapy for HIV disease. PMID:22305563

  15. Safety of gene therapy: new insights to a puzzling case.

    PubMed

    Rothe, Michael; Schambach, Axel; Biasco, Luca

    2014-01-01

    Over the last few years, the transfer of therapeutic genes via gammaretro- or lentiviral vector systems has proven its virtue as an alternative treatment for a series of genetic disorders. The number of approved phase I/II clinical trials, especially for rare diseases, is steadily increasing, but the overall hurdles to become a broadly acceptable therapy remain numerous. The efforts by clinicians and basic scientists have tremendously improved the knowledge available about feasibility and biosafety of gene therapy. Nonetheless, despite the generation of a plethora of clinical and preclinical safety data, we still lack sufficiently powerful assays to predictively assess the exact levels of toxicity that might be observed in any given clinical gene therapy. Insertional mutagenesis is one of the major concerns when using integrating vectors for permanent cell modification, and the occurrence of adverse events related to genotoxicity, in early gene therapy trials, has refrained the field of gene therapy from emerging further. In this review, we provided a comprehensive overview on the basic principles and potential co-factors concurring in the generation of adverse events reported in gene therapy clinical trials using integrating vectors. Additionally, we summarized the available systems to assess genotoxicity at the preclinical level and we shed light on the issues affecting the predictive value of these assays when translating their results into the clinical arena. In the last section of the review we briefly touched on the future trends and how they could increase the safety of gene therapy employing integrating vector technology to take it to the next level.

  16. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy.

    PubMed

    Jafarlou, M; Baradaran, B; Saedi, T A; Jafarlou, V; Shanehbandi, D; Maralani, M; Othman, F

    2016-01-01

    Gene therapy has become a significant issue in science-related news. The principal concept of gene therapy is an experimental technique that uses genes to treat or prevent disease. Although gene therapy was originally conceived as a way to treat life-threatening disorders (inborn defects, cancers) refractory to conventional treatment, it is now considered for many non–life-threatening conditions, such as those adversely impacting a patient’s quality of life. An extensive range of efficacious vectors, delivery techniques, and approaches for developing gene-based interventions for diseases have evolved in the last decade. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. The aim of this review is to investigate the general methods by which genes are transferred and to give an overview to clinical applications. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. Gene therapy has made substantial progress albeit much slower than was initially predicted. This review also describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various surface disorders and diseases. The conclusion is that, with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice.

  17. Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles

    PubMed Central

    Aviran, Sharon; Shah, Priya S.; Schaffer, David V.; Arkin, Adam P.

    2010-01-01

    Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents. PMID:20711350

  18. Hadron Therapy for Cancer Treatment

    SciTech Connect

    Lennox, Arlene

    2003-09-10

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  19. Evolving Gene Therapy in Primary Immunodeficiency.

    PubMed

    Thrasher, Adrian J; Williams, David A

    2017-05-03

    Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  20. NIH modifies gene therapy research guidelines.

    PubMed

    Levine, Carol

    1985-06-01

    In response to public comments on the first draft of its "Points to Consider in the Design and Submission of Human Somatic-Cell Gene Therapy Protocols," the Working Group on Human Gene Therapy of the National Institutes of Health has issued a revised set of guidelines for researchers. This second draft spells out the need for public review of gene therapy protocols, the Working Group's willingness to review selected protocols before the completion of animal studies, and requirements for informed consent to long-term follow-up and to autopsy in the event of death. The document also expresses the Working Group's concern that researchers and the public be kept fully informed of the results of such studies.

  1. ROS-induced nanotherapeutic approach for ovarian cancer treatment based on the combinatorial effect of photodynamic therapy and DJ-1 gene suppression.

    PubMed

    Schumann, Canan; Taratula, Olena; Khalimonchuk, Oleh; Palmer, Amy L; Cronk, Lauren M; Jones, Carson V; Escalante, Cesar A; Taratula, Oleh

    2015-11-01

    This study represents a novel approach for intraoperative ovarian cancer treatment based on the combinatorial effect of a targeted photodynamic therapy (PDT) associated with suppression of the DJ-1 protein, one of the key players in the ROS defense of cancer cells. To assess the potential of the developed therapy, dendrimer-based nanoplatforms for cancer-targeted delivery of near-infrared photosensitizer, phthalocyanine, and DJ-1 siRNA have been constructed. In vitro studies revealed that therapeutic efficacy of the combinatorial approach was enhanced when compared to PDT alone and this enhancement was more pronounced in ovarian carcinoma cells, which are characterized by higher basal levels of DJ-1 protein. Moreover, the ovarian cancer tumors exposed to a single dose of combinatorial therapy were completely eradicated from the mice and the treated animals showed no evidence of cancer recurrence. Thus, the developed therapeutic approach can be potentially employed intraoperatively to eradicate unresactable cancer cells. The complete clearance of microscopic residual tumor cells during excision surgery is important to improve survival of the patient. In this interesting paper, the authors developed a novel approach using targeted photodynamic therapy (PDT), combining a photosensitizer, phthalocyanine, and DJ-1 siRNA for the treatment of ovarian cancer. The data showed that this approach increased cancer cell killing and may pave way for future clinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Gene Therapy for Fracture Repair

    DTIC Science & Technology

    2005-12-01

    chemotactic factor for human mast cells. J. Immunol. 153: 3717-3723. 36 41. Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, Akasaka Y, Ishii T...1994;153:3717–23. [37] Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, et al. Local administration of hepatocyte growth factor gene enhances the

  3. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  4. Large Animal Models of Neurological Disorders for Gene Therapy

    PubMed Central

    Gagliardi, Christine; Bunnell, Bruce A.

