Science.gov

Sample records for gene variants influence

  1. IL18 Gene Variants Influence the Susceptibility to Chagas Disease.

    PubMed

    Leon Rodriguez, Daniel A; Carmona, F David; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier

    2016-03-01

    Chagas disease is a parasitic disorder caused by the infection with the flagellated protozoan Trypanosoma cruzi. According to the World Health Organization, more than six million people are currently infected in endemic regions. Genetic factors have been proposed to influence predisposition to infection and development of severe clinical phenotypes like chronic Chagas cardiomyopathy (CCC). Interleukin 18 (IL18) encodes a proinflammatory cytokine that has been proposed to be involved in controlling T. cruzi infection. In this study, we analyzed the possible role of six IL18 gene variants (rs5744258, rs360722, rs2043055, rs187238, rs1946518 and rs360719), which cover most of the variation within the locus, in the susceptibility to infection by T. cruzi and/or CCC. In total, 1,171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and CCC (n = 401), were genotyped using TaqMan probes. Significant associations with T. cruzi infection were observed when comparing seronegative and seropositive individuals for rs187238 (P = 2.18E-03, OR = 0.77), rs360719 (P = 1.49E-03, OR = 0.76), rs2043055 (P = 2.52E-03, OR = 1.29), and rs1946518 (P = 0.0162, OR = 1.22). However, dependence analyses suggested that the association was mainly driven by the polymorphism rs360719. This variant is located within the promoter region of the IL18 gene, and it has been described that it creates a binding site for the transcription factor OCT-1 affecting IL-18 expression levels. In addition, no evidence of association was observed between any of the analyzed IL18 gene polymorphisms and the development of CCC. In summary, our data suggest that genetic variation within the promoter region of IL18 is directly involved in the susceptibility to infection by T. cruzi, which provides novel insight into disease pathophysiology and adds new perspectives to achieve a more effective disease control.

  2. IL18 Gene Variants Influence the Susceptibility to Chagas Disease

    PubMed Central

    Leon Rodriguez, Daniel A; Carmona, F. David; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier

    2016-01-01

    Chagas disease is a parasitic disorder caused by the infection with the flagellated protozoan Trypanosoma cruzi. According to the World Health Organization, more than six million people are currently infected in endemic regions. Genetic factors have been proposed to influence predisposition to infection and development of severe clinical phenotypes like chronic Chagas cardiomyopathy (CCC). Interleukin 18 (IL18) encodes a proinflammatory cytokine that has been proposed to be involved in controlling T. cruzi infection. In this study, we analyzed the possible role of six IL18 gene variants (rs5744258, rs360722, rs2043055, rs187238, rs1946518 and rs360719), which cover most of the variation within the locus, in the susceptibility to infection by T. cruzi and/or CCC. In total, 1,171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and CCC (n = 401), were genotyped using TaqMan probes. Significant associations with T. cruzi infection were observed when comparing seronegative and seropositive individuals for rs187238 (P = 2.18E-03, OR = 0.77), rs360719 (P = 1.49E-03, OR = 0.76), rs2043055 (P = 2.52E-03, OR = 1.29), and rs1946518 (P = 0.0162, OR = 1.22). However, dependence analyses suggested that the association was mainly driven by the polymorphism rs360719. This variant is located within the promoter region of the IL18 gene, and it has been described that it creates a binding site for the transcription factor OCT-1 affecting IL-18 expression levels. In addition, no evidence of association was observed between any of the analyzed IL18 gene polymorphisms and the development of CCC. In summary, our data suggest that genetic variation within the promoter region of IL18 is directly involved in the susceptibility to infection by T. cruzi, which provides novel insight into disease pathophysiology and adds new perspectives to achieve a more effective disease control. PMID:27027876

  3. Multiple common variants for celiac disease influencing immune gene expression

    PubMed Central

    Dubois, Patrick CA; Trynka, Gosia; Franke, Lude; Hunt, Karen A; Romanos, Jihane; Curtotti, Alessandra; Zhernakova, Alexandra; Heap, Graham AR; Ádány, Róza; Aromaa, Arpo; Bardella, Maria Teresa; van den Berg, Leonard H; Bockett, Nicholas A; de la Concha, Emilio G.; Dema, Bárbara; Fehrmann, Rudolf SN; Fernández-Arquero, Miguel; Fiatal, Szilvia; Grandone, Elvira; Green, Peter M; Groen, Harry JM; Gwilliam, Rhian; Houwen, Roderick HJ; Hunt, Sarah E; Kaukinen, Katri; Kelleher, Dermot; Korponay-Szabo, Ilma; Kurppa, Kalle; MacMathuna, Padraic; Mäki, Markku; Mazzilli, Maria Cristina; McCann, Owen T; Mearin, M Luisa; Mein, Charles A; Mirza, Muddassar M; Mistry, Vanisha; Mora, Barbara; Morley, Katherine I; Mulder, Chris J; Murray, Joseph A; Núñez, Concepción; Oosterom, Elvira; Ophoff, Roel A; Polanco, Isabel; Peltonen, Leena; Platteel, Mathieu; Rybak, Anna; Salomaa, Veikko; Schweizer, Joachim J; Sperandeo, Maria Pia; Tack, Greetje J; Turner, Graham; Veldink, Jan H; Verbeek, Wieke HM; Weersma, Rinse K; Wolters, Victorien M; Urcelay, Elena; Cukrowska, Bozena; Greco, Luigi; Neuhausen, Susan L.; McManus, Ross; Barisani, Donatella; Deloukas, Panos; Barrett, Jeffrey C; Saavalainen, Paivi; Wijmenga, Cisca; van Heel, David A

    2010-01-01

    We performed a second-generation genome wide association study of 4,533 celiac disease cases and 10,750 controls. We genotyped 113 selected SNPs with PGWAS<10−4, and 18 SNPs from 14 known loci, in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome wide significance (Pcombined<5×10−8), most contain immune function genes (BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ICOSLG, ZMIZ1) with ETS1, RUNX3, THEMIS and TNFRSF14 playing key roles in thymic T cell selection. A further 13 regions had suggestive association evidence. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P<0.0028, FDR 5%) with cis gene expression. PMID:20190752

  4. Renin-Angiotensin System Gene Variants and Type 2 Diabetes Mellitus: Influence of Angiotensinogen.

    PubMed

    Joyce-Tan, Siew Mei; Zain, Shamsul Mohd; Abdul Sattar, Munavvar Zubaid; Abdullah, Nor Azizan

    2016-01-01

    Genome-wide association studies (GWAS) have been successfully used to call for variants associated with diseases including type 2 diabetes mellitus (T2DM). However, some variants are not included in the GWAS to avoid penalty in multiple hypothetic testing. Thus, candidate gene approach is still useful even at GWAS era. This study attempted to assess whether genetic variations in the renin-angiotensin system (RAS) and their gene interactions are associated with T2DM risk. We genotyped 290 T2DM patients and 267 controls using three genes of the RAS, namely, angiotensin converting enzyme (ACE), angiotensinogen (AGT), and angiotensin II type 1 receptor (AGTR1). There were significant differences in allele frequencies between cases and controls for AGT variants (P = 0.05) but not for ACE and AGTR1. Haplotype TCG of the AGT was associated with increased risk of T2DM (OR 1.92, 95% CI 1.15-3.20, permuted P = 0.012); however, no evidence of significant gene-gene interactions was seen. Nonetheless, our analysis revealed that the associations of the AGT variants with T2DM were independently associated. Thus, this study suggests that genetic variants of the RAS can modestly influence the T2DM risk.

  5. Common variants within oxidative phosphorylation genes influence risk of ischemic stroke and intracerebral hemorrhage.

    PubMed

    Anderson, Christopher D; Biffi, Alessandro; Nalls, Michael A; Devan, William J; Schwab, Kristin; Ayres, Alison M; Valant, Valerie; Ross, Owen A; Rost, Natalia S; Saxena, Richa; Viswanathan, Anand; Worrall, Bradford B; Brott, Thomas G; Goldstein, Joshua N; Brown, Devin; Broderick, Joseph P; Norrving, Bo; Greenberg, Steven M; Silliman, Scott L; Hansen, Björn M; Tirschwell, David L; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Selim, Magdy; Roquer, Jaume; Montaner, Joan; Singleton, Andrew B; Kidwell, Chelsea S; Woo, Daniel; Furie, Karen L; Meschia, James F; Rosand, Jonathan

    2013-03-01

    Previous studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). This association study used a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing gene-set enrichment analysis were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio [OR], 1.17; P=0.008) and complex I (OR, 1.06; P=0.050). Among IS subtypes, small vessel stroke showed association with OXPHOS (OR, 1.16; P=0.007), complex I (OR, 1.13; P=0.027), and complex IV (OR, 1.14; P=0.018). To further explore this small vessel association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and complex IV (OR, 1.08; P=0.008). This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for small vessel stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences.

  6. Common Variants within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage

    PubMed Central

    Anderson, Christopher D.; Biffi, Alessandro; Nalls, Michael A.; Devan, William J.; Schwab, Kristin; Ayres, Alison M.; Valant, Valerie; Ross, Owen A.; Rost, Natalia S.; Saxena, Richa; Viswanathan, Anand; Worrall, Bradford B.; Brott, Thomas G.; Goldstein, Joshua N.; Brown, Devin; Broderick, Joseph P.; Norrving, Bo; Greenberg, Steven M.; Silliman, Scott L.; Hansen, Björn M.; Tirschwell, David L.; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Selim, Magdy; Roquer, Jaume; Montaner, Joan; Singleton, Andrew B.; Kidwell, Chelsea S.; Woo, Daniel; Furie, Karen L.; Meschia, James F.; Rosand, Jonathan

    2013-01-01

    Background and Purpose Prior studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods This association study employed a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis (GSEA) was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing GSEA were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio (OR)=1.17, p=0.008) and Complex I (OR=1.06, p=0.050). Among IS subtypes, small vessel (SV) stroke showed association with OXPHOS (OR=1.16, p=0.007), Complex I (OR=1.13, p=0.027) and Complex IV (OR 1.14, p=0.018). To further explore this SV association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and Complex IV (OR=1.08, p=0.008). Conclusions This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for SV stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. PMID:23362085

  7. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  8. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.

    PubMed

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2013-03-19

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.

  9. Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder.

    PubMed

    Benedetti, Francesco; Bollettini, Irene; Barberi, Ignazio; Radaelli, Daniele; Poletti, Sara; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Falini, Andrea; Colombo, Cristina; Smeraldi, Enrico

    2013-01-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections.

  10. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder.

    PubMed

    Benedetti, Francesco; Poletti, Sara; Radaelli, Daniele; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Vai, Benedetta; Bollettini, Irene; Falini, Andrea; Smeraldi, Enrico; Colombo, Cristina

    2015-04-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase-3β (GSK-3β). The less active GSK-3β promoter gene variants have been associated with less detrimental clinical features of BD. GSK-3β gene variants and lithium can influence brain gray and white matter structure in psychiatric conditions, so we studied their combined effect in BD. The aim of this study is to investigate the effects of ongoing long-term lithium treatment and GSK-3β promoter rs334558 polymorphism on regional gray matter (GM) volumes of patients with BD. GM volumes were estimated with 3.0 Tesla MRI in 150 patients affected by a major depressive episode in course of BD. Duration of lifetime lithium treatment was retrospectively assessed. Analyses were performed by searching for significant effects of lithium and rs334558 in the whole brain. The less active GSK-3β rs334558*G gene promoter variant and the long-term administration of lithium were synergistically associated with increased GM volumes in the right frontal lobe, in a large cluster encompassing the boundaries of subgenual and orbitofrontal cortex (including Brodmann areas 25, 11, and 47). Effects of lithium on GM revealed in rs334558*G carriers only, consistent with previously reported clinical effects in these genotype groups, and were proportional to the duration of treatment. Lithium and rs334558 influenced GM volumes in areas critical for the generation and control of affect, which have been widely implicated in the process of BD pathophysiology. In the light of the protective effects of lithium on white matter integrity, our results suggest that the clinical effects of lithium associate with a neurotrophic effect on the whole brain, probably mediated by GSK-3β inhibition.

  11. Inherited Variants in Mitochondrial Biogenesis Genes May Influence Epithelial Ovarian Cancer Risk

    PubMed Central

    Permuth-Wey, Jennifer; Chen, Y. Ann; Tsai, Ya-Yu; Chen, Zhihua; Qu, Xiaotao; Lancaster, Johnathan M.; Stockwell, Heather; Dagne, Getachew; Iversen, Edwin; Risch, Harvey; Barnholtz-Sloan, Jill; Cunningham, Julie M.; Vierkant, Robert A.; Fridley, Brooke L.; Sutphen, Rebecca; McLaughlin, John; Narod, Steven A.; Goode, Ellen L.; Schildkraut, Joellen M.; Fenstermacher, David; Phelan, Catherine M.; Sellers, Thomas A.

    2011-01-01

    Background Mitochondria contribute to oxidative stress, a phenomenon implicated in ovarian carcinogenesis. We hypothesized that inherited variants in mitochondrial-related genes influence epithelial ovarian cancer (EOC) susceptibility. Methods Through a multi-center study of 1,815 Caucasian EOC cases and 1,900 controls, we investigated associations between EOC risk and 128 single nucleotide polymorphisms (SNPs) from 22 genes/regions within the mitochondrial genome (mtDNA) and 2,839 nuclear-encoded SNPs localized to 138 genes involved in mitochondrial biogenesis (BIO, n=35), steroid hormone metabolism (HOR, n=13), and oxidative phosphorylation (OXP, n=90) pathways. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) between genotype and case status. Overall significance of each gene and pathway was evaluated using Fisher’s method to combine SNP-level evidence. At the SNP-level, we investigated whether lifetime ovulation, hormone replacement therapy (HRT), and cigarette smoking were confounders or modifiers of associations. Results Inter-individual variation involving BIO was most strongly associated with EOC risk (empirical P=0.050), especially for NRF1, MTERF, PPARGC1A, ESRRA, and CAMK2D. Several SNP-level associations strengthened after adjustment for non-genetic factors, particularly for MTERF. Statistical interactions with cigarette smoking and HRT use were observed with MTERF and CAMK2D SNPs, respectively. Overall variation within mtDNA, HOR, and OXP was not statistically significant (empirical P >0.10). Conclusion We provide novel evidence to suggest that variants in mitochondrial biogenesis genes may influence EOC susceptibility. Impact A deeper understanding of the complex mechanisms implicated in mitochondrial biogenesis and oxidative stress may aid in developing strategies to reduce morbidity and mortality from EOC. PMID:21447778

  12. Rare variants in neuronal excitability genes influence risk for bipolar disorder.

    PubMed

    Ament, Seth A; Szelinger, Szabolcs; Glusman, Gustavo; Ashworth, Justin; Hou, Liping; Akula, Nirmala; Shekhtman, Tatyana; Badner, Judith A; Brunkow, Mary E; Mauldin, Denise E; Stittrich, Anna-Barbara; Rouleau, Katherine; Detera-Wadleigh, Sevilla D; Nurnberger, John I; Edenberg, Howard J; Gershon, Elliot S; Schork, Nicholas; Price, Nathan D; Gelinas, Richard; Hood, Leroy; Craig, David; McMahon, Francis J; Kelsoe, John R; Roach, Jared C

    2015-03-17

    We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.

  13. Common genetic variants in NEFL influence gene expression and neuroblastoma risk.

    PubMed

    Capasso, Mario; Diskin, Sharon; Cimmino, Flora; Acierno, Giovanni; Totaro, Francesca; Petrosino, Giuseppe; Pezone, Lucia; Diamond, Maura; McDaniel, Lee; Hakonarson, Hakon; Iolascon, Achille; Devoto, Marcella; Maris, John M

    2014-12-01

    The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single-nucleotide polymorphisms (SNP) associated with neuroblastoma at the CASC15, BARD1, LMO1, DUSP12, HSD17B12, HACE1, and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated eight additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNPs at these candidate genes were tested for association with disease susceptibility in 2,101 cases and 4,202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing, and cellular differentiation assays. The neurofilament gene NEFL harbored three SNPs associated with neuroblastoma (rs11994014: Pcombined = 0.0050; OR, 0.88; rs2979704: Pcombined = 0.0072; OR, 0.87; rs1059111: Pcombined = 0.0049; OR, 0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biologic investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens were associated with better overall survival (P = 0.03; HR, 0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and

  14. Variants in genes that encode muscle contractile proteins influence risk for isolated clubfoot

    PubMed Central

    Weymouth, Katelyn S.; Blanton, Susan H.; Bamshad, Michael J.; Beck, Anita E.; Alvarez, Christine; Richards, Steve; Gurnett, Christina A.; Dobbs, Matthew B.; Barnes, Douglas; Mitchell, Laura E.; Hecht, Jacqueline T.

    2011-01-01

    Isolated clubfoot is a relatively common birth defect that affects approximately 4,000 newborns in the US each year. Calf muscles in the affected leg(s) are underdeveloped and remain small even after corrective treatment. This observation suggests that variants in genes that influence muscle development are priority candidate risk factors for clubfoot. This contention is further supported by the discovery that mutations in genes that encode components of the muscle contractile complex (MYH3, TPM2, TNNT3, TNNI2, and MYH8) cause congenital contractures, including clubfoot, in distal arthrogryposis (DA) syndromes. Interrogation of fifteen genes encoding proteins that control myofiber contractility in a cohort of both nonHispanic white (NHW) and Hispanic families, identified positive associations (p<0.05) with SNPs in twelve genes; only one was identified in a family-based validation dataset. Six SNPs in TNNC2 deviated from Hardy Weinberg Equilibrium (HWE) in mothers in our NHW discovery dataset. Relative risk and likelihood ratio tests showed evidence for a maternal genotypic effect with TNNC2/rs383112 and an inherited/child genotypic effect with two SNPs, TNNC2/rs4629 and rs383112. Associations with multiple SNPs in TPM1 were identified in the NHW discovery (rs4075583, p=0.01), family-based validation (rs1972041, p=0.000074) and case-control validation (rs12148828, p=0.04) datasets. Gene interactions were identified between multiple muscle contraction genes with many of the interactions involving at least one potential regulatory SNP. Collectively, our results suggest that variation in genes that encode contractile proteins of skeletal myofibers may play a role in the etiology of clubfoot. PMID:21834041

  15. Inherited Variants in Wnt Pathway Genes Influence Outcomes of Prostate Cancer Patients Receiving Androgen Deprivation Therapy

    PubMed Central

    Geng, Jiun-Hung; Lin, Victor C.; Yu, Chia-Cheng; Huang, Chao-Yuan; Yin, Hsin-Ling; Chang, Ta-Yuan; Lu, Te-Ling; Huang, Shu-Pin; Bao, Bo-Ying

    2016-01-01

    Aberrant Wnt signaling has been associated with many types of cancer. However, the association of inherited Wnt pathway variants with clinical outcomes in prostate cancer patients receiving androgen deprivation therapy (ADT) has not been determined. Here, we comprehensively studied the contribution of common single nucleotide polymorphisms (SNPs) in Wnt pathway genes to the clinical outcomes of 465 advanced prostate cancer patients treated with ADT. Two SNPs, adenomatous polyposis coli (APC) rs2707765 and rs497844, were significantly (p ≤ 0.009 and q ≤ 0.043) associated with both prostate cancer progression and all-cause mortality, even after multivariate analyses and multiple testing correction. Patients with a greater number of favorable alleles had a longer time to disease progression and better overall survival during ADT (p for trend ≤ 0.003). Additional, cDNA array and in silico analyses of prostate cancer tissue suggested that rs2707765 affects APC expression, which in turn is correlated with tumor aggressiveness and patient prognosis. This study identifies the influence of inherited variants in the Wnt pathway on the efficacy of ADT and highlights a preclinical rationale for using APC as a prognostic marker in advanced prostate cancer. PMID:27898031

  16. Social Environment Influences Performance in a Cognitive Task in Natural Variants of the Foraging Gene

    PubMed Central

    Moreno, Celine; Burns, James G.; Sokolowski, Marla B.; Mery, Frederic

    2013-01-01

    In Drosophila melanogaster, natural genetic variation in the foraging gene affects the foraging behaviour of larval and adult flies, larval reward learning, adult visual learning, and adult aversive training tasks. Sitters (fors) are more sedentary and aggregate within food patches whereas rovers (forR) have greater movement within and between food patches, suggesting that these natural variants are likely to experience different social environments. We hypothesized that social context would differentially influence rover and sitter behaviour in a cognitive task. We measured adult rover and sitter performance in a classical olfactory training test in groups and alone. All flies were reared in groups, but fly training and testing were done alone and in groups. Sitters trained and tested in a group had significantly higher learning performances compared to sitters trained and tested alone. Rovers performed similarly when trained and tested alone and in a group. In other words, rovers learning ability is independent of group training and testing. This suggests that sitters may be more sensitive to the social context than rovers. These differences in learning performance can be altered by pharmacological manipulations of PKG activity levels, the foraging (for) gene's gene product. Learning and memory is also affected by the type of social interaction (being in a group of the same strain or in a group of a different strain) in rovers, but not in sitters. These results suggest that for mediates social learning and memory in D. melanogaster. PMID:24349049

  17. Fatty acid translocase gene CD36 rs1527483 variant influences oral fat perception in Malaysian subjects.

    PubMed

    Ong, Hing-Huat; Tan, Yen-Nee; Say, Yee-How

    2017-01-01

    We determined whether single nucleotide polymorphisms (SNPs; rs1761667 and rs1527483) in the fatty acid translocase CD36 gene - a receptor for fatty acids - is associated with oral fat perception (OFP) of different fat contents in custards and commercially-available foods, and obesity measures in Malaysian subjects (n=313; 118 males, 293 ethnic Chinese; 20 ethnic Indians). A 170-mm visual analogue scale was used to assess the ratings of perceived fat content, oiliness and creaminess of 0%, 2%, 6% and 10% fat content-by-weight custards and low-fat/regular versions of commercially-available milk, mayonnaise and cream crackers. Overall, the subjects managed to significantly discriminate the fat content, oiliness and creaminess between low-fat/regular versions of milk and mayonnaise. Females rated the perception of fat content and oiliness of both milks higher, but ethnicity, obesity and adiposity status did not seem to play a role in influencing most of OFP. The overall minor allele frequencies for rs1761667 and rs1527483 were 0.30 and 0.26, respectively. Females and individuals with rs1527483 TT genotype significantly perceived greater creaminess of 10% fat-by-weight custard. Also, individuals with rs1527483 TT genotype and T allele significantly perceived greater fat content of cream crackers, independent of fat concentration. rs1761667 SNP did not significantly affect OFP, except for cream crackers. Both gene variants were also not associated with obesity measures. Taken together, this study supports the notion that CD36 - specifically rs1527483, plays a role in OFP, but not in influencing obesity in Malaysian subjects. Besides, gender is an important factor for OFP, where females had higher sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  19. Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population

    PubMed Central

    Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel

    2015-01-01

    Background The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. Objectives We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. Subjects and Methods 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. Results No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Conclusion Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects. PMID

  20. Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population

    PubMed Central

    2013-01-01

    Background The control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area of Oaxaca, Mexico with high TB incidence. Methods We carried out a case–control association community based study, genotyping 12 polymorphisms of TLR2, TLR4, TLR6 and TLR9 genes in 90 patients with confirmed pulmonary TB and 90 unrelated exposed but asymptomatic household contacts. Results We found a significant increase in the frequency of the allele A of the TLR9 gene polymorphism rs352139 (A>G) in the group of TB patients (g.f. = 0.522) when compared with controls (g.f. = 0.383), (Pcorr = 0.01, OR = 1.75). Under the recessive model (A/G + A/A vs G/G) this polymorphism was also significantly associated with TB (Pcorr = 0.01, OR= 2.37). The association of the SNP rs352139 was statistically significant after adjustment by age, gender and comorbidities by regression logistic analysis (Dominant model: p value = 0.016, OR = 2.31; Additive model: p value = 0.023, OR = 1.68). The haplotype GAA of TLR9 SNPs was also associated with TB susceptibility (Pcorr = 0.02). Differences in the genotype or allele frequencies of TLR2, TLR4 and TLR6 polymorphisms between TB patients and healthy contacts were not detected. Conclusions Our study suggests that the allele A of the intronic polymorphism rs352139 on TLR9 gene might contribute to the risk of developing TB in Mexican Amerindians. PMID:24053111

  1. The influence of dopaminergic gene variants on decision making in the ultimatum game.

    PubMed

    Reuter, Martin; Felten, Andrea; Penz, Sabrina; Mainzer, Anna; Markett, Sebastian; Montag, Christian

    2013-01-01

    One of the most prominent paradigms in neuroeconomics is the ultimatum game (UG) that provides a framework for the study of pro-social behavior in two players interacting anonymously with each other: Player 1 has to split an endowment with player 2. Player 2 can either accept or reject the offer from player 1. If player 2 accepts the offer then the money is split as proposed by player 1. In case of rejection both players get nothing. Until now only one twin study investigated the heritability of the behavior in the UG. Results indicated a strong heritability for the decision behavior of player 2 whereas no genetic influence on player 1 behavior could be detected. Further studies are mandatory to validate these heritability estimates. However, a first candidate polymorphism, the DRD4 exon III, constituting the biological basis of the heritability in the responder behavior has already been identified in a Chinese sample (Zhong et al., 2010). Until now genetic studies in Caucasians on the UG are lacking. The present study wants to fill this gap by investigating the UG in a healthy German sample. Moreover, we intend to find candidate genes that are associated with the first-mover-behavior. In a sample of N = 130 healthy participants an online version of the UG was conducted and polymorphisms of the dopamine D2 receptor gene (DRD2) and the DRD4 exon III VNTR were genotyped. We could confirm the DRD4 exon III effect on the responder behavior and the absence of an effect on the proposer behavior reported before. In line with Zhong et al. (2010) carriers of the 4/4 genotype showed a significant higher minimal acceptable offer (p = 0.023) than subjects with any other genotype. Furthermore, a DRD2-haplotype-block containing the single nucleotide polymorphisms rs1800497 and rs2283265 was significantly associated with the amount player1 offered (p = 0.005) but not with the decision of player 2. Results support the importance of the dopaminergic system for pro-social behavior.

  2. Influence of DNA-repair gene variants on the micronucleus frequency in thyroid cancer patients.

    PubMed

    García-Quispes, W A; Pastor, S; Galofré, P; Biarnés, F; Castell, J; Velázquez, A; Marcos, R

    2013-01-20

    The role of different DNA-repair genes (OGG1, XRCC1, XRCC2 and XRCC3) on both the spontaneous and the induced frequency of micronuclei (MN) has been studied in the lymphocytes of a group of 114 patients with differentiated thyroid cancer (DTC). Induction of MN was achieved by treatment of the lymphocytes with 0.5Gy of gamma-radiation. The selected genes are involved in base-excision repair (BER) (OGG1, Ser326Cys; XRCC1, Arg280His and Arg399Gln), and in homologous recombination repair (HRR) (XRCC2, Arg188His and XRCC3, IVS5-14G). Genotyping was carried out by use of the iPLEX (Sequenom) technique. Results indicate that only the OGG1-Ser326Cys polymorphism was able to modulate the MN frequency. This effect was only observed in the spontaneous MN frequency (P=0.016), but not in the MN frequency induced after irradiation. In addition, a strong correlation was observed between spontaneous and induced MN frequency, which would suggest an underlying genetic background.