    2009-01-01

    The development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinson’s disease, Huntington’s disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research. PMID:19293458

  5. Factoring nonviral gene therapy into a cure for hemophilia A.

    PubMed

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  6. Combined gene and stem cell therapy for cutaneous wound healing.

    PubMed

    Gauglitz, Gerd G; Jeschke, Marc G

    2011-10-03

    In current medical practice, wound therapy remains a clinical challenge and much effort has been focused on the development of novel therapeutic approaches for wound treatment. Gene therapy, initially developed for treatment of congenital defects, represents a promising option for enhancing wound repair. In order to accelerate wound closure, genes encoding for growth factors or cytokines have shown the most potential. The majority of gene delivery systems are based on viral transfection, naked DNA application, high pressure injection, and liposomal vectors. Besides advances stemming from breakthroughs in recombinant growth factors and bioengineered skin, there has been a significant increase in the understanding of stem cell biology in the field of cutaneous wound healing. A variety of sources, such as bone marrow, umbilical cord blood, adipose tissue and skin/hair follicles, have been utilized to isolate stem cells and to modulate the healing response of acute and chronic wounds. Recent data have demonstrated the feasibility of autologous adult stem cell therapy in cutaneous repair and regeneration. Very recently, stem cell based skin engineering in conjunction with gene recombination, in which the stem cells act as both the seed cells and the vehicle for gene delivery to the wound site, represents the most attractive field for generating a regenerative strategy for wound therapy. The aim of this article is to discuss the use and the potential of these novel technologies in order to improve wound healing capacities.

  7. Bacteria as vectors for gene therapy of cancer

    PubMed Central

    Baban, Chwanrow K; Cronin, Michelle; O'Hanlon, Deirdre; O'Sullivan, Gerald C

    2010-01-01

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels. PMID:21468205

  8. Viral gene therapy for breast cancer: progress and challenges.

    PubMed

    Asad, Antonela S; Moreno Ayala, Mariela A; Gottardo, M Florencia; Zuccato, Camila; Nicola Candia, Alejandro Javier; Zanetti, Flavia A; Seilicovich, Adriana; Candolfi, Marianela

    2017-08-01

    Breast cancer is the most common cancer in women all over the world. Furthermore, up to one third of breast tumors develop metastases that are resistant to standard therapies. Gene therapeutic strategies have been developed in order to specifically target cancer cells either directly or through the stimulation of antitumor immunity. Areas covered: This review describes the therapeutic strategies that are currently under development to treat this disease using engineered viral vectors including: adenovirus, adeno-associated virus, lentivirus, poxvirus, reovirus, baculovirus, herpesvirus and oncolytic viruses. Advantages and disadvantages of these multiple gene therapy platforms are discussed in detail. Expert opinion: Metastatic breast cancer is a perfect candidate for gene therapy approaches due to the presence of several tumor antigens and the aberrant expression of many molecular pathways. Oncolytic vectors are able to attack tumor cells while sparing normal cells and their activity is often enhanced by the administration of chemotherapy. However, more efforts are needed in order to reduce toxicity and to achieve better transduction efficiency. Improved preclinical models and a more critical patient selection for clinical trials, along with advances in gene therapy regulations, will surely facilitate the evolution of gene therapy for the treatment of metastatic breast cancer.

  9. Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  10. Radiopharmaceutical and Gene Therapy Program

    SciTech Connect

    Buchsbaum, Donald J.

    2006-02-09

    The objective of our research program was to determine whether novel receptors can be induced in solid cancers as a target for therapy with radiolabeled unmodified peptides that bind to the receptors. The hypothesis was that induction of a high number of receptors on the surface of these cancer cells would result in an increased uptake of the radiolabeled monomeric peptides as compared to published results with radiolabeled antibodies or peptides to naturally expressed antigens or receptors, and therefore a better therapeutic outcome. The following is a summary of published results.

  11. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  12. Assessment of the Evolution of Cancer Treatment Therapies

    PubMed Central

    Arruebo, Manuel; Vilaboa, Nuria; Sáez-Gutierrez, Berta; Lambea, Julio; Tres, Alejandro; Valladares, Mónica; González-Fernández, África

    2011-01-01

    Cancer therapy has been characterized throughout history by ups and downs, not only due to the ineffectiveness of treatments and side effects, but also by hope and the reality of complete remission and cure in many cases. Within the therapeutic arsenal, alongside surgery in the case of solid tumors, are the antitumor drugs and radiation that have been the treatment of choice in some instances. In recent years, immunotherapy has become an important therapeutic alternative, and is now the first choice in many cases. Nanotechnology has recently arrived on the scene, offering nanostructures as new therapeutic alternatives for controlled drug delivery, for combining imaging and treatment, applying hyperthermia, and providing directed target therapy, among others. These therapies can be applied either alone or in combination with other components (antibodies, peptides, folic acid, etc.). In addition, gene therapy is also offering promising new methods for treatment. Here, we present a review of the evolution of cancer treatments, starting with chemotherapy, surgery, radiation and immunotherapy, and moving on to the most promising cutting-edge therapies (gene therapy and nanomedicine). We offer an historical point of view that covers the arrival of these therapies to clinical practice and the market, and the promises and challenges they present. PMID:24212956

  13. Periodontal therapy alters gene expression of peripheral blood monocytes.

    PubMed

    Papapanou, Panos N; Sedaghatfar, Michael H; Demmer, Ryan T; Wolf, Dana L; Yang, Jun; Roth, Georg A; Celenti, Romanita; Belusko, Paul B; Lalla, Evanthia; Pavlidis, Paul

    2007-09-01

    We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect.

  14. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  15. Gene repair and transposon-mediated gene therapy.

    PubMed

    Richardson, Paul D; Augustin, Lance B; Kren, Betsy T; Steer, Clifford J

    2002-01-01

    The main strategy of gene therapy has traditionally been focused on gene augmentation. This approach typically involves the introduction of an expression system designed to express a specific protein in the transfected cell. Both the basic and clinical sciences have generated enough information to suggest that gene therapy would eventually alter the fundamental practice of modern medicine. However, despite progress in the field, widespread clinical applications and success have not been achieved. The myriad deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. One, derived primarily from the pioneering work of homologous recombination, is gene repair. Simply stated, the process involves targeting the mutation in situ for gene correction and a return to normal gene function. Site-specific genetic repair has many advantages over augmentation although it too is associated with significant limitations. This review outlines the advantages and disadvantages of gene correction. In particular, we discuss technologies based on chimeric RNA/DNA oligonucleotides, single-stranded and triplex-forming oligonucleotides, and small fragment homologous replacement. While each of these approaches is different, they all share a number of common characteristics, including the need for efficient delivery of nucleic acids to the nucleus. In addition, we review the potential application of a novel and exciting nonviral gene augmentation strategy--the Sleeping Beauty transposon system.

  16. Genome editing for human gene therapy.

    PubMed

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  17. The Mucus Barrier to Inhaled Gene Therapy.

    PubMed

    Duncan, Gregg A; Jung, James; Hanes, Justin; Suk, Jung Soo

    2016-12-01

    Recent evidence suggests that the airway mucus gel layer may be impermeable to the viral and synthetic gene vectors used in past inhaled gene therapy clinical trials for diseases like cystic fibrosis. These findings support the logic that inhaled gene vectors that are incapable of penetrating the mucus barrier are unlikely to provide meaningful benefit to patients. In this review, we discuss the biochemical and biophysical features of mucus that contribute its barrier function, and how these barrier properties may be reinforced in patients with lung disease. We next review biophysical techniques used to assess the potential ability of gene vectors to penetrate airway mucus. Finally, we provide new data suggesting that fresh human airway mucus should be used to test the penetration rates of gene vectors. The physiological barrier properties of spontaneously expectorated CF sputum remained intact up to 24 hours after collection when refrigerated at 4 °C. Conversely, the barrier properties were significantly altered after freezing and thawing of sputum samples. Gene vectors capable of overcoming the airway mucus barrier hold promise as a means to provide the widespread gene transfer throughout the airway epithelium required to achieve meaningful patient outcomes in inhaled gene therapy clinical trials.

  18. Gene therapy: a promising approach to treating spinal muscular atrophy.

    PubMed

    Mulcahy, Pádraig J; Iremonger, Kayleigh; Karyka, Evangelia; Herranz-Martín, Saúl; Shum, Ka-To; Tam, Janice Kal Van; Azzouz, Mimoun

    2014-07-01

    Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.

  19. Clinical potential of gene therapy: towards meeting the demand.

    PubMed

    Macpherson, J L; Rasko, J E J

    2014-03-01

    Since the discovery that new genetic material could be transferred into human cells resulting in induced expression of genes and proteins, clinicians and scientists have been working to harness the technology for clinical outcomes. This article provides a summary of the current status of developments within the broad discipline of clinical gene therapy. In pursuing the treatment of diverse clinical conditions, a wide variety of therapeutics, each tailor-made, may be required. Gene therapy offers the possibility of accurately and specifically targeting particular genetic abnormalities through gene correction, addition or replacement. It represents a compelling idea that adds a new dimension to our portfolio of credible therapeutic choices. © 2014 The Authors; Internal Medicine Journal © 2014 Royal Australasian College of Physicians.

  20. Gene Therapy for Fracture Repair

    DTIC Science & Technology

    2003-12-01

    relative transgene expression efficiencies for the MLV-based and lentiviral-based vectors, the Enhanced Green Fluorescent Protein (EGFP) was used as...for both Cy3 and Cy5 2,-15i Hybridized to to Aigilent Rat -s 2-- Gene Chip - iGnTrr. . tea 2 ug universal RNAw silx sl59 (?es) Cy310-0 (control) 1...fractures were also examined at sacrifice for evidence of fibrosis due to irritation or migration of the stabilizing pin. None was observed and the fracture

  1. [Developments in gene delivery vectors for ocular gene therapy].

    PubMed

    Khabou, Hanen; Dalkara, Deniz

    2015-05-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Its remarkable success in safety and efficacy, in clinical trials for Leber's congenital amaurosis (LCA) type II generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was mainly due to the favorable characteristics of the retina as a target organ. The eye offers several advantages as it is readily accessible and has some degree of immune privilege making it suitable for application of viral vectors. The viral vectors most frequently used for retinal gene delivery are lentivirus, adenovirus and adeno-associated virus (AAV). Here we will discuss the use of these viral vectors in retinal gene delivery with a strong focus on favorable properties of AAV. Thanks to its small size, AAV diffuses well in the inter-neural matrix making it suitable for applications in neural retina. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases using AAV as a vector. This article will discuss what are some of the most imminent cellular targets for such therapies and the AAV toolkit that has been built to target these cells successfully. We will also discuss some of the challenges that we face in translating AAV-based gene therapies to the clinic.