  3. Adiponectin gene variant interacts with fish oil supplementation to influence serum adiponectin in older individuals.

    PubMed

    Alsaleh, Aseel; Crepostnaia, Daria; Maniou, Zoitsa; Lewis, Fiona J; Hall, Wendy L; Sanders, Thomas A B; O'Dell, Sandra D

    2013-07-01

    Marine n3 polyunsaturated fatty acids (PUFAs) activate the transcription factor peroxisome proliferator-activated receptor (PPARγ), which modulates the expression of adiponectin. We investigated the interaction of dietary n3 PUFAs with adiponectin gene (ADIPOQ) single nucleotide polymorphism (SNP) genotypes as a determinant of serum adiponectin concentration. The Modulation of Atherosclerosis Risk by Increasing Doses of n3 Fatty Acids study is a parallel design, double-blind, controlled trial. Serum adiponectin was measured in 142 healthy men and 225 women aged 45-70 y randomized to treatment with doses of 0.45, 0.9, and 1.8 g/d 20:5n3 and 22:6n3 (1.51:1), or placebo for 12 mo. The 310 participants who completed the study were genotyped for 5 SNPs at the ADIPOQ locus: -11391 G/A (rs17300539), -11377 C/G (rs266729), -10066 G/A (rs182052), +45 T/G (rs2241766), and +276 G/T (rs1501299). The -11391 A-allele was associated with a higher serum adiponectin concentration at baseline (n = 290; P < 0.001). The interaction between treatment and age as a determinant of adiponectin was significant in participants aged >58 y after the highest dose (n = 92; P = 0.020). The interaction between +45 T/G and treatment and age was a nominally significant determinant of serum adiponectin after adjustment for BMI, gender, and ethnicity (P = 0.029). Individuals homozygous for the +45 T-allele aged >58 y had a 22% increase in serum adiponectin concentration compared with baseline after the highest dose (P-treatment effect = 0.008). If substantiated in a larger sample, a diet high in n3 PUFAs may be recommended for older individuals, especially those of the +45 TT genotype who have reported increased risk of hypoadiponectinemia, type 2 diabetes, and obesity.

  4. Genetic variants on apolipoprotein gene cluster influence triglycerides with a risk of coronary artery disease among Indians.

    PubMed

    AshokKumar, Manickaraj; Subhashini, Navaneethan Gnana Veera; SaiBabu, Ramineni; Ramesh, Arabandi; Cherian, Kotturathu Mammen; Emmanuel, Cyril

    2010-01-01

    Apolipoprotein C3 and apolipoprotien A5 are proteins coded from the APOA1/C3/A4/A5 gene cluster. Sst I polymorphism on apolipoprotein C3 and -1131C polymorphism of apolipoprotien A5 are key variants involved in triglyceride metabolism and cause a significant cardio-metabolic risk. Here, we have evaluated these two variants for their roles in coronary artery disease in patients of the Indian population. The apolipoprotein gene cluster variants were analysed in 416 angiographically determined coronary artery disease patients and matched 416 controls using polymerase chain reaction-restriction fragment length polymorphism. The characteristics of the study subjects were analyzed statistically for their association with the polymorphisms. The alleles were combined as haplotypes and their combined risks were evaluated. The minor allele genotypes of both apolipoprotein C3 (S2) and apolipoprotien A5 (C) had a significant risk for coronary artery disease. The S2 allele genotyped patients had a significantly increased triglyceride level (P < 0.001) and increased triglycerides were observed among both patient and control CC genotype carriers. We identified the haplotype S2/C with a significant increased risk (P < 0.001) to coronary artery disease with increased levels of circulating triglycerides compared to other haplotypes in patients. We conclude that the variants on apolipoprotein C3 and apolipoprotien A5 modulate serum triglyceride levels and increase the risk of coronary artery disease.

  5. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity

    PubMed Central

    Zhang, Ruoxin; Witkowska, Kate; Afonso Guerra-Assunção, José; Ren, Meixia; Ng, Fu Liang; Mauro, Claudio; Tucker, Arthur T.; Caulfield, Mark J.; Ye, Shu

    2016-01-01

    Genome-wide association studies have revealed a relationship between inter-individual variation in blood pressure and the single nucleotide polymorphism rs13107325 in the SLC39A8 gene. This gene encodes the ZIP8 protein which co-transports divalent metal cations, including heavy metal cadmium, the accumulation of which has been associated with increased blood pressure. The polymorphism results in two variants of ZIP8 with either an alanine (Ala) or a threonine (Thr) at residue 391. We investigated the functional impact of this variant on protein conformation, cadmium transport, activation of signalling pathways and cell viability in relation to blood pressure regulation. Following incubation with cadmium, higher intracellular cadmium was detected in cultured human embryonic kidney cells (HEK293) expressing heterologous ZIP8-Ala391, compared with HEK293 cells expressing heterologous ZIP8-Thr391. This Ala391-associated cadmium accumulation also increased the phosphorylation of the signal transduction molecule ERK2, activation of the transcription factor NFκB, and reduced cell viability. Similarly, vascular endothelial cells with the Ala/Ala genotype had higher intracellular cadmium concentration and lower cell viability than their Ala/Thr counterpart following cadmium exposure. These results indicate that the ZIP8 Ala391-to-Thr391 substitution has an effect on intracellular cadmium accumulation and cell toxicity, providing a potential mechanistic explanation for the association of this genetic variant with blood pressure. PMID:27466201

  6. Gene-Based Sequencing Identifies Lipid-Influencing Variants with Ethnicity-Specific Effects in African Americans

    PubMed Central

    Bentley, Amy R.; Chen, Guanjie; Shriner, Daniel; Doumatey, Ayo P.; Zhou, Jie; Huang, Hanxia; Mullikin, James C.; Blakesley, Robert W.; Hansen, Nancy F.; Bouffard, Gerard G.; Cherukuri, Praveen F.; Maskeri, Baishali; Young, Alice C.; Adeyemo, Adebowale; Rotimi, Charles N.

    2014-01-01

    Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a “European” vs. “African” genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2–3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA. PMID:24603370

  7. Intronic Variants in the NFKB1 Gene May Influence Hearing Forecast in Patients with Unilateral Sensorineural Hearing Loss in Meniere's Disease

    PubMed Central

    Cabrera, Sonia; Sanchez, Elena; Requena, Teresa; Martinez-Bueno, Manuel; Benitez, Jesus; Perez, Nicolas; Trinidad, Gabriel; Soto-Varela, Andrés; Santos-Perez, Sofía; Martin-Sanz, Eduardo; Fraile, Jesus; Perez, Paz; Alarcon-Riquelme, Marta E.; Batuecas, Angel; Espinosa-Sanchez, Juan M.; Aran, Ismael; Lopez-Escamez, Jose A.

    2014-01-01

    Meniere's disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several genes involved in the NF-κB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no single nucleotide polymorphism (SNP) reached a genome-wide significant association (p<10−8), we selected allelic variants in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort. None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011 had a shorter mean time to reach hearing stage 3 (>40 dB HL) (log-rank test, corrected p values were p = 0.009 for rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL. PMID:25397881

  8. Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in Meniere's disease.

    PubMed

    Cabrera, Sonia; Sanchez, Elena; Requena, Teresa; Martinez-Bueno, Manuel; Benitez, Jesus; Perez, Nicolas; Trinidad, Gabriel; Soto-Varela, Andrés; Santos-Perez, Sofía; Martin-Sanz, Eduardo; Fraile, Jesus; Perez, Paz; Alarcon-Riquelme, Marta E; Batuecas, Angel; Espinosa-Sanchez, Juan M; Aran, Ismael; Lopez-Escamez, Jose A

    2014-01-01

    Meniere's disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several genes involved in the NF-κB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no single nucleotide polymorphism (SNP) reached a genome-wide significant association (p<10(-8)), we selected allelic variants in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort. None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011 had a shorter mean time to reach hearing stage 3 (>40 dB HL) (log-rank test, corrected p values were p = 0.009 for rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL.

  9. Imaging oxytocin × dopamine interactions: an epistasis effect of CD38 and COMT gene variants influences the impact of oxytocin on amygdala activation to social stimuli

    PubMed Central

    Sauer, Carina; Montag, Christian; Reuter, Martin; Kirsch, Peter

    2013-01-01

    Although oxytocin (OT) has become a major target for the investigation of positive social processes, it can be assumed that it exerts its effects in concert with other neurotransmitters. One candidate for such an interaction is dopamine (DA). For both systems, genetic variants have been identified that influence the availability of the particular substance. A variant of the gene coding for the transmembrane protein CD38 (rs3796863), which is engaged in OT secretion, has been associated with OT plasma level. The common catechol-O-methyltransferase (COMT) val158met polymorphism is known to influence COMT activity and therefore the degradation of DA. The present study aimed to investigate OT × DA interactions in the context of an OT challenge study. Hence, we tested the influence of the above mentioned genetic variants and their interaction on the activation of different brain regions (amygdala, VTA, ventral striatum and fusiform gyrus) during the presentation of social stimuli. In a pharmacological cross-over design 55 participants were investigated under OT and placebo (PLA) by means of fMRI. Brain imaging results revealed no significant effects for VTA or ventral striatum. Regarding the fusiform gyrus, we could not find any effects apart from those already described in Sauer et al. (2012). Analyses of amygdala activation resulted in no gene main effect, no gene × substance interaction but a significant gene × gene × substance interaction. While under PLA the effect of CD38 on bilateral amygdala activation to social stimuli was modulated by the COMT genotype, no such epistasis effect was found under OT. Our results provide evidence for an OT × DA interaction during responses to social stimuli. We postulate that the effect of central OT secretion on amygdala response is modulated by the availability of DA. Therefore, for an understanding of the effect of social hormones on social behavior, interactions of OT with other transmitter systems have to be taken into

  10. Chemokine gene variants in schizophrenia.

    PubMed

    Dasdemir, Selcuk; Kucukali, Cem Ismail; Bireller, Elif Sinem; Tuzun, Erdem; Cakmakoglu, Bedia

    2016-08-01

    Background Chemokines are known to play a major role in driving inflammation and immune responses in several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and Parkinson's disease. Inflammation has also been implicated in the pathogenesis of schizophrenia. Aim We aimed to investigate a potential link between chemokines and schizophrenia and analyze the role of MCP-1-A2518G, SDF-1-3'A, CCR5-delta32, CCR5-A55029G, CXCR4-C138T and CCR2-V64I gene polymorphisms in the Turkish population. Methods Genotyping was conducted by PCR-RFLP based on 140 patients and 123 unrelated healthy controls to show the relation between chemokine gene variants and schizophrenia risk. Results Frequencies of CCR5-A55029G A genotypes and CCR5-A55029G AG genotypes were found higher in patients than the controls and even also CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes significantly associated according to Bonferroni correction. However, no significant association was found for any of the other polymorphisms with the risk of schizophrenia. Conclusions Our findings suggest that CCR5-A55029G polymorphisms and CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes might have association with schizophrenia pathogenesis.

  11. Variants in interleukin family of cytokines genes influence clearance of high risk HPV in HIV-1 coinfected African-American adolescents.

    PubMed

    Sudenga, Staci L; Wiener, Howard W; Shendre, Aditi; Wilson, Craig M; Tang, Jianming; Shrestha, Sadeep

    2013-12-01

    Our work aimed to examine the potential influence of variants in interleukin/interleukin receptors genes on high-risk (HR-HPV) HPV clearance. Clearance of genital HR-HPV infection was evaluated for 134 HIV-1 seropositive African-American female adolescents from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort. Genotyping targeted 225 single nucleotide polymorphisms (SNPs) within the exons, 5' untranslated region (UTR) and 3' UTR sequences of 27 immune-related candidate genes encoding interleukin family of cytokines. Cox proportional hazard models were used to determine the association of type-specific HPV clearance adjusting for time-varying CD4+ T-cell count and low-risk (LR-HPV) HPV co-infections. HR-HPV clearance rates were significantly (p < 0.001) associated with five SNPs (rs228942, rs419598, rs315950, rs7737000, and rs9292618) mapped to coding and regulatory regions in three genes (IL2RB, IL1RN, and IL7R). These data suggest that the analyzed genetic variants in interleukin family of cytokines modulate HR-HPV clearance in HIV-1 seropositive African-Americans that warrants replication.

  12. Common Variants of the Liver Fatty Acid Binding Protein Gene Influence the Risk of Type 2 Diabetes and Insulin Resistance in Spanish Population

    PubMed Central

    Mansego, Maria Luisa; Martínez, Fernando; Martínez-Larrad, Maria Teresa; Zabena, Carina; Rojo, Gemma; Morcillo, Sonsoles; Soriguer, Federico; Martín-Escudero, Juan Carlos; Serrano-Ríos, Manuel; Redon, Josep; Chaves, Felipe Javier

    2012-01-01

    Summary The main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated. Methods 1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes). DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model. Results One polymorphism (rs2197076) and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population. Conclusions The study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians. PMID:22396741

  13. Rare variants of small effect size in neuronal excitability genes influence clinical outcome in Japanese cases of SCN1A truncation-positive Dravet syndrome.

    PubMed

    Hammer, Michael F; Ishii, Atsushi; Johnstone, Laurel; Tchourbanov, Alexander; Lau, Branden; Sprissler, Ryan; Hallmark, Brian; Zhang, Miao; Zhou, Jin; Watkins, Joseph; Hirose, Shinichi

    2017-01-01

    Dravet syndrome (DS) is a rare, devastating form of childhood epilepsy that is often associated with mutations in the voltage-gated sodium channel gene, SCN1A. There is considerable variability in expressivity within families, as well as among individuals carrying the same primary mutation, suggesting that clinical outcome is modulated by variants at other genes. To identify modifier gene variants that contribute to clinical outcome, we sequenced the exomes of 22 individuals at both ends of a phenotype distribution (i.e., mild and severe cognitive condition). We controlled for variation associated with different mutation types by limiting inclusion to individuals with a de novo truncation mutation resulting in SCN1A haploinsufficiency. We performed tests aimed at identifying 1) single common variants that are enriched in either phenotypic group, 2) sets of common or rare variants aggregated in and around genes associated with clinical outcome, and 3) rare variants in 237 candidate genes associated with neuronal excitability. While our power to identify enrichment of a common variant in either phenotypic group is limited as a result of the rarity of mild phenotypes in individuals with SCN1A truncation variants, our top candidates did not map to functional regions of genes, or in genes that are known to be associated with neurological pathways. In contrast, we found a statistically-significant excess of rare variants predicted to be damaging and of small effect size in genes associated with neuronal excitability in severely affected individuals. A KCNQ2 variant previously associated with benign neonatal seizures is present in 3 of 12 individuals in the severe category. To compare our results with the healthy population, we performed a similar analysis on whole exome sequencing data from 70 Japanese individuals in the 1000 genomes project. Interestingly, the frequency of rare damaging variants in the same set of neuronal excitability genes in healthy individuals is

  14. Rare variants of small effect size in neuronal excitability genes influence clinical outcome in Japanese cases of SCN1A truncation-positive Dravet syndrome

    PubMed Central

    Ishii, Atsushi; Johnstone, Laurel; Tchourbanov, Alexander; Lau, Branden; Sprissler, Ryan; Hallmark, Brian; Zhang, Miao; Zhou, Jin; Watkins, Joseph; Hirose, Shinichi

    2017-01-01

    Dravet syndrome (DS) is a rare, devastating form of childhood epilepsy that is often associated with mutations in the voltage-gated sodium channel gene, SCN1A. There is considerable variability in expressivity within families, as well as among individuals carrying the same primary mutation, suggesting that clinical outcome is modulated by variants at other genes. To identify modifier gene variants that contribute to clinical outcome, we sequenced the exomes of 22 individuals at both ends of a phenotype distribution (i.e., mild and severe cognitive condition). We controlled for variation associated with different mutation types by limiting inclusion to individuals with a de novo truncation mutation resulting in SCN1A haploinsufficiency. We performed tests aimed at identifying 1) single common variants that are enriched in either phenotypic group, 2) sets of common or rare variants aggregated in and around genes associated with clinical outcome, and 3) rare variants in 237 candidate genes associated with neuronal excitability. While our power to identify enrichment of a common variant in either phenotypic group is limited as a result of the rarity of mild phenotypes in individuals with SCN1A truncation variants, our top candidates did not map to functional regions of genes, or in genes that are known to be associated with neurological pathways. In contrast, we found a statistically-significant excess of rare variants predicted to be damaging and of small effect size in genes associated with neuronal excitability in severely affected individuals. A KCNQ2 variant previously associated with benign neonatal seizures is present in 3 of 12 individuals in the severe category. To compare our results with the healthy population, we performed a similar analysis on whole exome sequencing data from 70 Japanese individuals in the 1000 genomes project. Interestingly, the frequency of rare damaging variants in the same set of neuronal excitability genes in healthy individuals is

  15. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  16. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  17. G-protein beta3 subunit gene variant is unlikely to have a significant influence on serum uric acid level in Japanese workers.

    PubMed

    Suwazono, Yasushi; Kobayashi, Etsuko; Uetani, Mirei; Miura, Katsuyuki; Morikawa, Yuko; Ishizaki, Masao; Kido, Teruhiko; Nakagawa, Hideaki; Nogawa, Koji

    2006-06-01

    The C825T variant of the G-protein beta3 subunit (GNB3) gene has attracted renewed attention as a candidate gene for obesity, hypertension and hyperuricemia. The main role of G-protein is to translate signals from the cell surface into a cellular response. The 825T allele is associated with a splice variant of GNB3 protein and enhanced G-protein activation. We examined the relationship between this variant and the risk of hyperuricemia in Japanese workers. The study subjects were 1,452 men and 1,169 women selected from 3,834 men and 2,591 women in 1997. On the basis of common clinical criteria, hyperuricemia I was defined as serum uric acid >or= 7.0 mg/dl in men and 6.0 mg/dl in women or taking antihyperuricemic medication. The hyperuricemia I group consisted of 186 men and 20 women and its control of 1,266 men and 1,149 women. Hyperuricemia II was defined as serum uric acid > 5.7 mg/dl (median) in men and 3.9 mg/dl (median) in women or taking antihyperuricemic medication. The hyperuricemic II group consisted of 684 men and 570 women and its control of 768 men and 599 women. To replicate previous significant results in young Caucasian men, we selected these criteria because the authors of the study in young Caucasian men adopted the median in their subjects as a cut-off. The statistical power was estimated as 99% based on the significant results in Caucasians. Genotype and allele distributions in men and women with hyperuricemia I and II were not significantly different from those in the corresponding control groups. Logistic regression analysis on hyperuricemia I and II, and multiple regression on serum uric acid level demonstrated no significant effect of the C825T genotype. Despite the sufficient statistical power, this study could not demonstrate the significant influence of C825T on hyperuricemia or serum uric acid. The targeting of this polymorphism is unlikely to be beneficial in the prevention of hyperuricemia in the general Japanese population.

  18. Circadian gene variants in cancer

    PubMed Central

    Kettner, Nicole M.; Katchy, Chinenye A.; Fu, Loning

    2014-01-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  19. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  20. Gene variants as risk factors for gastroschisis

    PubMed Central

    Yang, Wei; Schultz, Kathleen; Tom, Lauren; Lin, Bin; Carmichael, Suzan L.; Lammer, Edward J.; Shaw, Gary M.

    2016-01-01

    In a population‐based case‐control study in California of 228 infants, we investigated 75 genetic variants in 20 genes and risk of gastroschisis with regard to maternal age, race/ethnicity, vitamin use, and smoking exposure. We hypothesized that genes related to vascular compromise may interact with environmental factors to affect the risk of gastroschisis. Haplotypes were constructed for 75 gene variants using the HaploView program. Risk for gastroschisis associated with each gene variant was calculated for both the homozygotes and the heterozygotes, with the homozygous wildtypes as the referent. Risks were estimated as odds ratios (ORs) with 95% confidence intervals (CIs) by logistic regression. We found 11 gene variants with increased risk and four variants with decreased risk of gastroschisis for heterozygous (ORh) or homozygous variants (ORv) genotypes. These included NOS3 (rs1036145) ORh = 0.4 (95% CI: 0.2–0.7); NOS3 (rs10277237) ORv = 2.7 (95% CI: 1.3–6.0); ADD1 (rs12503220) ORh = 2.9 (95% CI: 1.6–5.4), GNB3 (rs5443) ORh = 0.2 (95% CI: 0.1–0.5), ORv = 0.4 (95% CI: 0.2–0.9); ICAM1 (rs281428) ORv = 6.9 (95% CI: 2.1–22.9), ICAM1 (rs3093030) ORv = 2.6 (95% CI: 1.2–5.6); ICAM4 (rs281438) ORv = 4.9 (95% CI: 1.4–16.6), ICAM5 (rs281417) ORh = 2.1 (95% CI: 1.1–4.1), ORv = 4.8 (95% CI: 1.7–13.6); ICAM5 (rs281440) ORh = 23.7 (95% CI: 5.5–102.5), ORv = 20.6 (95% CI: 3.4–124.3); ICAM5 (rs2075741) ORv = 2.2 (95% CI: 1.1–4.4); NAT1 ORv = 0.3 (95% CI: 0.1–0.9). There were additional associations between several gene variants and gastroschisis among women aged 20–24 and among mothers with and without vitamin use. NOS3, ADD1, ICAM1, ICAM4, and ICAM5 warrant further investigation in additional populations and with the interaction of additional environmental exposures. © 2016 Wiley Periodicals, Inc. PMID:27616475

  1. The influence of genomic context on mutation patterns in the human genome inferred from rare variants

    PubMed Central

    Schaibley, Valerie M.; Zawistowski, Matthew; Wegmann, Daniel; Ehm, Margaret G.; Nelson, Matthew R.; St. Jean, Pamela L.; Abecasis, Gonçalo R.; Novembre, John; Zöllner, Sebastian; Li, Jun Z.

    2013-01-01

    Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human–chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤10−4, we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants. PMID:23990608

  2. The influence of genomic context on mutation patterns in the human genome inferred from rare variants.

    PubMed

    Schaibley, Valerie M; Zawistowski, Matthew; Wegmann, Daniel; Ehm, Margaret G; Nelson, Matthew R; St Jean, Pamela L; Abecasis, Gonçalo R; Novembre, John; Zöllner, Sebastian; Li, Jun Z

    2013-12-01

    Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human-chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤ 10(-4), we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.

  3. ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder.

    PubMed

    de Klerk, O L; Nolte, I M; Bet, P M; Bosker, F J; Snieder, H; den Boer, J A; Bruggeman, R; Hoogendijk, W J; Penninx, B W

    2013-08-01

    P-glycoprotein (P-gp), an ATP-driven efflux pump in the blood-brain barrier, has a major impact on the delivery of antidepressant drugs in the brain. Genetic variants in the gene ABCB1 encoding for P-gp have inconsistently been associated with adverse effects. In order to resolve these inconsistencies, we conducted a study in a large cohort of patients with major depressive disorder with the aim to unravel the association of ABCB1 variants with adverse effects of antidepressants and in particular with selective serotonin reuptake inhibitors (SSRIs), which display affinity as substrate for P-gp. The Netherlands Study of Depression and Anxiety (NESDA) study was used as a clinical sample. For 424 patients data were available on drug use, side effects. We selected six ABCB1 gene variants (1236T>C, 2677G>T/A, 3435T>C, rs2032583, rs2235040 and rs2235015) and analyzed them for association with adverse drug effects using multinomial regression analysis for both single variants and haplotypes. We found a significant association between the number of SSRI-related adverse drug effects and rs2032583 (P=0.001), rs2235040 (P=0.002) and a haplotype (P=0.002). Moreover, serotonergic effects (sleeplessness, gastrointestinal complaints and sexual effects) were significantly predicted by these variants and haplotype (P=0.002/0.003). We conclude that adverse drug effects with SSRI treatment, in particular serotonergic effects, are predicted by two common polymorphisms of the ABCB1 gene.

  4. Gene Variant from Africa Linked to Black Obesity

    MedlinePlus

    ... html Gene Variant From Africa Linked to Black Obesity Study sees first biological pathway to weight gain ... identified an Africa-specific gene variant associated with obesity. The team found that about 1 percent of ...

  5. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study.

    PubMed

    Papadimitriou, Ioannis D; Lucia, Alejandro; Pitsiladis, Yannis P; Pushkarev, Vladimir P; Dyatlov, Dmitry A; Orekhov, Evgeniy F; Artioli, Guilherme G; Guilherme, João Paulo L F; Lancha, Antonio H; Ginevičienė, Valentina; Cieszczyk, Pawel; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Muniesa, Carlos A; Kouvatsi, Anastasia; Massidda, Myosotis; Calò, Carla Maria; Garton, Fleur; Houweling, Peter J; Wang, Guan; Austin, Krista; Druzhevskaya, Anastasiya M; Astratenkova, Irina V; Ahmetov, Ildus I; Bishop, David J; North, Kathryn N; Eynon, Nir

    2016-04-13

    To date, studies investigating the association between ACTN3 R577X and ACE I/D gene variants and elite sprint/power performance have been limited by small cohorts from mixed sport disciplines, without quantitative measures of performance. To examine the association between these variants and sprint time in elite athletes. We collected a total of 555 best personal 100-, 200-, and 400-m times of 346 elite sprinters in a large cohort of elite Caucasian or African origin sprinters from 10 different countries. Sprinters were genotyped for ACTN3 R577X and ACE ID variants. On average, male Caucasian sprinters with the ACTN3 577RR or the ACE DD genotype had faster best 200-m sprint time than their 577XX (21.19 ± 0.53 s vs. 21.86 ± 0.54 s, p = 0.016) and ACE II (21.33 ± 0.56 vs. 21.93 ± 0.67 sec, p = 0.004) counterparts and only one case of ACE II, and no cases of ACTN3 577XX, had a faster 200-m time than the 2012 London Olympics qualifying (vs. 12 qualified sprinters with 577RR or 577RX genotype). Caucasian sprinters with the ACE DD genotype had faster best 400-m sprint time than their ACE II counterparts (46.94 ± 1.19 s vs. 48.50 ± 1.07 s, p = 0.003). Using genetic models we found that the ACTN3 577R allele and ACE D allele dominant model account for 0.92 % and 1.48 % of sprint time variance, respectively. Despite sprint performance relying on many gene variants and environment, the % sprint time variance explained by ACE and ACTN3 is substantial at the elite level and might be the difference between a world record and only making the final.

  6. Influence of Cyp2c19*2 Gene Variant on Therapeutic Response During Clopidogrel Treatment in Patients with Carotid Artery Stenosis

    PubMed Central

    Ignjatović, Svetlana; Rakićević, Ljiljana; Kusić-Tišma, Jelena; Radojković, Dragica; Čalija, Branko; Strugarević, Evgenija; Radak, Ðorđe; Kovač, Mirjana

    2016-01-01

    Summary Background Despite the proven clinical effect of oral antiplatelet drugs, a considerable number of patients do not have an adequate response to clopidogrel. The aim of our study was to determine the influence of CYP2C19*2 loss-of-function variant allele on clopidogrel responsiveness in patients with carotid artery stenosis. Methods One hundred and twelve patients with carotid artery stenosis undergoing endarterectomy were included in this one-year prospective study. All of them received clopidogrel (75 mg daily) for at least 30 days after the intervention. They were followed from the moment of hospital admission. CYP2C19*2 genotyping was performed by TaqMan Assay. The influence of CYP2C19*2 variant allele on clopidogrel platelet reactivity was determined using multiple-electrode aggregometry (MEA). Results Genotyping results showed that 82 (73.2%) patients were homozygous for wild type, 29 (25.9%) were heterozygous for the CYP2C19*2 allele and 1 (0.9%) was CYP2C19*2 homozygous. After 24 hours, among those with the wild type 29.3% were clopidogrel responders, and in those with the CYP2C19*2 alleles 10%. In the wild type group, 74.4% were clopidogrel responders after 7 days of taking the drug; 82.9% after 30 days of clopidogrel introduction, respectively. In patients with the CYP2C19*2 alleles the number of responders increased up to 46.7% after 7 days; 53.3% after 30 days of taking the drug, respectively. The risk for being a low-responder is higher for the patients heterozygous for the CYP2C19*2 allele vs. wild-type (OR 4.250, 95% CI 1.695-10.658, P<0.01). Conclusions The CYP2C19*2 loss-of-function variant allele has significant influence on clopidogrel response in patients with carotid artery stenosis undergoing endarterectomy. PMID:28356861

  7. Distribution of KIR genes and KIR2DS4 gene variants in two Mexican Mestizo populations.

    PubMed

    Machado-Sulbaran, Andrea Carolina; Muñoz-Valle, José Francisco; Ramírez-Dueñas, María Guadalupe; Baños-Hernández, Christian Johana; Graciano-Machuca, Omar; Velarde-De la Cruz, Erandi Enif; Parra-Rojas, Isela; Sánchez-Hernández, Pedro Ernesto

    2017-07-19

    Killer immunoglobulin-like receptors (KIR) are transmembrane proteins that regulate NK and T cell subsets by recognizing HLA-I molecules as ligands. The KIR gene family consists of 16 genes, located at chromosome 19q13.4. KIR gene frequencies vary among populations. In Mexico, HLA and genetic ancestry studies show that Mestizo populations have different genetic backgrounds based on admixture with European, African, and Asian ancestry. This study aimed to evaluate the frequencies of KIR genes and genotypes in Guerrero and Jalisco, two Mexican Mestizo populations located in the south and the west of the country, respectively, and to compare these frequencies with those of other populations. KIR genotyping was performed by SSP-PCR. We observed that KIR gene frequencies were similar in both populations. There were 24 genotypes observed in Guerrero, 38 genotypes observed in Jalisco, 15 genotypes shared in both populations and 32 genotypes unique to one population or the other. In 10 individuals, nine novel genotypes were identified. KIR2DS4 gene variants showed significant differences: The KIR2DS4full gene was more common in Guerrero (p<0.0001), and the KIR2DS4del variant was more common in Jalisco (p<0.05). Differences in KIR2DS4 gene variants and genotypic profiles could be influenced by the genetic admixture in both regions. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  8. PRRC2A and BCL2L11 gene variants influence risk of non-Hodgkin lymphoma: results from the InterLymph consortium

    PubMed Central

    Conde, Lucia; Slager, Susan L.; Brooks-Wilson, Angela; Morton, Lindsay; Skibola, Danica R.; Novak, Anne J.; Riby, Jacques; Ansell, Stephen M.; Halperin, Eran; Shanafelt, Tait D.; Agana, Luz; Wang, Alice H.; De Roos, Anneclaire J.; Severson, Richard K.; Cozen, Wendy; Spinelli, John; Butterbach, Katja; Becker, Nikolaus; de Sanjose, Silvia; Benavente, Yolanda; Cocco, Pierluigi; Staines, Anthony; Maynadié, Marc; Foretova, Lenka; Boffetta, Paolo; Brennan, Paul; Lan, Qing; Zhang, Yawei; Zheng, Tongzhang; Purdue, Mark; Armstrong, Bruce; Kricker, Anne; Vajdic, Claire M.; Grulich, Andrew; Smith, Martyn T.; Bracci, Paige M.; Chanock, Stephen J.; Hartge, Patricia; Cerhan, James R.; Wang, Sophia S.; Rothman, Nathaniel; Skibola, Christine F.

    2012-01-01

    Many common genetic variants have been associated with non-Hodgkin lymphoma (NHL), but individual study results are often conflicting. To confirm the role of putative risk alleles in B-cell NHL etiology, we performed a validation genotyping study of 67 candidate single nucleotide polymorphisms within InterLymph, a large international consortium of NHL case-control studies. A meta-analysis was performed on data from 5633 B-cell NHL cases and 7034 controls from 8 InterLymph studies. rs3789068 in the proapoptotic BCL2L11 gene was associated with an increased risk for B-cell NHL (odds ratio = 1.21, P random = 2.21 × 10−11), with similar risk estimates for common B-cell subtypes. PRRC2A rs3132453 in the HLA complex class III region conferred a reduced risk of B-cell NHL (odds ratio = 0.68, P random = 1.07 × 10−9) and was likewise evident for common B-cell subtypes. These results are consistent with the known biology of NHL and provide insights into shared pathogenic components, including apoptosis and immune regulation, for the major B-cell lymphoma subtypes. PMID:23047821

  9. A functional variant in the neuropeptide S receptor 1 gene moderates the influence of urban upbringing on stress processing in the amygdala.

    PubMed

    Streit, Fabian; Haddad, Leila; Paul, Torsten; Frank, Josef; Schäfer, Axel; Nikitopoulos, Jörg; Akdeniz, Ceren; Lederbogen, Florian; Treutlein, Jens; Witt, Stephanie; Meyer-Lindenberg, Andreas; Rietschel, Marcella; Kirsch, Peter; Wüst, Stefan

    2014-07-01

    We have previously shown that urban upbringing and city living were associated with stress-induced activity in the amygdala and the perigenual anterior cingulate cortex (pACC). This finding might link the epidemiological risk factor "urbanicity" to neurobiological mechanisms of psychiatric disorders. However, given the heritability of stress-related phenotypes, it appears likely that genetic factors can modulate the effect of urbanicity on social stress processing. In the present exploratory study, we investigated if a functional sequence variation in the neuropeptide S receptor gene (NPSR1 rs324981) is associated with brain activation patterns under acute psychosocial stress and if it modulates the link between urbanicity and central stress processing. In animals, neuropeptide S has strong anxiolytic effects and it induces hypothalamus-pituitary-adrenal (HPA) axis activation. In humans, rs324981 was found to be associated with anxiety and stress-related phenotypes. Forty-two subjects were exposed to a psychosocial stress task for scanner environments (ScanSTRESS). While no main effect of rs324981 on amygdala and pACC activity was detected, we found a distinct interaction between rs324981 and urban upbringing modulating right amygdala responses. Moreover, right amygdala responses were significantly higher in subjects who also showed a salivary cortisol response to the stress exposure. The present finding of a gene × environment interaction further supports the view that the brain NPS system is involved in central stress regulation. This study provides first evidence for the assumption that a NPSR1 variant modulates brain activation under stress, interacting with the environmental risk factor urban upbringing.

  10. Lack of influence of COMT and NET genes variants on executive functions in schizophrenic and bipolar patients, their first-degree relatives and controls.

    PubMed

    Szöke, A; Schürhoff, F; Méary, A; Mathieu, F; Chevalier, F; Trandafir, A; Alter, C; Roy, I; Bellivier, F; Leboyer, M

    2006-07-05

    Abnormal dopaminergic function in the prefrontal cortex (PFC) may be a key factor in the etiopathogeny of schizophrenia and bipolar disorder. Both schizophrenic and bipolar subjects have executive functions (EF) deficits, thought to reflect abnormal PFC function. The main inactivation pathways for dopamine in the PFC are enzymatic cleavage by the Carboxy-O-Methyl-Transferase (COMT) and reuptake by the nor-epinephrine transporter (NET). Our aim in this study was to replicate previous studies that investigated influence of the COMT genotype on EF in schizophrenic subjects, their relatives and controls and extend their scope by including bipolar patients, and their relatives and by exploring NET gene polymorphisms influence on executive performances. We investigated one functional polymorphism of the COMT gene and two polymorphisms of the NET gene. EF were assessed by means of the Trail Making Test (TMT) and the Wisconsin Card Sorting Test (WCST). We assessed the effect of each of the three genotypes on EF for the whole sample (N = 318) and separately in schizophrenic (N = 66), bipolar (N = 94) and healthy subjects (i.e., relatives and controls N = 158). Separate analyses were performed because of the presence, in patients samples, of potentially confounding factors, especially medication. Genotype had no significant effect on the cognitive measures in any of the analyses (for the two EF measures, the three polymorphisms, and the four groups). In our sample we found no evidence in favor of a major effect of COMT or NET polymorphisms on the two tests of EF.

  11. Clinical Relevance of HLA Gene Variants in HBV Infection

    PubMed Central

    Wang, Li; Zou, Zhi-Qiang; Wang, Kai

    2016-01-01

    Host gene variants may influence the natural history of hepatitis B virus (HBV) infection. The human leukocyte antigen (HLA) system, the major histocompatibility complex (MHC) in humans, is one of the most important host factors that are correlated with the clinical course of HBV infection. Genome-wide association studies (GWASs) have shown that single nucleotide polymorphisms (SNPs) near certain HLA gene loci are strongly associated with not only persistent HBV infection but also spontaneous HBV clearance and seroconversion, disease progression, and the development of liver cirrhosis and HBV-related hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB). These variations also influence the efficacy of interferon (IFN) and nucleot(s)ide analogue (NA) treatment and response to HBV vaccines. Meanwhile, discrepant conclusions were reached with different patient cohorts. It is therefore essential to identify the associations of specific HLA allele variants with disease progression and viral clearance in chronic HBV infection among different ethnic populations. A better understanding of HLA polymorphism relevance in HBV infection outcome would enable us to elucidate the roles of HLA SNPs in the pathogenesis and clearance of HBV in different areas and ethnic groups, to improve strategies for the prevention and treatment of chronic HBV infection. PMID:27243039

  12. Comprehensive Analysis of Pathogenic Deletion Variants in Fanconi Anemia Genes

    PubMed Central

    Flynn, Elizabeth K.; Kamat, Aparna; Lach, Francis P.; Donovan, Frank X.; Kimble, Danielle C.; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M.; Gillio, Alfred P.; Harris, Richard E.; MacMillan, Margaret L.; Wagner, John E.; Smogorzewska, Agata; Auerbach, Arleen D.; Ostrander, Elaine A.; Chandrasekharappa, Settara C.

    2014-01-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution Comparative Genome Hybridization arrays (arrayCGH), Single Nucleotide Polymorphism arrays (SNParrays) and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by Non-Allelic Homologous Recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. PMID:25168418

  13. Association of prostate cancer risk variants with gene expression in normal and tumor tissue.

    PubMed

    Penney, Kathryn L; Sinnott, Jennifer A; Tyekucheva, Svitlana; Gerke, Travis; Shui, Irene M; Kraft, Peter; Sesso, Howard D; Freedman, Matthew L; Loda, Massimo; Mucci, Lorelei A; Stampfer, Meir J

    2015-01-01

    Numerous germline genetic variants are associated with prostate cancer risk, but their biologic role is not well understood. One possibility is that these variants influence gene expression in prostate tissue. We therefore examined the association of prostate cancer risk variants with the expression of genes nearby and genome-wide. We generated mRNA expression data for 20,254 genes with the Affymetrix GeneChip Human Gene 1.0 ST microarray from normal prostate (N = 160) and prostate tumor (N = 264) tissue from participants of the Physicians' Health Study and Health Professionals Follow-up Study. With linear models, we tested the association of 39 risk variants with nearby genes and all genes, and the association of each variant with canonical pathways using a global test. In addition to confirming previously reported associations, we detected several new significant (P < 0.05) associations of variants with the expression of nearby genes including C2orf43, ITGA6, MLPH, CHMP2B, BMPR1B, and MTL5. Genome-wide, five genes (MSMB, NUDT11, RBPMS2, NEFM, and KLHL33) were significantly associated after accounting for multiple comparisons for each SNP (P < 2.5 × 10(-6)). Many more genes had an FDR <10%, including SRD5A1 and PSCA, and we observed significant associations with pathways in tumor tissue. The risk variants were associated with several genes, including promising prostate cancer candidates and lipid metabolism pathways, suggesting mechanisms for their impact on disease. These genes should be further explored in biologic and epidemiologic studies. Determining the biologic role of these variants can lead to improved understanding of prostate cancer etiology and identify new targets for chemoprevention. ©2014 American Association for Cancer Research.

  14. Genetic variants in selenoprotein genes increase risk of colorectal cancer.

    PubMed

    Méplan, Catherine; Hughes, David J; Pardini, Barbara; Naccarati, Alessio; Soucek, Pavel; Vodickova, Ludmila; Hlavatá, Ivona; Vrána, David; Vodicka, Pavel; Hesketh, John E

    2010-06-01

    Low selenium (Se) status correlates with increased risk of colorectal cancer (CRC). Since Se exerts its biological roles through the selenoproteins, genetic variations in selenoprotein genes may influence susceptibility to CRC. This study analysed 12 single-nucleotide polymorphisms (SNPs) in selenoprotein genes [glutathione peroxidase 1 (GPX1), GPX4, 15 kDa selenoprotein (SEP15), selenoprotein S (SELS), selenoprotein P (SEPP1) and thioredoxin reductase 2 (TXNRD2)] and in genes that code for a key protein in Se incorporation [SECIS-binding protein 2 (SBP2)] and in antioxidant defence [superoxide dismutase 2 (SOD2)] in relation to sporadic CRC incidence. CRC patients (832) and controls (705) from the Czech Republic were genotyped using allele specific PCR. Logistic regression analysis showed that three SNPs were significantly associated with an altered risk of CRC: rs7579 (SEPP1), rs713041 (GPX4) and rs34713741 (SELS). The association of these SNPs with disease risk remained after data stratification for diagnosis and adjustments for lifestyle factors and sex. Significant two-loci interactions were observed between rs4880 (SOD2), rs713041 (GPX4) and rs960531 (TXNRD2) and between SEPP1 and either SEP15 or GPX4. The results indicate that SNPs in SEPP1, GPX4 and SELS influence risk of CRC. We hypothesize that the two-loci interactions reflect functional interactions between the gene products. We propose that these variants play a role in cancer development and represent potential biomarkers of CRC risk.

  15. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    PubMed

    Jesús, Silvia; Huertas, Ismael; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson's disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  16. GBA Variants Influence Motor and Non-Motor Features of Parkinson’s Disease

    PubMed Central

    Jesús, Silvia; Huertas, Ismael; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson’s disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson’s patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants. PMID:28030538

  17. Adrenergic-pathway Gene Variants Influence β-Blocker-related Outcomes after Acute Coronary Syndrome in a Race-specific Manner

    PubMed Central

    Cresci, Sharon; Dorn, Gerald W.; Jones, Philip G.; Beitelshees, Amber L.; Li, Allie Y.; Lenzini, Petra A.; Province, Michael A.; Spertus, John A.; Lanfear, David E.

    2013-01-01

    Objective Overcoming racial differences in acute coronary syndrome (ACS) outcomes is a strategic goal for US healthcare. Genetic polymorphisms in the adrenergic pathway appear to explain some outcome differences by race in other cardiovascular diseases treated with β-adrenergic receptor-blockade (BB). Whether these genetic variants are associated with survival among ACS patients treated with BB, and if this differs by race, is unknown. Background BB after ACS is a measure of quality care, but the effectiveness across racial groups, is less clear. Methods A prospective cohort of 2,673 ACS patients (2,072 Caucasian; 601 African Americans) discharged on BB from 22 U.S. hospitals were followed for 2 years. Subjects were genotyped for polymorphisms in ADRB1, ADRB2, ADRA2C, and GRK5. We used proportional hazards regression to model the effect of genotype on mortality, stratified by race and adjusted for baseline factors. Results The overall 2-year mortality rate was 7.5% for Caucasians and 16.7% for African Americans. The prognosis associated with different genotypes in these BB-treated patients differed by race. In Caucasians, ADRA2C 322-325 deletion (D) carriers had significantly lower mortality as compared with homozygous individuals lacking the deletion (HR 0.46; CI 0.21, 0.99; p=0.047; race-by-genotype interaction p= 0.053). In African Americans, the ADRB2 16R allele was associated with significantly increased mortality (HR for RG vs. GG =2.10; CI 1.14, 3.86; RR vs. GG =2.65; CI 1.38, 5.08; p=0.013; race-by-genotype interaction p=0.096). Conclusions Adrenergic pathway polymorphisms are associated with mortality in ACS patients receiving BB in a race-specific manner. Understanding the mechanism by which different genes impact post-ACS mortality differently in Caucasian and African Americans may illuminate opportunities to improve BB therapy in these groups. PMID:22703928

  18. Resequencing candidate genes implicates rare variants in asthma susceptibility.

    PubMed

    Torgerson, Dara G; Capurso, Daniel; Mathias, Rasika A; Graves, Penelope E; Hernandez, Ryan D; Beaty, Terri H; Bleecker, Eugene R; Raby, Benjamin A; Meyers, Deborah A; Barnes, Kathleen C; Weiss, Scott T; Martinez, Fernando D; Nicolae, Dan L; Ober, Carole

    2012-02-10

    Common variation in over 100 genes has been implicated in the risk of developing asthma, but the contribution of rare variants to asthma susceptibility remains largely unexplored. We selected nine genes that showed the strongest signatures of weak purifying selection from among 53 candidate asthma-associated genes, and we sequenced the coding exons and flanking noncoding regions in 450 asthmatic cases and 515 nonasthmatic controls. We observed an overall excess of p values <0.05 (p = 0.02), and rare variants in four genes (AGT, DPP10, IKBKAP, and IL12RB1) contributed to asthma susceptibility among African Americans. Rare variants in IL12RB1 were also associated with asthma susceptibility among European Americans, despite the fact that the majority of rare variants in IL12RB1 were specific to either one of the populations. The combined evidence of association with rare noncoding variants in IL12RB1 remained significant (p = 3.7 × 10(-4)) after correcting for multiple testing. Overall, the contribution of rare variants to asthma susceptibility was predominantly due to noncoding variants in sequences flanking the exons, although nonsynonymous rare variants in DPP10 and in IL12RB1 were associated with asthma in African Americans and European Americans, respectively. This study provides evidence that rare variants contribute to asthma susceptibility. Additional studies are required for testing whether prioritizing genes for resequencing on the basis of signatures of purifying selection is an efficient means of identifying novel rare variants that contribute to complex disease. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Resequencing Candidate Genes Implicates Rare Variants in Asthma Susceptibility

    PubMed Central

    Torgerson, Dara G.; Capurso, Daniel; Mathias, Rasika A.; Graves, Penelope E.; Hernandez, Ryan D.; Beaty, Terri H.; Bleecker, Eugene R.; Raby, Benjamin A.; Meyers, Deborah A.; Barnes, Kathleen C.; Weiss, Scott T.; Martinez, Fernando D.; Nicolae, Dan L.; Ober, Carole

    2012-01-01

    Common variation in over 100 genes has been implicated in the risk of developing asthma, but the contribution of rare variants to asthma susceptibility remains largely unexplored. We selected nine genes that showed the strongest signatures of weak purifying selection from among 53 candidate asthma-associated genes, and we sequenced the coding exons and flanking noncoding regions in 450 asthmatic cases and 515 nonasthmatic controls. We observed an overall excess of p values <0.05 (p = 0.02), and rare variants in four genes (AGT, DPP10, IKBKAP, and IL12RB1) contributed to asthma susceptibility among African Americans. Rare variants in IL12RB1 were also associated with asthma susceptibility among European Americans, despite the fact that the majority of rare variants in IL12RB1 were specific to either one of the populations. The combined evidence of association with rare noncoding variants in IL12RB1 remained significant (p = 3.7 × 10−4) after correcting for multiple testing. Overall, the contribution of rare variants to asthma susceptibility was predominantly due to noncoding variants in sequences flanking the exons, although nonsynonymous rare variants in DPP10 and in IL12RB1 were associated with asthma in African Americans and European Americans, respectively. This study provides evidence that rare variants contribute to asthma susceptibility. Additional studies are required for testing whether prioritizing genes for resequencing on the basis of signatures of purifying selection is an efficient means of identifying novel rare variants that contribute to complex disease. PMID:22325360

  20. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is

  1. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    PubMed Central

    Crump, Shawn M.; Abbott, Geoffrey W.

    2014-01-01

    There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances. PMID:24478792

  2. Utility of gene-specific algorithms for predicting pathogenicity of uncertain gene variants

    PubMed Central

    Lyon, Elaine; Williams, Marc S; Narus, Scott P; Facelli, Julio C; Mitchell, Joyce A

    2011-01-01

    The rapid advance of gene sequencing technologies has produced an unprecedented rate of discovery of genome variation in humans. A growing number of authoritative clinical repositories archive gene variants and disease phenotypes, yet there are currently many more gene variants that lack clear annotation or disease association. To date, there has been very limited coverage of gene-specific predictors in the literature. Here the evaluation is presented of “gene-specific” predictor models based on a naïve Bayesian classifier for 20 gene–disease datasets, containing 3986 variants with clinically characterized patient conditions. The utility of gene-specific prediction is then compared with “all-gene” generalized prediction and also with existing popular predictors. Gene-specific computational prediction models derived from clinically curated gene variant disease datasets often outperform established generalized algorithms for novel and uncertain gene variants. PMID:22037892

  3. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  4. Cellobiohydrolase I gene and improved variants

    DOEpatents

    Adney, William S.; Decker, Stephen R.; Mc Carter, Suzanne; Baker, John O.; Nieves, Raphael; Himmel, Michael E.; Vinzant, Todd B.

    2008-05-20

    The disclosure provides a method for preparing an active exoglucanase in a heterologous host of eukaryotic origin. The method includes mutagenesis to reduce glycosylation of the exoglucanase when expressed in a heterologous host. It is further disclosed a method to produce variant cellobiohydrolase that is stable at high temperature through mutagenesis.

  5. SWI/SNF gene variants and glioma risk and outcome

    PubMed Central

    Amankwah, Ernest K.; Thompson, Reid C.; Nabors, L. Burton; Olson, Jeffrey J.; Browning, James E.; Madden, Melissa H.; Egan, Kathleen M.

    2012-01-01

    BACKGROUND The human SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays essential roles in a variety of cellular processes and has been implicated in human cancer. However, the role of germline genetic variants in this complex in relation to cancer risk is not well studied. METHODS We assessed the association of 16 variants in the catalytic subunits (SMARCA2 and SMARCA4) of the SWI/SNF complex with the risk of glioma subtypes (lower grade astrocytoma, oligodendroglioma and glioblastoma [GBM]) and with mortality from high-grade tumors (GBM) in a multicenter US case-control study that included 561 cases and 574 controls. Associations were estimated with odds ratios (OR, for risk) or hazards ratios (HR, for mortality) with 95% confidence intervals (CI). False discovery rate (FDR-q) was used to control for multiple testing in risk associations. RESULTS None of the investigated SNPs was associated with overall glioma risk. However, analyses according to histological subtypes revealed a statistically significant increased risk of oligodendroglioma in association with SMARCA2 rs2296212 (OR=4.05, 95%CI=1.11-14.80, P=0.030, q=0.08) and rs4741651 (OR=4.68, 95%CI=1.43-15.30, P=0.011, q=0.08) and SMARCA4 rs11672232 (OR=1.90, 95%CI=1.01-3.58, P=0.048, q=0.08) and rs12232780 (OR=2.14, 95%CI=1.06-4.33, P=0.035, q=0.08). No significant risk associations were observed for GBM or lower grade astrocytoma. Suggestive associations with GBM mortality were not validated in the Cancer Genome Atlas. CONCLUSION Our findings suggest that genetic variants in SMARCA2 and SMARCA4 influence the risk of oligodendroglioma. Further research is warranted on the SWI/SNF complex genes and epigenetic mechanisms more generally in the development of glioma in adults. PMID:23276717

  6. Association between gene variants and response to buprenorphine maintenance treatment.

    PubMed

    Gerra, Gilberto; Somaini, Lorenzo; Leonardi, Claudio; Cortese, Elena; Maremmani, Icro; Manfredini, Matteo; Donnini, Claudia

    2014-01-30

    A variety of studies were addressed to differentiate responders and non-responders to substitution treatment among heroin dependent patients, without conclusive findings. In particular, preliminary pharmacogenetic findings have been reported to predict treatment effectiveness in mental health and substance use disorders. Aim of the present study was to investigate the possible association of buprenorphine (BUP) treatment outcome with gene variants that may affect kappa-opioid receptors and dopamine system function. One hundred and seven heroin addicts (West European, Caucasians) who underwent buprenorphine maintenance treatment were genotyped and classified into two groups (A and B) on the basis of treatment outcome. Non-responders to buprenorphine (group B) have been identified taking into account early drop out, continuous use of heroin, severe behavioral or psychiatric problems, misbehavior and diversion during the 6 months treatment period. No difference was evidenced between responders and non-responders to BUP in the frequency of kappa opioid receptor (OPRK1) 36G>T SNP. The frequency of dopamine transporter (DAT) gene polymorphism (SLC6A3/DAT1), allele 10, was evidently much higher in "non-responder" than in "responder" individuals (64.9% vs. 55.93%) whereas the frequency of the category of other alleles (6, 7 and 11) was higher in responder than in non-responder individuals (11.02% vs. 2.13% respectively). On one hand, the hypothesis that possible gene-related changes in kappa-opioid receptor could consistently affect buprenorphine pharmacological action and clinical effectiveness was not confirmed in our study, at least in relation to the single nucleotide polymorphism 36G>T. On the other hand, the possibility that gene-related dopamine changes could have reduced BUP effectiveness and impaired maintenance treatment outcome was cautiously supported by our findings. DAT1 gene variants such as allele 10, previously reported in association with personality and

  7. Association between the g.296596G > A genetic variant of RELN gene and susceptibility to autism in a Chinese Han population.

    PubMed

    Fu, Xiaoyan; Mei, Zhu; Sun, Lixin

    2013-12-01

    Autism is a childhood neuro-developmental disorder, and Reelin (RELN) is an important candidate gene for influencing autism. This study aimed at investigating the influence of genetic variants of the RELN gene on autism susceptibility. In this study, 205 autism patients and 210 healthy controls were recruited and the genetic variants of the RELN gene were genotyped by the created restriction site-polymerase chain reaction (CRS-PCR) method. The influence of genetic variants on autism susceptibility was analyzed by association analysis, and the g.296596G > A genetic variant in exon10 of the RELN gene was detected. The frequencies of allele/genotype in autistic patients were significantly different from those in healthy controls, and a statistically significant association was detected between this genetic variant and autism susceptibility. Our data lead to the inference that the g.296596G > A genetic variant in the RELN gene has a potential influence on autism susceptibility in the Chinese Han population.

  8. Genetic variant in the 3'-untranslated region of VEGFR1 gene influences chronic obstructive pulmonary disease and lung cancer development in Chinese population.

    PubMed

    Wang, Hui; Yang, Lei; Deng, Jieqiong; Wang, Bo; Yang, Xiaorong; Yang, Rongrong; Cheng, Mei; Fang, Wenxiang; Qiu, Fuman; Zhang, Xin; Ji, Weidong; Ran, Pixin; Zhou, Yifeng; Lu, Jiachun

    2014-09-01

    Lung inflammation and epithelial to mesenchymal transition (EMT) are two pathogenic features for the two contextual diseases: chronic obstructive pulmonary disease (COPD) and lung cancer. VEGFR1 (or FLT1) plays a certain role in promoting tumour growth, inflammation and EMT. To simultaneously test the association between the single nucleotide polymorphisms (SNPs) in VEGFR1 and risk of COPD and lung cancer would reveal genetic mechanisms shared by these two diseases and joint aetiology. We conducted a two-population hospital-based case-control study. Three potential functional SNPs (rs664393, rs7326277 and rs9554314) were genotyped in southern Chinese and validated in eastern Chinese to explore their associations with COPD risk in 1511 COPD patients and 1677 normal lung function controls, and with lung cancer risk in 1559 lung cancer cases and 1679 cancer-free controls. We also detected the function of the promising SNP. Individuals carrying the rs7326277C (CT+CC) variant genotypes of VEGFR1 had a significant decrease in risk of both COPD (OR = 0.78; 95% CI = 0.68-0.90) and lung cancer (OR = 0.79; 95% CI = 0.64-0.98), compared with those carrying the rs7326277TT genotype. Functional assays further showed that the rs7326277C genotypes had lower transcriptional activity and caused decreased VEGFR expression, compared with the rs7326277TT genotype. However, no significant association was observed for the other two SNPs (rs664393 and rs9554314) and either COPD or lung cancer risk. Our data suggested that the rs7326277C variant of VEGFR1 could reduce both COPD and lung cancer risk by lowering VEGFR1 mRNA expression; the SNP might be a common susceptible locus for both COPD and lung cancer.