  2. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy

    PubMed Central

    Papapetrou, Eirini P; Schambach, Axel

    2016-01-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  3. Advanced therapies for the treatment of hemophilia: future perspectives

    PubMed Central

    2012-01-01

    Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering. Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells) in order to restore alterations in coagulation factor expression. PMID:23237078

  4. Two Decades of Clinical Gene Therapy – Success Is Finally Mounting

    PubMed Central

    Herzog, Roland W.; Cao, Ou; Srivastava, Arun

    2013-01-01

    Human gene therapy has made substantial progress since the initiation of the first clinical trials 20 years ago. Here, we summarized important applications of gene transfer protocols in the treatment of various human diseases using different viral vectors. Recent successful trials on the treatment of ocular diseases and inherited immune deficiencies are particularly encouraging and have raised hopes that human gene therapy as a standard treatment option will finally become a reality. While immune responses and insertional mutagenesis pose obstacles for this novel form of molecular medicine, continuous progress suggests that a wider range of diseases can be treated with gene therapy in the future. PMID:20193635

  5. Two decades of clinical gene therapy--success is finally mounting.

    PubMed

    Herzog, Roland W; Cao, Ou; Srivastava, Arun

    2010-02-01

    Human gene therapy has made substantial progress since the initiation of the first clinical trials 20 years ago. Here, we summarized important applications of gene transfer protocols in the treatment of various human diseases using different viral vectors. Recent successful trials on the treatment of ocular diseases and inherited immune deficiencies are particularly encouraging and have raised hopes that human gene therapy as a standard treatment option will finally become a reality. While immune responses and insertional mutagenesis pose obstacles for this novel form of molecular medicine, continuous progress suggests that a wider range of diseases can be treated with gene therapy in the future.

  6. Available Evidence on Leber Congenital Amaurosis and Gene Therapy.

    PubMed

    Alkharashi, Maan; Fulton, Anne B

    2017-01-01

    Leber congenital amaurosis (LCA) is a group of severe inherited retinal dystrophies that lead to early childhood blindness. In the last decade, interest in LCA has increased as advances in genetics have been applied to better identify, classify, and treat LCA. To date, 23 LCA genes have been identified. Gene replacement in the RPE65 form of LCA represents a major advance in treatment, although limitations have been recognized. In this article, we review the clinical and genetic features of LCA and evaluate the evidence available for gene therapy in RPE65 disease.

  7. ORTHOPAEDIC GENE THERAPY – LOST IN TRANSLATION?

    PubMed Central

    Evans, C.H.; Ghivizzani, S.C.; Robbins, P.D.

    2011-01-01

    Orthopaedic gene therapy has been the topic of considerable research for two decades. The preclinical data are impressive and many orthopaedic conditions are well suited to genetic therapies. But there have been few clinical trials and no FDA-approved product exists. This paper examines why this is so. The reasons are multifactorial. Clinical translation is expensive and difficult to fund by traditional academic routes. Because gene therapy is viewed as unsafe and risky, it does not attract major funding from the pharmaceutical industry. Start-up companies are burdened by the complex intellectual property environment and difficulties in dealing with the technology transfer offices of major universities. Successful translation requires close interactions between scientists, clinicians and experts in regulatory and compliance issues. It is difficult to create such a favourable translational environment. Other promising fields of biological therapy have contemplated similar frustrations approximately 20 years after their founding, so there seem to be more general constraints on translation that are difficult to define. Gene therapy has noted some major clinical successes in recent years, and a sense of optimism is returning to the field. We hope that orthopaedic applications will benefit collaterally from this upswing and move expeditiously into advanced clinical trials. PMID:21948071

  8. Orthopedic gene therapy--lost in translation?

    PubMed

    Evans, C H; Ghivizzani, S C; Robbins, P D

    2012-02-01

    Orthopedic gene therapy has been the topic of considerable research for two decades. The preclinical data are impressive and many orthopedic conditions are well suited to genetic therapies. But there have been few clinical trials and no FDA-approved product exists. This paper examines why this is so. The reasons are multifactorial. Clinical translation is expensive and difficult to fund by traditional academic routes. Because gene therapy is viewed as unsafe and risky, it does not attract major funding from the pharmaceutical industry. Start-up companies are burdened by the complex intellectual property environment and difficulties in dealing with the technology transfer offices of major universities. Successful translation requires close interactions between scientists, clinicians and experts in regulatory and compliance issues. It is difficult to create such a favorable translational environment. Other promising fields of biological therapy have contemplated similar frustrations approximately 20 years after their founding, so there seem to be more general constraints on translation that are difficult to define. Gene therapy has noted some major clinical successes in recent years, and a sense of optimism is returning to the field. We hope that orthopedic applications will benefit collaterally from this upswing and move expeditiously into advanced clinical trials. Copyright © 2011 Wiley Periodicals, Inc.

  9. Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China

    PubMed Central

    Li, Bo; Gao, Ning; Zhang, Zhuang; Chen, Qian-Ming; Li, Long-Jiang; Li, Yi

    2017-01-01

    Based on the theoretical and clinical development of modern medicines, gene therapy has been a promising treatment strategy for cancer and other diseases. The practice of gene therapy is nearly 27 years old, since the first authorized gene transfer study took place at the National Institute of Health in 1989. However, gene therapy was not readily adopted worldwide, until recently. Several gene therapy clinical trials have been carried out in China since 1998, and medical research in China has flourished. In this report, we review the history of gene therapy in China, focusing on treatment protocol, the administration cycle, dosage calculation, and the evaluation of therapeutic effects, in order to provide more information for the additional development of this promising treatment strategy. PMID:28245595

  10. Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China.

    PubMed

    Li, Bo; Gao, Ning; Zhang, Zhuang; Chen, Qian-Ming; Li, Long-Jiang; Li, Yi

    2017-02-24

    Based on the theoretical and clinical development of modern medicines, gene therapy has been a promising treatment strategy for cancer and other diseases. The practice of gene therapy is nearly 27 years old, since the first authorized gene transfer study took place at the National Institute of Health in 1989. However, gene therapy was not readily adopted worldwide, until recently. Several gene therapy clinical trials have been carried out in China since 1998, and medical research in China has flourished. In this report, we review the history of gene therapy in China, focusing on treatment protocol, the administration cycle, dosage calculation, and the evaluation of therapeutic effects, in order to provide more information for the additional development of this promising treatment strategy.

  11. Gene therapy for primary immunodeficiencies: current status and future prospects.

    PubMed

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed.

  12. Review: Stem cells and gene therapy.

    PubMed

    Alenzi, Faris Q; Lotfy, Mahmoud; Tamimi, Waleed G; Wyse, Richard K H

    2010-09-01

    Both stem cell and gene therapy research are currently the focus of intense research in institutions and companies around the world. Both approaches hold great promise by offering radical new and successful ways of treating debilitating and incurable diseases effectively. Gene therapy is an approach to treat, cure, or ultimately prevent disease by changing the pattern of gene expression. It is mostly experimental, but a number of clinical human trials have already been conducted. Gene therapy can be targeted to somatic or germ cells; the most common vectors are viruses. Scientists manipulate the viral genome and thus introduce therapeutic genes to the target organ. Viruses, in this context, can cause adverse events such as toxicity, immune and inflammatory responses, as well as gene control and targeting issues. Alternative modalities being considered are complexes of DNA with lipids and proteins. Stem cells are primitive cells that have the capacity to self renew as well as to differentiate into 1 or more mature cell types. Pluripotent embryonic stem cells derived from the inner cell mass can develop into more than 200 different cells and differentiate into cells of the 3 germ cell layers. Because of their capacity of unlimited expansion and pluripotency, they are useful in regenerative medicine. Tissue or adult stem cells produce cells specific to the tissue in which they are found. They are relatively unspecialized and predetermined to give rise to specific cell types when they differentiate. The current review provides a summary of our current knowledge of stem cells and gene therapy as well as their clinical implications and related therapeutic options.

  13. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor.

  14. Cardiac gene therapy: optimization of gene delivery techniques in vivo.

    PubMed

    Katz, Michael G; Swain, JaBaris D; White, Jennifer D; Low, David; Stedman, Hansell; Bridges, Charles R

    2010-04-01

    Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods--including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques--with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity.

  15. Cardiac Gene Therapy: Optimization of Gene Delivery Techniques In Vivo

    PubMed Central

    Katz, Michael G.; Swain, JaBaris D.; White, Jennifer D.; Low, David; Stedman, Hansell

    2010-01-01

    Abstract Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods—including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques—with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity. PMID:19947886

  16. Optimizing ribozymes for somatic cell gene therapy.

    PubMed

    Branch, A D; Klotman, P E

    1998-01-01

    Therapeutic ribozymes are created through a multistep process that requires trial and error. There are few established rules governing ribozyme design, but guidelines are emerging. It is not yet known whether hammerheads and hairpins, the two ribozymes most widely studied as potential gene therapy agents, have the inherent capability to ablate single genes. Their capacity for specificity and selectivity remains to be explored through rigorous experimentation. These experiments require a battery of control molecules, the characteristics of which are outlined here. Methods for completing the steps in the ribozyme development process, from the selection of a target gene to the quantitation of RNA levels, are also presented and discussed.

  17. [Gene therapy for inherited diseases using heamatopoietic stem cells--gene therapy for patients with chronic granulomatous disease].

    PubMed

    Nunoi, H; Ishibashi, F

    1999-09-01

    The possibility of gene therapy for inherited diseases with a single gene mutation in Figure 1 had been verified by the successful treatment with bone marrow transplantation. As the gene therapy method and theory has been progressing rapidly, it is expected that gene therapy will overcome the complications of bone marrow transplantation. Of these inherited diseases, chronic granulomatous disease (CGD) is the one of the most expected disease for gene therapy. CGD is an inherited immune deficiency caused by mutations in any of the following four phox genes encoding subunits of the superoxide generating phagocyte NADPH oxidase. It consists of membranous cytochrom b558 composed of gp91 phox and p22 phox, and four cytosolic components, p47 phox, p67 phox, rac p21 and p40 phox, which translocate to the membrane upon activation. In our group study, more than 220 CGD patients has been enrolled. The incidence of CGD patients was estimated as 1 out of 250,000 births. The expected life span of the CGD patients is 25 to 30 years old by the Kaplan Meier analysis. Comparing with the ratio of CGD subtype in US and Europe, that with p47phox deficiency is lower (less than 10%/o vs. 23%) and that of gp91 phox deficiency is higher (more than 75% vs. 60%). Prophylactic administration of ST antibiotics and IFN-gamma and bone marrow transplantation have been successfully employed in our therapeutic strategy. However, it is necessary to develop the gene therapy technology for CGD patients as more promising treatment. In the current study we constructed two retrovirus vectors; MFGS-gp91/293 SPA which contains only the therapeutic gp91 phox gene, a bicistronic retrovirus pHa-MDR-IRES-gp91/PA317 which carries a multi drug resistant gene (MDR1) and the gp91phox gene connected with an internal ribosome entry site (IRES). We demonstrate high efficiency transduction of gp 91 phox to CGD EB virus established cell line with high levels of functional correction of the oxidase by MFGS-gp91 and by p

  18. Design of clinical trials of gene therapy in Parkinson disease.

    PubMed

    Lewis, Travis B; Standaert, David G

    2008-01-01

    No current therapy for Parkinson disease has been shown to slow or reverse the progressive course of the disease. As a departure from traditional treatments, gene therapy approaches provide a new hope for realizing this long-sought goal; but before they can be widely employed for use in patients, they must first be submitted to the rigorous safety and efficacy standards of the clinical trial. Some of the challenges of gene therapy clinical trial design are similar to those in studies of conventional pharmacological agents and include addressing the heterogeneity of the disease, the need for clinical and surrogate endpoints, and the issue of distinguishing "symptomatic" from "neuroprotective" effects. Gene therapy trials also raise the issues of the risks of viral therapy, issues of dose-response, the need for sham surgery, and the long duration of risks and benefits. We conclude that the most feasible designs are for those treatments that are expected to produce a rapid improvement in directly observable symptoms. Trials of agents which are expected to produce only a slowing of progression and not a reversal of the disease course are likely to take much longer and will require the development of methods to assess quality of life and other non-motor aspects of the disease.