  9. COMT gene locus: new functional variants

    PubMed Central

    Meloto, Carolina B.; Segall, Samantha K.; Smith, Shad; Parisien, Marc; Shabalina, Svetlana A.; Rizzatti-Barbosa, Célia M.; Gauthier, Josée; Tsao, Douglas; Convertino, Marino; Piltonen, Marjo H.; Slade, Gary Dmitri; Fillingim, Roger B.; Greenspan, Joel D.; Ohrbach, Richard; Knott, Charles; Maixner, William; Zaykin, Dmitri; Dokholyan, Nikolay V.; Reenilä, Ilkka; Männistö, Pekka T.; Diatchenko, Luda

    2015-01-01

    Abstract Catechol-O-methyltransferase (COMT) metabolizes catecholaminergic neurotransmitters. Numerous studies have linked COMT to pivotal brain functions such as mood, cognition, response to stress, and pain. Both nociception and risk of clinical pain have been associated with COMT genetic variants, and this association was shown to be mediated through adrenergic pathways. Here, we show that association studies between COMT polymorphic markers and pain phenotypes in 2 independent cohorts identified a functional marker, rs165774, situated in the 3′ untranslated region of a newfound splice variant, (a)-COMT. Sequence comparisons showed that the (a)-COMT transcript is highly conserved in primates, and deep sequencing data demonstrated that (a)-COMT is expressed across several human tissues, including the brain. In silico analyses showed that the (a)-COMT enzyme features a distinct C-terminus structure, capable of stabilizing substrates in its active site. In vitro experiments demonstrated not only that (a)-COMT is catalytically active but also that it displays unique substrate specificity, exhibiting enzymatic activity with dopamine but not epinephrine. They also established that the pain-protective A allele of rs165774 coincides with lower COMT activity, suggesting contribution to decreased pain sensitivity through increased dopaminergic rather than decreased adrenergic tone, characteristic of reference isoforms. Our results provide evidence for an essential role of the (a)-COMT isoform in nociceptive signaling and suggest that genetic variations in (a)-COMT isoforms may contribute to individual variability in pain phenotypes. PMID:26207649

  10. COMT gene locus: new functional variants.

    PubMed

    Meloto, Carolina B; Segall, Samantha K; Smith, Shad; Parisien, Marc; Shabalina, Svetlana A; Rizzatti-Barbosa, Célia M; Gauthier, Josée; Tsao, Douglas; Convertino, Marino; Piltonen, Marjo H; Slade, Gary Dmitri; Fillingim, Roger B; Greenspan, Joel D; Ohrbach, Richard; Knott, Charles; Maixner, William; Zaykin, Dmitri; Dokholyan, Nikolay V; Reenilä, Ilkka; Männistö, Pekka T; Diatchenko, Luda

    2015-10-01

    Catechol-O-methyltransferase (COMT) metabolizes catecholaminergic neurotransmitters. Numerous studies have linked COMT to pivotal brain functions such as mood, cognition, response to stress, and pain. Both nociception and risk of clinical pain have been associated with COMT genetic variants, and this association was shown to be mediated through adrenergic pathways. Here, we show that association studies between COMT polymorphic markers and pain phenotypes in 2 independent cohorts identified a functional marker, rs165774, situated in the 3' untranslated region of a newfound splice variant, (a)-COMT. Sequence comparisons showed that the (a)-COMT transcript is highly conserved in primates, and deep sequencing data demonstrated that (a)-COMT is expressed across several human tissues, including the brain. In silico analyses showed that the (a)-COMT enzyme features a distinct C-terminus structure, capable of stabilizing substrates in its active site. In vitro experiments demonstrated not only that (a)-COMT is catalytically active but also that it displays unique substrate specificity, exhibiting enzymatic activity with dopamine but not epinephrine. They also established that the pain-protective A allele of rs165774 coincides with lower COMT activity, suggesting contribution to decreased pain sensitivity through increased dopaminergic rather than decreased adrenergic tone, characteristic of reference isoforms. Our results provide evidence for an essential role of the (a)-COMT isoform in nociceptive signaling and suggest that genetic variations in (a)-COMT isoforms may contribute to individual variability in pain phenotypes.

  11. Religion priming differentially increases prosocial behavior among variants of the dopamine D4 receptor (DRD4) gene.

    PubMed

    Sasaki, Joni Y; Kim, Heejung S; Mojaverian, Taraneh; Kelley, Lauren D S; Park, In Young; Janusonis, Skirmantas

    2013-02-01

    Building on gene-environment interaction (G × E) research, this study examines how the dopamine D4 receptor (DRD4) gene interacts with a situational prime of religion to influence prosocial behavior. Some DRD4 variants tend to be more susceptible to environmental influences, whereas other variants are less susceptible. Thus, certain life environments may be associated with acts of prosociality for some DRD4 variants but not others. Given that religion can act as an environmental influence that increases prosocial behavior, environmental input in the form of religion priming may have G × E effects. Results showed that participants with DRD4 susceptibility variants were more prosocial when implicitly primed with religion than not primed with religion, whereas participants without DRD4 susceptibility variants were not impacted by priming. This research has implications for understanding why different people may behave prosocially for different reasons and also integrates G × E research with experimental psychology.

  12. BRCA Share: A Collection of Clinical BRCA Gene Variants.

    PubMed

    Béroud, Christophe; Letovsky, Stanley I; Braastad, Corey D; Caputo, Sandrine M; Beaudoux, Olivia; Bignon, Yves Jean; Bressac-De Paillerets, Brigitte; Bronner, Myriam; Buell, Crystal M; Collod-Béroud, Gwenaëlle; Coulet, Florence; Derive, Nicolas; Divincenzo, Christina; Elzinga, Christopher D; Garrec, Céline; Houdayer, Claude; Karbassi, Izabela; Lizard, Sarab; Love, Angela; Muller, Danièle; Nagan, Narasimhan; Nery, Camille R; Rai, Ghadi; Revillion, Françoise; Salgado, David; Sévenet, Nicolas; Sinilnikova, Olga; Sobol, Hagay; Stoppa-Lyonnet, Dominique; Toulas, Christine; Trautman, Edwin; Vaur, Dominique; Vilquin, Paul; Weymouth, Katelyn S; Willis, Alecia; Eisenberg, Marcia; Strom, Charles M

    2016-12-01

    As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world. © 2016 WILEY PERIODICALS, INC.

  13. Functional characterization of BRCA1 gene variants by mini-gene splicing assay.

    PubMed

    Steffensen, Ane Y; Dandanell, Mette; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Nielsen, Finn C; Hansen, Thomas vO

    2014-12-01

    Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense, silent, and intron variants, which are classified as variants of unknown clinical significance owing to the lack of causal evidence. Variants of unknown clinical significance can potentially have an impact on splicing and therefore functional examinations are warranted to classify whether these variants are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13 BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213-1G>A, c.670+1delG, c.4185+1G>A, and c.5075-1G>C), whereas six BRCA1 variants were classified as neutral (c.-19-22_-19-21dupAT, c.302-15C>G, c.547+14delG, c.4676-20A>G, c.4987-21G>T, and c.5278-14C>G) and one BRCA1 variant remained unclassified (c.670+16G>A). In conclusion, our study emphasizes that in silico analysis and mini-gene splicing assays are important for the classification of variants, especially if no RNA is available from the patient. This knowledge is crucial for proper genetic counseling of patients and their family members.

  14. Functional characterization of BRCA1 gene variants by mini-gene splicing assay

    PubMed Central

    Steffensen, Ane Y; Dandanell, Mette; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Nielsen, Finn C; Hansen, Thomas vO

    2014-01-01

    Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense, silent, and intron variants, which are classified as variants of unknown clinical significance owing to the lack of causal evidence. Variants of unknown clinical significance can potentially have an impact on splicing and therefore functional examinations are warranted to classify whether these variants are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13 BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213−1G>A, c.670+1delG, c.4185+1G>A, and c.5075−1G>C), whereas six BRCA1 variants were classified as neutral (c.-19-22_-19-21dupAT, c.302−15C>G, c.547+14delG, c.4676−20A>G, c.4987−21G>T, and c.5278−14C>G) and one BRCA1 variant remained unclassified (c.670+16G>A). In conclusion, our study emphasizes that in silico analysis and mini-gene splicing assays are important for the classification of variants, especially if no RNA is available from the patient. This knowledge is crucial for proper genetic counseling of patients and their family members. PMID:24667779

  15. Combination of polymorphic variants in serotonin transporter and monoamine oxidase-A genes may influence the risk for early-onset alcoholism.

    PubMed

    Bordukalo-Niksic, Tatjana; Stefulj, Jasminka; Matosic, Ana; Mokrovic, Gordana; Cicin-Sain, Lipa

    2012-12-30

    The combinatory effect of polymorphisms in serotonin transporter and monoamine oxidase-A genes on the aetiopathogenesis of alcoholism was investigated in a sample of 714 individuals. Increased frequency of subjects having three 'suspected' genotypes (5-HTTLPR-LL, STin2-1010 and MAO-A 3-repeat allele) was found among type-2 alcoholic patients (P=0.0189). Results highlight serotonergic/genetic contribution to early-onset alcoholism.

  16. Gene variant linked to lung cancer risk

    Cancer.gov

    A variation of the gene NFKB1, called rs4648127, is associated with an estimated 44 percent reduction in lung cancer risk. When this information, derived from samples obtained as part of a large NCI-sponsored prevention clinical trial, was compared with d

  17. Rare coding variants pinpoint genes that control human hematological traits

    PubMed Central

    Ntritsos, Georgios; Chen, Ming-Huei; Psaty, Bruce M.; Auer, Paul L.

    2017-01-01

    The identification of rare coding or splice site variants remains the most straightforward strategy to link genes with human phenotypes. Here, we analyzed the association between 137,086 rare (minor allele frequency (MAF) <1%) coding or splice site variants and 15 hematological traits in up to 308,572 participants. We found 56 such rare coding or splice site variants at P<5x10-8, including 31 that are associated with a blood-cell phenotype for the first time. All but one of these 31 new independent variants map to loci previously implicated in hematopoiesis by genome-wide association studies (GWAS). This includes a rare splice acceptor variant (rs146597587, MAF = 0.5%) in interleukin 33 (IL33) associated with reduced eosinophil count (P = 2.4x10-23), and lower risk of asthma (P = 2.6x10-7, odds ratio [95% confidence interval] = 0.56 [0.45–0.70]) and allergic rhinitis (P = 4.2x10-4, odds ratio = 0.55 [0.39–0.76]). The single new locus identified in our study is defined by a rare p.Arg172Gly missense variant (rs145535174, MAF = 0.05%) in plasminogen (PLG) associated with increased platelet count (P = 6.8x10-9), and decreased D-dimer concentration (P = 0.018) and platelet reactivity (P<0.03). Finally, our results indicate that searching for rare coding or splice site variants in very large sample sizes can help prioritize causal genes at many GWAS loci associated with complex human diseases and traits. PMID:28787443

  18. Association of apolipoprotein A5 gene variants with metabolic syndrome in Tunisian population.

    PubMed

    Kefi, Rym; Hechmi, Meriem; Dallali, Hamza; Elouej, Sahar; Jmel, Haifa; Halima, Yossra Ben; Nagara, Majdi; Chargui, Mariem; Fadhel, Sihem Ben; Romdhane, Safa; Kamoun, Ines; Turki, Zinet; Abid, Abdelmajid; Bahri, Sonia; Bahlous, Afaf; Gomis, Ramon; Baraket, Abdelhamid; Grigorescu, Florin; Normand, Christophe; Jamoussi, Henda; Abdelhak, Sonia

    2017-07-01

    APOA5 has been linked to metabolic syndrome (MetS) or its traits in several populations. In North Africa, only the Moroccan population was investigated. Our aim is to assess the association between APOA5 gene polymorphisms with the susceptibility to MetS and its components in the Tunisian population. A total of 594 participants from the Tunisian population were genotyped for two polymorphisms rs3135506 and rs651821 located in APOA5 gene using KASPar technology. Statistical analyses were performed using R software. The SNP rs651821 increased the risk of MetS under the dominant model (OR=1.91 [1.17-3.12], P=0.008) whereas the variant rs3135506 was not associated with MetS. After stratification of the cohort following the sex, only the variant rs651821 showed a significant association with MetS among the women group. The influence of the geographic origin of the studied population on the genotype distribution of APOA5 variants showed that the variant rs651821 was significantly associated with MetS only for the Northern population. The association analyses of the variants rs651821 and rs3135506 with different quantitative traits of MetS showed a significant association only between the variant rs3135506 and triglycerides levels. This is the first study reporting the association of APOA5 gene variants with MetS in Tunisia. Our study emphasizes the role of APOA5 variants in the regulation of the triglycerides blood levels. Further studies are needed to confirm the clinical relevance of these associations and to better understand the physiopathology of the MetS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese.

    PubMed

    Rao, Shitao; Leung, Cherry She Ting; Lam, Macro Hb; Wing, Yun Kwok; Waye, Mary Miu Yee; Tsui, Stephen Kwok Wing

    2017-03-01

    To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder.

    PubMed

    Brandl, E J; Tiwari, A K; Zhou, X; Deluce, J; Kennedy, J L; Müller, D J; Richter, M A

    2014-04-01

    Numerous studies have reported on pharmacogenetics of antidepressant response in depression. In contrast, little is known of response predictors in obsessive-compulsive disorder (OCD), a disorder with among the lowest proportion of responders to medication (40-60%). Our study is the largest investigation to date (N=184) of treatment response and side effects to antidepressants in OCD based on metabolizer status for CYP2D6 and CYP2C19. We observed significantly more failed medication trials in CYP2D6 non-extensive compared with extensive metabolizers (P=0.007). CYP2D6 metabolizer status was associated with side effects to venlafaxine (P=0.022). There were nonsignificant trends for association of CYP2D6 metabolizer status with response to fluoxetine (P=0.056) and of CYP2C19 metabolizer status with response to sertraline (P=0.064). Our study is the first to indicate that CYP genes may have a role in antidepressant response in OCD. More research is required for a future clinical application of genetic testing, which could lead to improved treatment outcomes.

  1. Risk alleles of genes with monoallelic expression are enriched in gain-of-function variants and depleted in loss-of-function variants for neurodevelopmental disorders.

    PubMed

    Savova, V; Vinogradova, S; Pruss, D; Gimelbrant, A A; Weiss, L A

    2017-03-07

    Over 3000 human genes can be expressed from a single allele in one cell, and from the other allele-or both-in neighboring cells. Little is known about the consequences of this epigenetic phenomenon, monoallelic expression (MAE). We hypothesized that MAE increases expression variability, with a potential impact on human disease. Here, we use a chromatin signature to infer MAE for genes in lymphoblastoid cell lines and human fetal brain tissue. We confirm that across clones MAE status correlates with expression level, and that in human tissue data sets, MAE genes show increased expression variability. We then compare mono- and biallelic genes at three distinct scales. In the human population, we observe that genes with polymorphisms influencing expression variance are more likely to be MAE (P<1.1 × 10(-6)). At the trans-species level, we find gene expression differences and directional selection between humans and chimpanzees more common among MAE genes (P<0.05). Extending to human disease, we show that MAE genes are under-represented in neurodevelopmental copy number variants (CNVs) (P<2.2 × 10(-10)), suggesting that pathogenic variants acting via expression level are less likely to involve MAE genes. Using neuropsychiatric single-nucleotide polymorphism (SNP) and single-nucleotide variant (SNV) data, we see that genes with pathogenic expression-altering or loss-of-function variants are less likely MAE (P<7.5 × 10(-11)) and genes with only missense or gain-of-function variants are more likely MAE (P<1.4 × 10(-6)). Together, our results suggest that MAE genes tolerate a greater range of expression level than biallelic expression (BAE) genes, and this information may be useful in prediction of pathogenicity.Molecular Psychiatry advance online publication, 7 March 2017; doi:10.1038/mp.2017.13.

  2. Diversity and Impact of Rare Variants in Genes Encoding the Platelet G Protein-Coupled Receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF ≥ 1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  3. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  4. Splice variants and seasonal expression of buffalo HSF genes.

    PubMed

    Lal, Shardul Vikram; Brahma, Biswajit; Gohain, Moloya; Mohanta, Debashish; De, Bidan Chandra; Chopra, Meenu; Dass, Gulshan; Vats, Ashutosh; Upadhyay, Ramesh C; Datta, T K; De, Sachinandan

    2015-05-01

    In eukaryotes, the heat shock factors (HSFs) are recognized as the master regulator of the heat shock response. In this respect, the genes encoding the heat shock factors seem to be important for adaptation to thermal stress in organisms. Despite this, only few mammalian HSFs has been characterized. In this study, four major heat shock factor genes viz. HSF-1, 2, 4, and 5 were studied. The main objective of the present study was to characterize the cDNA encoding using conserved gene specific primers and to investigate the expression status of these buffalo HSF genes. Our RT-PCR analysis uncovered two distinct variants of buffalo HSF-1 and HSF-2 gene transcripts. In addition, we identified a variant of the HSF5 transcript in buffalo lacking a DNA-binding domain. In silico analysis of deduced amino acid sequences for buffalo HSF genes showed domain architecture similar to other mammalian species. Changes in the gene expression profile were noted by quantitative real-time PCR (qRT-PCR) analysis. We detected the transcript of buffalo HSF genes in different tissues. We also evaluated the seasonal changes in the expression of HSF genes. Interestingly, the transcript level of HSF-1 gene was found upregulated in months of high and low ambient temperatures. In contrast, the expression of the HSF-4 and 5 genes was found to be downregulated in months of high ambient temperature. This suggests that the intricate balance of different HSFs is adjusted to minimize the effect of seasonal changes in environmental conditions. These findings advance our understanding of the complex, context-dependent regulation of HSF gene expression under normal and stressful conditions.

  5. Allelic Variants of Complement Genes Associated with Dense Deposit Disease

    PubMed Central

    Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou

    2011-01-01

    The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901

  6. Confirmed rare copy number variants implicate novel genes in schizophrenia.

    PubMed

    Tam, Gloria W C; van de Lagemaat, Louie N; Redon, Richard; Strathdee, Karen E; Croning, Mike D R; Malloy, Mary P; Muir, Walter J; Pickard, Ben S; Deary, Ian J; Blackwood, Douglas H R; Carter, Nigel P; Grant, Seth G N

    2010-04-01

    Understanding how cognitive processes including learning, memory, decision making and ideation are encoded by the genome is a key question in biology. Identification of sets of genes underlying human mental disorders is a path towards this objective. Schizophrenia is a common disease with cognitive symptoms, high heritability and complex genetics. We have identified genes involved with schizophrenia by measuring differences in DNA copy number across the entire genome in 91 schizophrenia cases and 92 controls in the Scottish population. Our data reproduce rare and common variants observed in public domain data from >3000 schizophrenia cases, confirming known disease loci as well as identifying novel loci. We found copy number variants in PDE10A (phosphodiesterase 10A), CYFIP1 [cytoplasmic FMR1 (Fragile X mental retardation 1)-interacting protein 1], K(+) channel genes KCNE1 and KCNE2, the Down's syndrome critical region 1 gene RCAN1 (regulator of calcineurin 1), cell-recognition protein CHL1 (cell adhesion molecule with homology with L1CAM), the transcription factor SP4 (specificity protein 4) and histone deacetylase HDAC9, among others (see http://www.genes2cognition.org/SCZ-CNV). Integrating the function of these many genes into a coherent model of schizophrenia and cognition is a major unanswered challenge.

  7. CEACAM6 Gene Variants in Inflammatory Bowel Disease

    PubMed Central

    Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-01-01

    Background The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). Methodology In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. Conclusions This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment. PMID:21559399

  8. Interleukin-37 gene variants segregated anciently coexist during hominid evolution.

    PubMed

    Kang, Bin; Cheng, Shimeng; Peng, Jinbiao; Yan, Jingjing; Zhang, Shuye

    2015-10-01

    IL37 is a member of IL-1 cytokine family but conveys anti-inflammatory functions. The biological characteristic and genetic heterogeneity of IL37 are not fully understood yet. Here using the whole-genome sequencing data from 1000 Genomes Project, we performed population and evolutionary genetic analysis of human IL37 gene. First, 2184 IL37 gene sequences from different human populations were retrieved. The IL37 protein sequences were inferred from the coding DNA sequences and multiple species alignment was made. Then, the phylogenetic tree of IL37 was built and dN/dS ratios were calculated for each evolutionary branch, the classic McDonald and Kreitman test was also performed. Next, we conducted intraspecific evolutionary genetic analysis and built the genealogy network of 116 unique IL37 haplotypes through median-joining network analysis. Finally, we compared IL37 sequences between the modern and archaic humans. Our results for the first time provide solid evidence that common IL37 variants other than NCBI reference sequence are present worldwide. Our data also supports that IL37 variants are shaped and maintained by selection instead of neutral evolution. We further identified that human IL37 variants consist of two major haplogroups and their presence in archaic humans corroborates its ancient origin in hominid evolution. In conclusion, these data indicate that common IL37 variants are maintained among human populations by selective force, suggesting their potential involvements in immune regulation and human diseases. In addition, the ancient history of IL37 variants reveals interesting insight into the complicated human evolutionary history.

  9. Melanoma risk associated with MC1R gene variants in Latvia and the functional analysis of rare variants.

    PubMed

    Ozola, Aija; Azarjana, Kristīne; Doniņa, Simona; Proboka, Guna; Mandrika, Ilona; Petrovska, Ramona; Cēma, Ingrīda; Heisele, Olita; Eņģele, Ludmila; Streinerte, Baiba; Pjanova, Dace

    2013-03-01

    To evaluate the association of melanocortin 1 receptor gene (MC1R) variants with melanoma risk in a Latvian population, the MC1R gene was sequenced in 200 melanoma patients and 200 control persons. A functional study of previously uncharacterized, rare MC1R variants was also performed. In total, 26 different MC1R variants, including two novel variants Val165Ile and Val188Ile, were detected. The highest risk of melanoma was associated with the Arg151Cys variant (odds ratio (OR) 4.47, 95% confidence interval (CI) 2.19-9.14, P<0.001). A gene dosage effect was observed, with melanoma risk for carriers of two variants being twice (OR 3.98, 95% CI 2.15-7.38, P<0.001) that of carriers of one variant (OR 1.98, 95% CI 1.26-3.11, P=0.003). After stratification according to the pigmentation phenotype, the risk of melanoma remained in groups with otherwise protective phenotypes. Functional analyses of eight previously uncharacterized MC1R variants revealed that a subset of them is functionally relevant. Our results support the contribution of MC1R variants to a genetic predisposition to melanoma in Latvia.

  10. Genomic variants, genes, and pathways of Alzheimer's disease: An overview.

    PubMed

    Naj, Adam C; Schellenberg, Gerard D

    2017-01-01

    Alzheimer's disease (AD) (MIM: 104300) is a highly heritable disease with great complexity in its genetic contributors, and represents the most common form of dementia. With the gradual aging of the world's population, leading to increased prevalence of AD, and the substantial cost of care for those afflicted, identifying the genetic causes of disease represents a critical effort in identifying therapeutic targets. Here we provide a comprehensive review of genomic studies of AD, from the earliest linkage studies identifying monogenic contributors to early-onset forms of AD to the genome-wide and rare variant association studies of recent years that are being used to characterize the mosaic of genetic contributors to late-onset AD (LOAD), and which have identified approximately ∼20 genes with common variants contributing to LOAD risk. In addition, we explore studies employing alternative approaches to identify genetic contributors to AD, including studies of AD-related phenotypes and multi-variant association studies such as pathway analyses. Finally, we introduce studies of next-generation sequencing, which have recently helped identify multiple low-frequency and rare variant contributors to AD, and discuss on-going efforts with next-generation sequencing studies to develop statistically well- powered and comprehensive genomic studies of AD. Through this review, we help uncover the many insights the genetics of AD have provided into the pathways and pathophysiology of AD. © 2016 Wiley Periodicals, Inc.

  11. Relation of FTO gene variants to fetal growth trajectories: Findings from the Southampton Women's survey

    PubMed Central

    Barton, S.J.; Mosquera, M.; Cleal, J.K.; Fuller, A.S.; Crozier, S.R.; Cooper, C.; Inskip, H.M.; Holloway, J.W.; Lewis, R.M.; Godfrey, K.M.

    2016-01-01

    Introduction Placental function is an important determinant of fetal growth, and fetal growth influences obesity risk in childhood and adult life. Here we investigated how FTO and MC4R gene variants linked with obesity relate to patterns of fetal growth and to placental FTO expression. Methods Southampton Women's Survey children (n = 1990) with measurements of fetal growth from 11 to 34 weeks gestation were genotyped for common gene variants in FTO (rs9939609, rs1421085) and MC4R (rs17782313). Linear mixed-effect models were used to analyse relations of gene variants with fetal growth. Results Fetuses with the rs9939609 A:A FTO genotype had faster biparietal diameter and head circumference growth velocities between 11 and 34 weeks gestation (by 0.012 (95% CI 0.005 to 0.019) and 0.008 (0.002–0.015) standard deviations per week, respectively) compared to fetuses with the T:T FTO genotype; abdominal circumference growth velocity did not differ between genotypes. FTO genotype was not associated with placental FTO expression, but higher placental FTO expression was independently associated with larger fetal size and higher placental ASCT2, EAAT2 and y + LAT2 amino acid transporter expression. Findings were similar for FTO rs1421085, and the MC4R gene variant was associated with the fetal growth velocity of head circumference. Discussion FTO gene variants are known to associate with obesity but this is the first time that the risk alleles and placental FTO expression have been linked with fetal growth trajectories. The lack of an association between FTO genotype and placental FTO expression adds to emerging evidence of complex biology underlying the association between FTO genotype and obesity. PMID:26907388

  12. Relation of FTO gene variants to fetal growth trajectories: Findings from the Southampton Women's survey.

    PubMed

    Barton, S J; Mosquera, M; Cleal, J K; Fuller, A S; Crozier, S R; Cooper, C; Inskip, H M; Holloway, J W; Lewis, R M; Godfrey, K M

    2016-02-01

    Placental function is an important determinant of fetal growth, and fetal growth influences obesity risk in childhood and adult life. Here we investigated how FTO and MC4R gene variants linked with obesity relate to patterns of fetal growth and to placental FTO expression. Southampton Women's Survey children (n = 1990) with measurements of fetal growth from 11 to 34 weeks gestation were genotyped for common gene variants in FTO (rs9939609, rs1421085) and MC4R (rs17782313). Linear mixed-effect models were used to analyse relations of gene variants with fetal growth. Fetuses with the rs9939609 A:A FTO genotype had faster biparietal diameter and head circumference growth velocities between 11 and 34 weeks gestation (by 0.012 (95% CI 0.005 to 0.019) and 0.008 (0.002-0.015) standard deviations per week, respectively) compared to fetuses with the T:T FTO genotype; abdominal circumference growth velocity did not differ between genotypes. FTO genotype was not associated with placental FTO expression, but higher placental FTO expression was independently associated with larger fetal size and higher placental ASCT2, EAAT2 and y + LAT2 amino acid transporter expression. Findings were similar for FTO rs1421085, and the MC4R gene variant was associated with the fetal growth velocity of head circumference. FTO gene variants are known to associate with obesity but this is the first time that the risk alleles and placental FTO expression have been linked with fetal growth trajectories. The lack of an association between FTO genotype and placental FTO expression adds to emerging evidence of complex biology underlying the association between FTO genotype and obesity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  14. Gene variants associated with antisocial behaviour: A latent variable approach

    PubMed Central

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may

  15. An Obesity-Predisposing Variant of the FTO Gene Regulates D2R-Dependent Reward Learning.

    PubMed

    Sevgi, Meltem; Rigoux, Lionel; Kühn, Anne B; Mauer, Jan; Schilbach, Leonhard; Hess, Martin E; Gruendler, Theo O J; Ullsperger, Markus; Stephan, Klaas Enno; Brüning, Jens C; Tittgemeyer, Marc

    2015-09-09

    Variations in the fat mass and obesity-associated (FTO) gene are linked to obesity. However, the underlying neurobiological mechanisms by which these genetic variants influence obesity, behavior, and brain are unknown. Given that Fto regulates D2/3R signaling in mice, we tested in humans whether variants in FTO would interact with a variant in the ANKK1 gene, which alters D2R signaling and is also associated with obesity. In a behavioral and fMRI study, we demonstrate that gene variants of FTO affect dopamine (D2)-dependent midbrain brain responses to reward learning and behavioral responses associated with learning from negative outcome in humans. Furthermore, dynamic causal modeling confirmed that FTO variants modulate the connectivity in a basic reward circuit of meso-striato-prefrontal regions, suggesting a mechanism by which genetic predisposition alters reward processing not only in obesity, but also in other disorders with altered D2R-dependent impulse control, such as addiction. Significance statement: Variations in the fat mass and obesity-associated (FTO) gene are associated with obesity. Here we demonstrate that variants of FTO affect dopamine-dependent midbrain brain responses and learning from negative outcomes in humans during a reward learning task. Furthermore, FTO variants modulate the connectivity in a basic reward circuit of meso-striato-prefrontal regions, suggesting a mechanism by which genetic vulnerability in reward processing can increase predisposition to obesity.