  19. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  20. Behavioral Therapy, Incentives Enhance Addiction Treatment

    MedlinePlus

    ... Research News From NIH Behavioral Therapy, Incentives Enhance Addiction Treatment Past Issues / Summer 2006 Table of Contents ... that people who are trying to end their addiction to marijuana can benefit from a treatment program ...

  1. Gene Therapy and Wound Healing

    PubMed Central

    Eming, Sabine A.; Krieg, Thomas; Davidson, Jeffrey M

    2007-01-01

    Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel_therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound-healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair. PMID:17276205

  2. Fight fire with fire: Gene therapy strategies to cure HIV.

    PubMed

    Huyghe, Jon; Magdalena, Sips; Vandekerckhove, Linos

    2017-08-01

    Human Immunodeficiency Virus (HIV) to date remains one of the most notorious viruses mankind has ever faced. Despite enormous investments in HIV research for more than 30 years an effective cure for HIV has been elusive. Areas covered: Combination antiretroviral therapy (cART) suppresses active viral replication, but is not able to eliminate the virus completely due to stable integration of HIV inside the host genome of infected cells and the establishment of a latent reservoir, that is insensitive to cART. Nevertheless, this latent HIV reservoir is fully capable to refuel viral replication when treatment is stopped, creating a major obstacle towards a cure for HIV. Several gene therapy approaches ranging from the generation of HIV resistant CD4 + T cells to the eradication of HIV infected cells by immune cell engineering are currently under pre-clinical and clinical investigation and may present a promising road to a cure. In this review, we focus on the status and the prospects of gene therapy strategies to cure/eradicate HIV. Expert commentary: Recent advances in gene therapy for oncology and infectious diseases indicate that gene therapy may be a feasible and very potent cure strategy, and therefore a potential game changer in the search for an effective HIV cure.

  3. Gene therapy used for tissue engineering applications.

    PubMed

    Heyde, Mieke; Partridge, Kris A; Oreffo, Richard O C; Howdle, Steven M; Shakesheff, Kevin M; Garnett, Martin C

    2007-03-01

    This review highlights the advances at the interface between tissue engineering and gene therapy. There are a large number of reports on gene therapy in tissue engineering, and these cover a huge range of different engineered tissues, different vectors, scaffolds and methodology. The review considers separately in-vitro and in-vivo gene transfer methods. The in-vivo gene transfer method is described first, using either viral or non-viral vectors to repair various tissues with and without the use of scaffolds. The use of a scaffold can overcome some of the challenges associated with delivery by direct injection. The ex-vivo method is described in the second half of the review. Attempts have been made to use this therapy for bone, cartilage, wound, urothelial, nerve tissue regeneration and for treating diabetes using viral or non-viral vectors. Again porous polymers can be used as scaffolds for cell transplantation. There are as yet few comparisons between these many different variables to show which is the best for any particular application. With few exceptions, all of the results were positive in showing some gene expression and some consequent effect on tissue growth and remodelling. Some of the principal advantages and disadvantages of various methods are discussed.

  4. Human embryonic stem cells and gene therapy.

    PubMed

    Strulovici, Yael; Leopold, Philip L; O'Connor, Timothy P; Pergolizzi, Robert G; Crystal, Ronald G

    2007-05-01

    Human embryonic stem cells (hESCs) theoretically represent an unlimited supply of normal differentiated cells to engineer diseased tissues to regain normal function. However, before hESCs can be useful as human therapeutics, technologies must be developed to provide them with the specific signals required to differentiate in a controlled fashion, to regulate and/or shut down the growth of hESCs and their progeny once they have been transferred to the recipient, and to circumvent the recognition of non-autologous hESC-derived cells as foreign. In the context that gene therapy technologies represent strategies to deliver biological signals to address all of these challenges, this review sets out a framework for combined gene transfer/hESC therapies. We discuss how hESCs are derived, characterized, and differentiated into specific cell lineages, and we summarize the characteristics of the 500 hESC lines reported to date. The successes and failures of gene transfer to hESCs are reviewed for both non-viral and viral vectors, as are the challenges to successful use of gene transfer in developing hESC therapy. We also consider gene transfer as a means of facilitating growth and isolation of genetically modified hESCs and as a mechanism for mitigating adverse effects associated with administration of hESCs or their derivatives. Finally, we evaluate the challenges that are likely to be encountered in translating the promise of hESCs to the clinic.

  5. Mechanically enhanced microcapsules for cellular gene therapy.

    PubMed

    Shen, F; Mazumder, M A J; Burke, N A D; Stöver, H D H; Potter, M A

    2009-07-01

    Microcapsules bearing a covalently cross-linked coating have been developed for cellular gene therapy as an improvement on alginate-poly(L-lysine)-alginate (APA) microcapsules that only have ionic cross-linking. In this study, two mutually reactive polyelectrolytes, a polycation (designated C70), poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride-co-2-aminoethyl methacrylate hydrochloride) and a polyanion (designated A70), poly(sodium methacrylate-co-2-(methacryloyloxy)ethyl acetoacetate), were used during the microcapsule fabrication. Ca-alginate beads were sequentially laminated with C70, A70, poly(L-lysine) (PLL), and alginate. The A70 reacts with both C70 and PLL to form a approximately 30 microm thick covalently cross-linked interpenetrating polymer network on the surface of the capsules. Confocal images confirmed the location of the C70/A70/PLL network and the stability of the network after 4 weeks implantation in mice. The mechanical and chemical resistance of the capsules was tested with a "stress test" where microcapsules were gently shaken in 0.003% EDTA for 15 min. APA capsules disappeared during this treatment, whereas the modified capsules, even those that had been retrieved from mice after 4-weeks implantation, remained intact. Analysis of solutions passing through model flat membranes showed that the molecular weight cut-off of alginate-C70-A70-PLL-alginate is similar to that of alginate-PLL-alginate. Recombinant cells encapsulated in APA and modified capsules were able to secrete luciferase into culture media. The modified capsules were found to capture some components of regular culture media used during preparation, causing an immune reaction in implanted mice, but use of UltraCulture serum-free medium was found to prevent this immune reaction. In vivo biocompatibility of the new capsules was similar to the APA capsules, with no sign of clinical toxicity on complete blood counts and liver function tests. The increased stability of the