  16. Identification and characterization of seven new exon 11-associated splice variants of the rat μ opioid receptor gene, OPRM1.

    PubMed

    Xu, Jin; Xu, Mingming; Rossi, Grace C; Pasternak, Gavril W; Pan, Ying-Xian

    2011-01-21

    The mouse mu opioid receptor (OPRM1) gene undergoes extensive alternative splicing at both the 3'- and 5'-ends of the gene. Previously, several C-terminal variants generated through 3' splicing have been identified in the rat OPRM1 gene. In both mice and humans 5' splicing generates a number of exon 11-containing variants. Studies in an exon 11 knockout mouse suggest the functional importance of these exon 11-associated variants in mediating the analgesic actions of a subset of mu opioids, including morphine-6β-glucuronide (M6G) and heroin, but not others such as morphine and methadone. We now have examined 5' splicing in the rat. The current studies identified in the rat a homologous exon 11 and seven exon 11-associated variants, suggesting conservation of exon 11 and its associated variants among mouse, rat and human. RT-PCR revealed marked differences in the expression of these variants across several brain regions, implying region-specific mRNA processing of the exon 11-associated variants. Of the seven rat exon 11-associated variants, four encoded the identical protein as found in rMOR-1, two predicted 6 TM variants, and one, rMOR-1H2, generated a novel N-terminal variant in which a stretch of an additional 50 amino acids was present at the N-terminus of the previously established rMOR-1 sequence. When expressed in CHO cells, the presence of the additional 50 amino acids in rMOR-1H2 significantly altered agonist-induced G protein activation with little effect on opioid binding. The identification of the rat exon 11 and its associated variants further demonstrated conservation of 5' splicing in OPRM1 genes among rodents and humans. The functional relevance of these exon 11 associated variants was suggested by the region-specific expression of their mRNAs and the influence of the N-terminal sequence on agonist-induced G protein coupling in the novel N-terminal variant, rMOR-1H2. The importance of the exon 11-associated variants in mice in M6G and heroin

  17. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    2014-01-01

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex

  18. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease.

    PubMed

    Cruchaga, Carlos; Karch, Celeste M; Jin, Sheng Chih; Benitez, Bruno A; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John; Bertelsen, Sarah; Jeng, Amanda T; Cooper, Breanna; Skorupa, Tara; Carrell, David; Levitch, Denise; Hsu, Simon; Choi, Jiyoon; Ryten, Mina; Sassi, Celeste; Bras, Jose; Gibbs, Raphael J; Hernandez, Dena G; Lupton, Michelle K; Powell, John; Forabosco, Paola; Ridge, Perry G; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; Schmutz, Cameron; Leary, Maegan; Demirci, F Yesim; Bamne, Mikhil N; Wang, Xingbin; Lopez, Oscar L; Ganguli, Mary; Medway, Christopher; Turton, James; Lord, Jenny; Braae, Anne; Barber, Imelda; Brown, Kristelle; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Brkanac, Zoran; Scott, Erick; Topol, Eric; Morgan, Kevin; Rogaeva, Ekaterina; Singleton, Andy; Hardy, John; Kamboh, M Ilyas; George-Hyslop, Peter St; Cairns, Nigel; Morris, John C; Kauwe, John S K; Goate, Alison M

    2014-01-23

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex

  19. The Biotinidase Gene Variants Registry: A Paradigm Public Database

    PubMed Central

    Procter, Melinda; Wolf, Barry; Crockett, David K.; Mao, Rong

    2013-01-01

    The BTD gene codes for production of biotinidase, the enzyme responsible for helping the body reuse and recycle the biotin found in foods. Biotinidase deficiency is an autosomal recessively inherited disorder resulting in the inability to recycle the vitamin biotin and affects approximately 1 in 60,000 newborns. If untreated, the depletion of intracellular biotin leads to impaired activities of the biotin-dependent carboxylases and can result in cutaneous and neurological abnormalities in individuals with the disorder. Mutations in the biotinidase gene (BTD) alter enzymatic function. To date, more than 165 mutations in BTD have been reported. Our group has developed a database that characterizes the known mutations and sequence variants in BTD. (http://arup.utah.edu/database/BTD/BTD_welcome.php). All sequence variants have been verified for their positions within the BTD gene and designated according to standard nomenclature suggested by Human Genome Variation Society (HGVS). In addition, we describe the change in the protein, indicate whether the variant is a known or likely mutation vs. a benign polymorphism, and include the reference that first described the alteration. We also indicate whether the alteration is known to be clinically pathological based on an observation of a known symptomatic individual or predicted to be pathological based on enzymatic activity or putative disruption of the protein structure. We incorporated the published phenotype to help establish genotype-phenotype correlations and facilitate this process for those performing mutation analysis and/or interpreting results. Other features of this database include disease information, relevant links about biotinidase deficiency, reference sequences, ability to query by various criteria, and the process for submitting novel variations. This database is free to the public and will be updated quarterly. This database is a paradigm for formulating databases for other inherited metabolic disorders

  20. Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics

    PubMed Central

    Hu, Yi-Juan; Berndt, Sonja I.; Gustafsson, Stefan; Ganna, Andrea; Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Leach, Irene Mateo; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik; Hirschhorn, Joel; North, Kari E.; Ingelsson, Erik; Lin, Dan-Yu

    2013-01-01

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying “causal” rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. PMID:23891470

  1. Meta-analysis of gene-level associations for rare variants based on single-variant statistics.

    PubMed

    Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu

    2013-08-08

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.

  2. Lessons from the canine Oxtr gene: populations, variants and functional aspects.

    PubMed

    Bence, M; Marx, P; Szantai, E; Kubinyi, E; Ronai, Z; Banlaki, Z

    2017-04-01

    Oxytocin receptor (OXTR) acts as a key behavioral modulator of the central nervous system, affecting social behavior, stress, affiliation and cognitive functions. Variants of the Oxtr gene are known to influence behavior both in animals and humans; however, canine Oxtr polymorphisms are less characterized in terms of possible relevance to function, selection criteria in breeding and domestication. In this report, we provide a detailed characterization of common variants of the canine Oxtr gene. In particular (1) novel polymorphisms were identified by direct sequencing of wolf and dog samples, (2) allelic distributions and pairwise linkage disequilibrium patterns of several canine populations were compared, (3) neighbor joining (NJ) tree based on common single nucleotide polymorphisms (SNPs) was constructed, (4) mRNA expression features were assessed, (5) a novel splice variant was detected and (6) in vitro functional assays were performed. Results indicate marked differences regarding Oxtr variations between purebred dogs of different breeds, free-ranging dog populations, wolf subspecies and golden jackals. This, together with existence of explicitly dog-specific alleles and data obtained from the NJ tree implies that Oxtr could indeed have been a target gene during domestication and selection for human preferred aspects of temperament and social behavior. This assumption is further supported by the present observations on gene expression patterns within the brain and luciferase reporter experiments, providing a molecular level link between certain canine Oxtr polymorphisms and differences in nervous system function and behavior.

  3. Rare Variants in Neurodegeneration Associated Genes Revealed by Targeted Panel Sequencing in a German ALS Cohort.

    PubMed

    Krüger, Stefanie; Battke, Florian; Sprecher, Andrea; Munz, Marita; Synofzik, Matthis; Schöls, Ludger; Gasser, Thomas; Grehl, Torsten; Prudlo, Johannes; Biskup, Saskia

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal multisystemic neurodegenerative disorder caused by preferential degeneration of upper and lower motor neurons. To further delineate the genetic architecture of the disease, we used comprehensive panel sequencing in a cohort of 80 German ALS patients. The panel covered 39 confirmed ALS genes and candidate genes, as well as 238 genes associated with other entities of the neurodegenerative disease spectrum. In addition, we performed repeat length analysis for C9orf72. Our aim was to (1) identify potentially disease-causing variants, to (2) assess a proposed model of polygenic inheritance in ALS and to (3) connect ALS with other neurodegenerative entities. We identified 79 rare potentially pathogenic variants in 27 ALS associated genes in familial and sporadic cases. Five patients had pathogenic C9orf72 repeat expansions, a further four patients harbored intermediate length repeat expansions. Our findings demonstrate that a genetic background of the disease can actually be found in a large proportion of seemingly sporadic cases and that it is not limited to putative most frequently affected genes such as C9orf72 or SOD1. Assessing the polygenic nature of ALS, we identified 15 patients carrying at least two rare potentially pathogenic variants in ALS associated genes including pathogenic or intermediate C9orf72 repeat expansions. Multiple variants might influence severity or duration of disease or could account for intrafamilial phenotypic variability or reduced penetrance. However, we could not observe a correlation with age of onset in this study. We further detected potentially pathogenic variants in other neurodegeneration associated genes in 12 patients, supporting the hypothesis of common pathways in neurodegenerative diseases and linking ALS to other entities of the neurodegenerative spectrum. Most interestingly we found variants in GBE1 and SPG7 which might represent differential diagnoses. Based on our

  4. Rare Variants in Neurodegeneration Associated Genes Revealed by Targeted Panel Sequencing in a German ALS Cohort

    PubMed Central

    Krüger, Stefanie; Battke, Florian; Sprecher, Andrea; Munz, Marita; Synofzik, Matthis; Schöls, Ludger; Gasser, Thomas; Grehl, Torsten; Prudlo, Johannes; Biskup, Saskia

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal multisystemic neurodegenerative disorder caused by preferential degeneration of upper and lower motor neurons. To further delineate the genetic architecture of the disease, we used comprehensive panel sequencing in a cohort of 80 German ALS patients. The panel covered 39 confirmed ALS genes and candidate genes, as well as 238 genes associated with other entities of the neurodegenerative disease spectrum. In addition, we performed repeat length analysis for C9orf72. Our aim was to (1) identify potentially disease-causing variants, to (2) assess a proposed model of polygenic inheritance in ALS and to (3) connect ALS with other neurodegenerative entities. We identified 79 rare potentially pathogenic variants in 27 ALS associated genes in familial and sporadic cases. Five patients had pathogenic C9orf72 repeat expansions, a further four patients harbored intermediate length repeat expansions. Our findings demonstrate that a genetic background of the disease can actually be found in a large proportion of seemingly sporadic cases and that it is not limited to putative most frequently affected genes such as C9orf72 or SOD1. Assessing the polygenic nature of ALS, we identified 15 patients carrying at least two rare potentially pathogenic variants in ALS associated genes including pathogenic or intermediate C9orf72 repeat expansions. Multiple variants might influence severity or duration of disease or could account for intrafamilial phenotypic variability or reduced penetrance. However, we could not observe a correlation with age of onset in this study. We further detected potentially pathogenic variants in other neurodegeneration associated genes in 12 patients, supporting the hypothesis of common pathways in neurodegenerative diseases and linking ALS to other entities of the neurodegenerative spectrum. Most interestingly we found variants in GBE1 and SPG7 which might represent differential diagnoses. Based on our

  5. Risk alleles of genes with monoallelic expression are enriched in gain-of-function variants and depleted in loss-of-function variants for neurodevelopmental disorders

    PubMed Central

    Savova, Virginia; Vinogradova, Svetlana; Pruss, Danielle

    2017-01-01

    Over 3,000 human genes can be expressed from a single allele in one cell, and from the other allele – or both – in neighboring cells. Little is known about the consequences of this epigenetic phenomenon, monoallelic expression (MAE). We hypothesized that MAE increases expression variability, with potential impact on human disease. Here, we use a chromatin signature to infer MAE for genes in lymphoblastoid cell lines and human fetal brain tissue. We confirm that across clones, MAE status correlates with expression level, and that in human tissue datasets, MAE genes show increased expression variability. We then compare mono- and biallelic genes at three distinct scales. In the human population, we observe that genes with polymorphisms influencing expression variance are more likely to be MAE (P < 1.1 × 10−6). At the trans-species level, we find gene expression differences and directional selection between humans and chimpanzees more common among MAE genes (P < 0.05). Extending to human disease, we show that MAE genes are underrepresented in neurodevelopmental CNVs (P < 2.2×10−10) suggesting that pathogenic variants acting via expression level are less likely to involve MAE genes. Using neuropsychiatric SNP and SNV data, we see that genes with pathogenic expression-altering or loss-of-function variants are less likely MAE (P < 7.5×10−11) and genes with only missense or gain-of-function variants are more likely MAE (P < 1.4×10−6). Together, our results suggest that MAE genes tolerate a greater range of expression level than BAE genes and this information may be useful in prediction of pathogenicity. PMID:28265118

  6. Functional and bioinformatic characterisation of sequence variants of Fad3 gene from flax.

    PubMed

    Khadake, Rupali; Khonde, Vijaykumar; Mhaske, Vaishali; Ranjekar, Prabhakar; Harsulkar, Abhay

    2011-11-01

    Desaturases are enzymes that drive the multi-step fatty acid biosynthetic pathway. As evident from directed mutagenesis, single base changes in their polypeptide can potentially alter their structure and may result in altered substrate specificity, regioselectivity and even loss of function. The authors have previously isolated several sequence variants of Δ15 desaturase from flax while attempting to clone that gene. The aim of the present study was to analyse these gene variants for their functionality and to predict the tertiary structure of the protein in order to correlate the functional differences with the protein structure. The variants differed in the rate at which they could convert linoleic acid to α-linolenic acid. The highest conversion rate was 7.03%, while the lowest was 2.39%. The overall shape of the predicted 3D model of the protein is a compact cylinder containing α-helices and β-sheets. The Ramchandran plot of this model revealed that 98.5% of the residues are located in allowed region, which denotes a stable structure. Although the structures of the variants are apparently similar, subtle changes account for variation in their activity. Besides, these substitutions may alter their cross-talk with other proteins and thus differentially influence their specificity, localisation and stability, which in turn may explain the diversity in their function. Copyright © 2011 Society of Chemical Industry.

  7. Copy Number Variants in the Kallikrein Gene Cluster

    PubMed Central

    Lindahl, Pernilla; Säll, Torbjörn; Bjartell, Anders; Johansson, Anna M.; Lilja, Hans; Halldén, Christer

    2013-01-01

    The kallikrein gene family (KLK1-KLK15) is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE) repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC), we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy) using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions. PMID:23894413

  8. Genetic variants in epigenetic genes and breast cancer risk.

    PubMed

    Cebrian, Arancha; Pharoah, Paul D; Ahmed, Shahana; Ropero, Santiago; Fraga, Mario F; Smith, Paula L; Conroy, Don; Luben, Robert; Perkins, Barbara; Easton, Douglas F; Dunning, Alison M; Esteller, Manel; Ponder, Bruce A J

    2006-08-01

    Epigenetic events, resulting changes in gene expression capacity, are important in tumour progression, and variation in genes involved in epigenetic mechanisms might therefore be important in cancer susceptibility. To evaluate this hypothesis, we examined common variants in 12 genes coding for DNA methyltransferases (DNMT), histone acetyltransferases, histone deacetyltransferases, histone methyltrasferases and methyl-CpG binding domain proteins, for association with breast cancer in a large case-control study (N cases = 4474 and N controls = 4580). We identified 63 single nucleotide polymorphisms (SNPs) that efficiently tag all the known common variants in these genes, and are also expected to tag any unknown SNP in each gene. We found some evidence for association for six SNPs: DNMT3b-c31721t [P (2 df) = 0.007], PRDM2-c99243 t [P (2 df) = 0.03] and t105413c [P-recessive = 0.05], EHMT1-g-9441a [P (2df) = 0.05] and g41451t (P-trend = 0.04), and EHMT2-S237S [P (2df) = 0.04]. The most significant result was for DNMT3b-c31721t (P-trend = 0.124 after adjusting for multiple testing). However, there were three other results with P < 0.05. The permutation-based probability of this occurring by chance was 0.335. These significant SNPs were genotyped in 75 human cancer cell lines from different tumour types to assess if there was an association between them and six epigenetic measures. No statistically significant association was found. However, a trend was observed: homozygotes for the rare alleles of the EHMT1, EHMT2 and PRDM2 had a mean value for both trimethylation of K9 and K27 of histone H3 remarkably different to the homozygotes for the common alleles. Thus, these preliminary observations suggest the possible existence of a functional consequence of harbouring these genetic variants in histone methyltransferases, and warrant the design of larger epidemiological and biochemical studies to establish the true meaning of these findings.

  9. Inherited Variants in the Chemokine CCL2 Gene and Prostate Cancer Aggressiveness in a Caucasian Cohort

    PubMed Central

    Sun, Tong; Lee, Gwo-Shu Mary; Oh, William K.; Freedman, Matthew L.; Pomerantz, Mark; Pienta, Kenneth J.; Kantoff, Philip W.

    2010-01-01

    Purpose Though C-C chemokine ligand 2 (CCL2) has been demonstrated to play a pivotal role in prostate cancer tumorigenesis and invasion, the role of inherited variation in the CCL2 gene in prostate cancer progression and metastases remains unanswered. This study is aimed to determine the influence of CCL2 germline variants on prostate cancer aggressiveness. Experimental Design We performed an association study between six single nucleotide polymorphisms (SNPs) in the CCL2 gene and prostate cancer clinicopathologic variables in a large hospital based Caucasian patient cohort (N =4073). Results Genetic variantion at CCL2 is associated with markers of disease aggressiveness. Three SNPs, each in strong linkage disequilibrium, are associated with a higher (>7) biopsy Gleason score: CCL2-1811 A/G, −2835A/C and +3726 T/C (P =0.01, 0.03 and 0.04 respectively). The CCL2 −1811 G allele is addionally associated with advanced pathologic stages in patients who underwent radical prostatectomy (P = 0.04). In haplotype analysis, we found that the frequency of a common haplotype, H5, was higher among patients with D’Amico good risk features (Ppermutation = 0.04). Conclusions These results support the influence of CCL2 variants on prostate cancer development and progression. PMID:21135144

  10. Genetic variants in the serotonin transporter influence the efficacy of bupropion and nortriptyline in smoking cessation.

    PubMed

    Quaak, Marieke; van Schayck, Constant P; Postma, Dirkje S; Wagena, Edwin J; van Schooten, Frederik J

    2012-01-01

    We investigated whether variants in the serotonin transporter gene (SLC6A4) influence smoking cessation rates using antidepressant therapy (i.e. bupropion and nortriptyline). Pharmacogenetic (secondary) analysis of a randomized, placebo-controlled efficacy trial of bupropion and nortriptyline for smoking cessation. Single-centre study, Maastricht University, the Netherlands. A total of 214 of 255 (84%) current daily smokers participating in a randomized controlled efficacy trial. Subjects were genotyped for three functional variants in SLC6A4 (5-HTTLPR, STin2, rs25531). Primary outcome measures were prolonged abstinence from weeks 4-12, 4-26 and 4-52. Secondary outcome measures included 7-day point prevalence abstinence at weeks 4, 12, 26 and 52. Carriers of the 5-HTTLPR high-activity L-variant had higher prolonged cessation rates with bupropion than placebo [odds ratio (OR) = 1.44, 95% confidence interval (CI) = 1.01-2.05, P = 0.04]. Combining the three variants resulted in increased prolonged cessation rates for both bupropion and nortriptyline among carriers of four to five high-activity variants (bupropion: OR = 2.00, 95% CI =1.21-3.29, P = 0.01; nortriptyline: OR = 1.91, 95% CI = 1.02-3.56, P = 0.04). Similar results were found for point prevalence abstinence. Bupropion and nortriptyline seem to be more effective in smoking cessation among SLC6A4 high-activity variant carriers, probably by blocking the increased serotonin transporter activity, thereby increasing serotonin levels. Prospective studies have to assess if this can improve cessation rates when treatment is targeted at individuals based on their genotypes. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  11. Variants in MTNR1B influence fasting glucose levels

    PubMed Central

    Prokopenko, Inga; Langenberg, Claudia; Florez, Jose C; Saxena, Richa; Soranzo, Nicole; Thorleifsson, Gudmar; Loos, Ruth J F; Manning, Alisa K; Jackson, Anne U; Aulchenko, Yurii; Potter, Simon C; Erdos, Michael R; Sanna, Serena; Hottenga, Jouke-Jan; Wheeler, Eleanor; Kaakinen, Marika; Lyssenko, Valeriya; Chen, Wei-Min; Ahmadi, Kourosh; Beckmann, Jacques S; Bergman, Richard N; Bochud, Murielle; Bonnycastle, Lori L; Buchanan, Thomas A; Cao, Antonio; Cervino, Alessandra; Coin, Lachlan; Collins, Francis S; Crisponi, Laura; de Geus, Eco J C; Dehghan, Abbas; Deloukas, Panos; Doney, Alex S F; Elliott, Paul; Freimer, Nelson; Gateva, Vesela; Herder, Christian; Hofman, Albert; Hughes, Thomas E; Hunt, Sarah; Illig, Thomas; Inouye, Michael; Isomaa, Bo; Johnson, Toby; Kong, Augustine; Krestyaninova, Maria; Kuusisto, Johanna; Laakso, Markku; Lim, Noha; Lindblad, Ulf; Lindgren, Cecilia M; McCann, Owen T; Mohlke, Karen L; Morris, Andrew D; Naitza, Silvia; Orrù, Marco; Palmer, Colin N A; Pouta, Anneli; Randall, Joshua; Rathmann, Wolfgang; Saramies, Jouko; Scheet, Paul; Scott, Laura J; Scuteri, Angelo; Sharp, Stephen; Sijbrands, Eric; Smit, Jan H; Song, Kijoung; Steinthorsdottir, Valgerdur; Stringham, Heather M; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Uitterlinden, André G; Voight, Benjamin F; Waterworth, Dawn; Wichmann, H-Erich; Willemsen, Gonneke; Witteman, Jacqueline C M; Yuan, Xin; Zhao, Jing Hua; Zeggini, Eleftheria; Schlessinger, David; Sandhu, Manjinder; Boomsma, Dorret I; Uda, Manuela; Spector, Tim D; Penninx, Brenda WJH; Altshuler, David; Vollenweider, Peter; Jarvelin, Marjo Riitta; Lakatta, Edward; Waeber, Gerard; Fox, Caroline S; Peltonen, Leena; Groop, Leif C; Mooser, Vincent; Cupples, L Adrienne; Thorsteinsdottir, Unnur; Boehnke, Michael; Barroso, Inês; Van Duijn, Cornelia; Dupuis, Josée; Watanabe, Richard M; Stefansson, Kari; McCarthy, Mark I; Wareham, Nicholas J; Meigs, James B; Abecasis, Gonçalo R

    2009-01-01

    To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 = × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci. PMID:19060907

  12. Variants in MTNR1B influence fasting glucose levels.

    PubMed

    Prokopenko, Inga; Langenberg, Claudia; Florez, Jose C; Saxena, Richa; Soranzo, Nicole; Thorleifsson, Gudmar; Loos, Ruth J F; Manning, Alisa K; Jackson, Anne U; Aulchenko, Yurii; Potter, Simon C; Erdos, Michael R; Sanna, Serena; Hottenga, Jouke-Jan; Wheeler, Eleanor; Kaakinen, Marika; Lyssenko, Valeriya; Chen, Wei-Min; Ahmadi, Kourosh; Beckmann, Jacques S; Bergman, Richard N; Bochud, Murielle; Bonnycastle, Lori L; Buchanan, Thomas A; Cao, Antonio; Cervino, Alessandra; Coin, Lachlan; Collins, Francis S; Crisponi, Laura; de Geus, Eco J C; Dehghan, Abbas; Deloukas, Panos; Doney, Alex S F; Elliott, Paul; Freimer, Nelson; Gateva, Vesela; Herder, Christian; Hofman, Albert; Hughes, Thomas E; Hunt, Sarah; Illig, Thomas; Inouye, Michael; Isomaa, Bo; Johnson, Toby; Kong, Augustine; Krestyaninova, Maria; Kuusisto, Johanna; Laakso, Markku; Lim, Noha; Lindblad, Ulf; Lindgren, Cecilia M; McCann, Owen T; Mohlke, Karen L; Morris, Andrew D; Naitza, Silvia; Orrù, Marco; Palmer, Colin N A; Pouta, Anneli; Randall, Joshua; Rathmann, Wolfgang; Saramies, Jouko; Scheet, Paul; Scott, Laura J; Scuteri, Angelo; Sharp, Stephen; Sijbrands, Eric; Smit, Jan H; Song, Kijoung; Steinthorsdottir, Valgerdur; Stringham, Heather M; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Uitterlinden, André G; Voight, Benjamin F; Waterworth, Dawn; Wichmann, H-Erich; Willemsen, Gonneke; Witteman, Jacqueline C M; Yuan, Xin; Zhao, Jing Hua; Zeggini, Eleftheria; Schlessinger, David; Sandhu, Manjinder; Boomsma, Dorret I; Uda, Manuela; Spector, Tim D; Penninx, Brenda Wjh; Altshuler, David; Vollenweider, Peter; Jarvelin, Marjo Riitta; Lakatta, Edward; Waeber, Gerard; Fox, Caroline S; Peltonen, Leena; Groop, Leif C; Mooser, Vincent; Cupples, L Adrienne; Thorsteinsdottir, Unnur; Boehnke, Michael; Barroso, Inês; Van Duijn, Cornelia; Dupuis, Josée; Watanabe, Richard M; Stefansson, Kari; McCarthy, Mark I; Wareham, Nicholas J; Meigs, James B; Abecasis, Gonçalo R

    2009-01-01

    To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.

  13. Gene variants associated with antisocial behaviour: a latent variable approach.

    PubMed

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V; Lee, Maria; Yrigollen, Carolyn M; Pakstis, Andrew J; Katsovich, Liliya; Olds, David L; Grigorenko, Elena L; Leckman, James F

    2013-10-01

    The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation programme in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Eight single-nucleotide polymorphisms (SNPs) from eight genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all eight genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid and cholinergic signalling as well as stress response pathways in mediating susceptibility to antisocial behaviour. This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential 'co-action' of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the aetiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a

  14. The human gene damage index as a gene-level approach to prioritizing exome variants

    PubMed Central

    Itan, Yuval; Shang, Lei; Boisson, Bertrand; Patin, Etienne; Bolze, Alexandre; Moncada-Vélez, Marcela; Scott, Eric; Ciancanelli, Michael J.; Lafaille, Fabien G.; Markle, Janet G.; Martinez-Barricarte, Ruben; de Jong, Sarah Jill; Kong, Xiao-Fei; Nitschke, Patrick; Belkadi, Aziz; Bustamante, Jacinta; Puel, Anne; Boisson-Dupuis, Stéphanie; Stenson, Peter D.; Gleeson, Joseph G.; Cooper, David N.; Quintana-Murci, Lluis; Claverie, Jean-Michel; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent

    2015-01-01

    The protein-coding exome of a patient with a monogenic disease contains about 20,000 variants, only one or two of which are disease causing. We found that 58% of rare variants in the protein-coding exome of the general population are located in only 2% of the genes. Prompted by this observation, we aimed to develop a gene-level approach for predicting whether a given human protein-coding gene is likely to harbor disease-causing mutations. To this end, we derived the gene damage index (GDI): a genome-wide, gene-level metric of the mutational damage that has accumulated in the general population. We found that the GDI was correlated with selective evolutionary pressure, protein complexity, coding sequence length, and the number of paralogs. We compared GDI with the leading gene-level approaches, genic intolerance, and de novo excess, and demonstrated that GDI performed best for the detection of false positives (i.e., removing exome variants in genes irrelevant to disease), whereas genic intolerance and de novo excess performed better for the detection of true positives (i.e., assessing de novo mutations in genes likely to be disease causing). The GDI server, data, and software are freely available to noncommercial users from lab.rockefeller.edu/casanova/GDI. PMID:26483451

  15. The human gene damage index as a gene-level approach to prioritizing exome variants.

    PubMed

    Itan, Yuval; Shang, Lei; Boisson, Bertrand; Patin, Etienne; Bolze, Alexandre; Moncada-Vélez, Marcela; Scott, Eric; Ciancanelli, Michael J; Lafaille, Fabien G; Markle, Janet G; Martinez-Barricarte, Ruben; de Jong, Sarah Jill; Kong, Xiao-Fei; Nitschke, Patrick; Belkadi, Aziz; Bustamante, Jacinta; Puel, Anne; Boisson-Dupuis, Stéphanie; Stenson, Peter D; Gleeson, Joseph G; Cooper, David N; Quintana-Murci, Lluis; Claverie, Jean-Michel; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent

    2015-11-03

    The protein-coding exome of a patient with a monogenic disease contains about 20,000 variants, only one or two of which are disease causing. We found that 58% of rare variants in the protein-coding exome of the general population are located in only 2% of the genes. Prompted by this observation, we aimed to develop a gene-level approach for predicting whether a given human protein-coding gene is likely to harbor disease-causing mutations. To this end, we derived the gene damage index (GDI): a genome-wide, gene-level metric of the mutational damage that has accumulated in the general population. We found that the GDI was correlated with selective evolutionary pressure, protein complexity, coding sequence length, and the number of paralogs. We compared GDI with the leading gene-level approaches, genic intolerance, and de novo excess, and demonstrated that GDI performed best for the detection of false positives (i.e., removing exome variants in genes irrelevant to disease), whereas genic intolerance and de novo excess performed better for the detection of true positives (i.e., assessing de novo mutations in genes likely to be disease causing). The GDI server, data, and software are freely available to noncommercial users from lab.rockefeller.edu/casanova/GDI.

  16. Fire Usage and Ancient Hominin Detoxification Genes: Protective Ancestral Variants Dominate While Additional Derived Risk Variants Appear in Modern Humans.

    PubMed

    Aarts, Jac M M J G; Alink, Gerrit M; Scherjon, Fulco; MacDonald, Katharine; Smith, Alison C; Nijveen, Harm; Roebroeks, Wil

    Studies of the defence capacity of ancient hominins against toxic substances may contribute importantly to the reconstruction of their niche, including their diets and use of fire. Fire usage implies frequent exposure to hazardous compounds from smoke and heated food, known to affect general health and fertility, probably resulting in genetic selection for improved detoxification. To investigate whether such genetic selection occurred, we investigated the alleles in Neanderthals, Denisovans and modern humans at gene polymorphisms well-known to be relevant from modern human epidemiological studies of habitual tobacco smoke exposure and mechanistic evidence. We compared these with the alleles in chimpanzees and gorillas. Neanderthal and Denisovan hominins predominantly possess gene variants conferring increased resistance to these toxic compounds. Surprisingly, we observed the same in chimpanzees and gorillas, implying that less efficient variants are derived and mainly evolved in modern humans. Less efficient variants are observable from the first early Upper Palaeolithic hunter-gatherers onwards. While not clarifying the deep history of fire use, our results highlight the long-term stability of the genes under consideration despite major changes in the hominin dietary niche. Specifically for detoxification gene variants characterised as deleterious by epidemiological studies, our results confirm the predominantly recent appearance reported for deleterious human gene variants, suggesting substantial impact of recent human population history, including pre-Holocene expansions.

  17. Fire Usage and Ancient Hominin Detoxification Genes: Protective Ancestral Variants Dominate While Additional Derived Risk Variants Appear in Modern Humans

    PubMed Central

    Alink, Gerrit M.; Scherjon, Fulco; MacDonald, Katharine; Smith, Alison C.; Nijveen, Harm; Roebroeks, Wil

    2016-01-01

    Studies of the defence capacity of ancient hominins against toxic substances may contribute importantly to the reconstruction of their niche, including their diets and use of fire. Fire usage implies frequent exposure to hazardous compounds from smoke and heated food, known to affect general health and fertility, probably resulting in genetic selection for improved detoxification. To investigate whether such genetic selection occurred, we investigated the alleles in Neanderthals, Denisovans and modern humans at gene polymorphisms well-known to be relevant from modern human epidemiological studies of habitual tobacco smoke exposure and mechanistic evidence. We compared these with the alleles in chimpanzees and gorillas. Neanderthal and Denisovan hominins predominantly possess gene variants conferring increased resistance to these toxic compounds. Surprisingly, we observed the same in chimpanzees and gorillas, implying that less efficient variants are derived and mainly evolved in modern humans. Less efficient variants are observable from the first early Upper Palaeolithic hunter-gatherers onwards. While not clarifying the deep history of fire use, our results highlight the long-term stability of the genes under consideration despite major changes in the hominin dietary niche. Specifically for detoxification gene variants characterised as deleterious by epidemiological studies, our results confirm the predominantly recent appearance reported for deleterious human gene variants, suggesting substantial impact of recent human population history, including pre-Holocene expansions. PMID:27655273

  18. Multiple Gene Variants in Hypertrophic Cardiomyopathy in the Era of Next-Generation Sequencing.

    PubMed

    Burns, Charlotte; Bagnall, Richard D; Lam, Lien; Semsarian, Christopher; Ingles, Jodie

    2017-08-01

    Multiple likely pathogenic/pathogenic (LP/P; ≥2) variants in patients with hypertrophic cardiomyopathy were described 10 years ago with a prevalence of 5%. We sought to re-examine the significance of multiple rare variants in patients with hypertrophic cardiomyopathy in the setting of comprehensive and targeted panels. Of 758 hypertrophic cardiomyopathy probands, we included 382 with ≥45 cardiomyopathy genes screened. There were 224 (59%) with ≥1 rare variant (allele frequency ≤0.02%). Variants were analyzed using varying sized gene panels to represent comprehensive or targeted testing. Based on a 45-gene panel, 127 (33%) had a LP/P variant, 139 (36%) had variants of uncertain significance, and 66 (17%) had multiple rare variants. A targeted 8-gene panel yielded 125 (32%) LP/P variants, 52 (14%) variants of uncertain significance, and 14 (4%) had multiple rare variants. No proband had 2 LP/P variants. Including affected family members (total n=412), cluster-adjusted analyses identified a phenotype effect, with younger age (odds ratio, 0.95; 95% confidence interval, 0.92-0.98; P=0.004) and family history of sudden cardiac death (odds ratio, 3.5; 95% confidence interval, 1.3-9.9; P=0.02) significantly more likely in multiple versus single variant patients when considering an 8-gene panel but not larger panels. Those with multiple variants had worse event-free survival from all-cause death, cardiac transplantation, and cardiac arrest (log-rank P=0.008). No proband had multiple LP/P variants in contrast to previous reports. However, multiple rare variants regardless of classification were seen in 4% and contributed to earlier disease onset and cardiac events. Our findings support a cumulative variant hypothesis in hypertrophic cardiomyopathy. © 2017 American Heart Association, Inc.

  19. Mutations in the paralogous human alpha-globin genes yielding identical hemoglobin variants.

    PubMed

    Moradkhani, Kamran; Préhu, Claude; Old, John; Henderson, Shirley; Balamitsa, Vera; Luo, Hong-Yuan; Poon, Man-Chiu; Chui, David H K; Wajcman, Henri; Patrinos, George P

    2009-06-01

    The human alpha-globin genes are paralogues, sharing a high degree of DNA sequence similarity and producing an identical alpha-globin chain. Over half of the alpha-globin structural variants reported to date are only characterized at the amino acid level. It is likely that a fraction of these variants, with phenotypes differing from one observation to another, may be due to the same mutation but on a different alpha-globin gene. There have been very few previous examples of hemoglobin variants that can be found at both HBA1 and HBA2 genes. Here, we report the results of a systematic multicenter study in a large multiethnic population to identify such variants and to analyze their differences from a functional and evolutionary perspective. We identified 14 different Hb variants resulting from identical mutations on either one of the two human alpha-globin paralogue genes. We also showed that the average percentage of hemoglobin variants due to a HBA2 gene mutation (alpha2) is higher than the percentage of hemoglobin variants due to the same HBA1 gene mutation (alpha1) and that the alpha2/alpha1 ratio varied between variants. These alpha-globin chain variants have most likely occurred via recurrent mutations, gene conversion events, or both. Based on these data, we propose a nomenclature for hemoglobin variants that fall into this category.

  20. Association of Facilitated Glucose Transporter 2 gene variants with the Myelomeningocele phenotype

    PubMed Central

    Ruggiero, Jaclyn E; Northrup, Hope; Au, Kit Sing

    2015-01-01

    BACKGROUND Neural tube defects (NTDs) remain the second most common cause of congenital malformations. Myelomeningocele (MM), the most common NTD compatible with survival, results from genetic and environmental factors. Epidemiologic studies and murine models support the hypotheses that obesity, diabetes and hyperglycemia confer increased risk of NTDs. Presence of wildtype facilitated glucose transporter, Glut2, in mouse embryos has been shown to increase risk for NTDs in hyperglycemic pregnancy. METHODS The GLUT2 gene of 96 MM patients was amplified, sequenced and compared to the reference sequence (NM_000340). Variants previously unreported in the single nucleotide polymorphisms database (dbSNP) were considered novel. Allele frequencies of reported SNPs were compared to reference populations using Fisher's exact test. RESULTS Analysis revealed three novel variants: a substitution in the core promoter region (c.-331c>t), a substitution (c.-182g>a) in the 5′-untranslated region (UTR), and a single base pair deletion (c.1441delT) in the coding sequences. Polymorphic alleles for 10 SNPs were also identified. Seven SNPs are significantly associated with MM in the Mexican American patients tested (p<0.05) and two of the seven remained significant after Bonferroni correction. CONCLUSION We identified three novel variants and seven SNPs associated with MM. The novel variants in the core promoter and in the 5′-UTR could affect GLUT2 mRNA transcription and stability and translation efficiency. The c.1441delT variant is predicted to alter the reading frame and prematurely terminate translation of the GLUT2 protein at the C-terminus, affecting GLUT2 protein function. Presence of GLUT2 variants may disrupt GLUT2 activity and influence MM susceptibility. PMID:25776730

  1. Evaluation of Toll-like-receptor gene family variants as prognostic biomarkers in rheumatoid arthritis.

    PubMed

    Torices, Silvia; Alvarez-Rodríguez, Lorena; Varela, Ignacio; Muñoz, Pedro; Balsa, Alejandro; López-Hoyos, M; Martinez-Taboada, Víctor; Fernández-Luna, Jose L

    2017-07-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease whose main feature is persistent joint inflammation. Toll-like receptors (TLRs) play critical roles in the activation of innate and adaptive immune responses, and influence the activity of NFκB, a key player in chronic inflammation. We aimed at investigating the association of TLR allelic variants with susceptibility and severity of RA through a systematic, high-throughput, analysis of TLR genes. All coding exons and flanking regions of nine members of the TLR family (TLR1-9) were analyzed in 66 patients with RA and 30 healthy controls by next generation sequencing. We focussed on three single allelic variants, N248S in TLR1, Q11L in TLR7 and M1V in TLR8 based on the allelic frequencies in both patient and control populations, the predicted impact on protein function and the novelty in RA research. Analysis of these selected variants in a larger cohort of 402 patients with RA and in 208 controls revealed no association with susceptibility. However, the M1V allele was associated with a lower need for disease-modifying antirheumatic drugs (DMARDs) (p=0.008) and biologic treatments (p=0.021). Functional studies showed that the M1V variant leads to a reduced production of inflammatory cytokines, IL-1β, IL-6 and TNFα, in response to TLR8 agonists. Thus, the presence of this variant confers a significant protective effect on disease severity. These results show for the first time the association between the M1V variant of TLR8 and reduced disease severity in RA, which could have prognostic value for these patients. Copyright © 2017. Published by Elsevier B.V.

  2. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks.

    PubMed

    Shi, S-q; White, M J; Borsetti, H M; Pendergast, J S; Hida, A; Ciarleglio, C M; de Verteuil, P A; Cadar, A G; Cala, C; McMahon, D G; Shelton, R C; Williams, S M; Johnson, C H

    2016-03-01

    An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression.

  3. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks

    PubMed Central

    Shi, S-q; White, M J; Borsetti, H M; Pendergast, J S; Hida, A; Ciarleglio, C M; de Verteuil, P A; Cadar, A G; Cala, C; McMahon, D G; Shelton, R C; Williams, S M; Johnson, C H

    2016-01-01

    An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression. PMID:26926884

  4. Pharmacogenetic and case–control study on potassium channel related gene variants and genetic generalized epilepsy

    PubMed Central

    Qu, Jian; Lu, Shao-Hua; Lu, Zhi-Li; Xu, Ping; Xiang, Da-Xiong; Qu, Qiang

    2017-01-01

    Abstract Potassium channels are the targets of antiepileptic drugs (AEDs), which play important roles in the etiology of epilepsy. KCNA1 and KCNA2 encode mammalian Kv1.1 and Kv1.2 channels, which are essential roles in the initiation and shaping of action potentials. KCNV2 encodes Kv8.2, which is a regional overlap with Kv2 subunits as functional heterotetramers. In our study, we aim to investigate whether variants of KCNA1, KCNA2, and KCNV2 genes influence susceptibility to genetic generalized epilepsies (GGEs) and the efficacy of AEDs. Seven hundred sixty-seven subjects (284 healthy controls, 279 drug-responsive, and 204 drug-resistant GGE patients) were enrolled in our study. Eight variants of KCNA1, KCNA2, and KCNV2 were assessed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method. Results showed that there were no statistically significant correlations between the 8 variants of KCNA1, KCNA2, and KCNV2 and the risk/drug resistance of GGEs. In conclusion, our study suggests that KCNA1, KCNA2, and KCNV2 variants may not be involved in the risk/drug resistance of GGEs. Further multicenter, multiethnic, and large sample size pharmacogenetic and case–control studies are warranted to confirm our negative results. PMID:28658141

  5. High prevalence of an anti-hypertriglyceridemic variant of the MLXIPL gene in Central Asia.

    PubMed

    Nakayama, Kazuhiro; Yanagisawa, Yoshiko; Ogawa, Ayumi; Ishizuka, Yuumi; Munkhtulga, Lkhagvasuren; Charupoonphol, Phitaya; Supannnatas, Somjit; Kuartei, Stevenson; Chimedregzen, Ulziiburen; Koda, Yoshiro; Ishida, Takafumi; Kagawa, Yasuo; Iwamoto, Sadahiko

    2011-12-01

    MLXIPL is a transcription factor integral to the regulation of glycolysis and lipogenesis in the liver. Common variants of the MLXIPL gene (MLXIPL) are known to influence plasma triglyceride levels in people of European descent. As MLXIPL has a key role in energy storage, genetic variations of the MLXIPL may be relevant to physiological adaptations to nutritional stresses that have occurred during the evolution of modern humans. In the present study, we assessed the phenotypic consequences of the Q241H variant of MLXIPL in populations of Asian and Oceanian origin and also surveyed the prevalence of Q241H variant in populations worldwide. Multiple linear regression models based on 2373 individuals of Asian origin showed that the H allele was significantly associated with decreased concentrations of plasma triglycerides (P=0.0003). Direct genotyping of 1455 individuals from Africa, Asia and Oceania showed that the triglyceride-lowering H allele was found at quite low frequencies (0.00-0.16) in most of the populations examined. The exceptions were some Central Asian populations, including Mongolians, Tibetans and Uyghurs, which exhibited much higher frequencies of the H allele (0.21-0.26). The high prevalence of the H allele in Central Asia implies that the Q241H variant of MLXIPL might have been significant for utilization of carbohydrates and fats in the common ancestors of these populations, who successfully adapted to the environment of Central Asia by relying on nomadic livestock herding.

  6. Common variants of the vitamin D binding protein gene and adverse health outcomes

    PubMed Central

    Malik, Suneil; Fu, Lei; Juras, David James; Karmali, Mohamed; Wong, Betty Y. L.; Gozdzik, Agnes

    2013-01-01

    The vitamin D binding protein (DBP) is the major plasma carrier for vitamin D and its metabolites, but it is also an actin scavenger, and is the precursor to the immunomodulatory protein, Gc-MAF. Two missense variants of the DBP gene – rs7041 encoding Asp432Glu and rs4588 encoding Thr436Lys – change the amino acid sequence and alter the protein function. They are common enough to generate population-wide constitutive differences in vitamin D status, based on assay of the serum metabolite, 25-hydroxyvitamin D (25OHD). Whether these variants also influence the role of vitamin D in an immunologic milieu is not known. However, the issue is relevant, given the immunomodulatory effects of DBP and the role of protracted innate immune-related inflammation in response to tissue injury or repeated infection. Indeed, DBP and vitamin D may jointly or independently contribute to a variety of adverse health outcomes unrelated to classical notions of their function in bone and mineral metabolism. This review summarizes the reports to date of associations between DBP variants, and various chronic and infectious diseases. The available information leads us to conclude that DBP variants are a significant and common genetic factor in some common disorders, and therefore, are worthy of closer attention. In view of the heightened interest in vitamin D as a public health target, well-designed studies that look simultaneously at vitamin D and its carrier in relation to genotypes and adverse health outcome should be encouraged. PMID:23427793

  7. Whole Exome Sequencing of Distant Relatives in Multiplex Families Implicates Rare Variants in Candidate Genes for Oral Clefts

    PubMed Central

    Bureau, Alexandre; Parker, Margaret M.; Ruczinski, Ingo; Taub, Margaret A.; Marazita, Mary L.; Murray, Jeffrey C.; Mangold, Elisabeth; Noethen, Markus M.; Ludwig, Kirsten U.; Hetmanski, Jacqueline B.; Bailey-Wilson, Joan E.; Cropp, Cheryl D.; Li, Qing; Szymczak, Silke; Albacha-Hejazi, Hasan; Alqosayer, Khalid; Field, L. Leigh; Wu-Chou, Yah-Huei; Doheny, Kimberly F.; Ling, Hua; Scott, Alan F.; Beaty, Terri H.

    2014-01-01

    A dozen genes/regions have been confirmed as genetic risk factors for oral clefts in human association and linkage studies, and animal models argue even more genes may be involved. Genomic sequencing studies should identify specific causal variants and may reveal additional genes as influencing risk to oral clefts, which have a complex and heterogeneous etiology. We conducted a whole exome sequencing (WES) study to search for potentially causal variants using affected relatives drawn from multiplex cleft families. Two or three affected second, third, and higher degree relatives from 55 multiplex families were sequenced. We examined rare single nucleotide variants (SNVs) shared by affected relatives in 348 recognized candidate genes. Exact probabilities that affected relatives would share these rare variants were calculated, given pedigree structures, and corrected for the number of variants tested. Five novel and potentially damaging SNVs shared by affected distant relatives were found and confirmed by Sanger sequencing. One damaging SNV in CDH1, shared by three affected second cousins from a single family, attained statistical significance (P = 0.02 after correcting for multiple tests). Family-based designs such as the one used in this WES study offer important advantages for identifying genes likely to be causing complex and heterogeneous disorders. PMID:24793288

  8. Association between the PTPN2 gene and Crohn's disease: dissection of potential causal variants.

    PubMed

    Marcil, Valerie; Mack, David R; Kumar, Vijay; Faure, Christophe; Carlson, Christopher S; Beaulieu, Patrick; Israel, David; Krupoves, Alfreda; Costea, Irina; Lambrette, Philippe; Grimard, Guy; Dong, Jinsong; Seidman, Ernest G; Amre, Devendra K; Levy, Emile

    2013-05-01

    Although genome-wide association studies (GWAS) and subsequent meta-analyses have confirmed associations between the PTPN2 (protein tyrosine phosphatase, nonreceptor type 2) gene and Crohn's disease (CD), the potential causal variants remain unidentified. We aimed to dissect potential causal CD-associated PTPN2 variants, assess their functional significance, and relate PTPN2 protein expression with inflammation in CD. A 3-stage study was carried out. In stage 1, we genotyped tagging single nucleotide polymorphisms (tag-SNPs) in the PTPN2 gene in a sample of patients with CD (<20 years, n = 556) and controls (n = 602). In stage 2, we resequenced the putative promoter, target exons and introns in the PTPN2 gene, and examined associations with high-frequency variants with CD in the stage 1 cohort. In stage 3 we studied the relationship between PTPN2 protein expression and mucosal inflammation and carried out in silico analyses to study the functional characteristics of the PTPN2 CD-associated SNPs. In stage 1, we observed associations between 5 intronic SNPs and CD including rs1893217 (P = 2 × 10⁻⁴), the SNP that is in perfect linkage disequilibrium with the lead genome-wide association studies SNP rs2542151. Resequencing revealed 2 known promoter polymorphisms. No associations between these promoter SNPs and CD were evident. In silico analyses revealed that the 5 associated intronic SNPs influenced PTPN2 expression and binding to important transcription factors. PTPN2 protein was overexpressed in inflamed intestinal tissues of patients with CD. Our findings suggest that noncoding variation in the PTPN2 gene may represent the causal variations influencing susceptibility for CD.

  9. Vitamin E transport gene variants and prostate cancer

    USDA-ARS?s Scientific Manuscript database

    In the February 15, 2009 issue of Cancer Research, Wright et al. investigated whether polymorphisms in two vitamin E transport genes are associated with elevated prostate cancer risk resulting from altered plasma vitamin E concentrations. However, the circulating vitamin E level is influenced by man...

  10. Gene variants in the angiogenesis pathway and prostate cancer

    PubMed Central

    Amankwah, Ernest K.; Sellers, Thomas A.; Park, Jong Y.

    2012-01-01

    Although the causes of prostate cancer are still unknown, numerous studies support the role of genetic factors in the development and progression of this disease. Single nucleotide polymorphisms (SNPs) in key angiogenesis genes have been studied in prostate cancer. In this review, we provide an overview of the current knowledge of the role of genetic variants in the angiogenesis pathway in prostate cancer risk and progression. Of the 17 prostate cancer genome-wide association studies (GWAS) conducted to date, only one identified disease-associated SNPs in a region of an angiogenesis pathway gene. An association was observed between aggressive disease and three intergenic SNPs (rs11199874, rs10749408 and rs10788165) in a region on chromosome 10q26 that encompasses FGFR2. The majority (27/32, 84.4%) of primary candidate gene studies reviewed had a small (n < 800, 20/32, 62.5%) to medium sample size (n = 800–2000, 7/32, 21.9%), whereas only five (15.6%) had a large sample size (n ≥ 2000). Results from the large studies revealed associations with risk and aggressive disease for SNPs in NOS2A, NOS3 and MMP-2 and risk for HIF1-α. Meta-analyses have so far been conducted on FGFR2, TGF-β, TNF-α, HIF1-α and IL10 and the results reveal an association with risk for SNPs in FGFR2 and TGF-β and aggressive disease for SNPs in IL-10. Thus, existing evidence from GWAS and large candidate gene studies indicates that SNPs from a limited number of angiogenesis pathway genes are associated with prostate cancer risk and progression. PMID:22523086

  11. Familial atypical parkinsonism with rare variant in VPS35 and FBXO7 genes

    PubMed Central

    Bartonikova, Tereza; Mensikova, Katerina; Mikulicova, Lenka; Vodicka, Radek; Vrtel, Radek; Godava, Marek; Vastik, Miroslav; Kaiserova, Michaela; Otruba, Pavel; Dolinova, Iva; Nevrly, Martin; Kanovsky, Petr

    2016-01-01

    Abstract Background: A higher prevalence of parkinsonism was recently identified in southeastern Moravia (Czech Republic). Further research confirmed 3 large pedigrees with familial autosomal-dominant parkinsonism spanning 5 generations. Methods: This case report concerns a patient belonging to one of these 3 pedigrees, in whom motor and oculomotor symptoms were accompanied by frontal-type dementia, who finally developed a clinical phenotype of progressive supranuclear palsy. Molecular genetic examinations were performed due to the positive family history. Results: No previously described causal mutation was found. After filtering against common variants (minor allele frequency (MAF) < 0.01), 2 noncoding and 1 synonymous rare mutation potentially associable with parkinsonism were identified: GIGYF2—GRB10 Interacting GYF Protein 2, PARK11 (c.∗2030G > A, rs115669549); VPS35 gene—vacuolar protein sorting 35, PARK17 (c.102 + 33G > A, rs192115886); and FBXO7—F-box only protein 7 gene, PARK15 (c.540A > G, rs41311141). Conclusion: As to the changes in the FBXO7 and VPS35 genes (despite phylogenetic conservation in primates), probably neither the FBXO7 nor the VPS35 variants will be direct causal mutations. Both described variants, and possibly the influence of their combination, could increase the risk of the disease. PMID:27861377

  12. Stable variant-specific transcripts of the variant cell surface glycoprotein gene 1. 8 expression site in Trypanosoma brucei

    SciTech Connect

    Shea, C.; Van der Ploeg, L.H.T.

    1988-02-01

    The structure and transcriptional regulation of the 1.8 variant cell surface glycoproteins (VSG) gene expression site located on a 430-kilobase (kb) chromosome was examined in a 430-kb-chromosome-specific library. Using /sup 32/P-labeled nascent transcripts generated by nuclear run-on, the authors selected recombinant clones derived from the 430-kb chromosome which were coordinately activated with the 1.8 VSG gene. The results show that a repetitive region with a minimum size of 27 kb is coordinately activated with the 1.8 VSG gene. As with the 1.8 VSG gene, transcription is by RNA polymerases that are insensitive to the drug alpha-amanitin at concentrations up to 1 mgml. Transcription results in the generation of several stable variant-specific mRNAs. These mRNAs most likely belong to a family of repetitive expression-site-associated genes.

  13. Association between SLC2A9 transporter gene variants and uric acid phenotypes in African American and white families

    PubMed Central

    de Andrade, Mariza; Matsumoto, Martha; Mosley, Tom H.; Kardia, Sharon; Turner, Stephen T.