  6. Treating Immunodeficiency through HSC Gene Therapy.

    PubMed

    Booth, Claire; Gaspar, H Bobby; Thrasher, Adrian J

    2016-04-01

    Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future.

  7. Biosafety challenges for use of lentiviral vectors in gene therapy.

    PubMed

    Rothe, Michael; Modlich, Ute; Schambach, Axel

    2013-12-01

    Lentiviral vectors are promising tools for the genetic modification of cells in biomedical research and gene therapy. Their use in recent clinical trials for the treatment of adrenoleukodystrophy, β-thalassemia, Wiskott-Aldrich- Syndrome and metachromatic leukodystrophy underlined their efficacy for therapies especially in case of hereditary diseases. In comparison to gammaretroviral LTR-driven vectors, which were employed in the first clinical trials, lentiviral vectors present with some favorable features like the ability to transduce also non-dividing cells and a potentially safer insertion profile. However, genetic modification with viral vectors in general and stable integration of the therapeutic gene into the host cell genome bear concerns with respect to different levels of personal or environmental safety. Among them, insertional mutagenesis by enhancer mediated dysregulation of neighboring genes or aberrant splicing is still the biggest concern. However, also risks like immunogenicity of vector particles, the phenotoxicity of the transgene and potential vertical or horizontal transmission by replication competent retroviruses need to be taken into account. This review will give an overview on biosafety aspects that are relevant to the use of lentiviral vectors for genetic modification and gene therapy. Furthermore, assay systems aiming at evaluating biosafety in preclinical settings and recent promising clinical trials including efforts of monitoring of patients after gene therapy will be discussed.

  8. Gene therapy for duchenne muscular dystrophy: expectations and challenges.

    PubMed

    Rodino-Klapac, Louise R; Chicoine, Louis G; Kaspar, Brian K; Mendell, Jerry R

    2007-09-01

    Duchenne muscular dystrophy is a debilitating X-linked disease with limited treatment options. We examined the possibility of moving forward with gene therapy, an approach that demonstrates promise for treating Duchenne muscular dystrophy. Gene therapy is not limited to replacement of defective genes but also includes strategies using surrogate genes with alternative but effective means of improving cellular function or repairing gene mutations. The first viral-mediated gene transfer for any muscle disease was carried out at Columbus Children's Research Institute and Ohio State University for limb girdle muscular dystrophy type 2D, and the first viral-mediated trial of gene transfer for Duchenne muscular dystrophy is under way at the same institutions. These studies, consisting of intramuscular injection of virus into a single muscle, are limited in scope and represent phase 1 clinical trials with safety as the primary end point. These initial clinical studies lay the foundation for future studies, providing important information about dosing, immunogenicity, and viral serotype in humans. This article highlights the challenges and potential pitfalls as the field advances this treatment modality to clinical reality.

  9. Gene Therapy: Implications for Craniofacial Regeneration

    PubMed Central

    Scheller, Erica L.; Villa-Diaz, Luis G; Krebsbach, Paul H.

    2011-01-01

    Gene therapy in the craniofacial region provides a unique tool for delivery of DNA to coordinate protein production in both time and space. The drive to bring this technology to the clinic is derived from the fact that over 85% of the global population may at one time require repair or replacement of a craniofacial structure. This need ranges from mild tooth decay and tooth loss to temporomandibular joint disorders and large-scale reconstructive surgery. Our ability to insert foreign DNA into a host cell has been developing since early uses of gene therapy to alter bacterial properties for waste cleanup in the 1980s followed by successful human clinical trials in the 1990s to treat severe combined immunodeficiency. In the past twenty years the emerging field of craniofacial tissue engineering has adopted these techniques to enhance regeneration of mineralized tissues, salivary gland, periodontium, and to reduce tumor burden of head and neck squamous cell carcinoma. Studies are currently pursuing research on both biomaterial-mediated gene delivery as well as more clinically efficacious, though potentially more hazardous, viral methods. Though hundreds of gene therapy clinical trials have taken place in the past twenty years, we must still work to ensure an ideal safety profile for each gene and delivery method combination. With adequate genotoxicity testing, we can expect gene therapy to augment protein delivery strategies and potentially allow for tissue-specific targeting, delivery of multiple signals, and increased spatial and temporal control with the goal of natural tissue replacement in the craniofacial complex. PMID:22337437

  10. Gene therapy to restore electrophysiological function in heart failure.

    PubMed

    Motloch, Lukas J; Akar, Fadi G

    2015-06-01

    Heart failure (HF) is a major public health epidemic and a leading cause of morbidity and mortality in the industrialized world. Existing treatments for patients with HF are often associated with pro-arrhythmic activity and risk of sudden cardiac death. Therefore, development of novel, effective and safe therapeutic options for HF patients is a critical area of unmet need. In this article, we review recent advances in the emerging field of cardiac gene therapy for the treatment of tachy- and bradyarrhythmias in HF. We provide an overview of gene-based approaches that modulate myocardial conduction, repolarization, calcium cycling and adrenergic signaling to restore heart rate and rhythm. We highlight major advantages of gene therapy for arrhythmias, including the ability to selectively target specific cell populations and to limit the therapeutic effect to the region that requires modification. We illustrate how advances in our fundamental understanding of the molecular origins of arrhythmogenic disorders are allowing investigators to use targeted gene-based approaches to successfully correct abnormal excitability in the atria, ventricles and conduction system. Translation of various gene therapy approaches to humans may revolutionize our ability to combat lethal arrhythmias in HF patients.