    2011-01-01

    Objectives. SLC2A9 gene variants associate with serum uric acid in white populations, but little is known about African American populations. Since SLC2A9 is a transporter, gene variants may be expected to associate more closely with the fractional excretion of urate, a measure of renal tubular transport, than with serum uric acid, which is influenced by production and extrarenal clearance. Methods. Genotypes of single nucleotide polymorphisms (SNPs) distributed across the SLC2A9 gene were obtained in the Genetic Epidemiology Network of Arteriopathy cohorts. The associations of SNPs with serum uric acid, fractional excretion of urate and urine urate-to-creatinine ratio were assessed with adjustments for age, sex, diuretic use, BMI, homocysteine and triglycerides. Results. We identified SLC2A9 gene variants that were associated with serum uric acid in 1155 African American subjects (53 SNPs) and 1132 white subjects (63 SNPs). The most statistically significant SNPs in African American subjects (rs13113918) and white subjects (rs11723439) were in the latter half of the gene and explained 2.7 and 2.8% of the variation in serum uric acid, respectively. After adjustment for this SNP in African Americans, 0.9% of the variation in serum uric acid was explained by an SNP (rs1568318) in the first half of the gene. Unexpectedly, SLC2A9 gene variants had stronger associations with serum uric acid than with fractional excretion of urate. Conclusions. These findings support two different loci by which SLC2A9 variants affect uric acid levels in African Americans and suggest SLC2A9 variants affect serum uric acid level via renal and extrarenal clearance. PMID:21186168

  14. Association of variants in innate immune genes with asthma and eczema

    PubMed Central

    Sharma, Sunita; Poon, Audrey; Himes, Blanca E.; Lasky-Su, Jessica; Sordillo, Joanne E.; Belanger, Kathleen; Milton, Donald K.; Bracken, Michael B.; Triche, Elizabeth W.; Leaderer, Brian P.; Gold, Diane R.; Litonjua, Augusto A.

    2012-01-01

    Background The innate immune pathway is important in the pathogenesis of asthma and eczema. However, only a few variants in these genes have been associated with either disease. We investigate the association between polymorphisms of genes in the innate immune pathway with childhood asthma and eczema. In addition, we compare individual associations with those discovered using a multivariate approach. Methods Using a novel method, case control based association testing (C2BAT), 569 single nucleotide polymorphisms (SNPs) in 44 innate immune genes were tested for association with asthma and eczema in children from the Boston Home Allergens and Asthma Study and the Connecticut Childhood Asthma Study. The screening algorithm was used to identify the top SNPs associated with asthma and eczema. We next investigated the interaction of innate immune variants with asthma and eczema risk using Bayesian networks. Results After correction for multiple comparisons, 7 SNPs in 6 genes (CARD25, TGFB1, LY96, ACAA1, DEFB1, and IFNG) were associated with asthma (adjusted p-value<0.02), while 5 SNPs in 3 different genes (CD80, STAT4, and IRAKI) were significantly associated with eczema (adjusted p-value < 0.02). None of these SNPs were associated with both asthma and eczema. Bayesian network analysis identified 4 SNPs that were predictive of asthma and 10 SNPs that predicted eczema. Of the genes identified using Bayesian networks, only CD80 was associated with eczema in the single-SNP study. Using novel methodology that allows for screening and replication in the same population, we have identified associations of innate immune genes with asthma and eczema. Bayesian network analysis suggests that additional SNPs influence disease susceptibility via SNP interactions. Conclusion Our findings suggest that innate immune genes contribute to the pathogenesis of asthma and eczema, and that these diseases likely have different genetic determinants. PMID:22192168

  15. Breast and Prostate Cancer and Hormone-Related Gene Variant Study

    Cancer.gov

    The Breast and Prostate Cancer and Hormone-Related Gene Variant Study allows large-scale analyses of breast and prostate cancer risk in relation to genetic polymorphisms and gene-environment interactions that affect hormone metabolism.

  16. MYO7A and USH2A gene sequence variants in Italian patients with Usher syndrome

    PubMed Central

    Sodi, Andrea; Mariottini, Alessandro; Passerini, Ilaria; Murro, Vittoria; Bianchi, Benedetta; Menchini, Ugo; Torricelli, Francesca

    2014-01-01

    Purpose To analyze the spectrum of sequence variants in the MYO7A and USH2A genes in a group of Italian patients affected by Usher syndrome (USH). Methods Thirty-six Italian patients with a diagnosis of USH were recruited. They received a standard ophthalmologic examination, visual field testing, optical coherence tomography (OCT) scan, and electrophysiological tests. Fluorescein angiography and fundus autofluorescence imaging were performed in selected cases. All the patients underwent an audiologic examination for the 0.25–8,000 Hz frequencies. Vestibular function was evaluated with specific tests. DNA samples were analyzed for sequence variants of the MYO7A gene (for USH1) and the USH2A gene (for USH2) with direct sequencing techniques. A few patients were analyzed for both genes. Results In the MYO7A gene, ten missense variants were found; three patients were compound heterozygous, and two were homozygous. Thirty-four USH2A gene variants were detected, including eight missense variants, nine nonsense variants, six splicing variants, and 11 duplications/deletions; 19 patients were compound heterozygous, and three were homozygous. Four MYO7A and 17 USH2A variants have already been described in the literature. Among the novel mutations there are four USH2A large deletions, detected with multiplex ligation dependent probe amplification (MLPA) technology. Two potentially pathogenic variants were found in 27 patients (75%). Affected patients showed variable clinical pictures without a clear genotype-phenotype correlation. Conclusions Ten variants in the MYO7A gene and 34 variants in the USH2A gene were detected in Italian patients with USH at a high detection rate. A selective analysis of these genes may be valuable for molecular analysis, combining diagnostic efficiency with little time wastage and less resource consumption. PMID:25558175

  17. Association of gene variants with susceptibility to type 2 diabetes among Omanis

    PubMed Central

    Al-Sinani, Sawsan; Woodhouse, Nicolas; Al-Mamari, Ali; Al-Shafie, Omaima; Al-Shafaee, Mohammed; Al-Yahyaee, Said; Hassan, Mohammed; Jaju, Deepali; Al-Hashmi, Khamis; Al-Abri, Mohammed; Al-Rassadi, Khalid; Rizvi, Syed; Loic, Yengo; Froguel, Philippe; Bayoumi, Riad

    2015-01-01

    AIM: To investigate the association of 10 known common gene variants with susceptibility to type 2 diabetes mellitus (T2D) among Omanis. METHODS: Using case-control design, a total of 992 diabetic patients and 294 normoglycemic Omani Arabs were genotyped, by an allelic discrimination assay-by-design TaqMan method on fast real time polymerase chain reaction system, for the following gene variants: KCNJ11 (rs5219), TCF7L2 (rs7903146), CDKAL1 (rs10946398), CDKN2A/B (rs10811661), FTO (rs9939609 and rs8050136), IGF2BP2 (rs4402960), SLC30A8 (rs13266634) CAPN10 (rs3792267) and HHEX (rs1111875). T2D patients were recruited from the Diabetes Clinic (n = 243) and inpatients (n = 749) at Sultan Qaboos Univesity Hospital (SQUH), Muscat, Oman. Adult control participants (n = 294) were volunteers from the community and from those visiting Family Medicine Clinic at SQU, for regular medical checkup. The difficulty in recruiting Omani participants with no family history of diabetes was the main reason behind the small number of control participants in this study. Almost all volunteers questioned had a relative with diabetes mellitus. Inspite of the small number of normoglycemic controls in this study, this sample was sufficient for detection of genes and loci for common alleles influencing T2D with an odds ratio of ≥ 1.3 reaching at least 80% power. Data was collected from June 2010 to February 2012. RESULTS: Using binary logistic regression analysis, four gene variants showed significant association with T2D risk: KCNJ11 (rs5219, P = 5.8 × 10-6, OR = 1.74), TCF7L2 (rs7903146, P = 0.001, OR = 1.46), CDKAL1 (rs10946398, P = 0.002, OR = 1.44) and CDKN2A/B (rs10811661, P = 0.020, OR = 1.40). The fixation index analysis of these four gene variants indicated significant genetic differentiation between diabetics and controls {[KCNJ11 (rs5219), P < 0.001], [TCF7L2 (rs7903146), P < 0.001], [CDKAL1 (rs10946398), P < 0.05], [CDKN2A/B (rs10811661), P < 0.05]}. The highest genotype

  18. Genetic variants influencing effectiveness of exercise training programmes in obesity – an overview of human studies

    PubMed Central

    Ahmetov, II; Zmijewski, P

    2016-01-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary. PMID:27601774

  19. Genetic variants influencing effectiveness of exercise training programmes in obesity - an overview of human studies.

    PubMed

    Leońska-Duniec, A; Ahmetov, I I; Zmijewski, P

    2016-09-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary.

  20. A systematic survey of loss-of-function variants in human protein-coding genes.

    PubMed

    MacArthur, Daniel G; Balasubramanian, Suganthi; Frankish, Adam; Huang, Ni; Morris, James; Walter, Klaudia; Jostins, Luke; Habegger, Lukas; Pickrell, Joseph K; Montgomery, Stephen B; Albers, Cornelis A; Zhang, Zhengdong D; Conrad, Donald F; Lunter, Gerton; Zheng, Hancheng; Ayub, Qasim; DePristo, Mark A; Banks, Eric; Hu, Min; Handsaker, Robert E; Rosenfeld, Jeffrey A; Fromer, Menachem; Jin, Mike; Mu, Xinmeng Jasmine; Khurana, Ekta; Ye, Kai; Kay, Mike; Saunders, Gary Ian; Suner, Marie-Marthe; Hunt, Toby; Barnes, If H A; Amid, Clara; Carvalho-Silva, Denise R; Bignell, Alexandra H; Snow, Catherine; Yngvadottir, Bryndis; Bumpstead, Suzannah; Cooper, David N; Xue, Yali; Romero, Irene Gallego; Wang, Jun; Li, Yingrui; Gibbs, Richard A; McCarroll, Steven A; Dermitzakis, Emmanouil T; Pritchard, Jonathan K; Barrett, Jeffrey C; Harrow, Jennifer; Hurles, Matthew E; Gerstein, Mark B; Tyler-Smith, Chris

    2012-02-17

    Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease-causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.

  1. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    PubMed Central

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  2. A systematic survey of loss-of-function variants in human protein-coding genes

    PubMed Central

    MacArthur, Daniel G.; Balasubramanian, Suganthi; Frankish, Adam; Huang, Ni; Morris, James; Walter, Klaudia; Jostins, Luke; Habegger, Lukas; Pickrell, Joseph K.; Montgomery, Stephen B.; Albers, Cornelis A.; Zhang, Zhengdong; Conrad, Donald F.; Lunter, Gerton; Zheng, Hancheng; Ayub, Qasim; DePristo, Mark A.; Banks, Eric; Hu, Min; Handsaker, Robert E.; Rosenfeld, Jeffrey; Fromer, Menachem; Jin, Mike; Mu, Xinmeng Jasmine; Khurana, Ekta; Ye, Kai; Kay, Mike; Saunders, Gary Ian; Suner, Marie-Marthe; Hunt, Toby; Barnes, If H.A.; Amid, Clara; Carvalho-Silva, Denise R.; Bignell, Alexandra H; Snow, Catherine; Yngvadottir, Bryndis; Bumpstead, Suzannah; Cooper, David N.; Xue, Yali; Romero, Irene Gallego; Wang, Jun; Li, Yingrui; Gibbs, Richard A.; McCarroll, Steven A.; Dermitzakis, Emmanouil T.; Pritchard, Jonathan K.; Barrett, Jeffrey C.; Harrow, Jennifer; Hurles, Matthew E.; Gerstein, Mark B.; Tyler-Smith, Chris

    2012-01-01

    Genome sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2,951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease-causing variants, as well as common LoF variants in non-essential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes, and a method for using these differences to prioritize candidate genes found in clinical sequencing studies. PMID:22344438

  3. Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke.

    PubMed

    Phuah, Chia-Ling; Dave, Tushar; Malik, Rainer; Raffeld, Miriam R; Ayres, Alison M; Goldstein, Joshua N; Viswanathan, Anand; Greenberg, Steven M; Jagiella, Jeremiasz M; Hansen, Björn M; Norrving, Bo; Jimenez-Conde, Jordi; Roquer, Jaume; Pichler, Alexander; Enzinger, Christian; Montaner, Joan; Fernandez-Cadenas, Israel; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Biffi, Alessandro; Rost, Natalia; Langefeld, Carl D; Markus, Hugh S; Mitchell, Braxton D; Worrall, Brad B; Kittner, Steven J; Woo, Daniel; Dichgans, Martin; Rosand, Jonathan; Anderson, Christopher D

    2017-10-01

    intracerebral haemorrhage risk (odds ratio, 1.07, P = 0.04) and recurrent intracerebral haemorrhage risk (hazards ratio, 1.45, P = 0.006). In analysis of ischaemic stroke subtypes, the myeloperoxidase increasing genetic risk score was strongly associated with lacunar subtype only (odds ratio, 1.05, P = 0.0012). These results, demonstrating that common genetic variants that increase myeloperoxidase levels increase risk of primary intracerebral haemorrhage and lacunar stroke, directly implicate the myeloperoxidase pathway in the pathogenesis of cerebral small vessel disease. Because genetic variants are not influenced by environmental exposures, these results provide new support for a causal rather than bystander role for myeloperoxidase in the progression of cerebrovascular disease. Furthermore, these results support a rationale for chronic inflammation as a potential modifiable stroke risk mechanism, and suggest that immune-targeted therapies could be useful for treatment and prevention of cerebrovascular disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions

    PubMed Central

    Fan, Ruixue; Lo, Shaw-Hwa

    2013-01-01

    Recently more and more evidence suggest that rare variants with much lower minor allele frequencies play significant roles in disease etiology. Advances in next-generation sequencing technologies will lead to many more rare variants association studies. Several statistical methods have been proposed to assess the effect of rare variants by aggregating information from multiple loci across a genetic region and testing the association between the phenotype and aggregated genotype. One limitation of existing methods is that they only look into the marginal effects of rare variants but do not systematically take into account effects due to interactions among rare variants and between rare variants and environmental factors. In this article, we propose the summation of partition approach (SPA), a robust model-free method that is designed specifically for detecting both marginal effects and effects due to gene-gene (G×G) and gene-environmental (G×E) interactions for rare variants association studies. SPA has three advantages. First, it accounts for the interaction information and gains considerable power in the presence of unknown and complicated G×G or G×E interactions. Secondly, it does not sacrifice the marginal detection power; in the situation when rare variants only have marginal effects it is comparable with the most competitive method in current literature. Thirdly, it is easy to extend and can incorporate more complex interactions; other practitioners and scientists can tailor the procedure to fit their own study friendly. Our simulation studies show that SPA is considerably more powerful than many existing methods in the presence of G×G and G×E interactions. PMID:24358248

  5. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.

    PubMed

    Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao

    2016-11-30

    Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Differential Expression of Histone H3 Gene Variants during Cell Cycle and Somatic Embryogenesis in Alfalfa

    PubMed Central

    Kapros, Tamás; Bögre, László; Németh, Kinga; Bakó, László; Györgyey, János; Wu, Sheng Cheng; Dudits, Dénes

    1992-01-01

    Northern analysis has revealed substantial differences in mRNA accumulation of the two histone H3 gene variants represented by pH3c-1 and pH3c-11 cDNA clones. Both in partially synchronized cell suspension cultures and in protoplast-derived cells from alfalfa, Medicago varia, the maximal level of the histone H3-1 gene transcript coincided with the peak in [3H]thymidine incorporation. Histone H3-11 mRNA was detectable in cells throughout the period of the cell cycle studied. Various stress factors such as medium replacement, enzyme digestion of the cell wall, osmotic shock, and auxin treatment considerably increased the level of the histone H3-11 transcript. In alfalfa (Medicago sativa), the presence of H3-11 mRNA in unorganized tissues of microcallus suspension and in somatic embryos induced by auxin treatment supports the idea that this H3 variant exists in a continously active state of transcription. During embryo development, the early globular stage embryos showed increased accumulation of histone H3-11 mRNA in comparison with the later stages. The highest level of the histone H3-1 transcript was detectable 1 day after treatment of callus tissues with 2,4-dichlorophenoxyacetic acid. Somatic embryos contained appreciable levels of histone H3-1 transcripts at all stages of somatic embryo development. These observations suggest that the histone H3-1 gene belòngs to the class of replication-dependent histone genes. The histone H3-11 gene showed characteristics of a constitutively expressed replacement-type histone gene, with a specific characteristic that external factors can influence the level of gene transcription. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668686

  7. MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration.

    PubMed

    San-Jose, Luis M; Ducrest, Anne-Lyse; Ducret, Valérie; Simon, Céline; Richter, Hannes; Wakamatsu, Kazumasa; Roulin, Alexandre

    2017-01-01

    The melanocortin-1 receptor (MC1R) gene influences coloration by altering the expression of genes acting downstream in the melanin synthesis. MC1R belongs to the melanocortin system, a genetic network coding for the ligands that regulate MC1R and other melanocortin receptors controlling different physiological and behavioural traits. The impact of MC1R variants on these regulatory melanocortin genes was never considered, even though MC1R mutations could alter the influence of these genes on coloration (e.g. by decreasing MC1R response to melanocortin ligands). Using barn owl growing feathers, we investigated the differences between MC1R genotypes in the (co)expression of six melanocortin and nine melanogenic-related genes and in the association between melanocortin gene expression and phenotype (feather pheomelanin content). Compared to the MC1R rufous allele, responsible for reddish coloration, the white allele was not only associated with an expected lower expression of melanogenic-related genes (TYR, TYRP1, OCA2, SLC45A2, KIT, DCT) but also with a lower MC1R expression and a higher expression of ASIP, the MC1R antagonist. More importantly, the expression of PCSK2, responsible for the maturation of the MC1R agonist, α-melanocyte-stimulating hormone, was positively related to pheomelanin content in MC1R white homozygotes but not in individuals carrying the MC1R rufous allele. These findings indicate that MC1R mutations not only alter the expression of melanogenic-related genes but also the association between coloration and the expression of melanocortin genes upstream of MC1R. This suggests that MC1R mutations can modulate the regulation of coloration by the pleiotropic melanocortin genes, potentially decoupling the often-observed associations between coloration and other phenotypes.

  8. Serotonin and Serotonin Transporter Gene Variant in Rotating Shift Workers

    PubMed Central

    Sookoian, Silvia; Gemma, Carolina; Gianotti, Tomas Fernández; Burgueño, Adriana; Alvarez, Azucena; González, Claudio Daniel; Pirola, Carlos Jose

    2007-01-01

    Study Objectives: Because serotonin (5-HT) is a neurotransmitter associated with circadian rhythm regulation, we explored a possible relation among 5-HT, serotonin metabolite, 5-hydroxyindolacetic acid (5-HIAA), and the functional polymorphism of the serotonin transporter gene (SLC6A4) promoter with rotating shift work. Design and Participants: 683 men were included in this study: 437 day workers were compared with 246 rotating shift workers. Results: Platelet 5-HT content differed significantly (P = 0.002) between day workers (41.28±1.99 pg/mg) and rotating shift workers (37.91±4.16 pg/mg); 5-HIAA content was also significantly (P = 0.00004) higher in day workers (11.40±0.82 pg/mg) than in rotating shift workers (9.33±1.02 pg/mg). We looked for further differences in SLC6A4 promoter (5-HTTLPR, 44 bp insertion: long (L)/deletion: short (S) alleles). We found a significant (P = 0.016) difference in genotype distribution between day workers LL: 126 (28.8%), LS: 202 (46.2%), and SS: 109 (24.9%), and rotating shift workers LL: 47 (19.1%), LS: 124 (50.4%), and SS: 75 (30.5%). When we divided the subjects between workers with less and more than 60 month rotating shift-work exposure, the difference in SLC6A4 genotypes frequency was only significant in the group with ≥60 months (P = 0.011). In addition, there was a significantly lower content of platelet 5-HIM in S allele carriers in comparison with the other genotypes (SS: 9.2±1.0 pg/mg vs. SL/LL: 11.0±0.8 pg/mg, P <0.02). Conclusions: Platelet 5-HT and 5-HIM contents were significantly lower in rotating shift workers than day workers, and there was a significant association between the S variant of SLC6A4 promoter and shift work. These findings may be important for targeting effective therapeutic strategies to ameliorate the associated comorbidities and behavioral problems in rotating shift workers. Citation: Sookoian S; Gemma C; Gianotti TF; Burgueño A; Alvarez A; Gonzalez CD; Pirola CJ. Serotonin and serotonin

  9. Variants in the Dopamine-4-Receptor Gene Promoter Are Not Associated with Sensation Seeking in Skiers

    PubMed Central

    Thomson, Cynthia J.; Rajala, Amelia K.; Carlson, Scott R.; Rupert, Jim L.

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (−1106T/C, −906T/C, −809G/A, −291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population. PMID:24691022

  10. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers.

    PubMed

    Thomson, Cynthia J; Rajala, Amelia K; Carlson, Scott R; Rupert, Jim L

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (-1106T/C, -906T/C, -809G/A, -291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.

  11. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants

    PubMed Central

    Parker, Stephen C. J.; Stitzel, Michael L.; Taylor, D. Leland; Orozco, Jose Miguel; Erdos, Michael R.; Akiyama, Jennifer A.; van Bueren, Kelly Lammerts; Chines, Peter S.; Narisu, Narisu; Black, Brian L.; Visel, Axel; Pennacchio, Len A.; Collins, Francis S.; Becker, Jesse; Benjamin, Betty; Blakesley, Robert; Bouffard, Gerry; Brooks, Shelise; Coleman, Holly; Dekhtyar, Mila; Gregory, Michael; Guan, Xiaobin; Gupta, Jyoti; Han, Joel; Hargrove, April; Johnson, Taccara; Legaspi, Richelle; Lovett, Sean; Maduro, Quino; Masiello, Cathy; Maskeri, Baishali; McDowell, Jenny; Montemayor, Casandra; Mullikin, James; Park, Morgan; Riebow, Nancy; Schandler, Karen; Schmidt, Brian; Sison, Christina; Stantripop, Mal; Thomas, James; Thomas, Pam; Vemulapalli, Meg; Young, Alice

    2013-01-01

    Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type–specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type–specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases. PMID:24127591

  12. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.

    PubMed

    Parker, Stephen C J; Stitzel, Michael L; Taylor, D Leland; Orozco, Jose Miguel; Erdos, Michael R; Akiyama, Jennifer A; van Bueren, Kelly Lammerts; Chines, Peter S; Narisu, Narisu; Black, Brian L; Visel, Axel; Pennacchio, Len A; Collins, Francis S

    2013-10-29

    Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥ 3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.

  13. Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese.

    PubMed

    Li, Xiao; Zhang, Wen; Zhang, Chen; Yi, Zhenghui; Zhang, Deng-Feng; Gong, Wei; Tang, Jinsong; Wang, Dong; Lu, Weihong; Chen, Xiaogang; Fang, Yiru; Yao, Yong-Gang

    2015-04-01

    Schizophrenia is a prevalent psychiatric disorder with a complex etiology. Mitochondrial dysfunction has been frequently reported in schizophrenia. Phosphatase and tension homologue-induced kinase 1 (PINK1) and presenilin-associated rhomboid-like protease (PARL) are mitochondrial proteins, and genetic variants of these two genes may confer genetic susceptibility to schizophrenia by influencing mitochondrial function. In this study, we conducted a two-stage genetic association study to test this hypothesis. We genotyped 4 PINK1 and 5 PARL genetic variants and evaluated the potential association of the 9 SNPs with schizophrenia in two independent case-control cohorts of 2510 Han Chinese individuals. No positive association of common genetic variants of the PINK1 and PARL genes with schizophrenia was identified in our samples after Bonferroni correction. Re-analysis of the newly updated Psychiatric Genetics Consortium (PGC) data sets confirmed our negative result. Intriguingly, one PINK1 SNP (rs10916832), which showed a marginally significant association in only Hunan samples (P = 0.032), is associated with the expression of a schizophrenia susceptible gene KIF17 according to the expression quantitative trait locus (eQTL) analysis. Our study indicated that common genetic variants of the PINK1 and PARL genes are unlikely to be involved in schizophrenia. Further studies are essential to characterize the role of the PINK1 and PARL genes in schizophrenia.

  14. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    PubMed

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  15. Systematic Evaluation Of Genes And Genetic Variants Associated With Type 1 Diabetes Susceptibility

    PubMed Central

    Ram, Ramesh; Mehta, Munish; Nguyen, Quang T.; Larma, Irma; Boehm, Bernhard O.; Pociot, Flemming; Concannon, Patrick; Morahan, Grant

    2016-01-01

    Genome-wide association studies (GWAS) have found over 60 loci that confer genetic susceptibility to Type 1 diabetes (T1D). Many of these are defined only by anonymous SNPs: the underlying causative genes, and the molecular bases by which they mediate susceptibility, are not known. Identification of how these variants affect the complex mechanisms contributing to the loss of tolerance is a challenge. We performed systematic analyses to characterize these variants. First, all known genes in strong linkage disequilibrium (LD) (r2 > 0.8) with the reported SNPs for each locus were tested for commonly occurring non-synonymous variations. We found only a total of 22 candidate genes at 16 T1D loci with common non-synonymous alleles. Next, we performed functional studies to examine the effect of non-HLA T1D risk alleles on regulating expression levels of genes in four different cell types: EBV- transformed B cell lines (resting and 6h PMA stimulated); purified CD4+ and CD8+ T cells. We mapped cis-acting expression quantitative trait loci (eQTL) and found 24 non-HLA loci that affected the expression of 31 transcripts significantly in at least one cell type. Additionally, we observed 25 loci that affected 38 transcripts in trans. In summary, our systems genetics analyses defined the effect of T1D risk alleles on levels of gene expression and provide novel insights into the complex genetics of T1D, suggesting most of the T1D risk alleles mediate their effect by influencing expression of multiple nearby genes. PMID:26912320

  16. Genetic variants in autophagy associated genes are associated with DNA damage levels in Chinese population.

    PubMed

    Li, Zhihua; Xin, Junyi; Chen, Weihong; Liu, Jia; Zhu, Meng; Zhao, Congwen; Yuan, Jing; Jin, Guangfu; Ma, Hongxia; Du, Jiangbo; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing; Dai, Juncheng; Yu, Hao

    2017-08-30

    Autophagy associated genes (ATGs) played an important role in the repair process of DNA damage and decreased autophagy may weaken the repair process and aggravate DNA damage. Based on this, we hypothesized that DNA damage levels might be modified by genetic variants in autophagy associated genes. In order to validate our hypothesis, 307 subjects were recruited from three different cities (Zhuhai, Wuhan and Tianjin) in China. Demographic data, individual 24-h PM2.5 exposure and peripheral blood DNA damage levels were also detected. Seven potentially functional polymorphisms in four essential autophagy associated genes (ATG5, ATG7, ATG8 and ATG13) were screened to evaluate the relationship between the polymorphisms of autophagy associated genes and DNA damage levels. This association was assessed by using multivariable linear regression model, age, sex, smoke and PM2.5 exposure levels were adjusted in each city. We found that rs12599322 in ATG8 (A>G, β=0.263, 95% CI: 0.108-0.419, P=8.98×10(-4)) and rs7484002 in ATG13 (A>G, β=0.396, 95% CI: 0.085-0.708, P=0.013) were significantly associated with higher DNA damage levels. Furthermore, functional annotations showed that both rs12599322 and rs7484002 located at transcription factor binding sites (TFBS), indicating that they could regulate the expression of related genes through TF regulation. Following allelic trend analysis revealed that the DNA damage levels were significantly aggravated with the increasing number of risk variants in autophagy associated genes (P for trend: 8.09×10(-5)). Our findings suggested that the polymorphisms in ATGs may influence DNA damage levels in one of the Chinese population. Copyright © 2017. Published by Elsevier B.V.