  11. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    PubMed Central

    Fillat, Cristina; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano

    2011-01-01

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed. PMID:24212620

  12. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  13. Suicide Gene Therapy for Cancer – Current Strategies

    PubMed Central

    Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios; Yarmus, Lonny; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos; Malecki, Marek

    2013-01-01

    Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells’ vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells’ suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients’ organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We

  14. Noninvasive tracking of gene transcript and neuroprotection after gene therapy.

    PubMed

    Ren, J; Chen, Y I; Liu, C H; Chen, P-C; Prentice, H; Wu, J-Y; Liu, P K

    2016-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer's dementia, Parkinson's disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.

  15. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging.

    PubMed

    Peñuelas, Iván; Boán, JoséF; Martí-Climent, Josep M; Sangro, Bruno; Mazzolini, Guillermo; Prieto, Jesús; Richter, José A

    2004-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. This review focuses on the molecular biology basis of gene therapy and molecular imaging, describing the fundamentals of in vivo gene expression imaging by PET, and the application of PET to gene therapy, as a technology that can be used in many different ways. It could be applied to avoid invasive procedures for gene therapy monitoring; accurately diagnose the pathology for better planning of the most adequate therapeutic approach; as treatment evaluation to image the functional effects of gene therapy at the biochemical level; as a quantitative noninvasive way to monitor the location, magnitude and persistence of gene expression over time; and would also help to a better understanding of vector biology and pharmacology devoted to the development of safer and more efficient vectors.

  16. Stem cell based anti-HIV Gene therapy

    PubMed Central

    Kitchen, Scott G.; Shimizu, Saki; An, Dong Sung

    2011-01-01

    Human stem cell-based therapeutic intervention strategies for treating HIV infection have recently undergone a renaissance as a major focus of investigation. Unlike most conventional antiviral therapies, genetically engineered hematopoietic stem cells possess the capacity for prolonged self-renewal that would continuously produce protected immune cells to fight against HIV. A successful strategy therefore has the potential to stably control and ultimately eradicate HIV from patients by a single or minimal treatment. Recent progress in the development of new technologies and clinical trials sets the stage for the current generation of gene therapy approaches to combat HIV infection. In this review, we will discuss two major approaches that are currently underway in the development of stem cell-based gene therapy to target HIV: One that focuses on the protection of cells from productive infection with HIV, and the other that focuses on targeting immune cells to directly combat HIV infection. PMID:21247612

  17. Let There Be Light: Gene and Cell Therapy for Blindness.

    PubMed

    Dalkara, Deniz; Goureau, Olivier; Marazova, Katia; Sahel, José-Alain

    2016-02-01

    Retinal degenerative diseases are a leading cause of irreversible blindness. Retinal cell death is the main cause of vision loss in genetic disorders such as retinitis pigmentosa, Stargardt disease, and Leber congenital amaurosis, as well as in complex age-related diseases such as age-related macular degeneration. For these blinding conditions, gene and cell therapy approaches offer therapeutic intervention at various disease stages. The present review outlines advances in therapies for retinal degenerative disease, focusing on the progress and challenges in the development and clinical translation of gene and cell therapies. A significant body of preclinical evidence and initial clinical results pave the way for further development of these cutting edge treatments for patients with retinal degenerative disorders.

  18. Gene therapy targets in Heart Failure: the Path to translation

    PubMed Central

    Raake, PWJ; Tscheschner, H; Reinkober, J; Ritterhoff, J; Katus, HA; Koch, WJ; Most, P

    2014-01-01

    Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of β-adrenergic receptor (β-AR) signaling, Ca2+ disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations. PMID:21866097

  19. Let There Be Light: Gene and Cell Therapy for Blindness

    PubMed Central

    Dalkara, Deniz; Goureau, Olivier; Marazova, Katia; Sahel, José-Alain

    2016-01-01

    Retinal degenerative diseases are a leading cause of irreversible blindness. Retinal cell death is the main cause of vision loss in genetic disorders such as retinitis pigmentosa, Stargardt disease, and Leber congenital amaurosis, as well as in complex age-related diseases such as age-related macular degeneration. For these blinding conditions, gene and cell therapy approaches offer therapeutic intervention at various disease stages. The present review outlines advances in therapies for retinal degenerative disease, focusing on the progress and challenges in the development and clinical translation of gene and cell therapies. A significant body of preclinical evidence and initial clinical results pave the way for further development of these cutting edge treatments for patients with retinal degenerative disorders. PMID:26751519

  20. Genome-editing Technologies for Gene and Cell Therapy.

    PubMed

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  1. A preclinical approach for gene therapy of β-thalassemia

    PubMed Central

    Breda, Laura; Kleinert, Dorothy A.; Casu, Carla; Casula, Laura; Cartegni, Luca; Fibach, Eitan; Mancini, Irene; Giardina, Patricia J.; Gambari, Roberto; Rivella, Stefano

    2011-01-01

    Lentiviral-mediated β-globin gene transfer successfully treated β-thalassemic mice. Based on this result, clinical trials were initiated. To date, however, no study has investigated the efficacy of gene therapy in relation to the nature of the different β-globin mutations found in patien