  17. Religion priming differentially increases prosocial behavior among variants of the dopamine D4 receptor (DRD4) gene

    PubMed Central

    Kim, Heejung S.; Mojaverian, Taraneh; Kelley, Lauren D. S.; Park, In Young; Janušonis, Skirmantas

    2013-01-01

    Building on gene–environment interaction (G × E) research, this study examines how the dopamine D4 receptor (DRD4) gene interacts with a situational prime of religion to influence prosocial behavior. Some DRD4 variants tend to be more susceptible to environmental influences, whereas other variants are less susceptible. Thus, certain life environments may be associated with acts of prosociality for some DRD4 variants but not others. Given that religion can act as an environmental influence that increases prosocial behavior, environmental input in the form of religion priming may have G × E effects. Results showed that participants with DRD4 susceptibility variants were more prosocial when implicitly primed with religion than not primed with religion, whereas participants without DRD4 susceptibility variants were not impacted by priming. This research has implications for understanding why different people may behave prosocially for different reasons and also integrates G × E research with experimental psychology. PMID:22198971

  18. Variants of the serotonin transporter gene and NEO-PI-R Neuroticism

    PubMed Central

    Terracciano, Antonio; Balaci, Lenuta; Thayer, Jason; Scally, Matthew; Kokinos, Sarah; Ferrucci, Luigi; Tanaka, Toshiko; Zonderman, Alan B; Sanna, Serena; Olla, Nazario; Zuncheddu, Maria Antonietta; Naitza, Silvia; Busonero, Fabio; Uda, Manuela; Schlessinger, David; Abecasis, Goncalo; Costa, Paul T.

    2009-01-01

    The polymorphism in the serotonin transporter gene promoter region (5-HTTLPR) is by far the most studied variant hypothesized to influence Neuroticism-related personality traits. The results of previous studies have been mixed and appear moderated by the personality questionnaire used. Studies that used the TCI to assess Harm Avoidance or the EPQ to assess Neuroticism have found no association with the 5-HTTLPR. However, studies that used the NEO-PI-R or related instruments (NEO-PI, NEO-FFI) to measure Neuroticism have found some evidence of association. This study examines the association of variants in the serotonin transporter gene in a sample from a genetically isolated population within Sardinia (Italy) that is several times larger than previous samples that used the NEO-PI-R (N=3,913). The association was also tested in a sample (N=548) from the Baltimore Longitudinal Study of Aging (BLSA), in which repeated NEO-PI-R assessments were obtained. In the SardiNIA sample, we found no significant association of the 5-HTTLPR genotypes with Neuroticism or its facets (Anxiety, Angry-Hostility, Depression, Self-Consciousness, Impulsiveness, and Vulnerability). In the BLSA sample, we found lower scores on Neuroticism traits for the heterozygous group, which is inconsistent with previous studies. We also examined 8 SNPs in the SardiNIA (N=3,972) and 9 SNPs in the BLSA (N=1,182) that map within or near the serotonin transporter gene (SLC6A4), and found no association. Along with other large studies that used different phenotypic measures and found no association, this study substantially increases the evidence against a link between 5-HTT variants and Neuroticism-related traits. PMID:19199283

  19. [Analysis of variants in complement genes in Han Chinese children with atypical hemolytic uremic syndrome].

    PubMed

    Yi, C L; Zhao, F; Qiu, H Z; Wang, L M; Huang, J; Nie, X J; Yu, Z H

    2017-08-02

    Objective: To investigate the prevalence and characteristics of pathogenic variants in complement genes in Han Chinese children with atypical hemolytic uremic syndrome (aHUS). Method: Eleven Han Chinese children with aHUS, including 9 boys and 2 girls aged between 1 year and 4 months and 13 years, were investigated in Department of Pediatrics, Fuzhou General Hospital, from November 1998 to February 2014. Analysis of variants of all the exons of 10 complement genes (CFH, MCP, CFI, C3, CFB, CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5), including 25 bases from 3' end and 25 bases from 5' end, was performed in the 11 cases by targeted sequence capture and next generation sequencing. Significant variants detected by next generation sequencing were confirmed by Sanger sequencing. To understand pathogenicity of variants found in the captured genes, we investigated genetic conservation by multiple protein sequence alignment among different species, and analyzed whether the variants were located in protein domains or not, and investigated functional significance by functional computational prediction methods. Result: Twenty-seven percent of Han Chinese children with aHUS carried pathogenic variants in the 10 complement genes. Pathogenic variant CFB 221G>A (R74H) was detected in Patient 3 and Patient 9, which was not found in parents of Patient 3' , and was found in healthy father of patient 9. Pathogenic variant CFHR5 242C>T (P81L) was found in Patient 2, and was found in healthy father of patient 2. However, no pathogenic variants in genes CFH, MCP, CFI, C3, CFHR1, CFHR2, CFHR3 and CFHR4 were identified. Conclusion: Pathogenic variants in the 10 complement genes were identified in 3/11 of Han Chinese children with aHUS in our study and CFB was the most frequently mutated gene.

  20. Deposition of Histone Variant H2A.Z within Gene Bodies Regulates Responsive Genes

    PubMed Central

    Coleman-Derr, Devin; Zilberman, Daniel

    2012-01-01

    The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that loss of H2A.Z in Arabidopsis has only a minor effect on the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is primarily caused by the exclusion of H2A.Z from methylated DNA. RNA sequencing and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. Loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to environmental and developmental stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes. PMID:23071449

  1. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.

    PubMed

    Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi

    2017-08-01

    Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  2. A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging.

    PubMed

    Payton, A; Sindrewicz, P; Pessoa, V; Platt, H; Horan, M; Ollier, W; Bubb, V J; Pendleton, N; Quinn, J P

    2016-03-01

    The Translocase of Outer Mitochondrial Membrane 40 Homolog and Apolipoprotein E (TOMM40-APOE) locus has been associated with a number of age-related phenotypes in humans including nonpathologic cognitive aging, late-onset Alzheimer's disease, and longevity. Here, we investigate the influence of the TOMM40 intron 6 poly-T variant (rs10524523) on TOMM40 gene expression and cognitive abilities and decline in a cohort of 1613 community-dwelling elderly volunteers who had been followed for changes in cognitive functioning over a period of 14 years (range = 12-18 years). We showed that the shorter length poly-T variants were found to act as a repressor of luciferase gene expression in reporter gene constructs. Expression was reduced to approximately half of that observed for the very long variant. We further observed that the shorter poly-T variant was significantly associated with reduced vocabulary ability and a slower rate of vocabulary decline with age compared to the very long poly-T variants. No significant associations were observed for memory, fluid intelligence or processing speed, although the direction of effect, where the short variant was correlated with reduced ability and slower rate of decline was observed for all tests. Our results indicate that the poly-T variant has the ability to interact with transcription machinery and differentially modulate reporter gene expression and influence vocabulary ability and decline with age.

  3. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease

    SciTech Connect

    Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.; Auer, Dallas R.; Lee, Dongwon; Gabriel, Stacey; Berrios, Courtney; Pennacchio, Len A.; Chakravarti, Aravinda

    2016-10-01

    Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.

  4. Prioritizing disease-linked variants, genes, and pathways with an interactive whole genome analysis pipeline

    PubMed Central

    Lee, In-Hee; Lee, Kyungjoon; Hsing, Michael; Choe, Yongjoon; Park, Jin-Ho; Kim, Shu Hee; Bohn, Justin M.; Neu, Matthew B.; Hwang, Kyu-Baek; Green, Robert C.; Kohane, Isaac S.; Kong, Sek Won

    2014-01-01

    Whole genome sequencing (WGS) studies are uncovering disease-associated variants in both rare and non-rare diseases. Utilizing the next-generation sequencing for WGS requires a series of computational methods for alignment, variant detection, and annotation, and the accuracy and reproducibility of annotation results are essential for clinical implementation. However, annotating WGS with up to date genomic information is still challenging for biomedical researchers. Here we present one of the fastest and highly scalable annotation, filtering, and analysis pipeline –gNOME – to prioritize phenotype-associated variants while minimizing false positive findings. Intuitive graphical user interface of gNOME facilitates the selection of phenotype associated variants, and the result summaries are provided at variant-, gene-, and genome-levels. Moreover, the enrichment results of specific variants, genes, and gene sets between two groups or compared to population scale WGS datasets that is already integrated in the pipeline can help the interpretation. We found a small number of discordant results between annotation software tools in part due to different reporting strategies for the variants with complex impacts. Using two published whole exome datasets of uveal melanoma and bladder cancer, we demonstrated gNOME's accuracy of variant annotation and the enrichment of loss of function variants in known cancer pathways. gNOME web-server and source codes are freely available to the academic community. PMID:24478219

  5. Pleiotrophin Gene Therapy for Peripheral Ischemia: Evaluation of Full-Length and Truncated Gene Variants

    PubMed Central

    Fang, Qizhi; Mok, Pamela Y.; Thomas, Anila E.; Haddad, Daniel J.; Saini, Shereen A.; Clifford, Brian T.; Kapasi, Neel K.; Danforth, Olivia M.; Usui, Minako; Ye, Weisheng; Luu, Emmy; Sharma, Rikki; Bartel, Maya J.; Pathmanabhan, Jeremy A.; Ang, Andrew A. S.; Sievers, Richard E.; Lee, Randall J.; Springer, Matthew L.

    2013-01-01

    Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model. PMID:23630585

  6. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy.

    PubMed

    Mademont-Soler, Irene; Mates, Jesus; Yotti, Raquel; Espinosa, Maria Angeles; Pérez-Serra, Alexandra; Fernandez-Avila, Ana Isabel; Coll, Monica; Méndez, Irene; Iglesias, Anna; Del Olmo, Bernat; Riuró, Helena; Cuenca, Sofía; Allegue, Catarina; Campuzano, Oscar; Picó, Ferran; Ferrer-Costa, Carles; Álvarez, Patricia; Castillo, Sergio; Garcia-Pavia, Pablo; Gonzalez-Lopez, Esther; Padron-Barthe, Laura; Díaz de Bustamante, Aranzazu; Darnaude, María Teresa; González-Hevia, José Ignacio; Brugada, Josep; Fernandez-Aviles, Francisco; Brugada, Ramon

    2017-01-01

    Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of screening for minor and candidate genes, and the role of copy number variants (CNVs) deserves further evaluation. Three hundred and eighty-seven consecutive unrelated patients with HCM were screened for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed 20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were compared with 427 patients without structural heart disease. The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main genes was 33.3%, without significant differences between the Sanger sequencing and NGS cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2, MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclusive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS) in TTN. The detection rate of rare variants in TTN was not significantly different to that found in the group of patients without structural heart disease. In the NGS cohort, 4 patients (1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the complete coding region of PLN. A small percentage of HCM cases without point mutations in the 5 main genes are explained by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in HCM patients drastically increases the number of inconclusive tests, and shows a rate of VUS that is similar to patients without structural heart disease, suggesting that this gene should not be analyzed for clinical purposes in HCM.

  7. Classification of genetic variants in genes associated with Lynch syndrome using a clinical history weighting algorithm.

    PubMed

    Morris, Brian; Hughes, Elisha; Rosenthal, Eric; Gutin, Alexander; Bowles, Karla R

    2016-07-01

    Lynch syndrome is a hereditary cancer syndrome associated with high risks of colorectal and endometrial cancer that is caused by pathogenic variants in the mismatch repair genes (MLH1, MSH2, MSH6, PMS2, EPCAM). Accurate classification of variants identified in these genes as pathogenic or benign enables informed medical management decisions. Previously, we developed a clinical History Weighting Algorithm (HWA) for the classification of variants of uncertain significance (VUSs) in BRCA1 and BRCA2. The BRCA1/2 HWA is based on the premise that pathogenic variants in these genes will be identified more often in individuals with strong personal and/or family histories of breast and/or ovarian cancer, while the identification of benign variants should be independent of cancer history. Here we report the development of a similar HWA to allow for classification of VUSs in genes associated with Lynch syndrome using data collected through both syndrome-specific and pan-cancer panel testing. Upon completion of algorithm development, the HWA was tested using simulated variants constructed from 79,214 probands, as well as 379 true variants. Positive (PPV) and negative predictive values (NPV) were calculated on a per gene basis. 25,500 pathogenic and 50,500 benign simulated variants were analyzed using the HWA and the PPVs and NPVs for each gene were greater than 0.997 and 0.999, respectively. The HWA was also evaluated using 100 trials for each of the 379 true variants. PPVs of >0.998 and NPVs of >0.999 were obtained for all genes. We have developed and implemented a HWA to aid in the classification of VUSs in genes associated with Lynch syndrome. The work presented here demonstrates that this HWA is able to classify MLH1, MSH2, and MSH6 VUSs as either benign or pathogenic with high accuracy.

  8. Analysis of functional variants reveals new candidate genes associated with alexithymia.

    PubMed

    Mezzavilla, Massimo; Ulivi, Sheila; Bianca, Martina La; Carlino, Davide; Gasparini, Paolo; Robino, Antonietta

    2015-06-30

    In this study we explored the possible association between 36,915 functional variants and alexithymia, a personality trait characterized by the inability to identify and describe emotions and feelings. From our analysis, variants in the genes ABCB4, TP53AIP1, ARHGAP32 and TMEM88B were identified linked to the alexithymia phenotype.

  9. FTO gene variant modulates the neural correlates of visual food perception.

    PubMed

    Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc

    2016-03-01

    Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity.

  10. The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors.

    PubMed

    Husemoen, Lise Lotte Nystrup; Fenger, Mogens; Friedrich, Nele; Tolstrup, Janne Schurmann; Beenfeldt Fredriksen, Stine; Linneberg, Allan

    2008-11-01

    Genetic variation in ethanol metabolism may have an influence on both alcohol drinking habits and the susceptibility to health effects of alcohol drinking. Such influences are likely to bias exposure-disease associations in epidemiologic studies of health effects of alcohol drinking. In a Caucasian population, we examined the association of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genetic variants with alcohol drinking habits, biomarkers of alcohol exposure, and risk factors for cardiovascular disease. The study population consisted of 1,216 Danish men and women aged 15-77 years participating in a health examination in 1998. The health examination included a self-administered questionnaire (alcohol drinking habits), a physical examination (blood pressure), and various blood tests [alanine aminotransferase (ALAT), erythrocyte mean corpuscular volume (E-MCV), and lipids]. ADH and ALDH gene variants were determined by standard techniques. Data were analyzed by regression analyses adjusted for relevant confounders. Self-reported alcohol drinking was significantly associated with increasing levels of ALAT, E-MCV, high-density lipoprotein cholesterol, and blood pressure. The ALDH1b ala69val variant was associated with nondrinking and total alcohol intake. The ALDH2 promoter variant was associated with binge-drinking, and the ALDH1b1 ala69val polymorphism was associated with diastolic blood pressure. We did not find any statistically significant interactions between any of the gene variants and alcohol consumption in relation to the various outcomes. In this Caucasian population sample, we found evidence to support that genetic variation in ethanol metabolism may influence drinking habits, but no statistically significant gene-environment interactions. More large-scale epidemiologic studies are needed to confirm theses results and to further investigate genetic susceptibility to the effects of alcohol drinking.

  11. Surface Gene Variants of Hepatitis B Virus in Saudi Patients

    PubMed Central

    Al-Qudari, Ahmed Y.; Amer, Haitham M.; Abdo, Ayman A.; Hussain, Zahid; Al-Hamoudi, Waleed; Alswat, Khalid; Almajhdi, Fahad N.

    2016-01-01

    Background/Aims: Hepatitis B virus (HBV) continues to be one of the most important viral pathogens in humans. Surface (S) protein is the major HBV antigen that mediates virus attachment and entry and determines the virus subtype. Mutations in S gene, particularly in the “a” determinant, can influence virus detection by ELISA and may generate escape mutants. Since no records have documented the S gene mutations in HBV strains circulating in Saudi Arabia, the current study was designed to study sequence variation of S gene in strains circulating in Saudi Arabia and its correlation with clinical and risk factors. Patients and Methods: A total of 123 HBV-infected patients were recruited for this study. Clinical and biochemical parameters, serological markers, and viral load were determined in all patients. The entire S gene sequence of samples with viral load exceeding 2000 IU/mL was retrieved and exploited in sequence and phylogenetic analysis. Patients and Methods: A total of 123 HBV-infected patients were recruited for this study. Clinical and biochemical parameters, serological markers, and viral load were determined in all patients. The entire S gene sequence of samples with viral load exceeding 2000 IU/mL was retrieved and exploited in sequence and phylogenetic analysis. Results: A total of 48 mutations (21 unique) were recorded in viral strains in Saudi Arabia, among which 24 (11 unique) changed their respective amino acids. Two amino acid changes were recorded in “a” determinant, including F130L and S135F with no evidence of the vaccine escape mutant G145R in any of the samples. No specific relationship was recognized between the mutation/amino acid change record of HBsAg in strains in Saudi Arabia and clinical or laboratory data. Phylogenetic analysis categorized HBV viral strains in Saudi Arabia as members of subgenotypes D1 and D3. Conclusion: The present report is the first that describes mutation analysis of HBsAg in strains in Saudi Arabia on both

  12. The Influence of Vitamin D Receptor Genetic Variants on Bone Mineral Density and Osteoporosis in Chinese Postmenopausal Women

    PubMed Central

    He, Wei; Liu, Ming; Huang, Xiaonan; Qing, Zuhong; Gao, Wei

    2015-01-01

    Growing evidence indicates that the vitamin D receptor (VDR) gene is an important candidate gene for influencing the development of osteoporosis. The aim of the study was to evaluate the potential association between genetic variants of VDR gene and bone mineral density (BMD) and osteoporosis in Chinese postmenopausal women. The study included 970 Chinese postmenopausal women at the postmenopausal osteoporosis (482) and healthy controls (488). The BMD of lumbar spine (L2–4 anterior-posterior view), femoral neck hip, and total hip was evaluated using the Norland XR-46 dual energy X-ray absorptiometry (DEXA). The genotypes of VDR genetic variants were determined by the created restriction site-PCR (CRS-PCR) and confirmed by DNA sequencing methods. Our data indicated that the VDR p.Glicine (Gly)14 alanine (Ala) and p.histidine (His) 305 glutanine (Gln) genetic variants were statistically associated with adjusted femoral neck hip BMD, adjusted lumbar spine BMD, and adjusted total hip BMD (P values < 0.05). Results from this study suggest that the VDR p.Gly14Ala and p.His305Gln genetic variants are significantly associated with BMD decrease in Chinese postmenopausal women and might be used as molecular markers for assessing the risk of BMD and osteoporosis. PMID:25784778

  13. The influence of vitamin D receptor genetic variants on bone mineral density and osteoporosis in Chinese postmenopausal women.

    PubMed

    He, Wei; Liu, Ming; Huang, Xiaonan; Qing, Zuhong; Gao, Wei

    2015-01-01

    Growing evidence indicates that the vitamin D receptor (VDR) gene is an important candidate gene for influencing the development of osteoporosis. The aim of the study was to evaluate the potential association between genetic variants of VDR gene and bone mineral density (BMD) and osteoporosis in Chinese postmenopausal women. The study included 970 Chinese postmenopausal women at the postmenopausal osteoporosis (482) and healthy controls (488). The BMD of lumbar spine (L(2-4) anterior-posterior view), femoral neck hip, and total hip was evaluated using the Norland XR-46 dual energy X-ray absorptiometry (DEXA). The genotypes of VDR genetic variants were determined by the created restriction site-PCR (CRS-PCR) and confirmed by DNA sequencing methods. Our data indicated that the VDR p.Glicine (Gly)14 alanine (Ala) and p.histidine (His) 305 glutanine (Gln) genetic variants were statistically associated with adjusted femoral neck hip BMD, adjusted lumbar spine BMD, and adjusted total hip BMD (P values < 0.05). Results from this study suggest that the VDR p.Gly14Ala and p.His305Gln genetic variants are significantly associated with BMD decrease in Chinese postmenopausal women and might be used as molecular markers for assessing the risk of BMD and osteoporosis.

  14. Sequence variants in oxytocin pathway genes and preterm birth: a candidate gene association study

    PubMed Central

    2013-01-01

    Background Preterm birth (PTB) is a complex disorder associated with significant neonatal mortality and morbidity and long-term adverse health consequences. Multiple lines of evidence suggest that genetic factors play an important role in its etiology. This study was designed to identify genetic variation associated with PTB in oxytocin pathway genes whose role in parturition is well known. Methods To identify common genetic variants predisposing to PTB, we genotyped 16 single nucleotide polymorphisms (SNPs) in the oxytocin (OXT), oxytocin receptor (OXTR), and leucyl/cystinyl aminopeptidase (LNPEP) genes in 651 case infants from the U.S. and one or both of their parents. In addition, we examined the role of rare genetic variation in susceptibility to PTB by conducting direct sequence analysis of OXTR in 1394 cases and 1112 controls from the U.S., Argentina, Denmark, and Finland. This study was further extended to maternal triads (maternal grandparents-mother of a case infant, N=309). We also performed in vitro analysis of selected rare OXTR missense variants to evaluate their functional importance. Results Maternal genetic effect analysis of the SNP genotype data revealed four SNPs in LNPEP that show significant association with prematurity. In our case–control sequence analysis, we detected fourteen coding variants in exon 3 of OXTR, all but four of which were found in cases only. Of the fourteen variants, three were previously unreported novel rare variants. When the sequence data from the maternal triads were analyzed using the transmission disequilibrium test, two common missense SNPs (rs4686302 and rs237902) in OXTR showed suggestive association for three gestational age subgroups. In vitro functional assays showed a significant difference in ligand binding between wild-type and two mutant receptors. Conclusions Our study suggests an association between maternal common polymorphisms in LNPEP and susceptibility to PTB. Maternal OXTR missense SNPs rs4686302

  15. High-performance web services for querying gene and variant annotation.

    PubMed

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  16. Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients.

    PubMed

    Saus, Ester; Brunet, Anna; Armengol, Lluís; Alonso, Pino; Crespo, José M; Fernández-Aranda, Fernando; Guitart, Miriam; Martín-Santos, Rocío; Menchón, José Manuel; Navinés, Ricard; Soria, Virginia; Torrens, Marta; Urretavizcaya, Mikel; Vallès, Vicenç; Gratacòs, Mònica; Estivill, Xavier

    2010-10-01

    Copy number variations (CNV) have become an important source of human genome variability noteworthy to consider when studying genetic susceptibility to complex diseases. As recent studies have found evidences for the potential involvement of CNVs in psychiatric disorders, we have studied the dosage effect of structural genome variants as a possible susceptibility factor for different psychiatric disorders in a candidate gene approach. After selection of 68 psychiatric disorders' candidate genes overlapping with CNVs, MLPA assays were designed to determine changes in copy number of these genes. The studied sample consisted of 724 patients with psychiatric disorders (accounting for anxiety disorders, mood disorders, eating disorders and schizophrenia) and 341 control individuals. CNVs were detected in 30 out of the 68 genes screened, indicating that a considerable proportion of neuronal pathways genes contain CNVs. When testing the overall burden of rare structural genomic variants in the different psychiatric disorders compared to control individuals, there was no statistically significant difference in the total amount of gains and losses. However, 14 out of the 30 changes were only found in psychiatric disorder patients but not in control individuals. These genes include GRM7, previously associated to major depression disorder and bipolar disorder, SLC6A13, in anxiety disorders, and S100B, SSTR5 and COMT in schizophrenia. Although we have not been able to found a clear association between the studied CNVs and psychiatric disorders, the rare variants found only within the patients could account for a step further towards understanding the pathophysiology of psychiatric disorders. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Variants of Folate Metabolism Genes and Risk of Left-Sided Cardiac Defects

    PubMed Central

    Mitchell, Laura E.; Long, Jin; Garbarini, Jennifer; Paluru, Prasuna; Goldmuntz, Elizabeth

    2010-01-01

    Background Congenital heart defects (CHD) are the most common, serious group of birth defects. Although relatively little is known about the causes of these conditions and there are no established prevention strategies, evidence suggests that the risk of CHD may be related to maternal folate status as well as genetic variants in folate-related genes. Efforts to establish the relationships between these factors and CHD risk have, however, been hampered by a number of factors, including small study sample sizes and phenotypic heterogeneity. Methods The present study examined the relationship between nine genetic variants in eight folate-related genes and a relatively homogeneous group of left-sided cardiac defects in a cohort of 386 case-parent triads. Log-linear analyses were used to assess both maternal and inherited genetic effects. Results Analyses of the study data provided marginal evidence that the maternal MTR A2756G (unadjusted p=0.01) and the inherited BHMT G742A genotypes (unadjusted p=0.06) influence the risk of this subset of CHD. However, neither association achieved significance when the false-discovery rate was controlled at 0.05. Conclusions These results, which are based on the largest study sample and most comprehensive assessment of the relationship between left-sided cardiac defects and folate-related genes reported to date, provide little evidence that this subset of CHD is folate-related. However, even larger studies and more comprehensive evaluations of the folate pathway genes are required to fully explore the relationship between folate and left-sided cardiac defects. PMID:19777601

  18. Burden of rare sarcomere gene variants in the Framingham and Jackson Heart Study cohorts.

    PubMed

    Bick, Alexander G; Flannick, Jason; Ito, Kaoru; Cheng, Susan; Vasan, Ramachandran S; Parfenov, Michael G; Herman, Daniel S; DePalma, Steven R; Gupta, Namrata; Gabriel, Stacey B; Funke, Birgit H; Rehm, Heidi L; Benjamin, Emelia J; Aragam, Jayashri; Taylor, Herman A; Fox, Ervin R; Newton-Cheh, Christopher; Kathiresan, Sekar; O'Donnell, Christopher J; Wilson, James G; Altshuler, David M; Hirschhorn, Joel N; Seidman, J G; Seidman, Christine

    2012-09-07

    Rare sarcomere protein variants cause dominant hypertrophic and dilated cardiomyopathies. To evaluate whether allelic variants in eight sarcomere genes are associated with cardiac morphology and function in the community, we sequenced 3,600 individuals from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS) cohorts. Out of the total, 11.2% of individuals had one or more rare nonsynonymous sarcomere variants. The prevalence of likely pathogenic sarcomere variants was 0.6%, twice the previous estimates; however, only four of the 22 individuals had clinical manifestations of hypertrophic cardiomyopathy. Rare sarcomere variants were associated with an increased risk for adverse cardiovascular events (hazard ratio: 2.3) in the FHS cohort, suggesting that cardiovascular risk assessment in the general population can benefit from rare variant analysis.

  19. Ontogenomic study of the relationship between number of gene splice variants and GO categorization

    PubMed Central

    Ryan, Michael C.; Jamison, D. Curtis; Rockoff, David M.; Pommier, Yves; Weinstein, John N.

    2010-01-01

    Motivation: Splice variation plays important roles in evolution and cancer. Different splice variants of a gene may be characteristic of particular cellular processes, subcellular locations or organs. Although several genomic projects have identified splice variants, there have been no large-scale computational studies of the relationship between number of splice variants and biological function. The Gene Ontology (GO) and tools for leveraging GO, such as GoMiner, now make such a study feasible. Results: We partitioned genes into two groups: those with numbers of splice variants ≤b and >b (b=1,…, 10). Then we used GoMiner to determine whether any GO categories are enriched in genes with particular numbers of splice variants. Since there was no a priori ‘appropriate’ partition boundary, we studied those ‘robust’ categories whose enrichment did not depend on the selection of a particular partition boundary. Furthermore, because the distribution of splice variant number was a snapshot taken at a particular point in time, we confirmed that those observations were stable across successive builds of GenBank. A small number of categories were found for genes in the lower partitions. A larger number of categories were found for genes in the higher partitions. Those categories were largely associated with cell death and signal transduction. Apoptotic genes tended to have a large repertoire of splice variants, and genes with splice variants exhibited a distinctive ‘apoptotic island’ in clustered image maps (CIMs). Availability: Supplementary tables and figures are available at URL http://discover.nci.nih.gov/OG/supplementaryMaterials.html. The Safari browser appears to perform better than Firefox for these particular items. Contact: barry@discover.nci.nih.gov PMID:20616384

  20. CT gene modulate differential expression of chitinase gene under variant habitats in Vibrio cholerae

    PubMed Central

    Verma, Yogendra Kumar; Verma, Mahendra Kumar

    2013-01-01

    Objective To investigate the interrelation of cholera toxin gene (CT gene) in expression of chitinase gene under different pH conditions among pathogenic and Non-pathogenic strains of Vibrio cholera (V. cholera). Methods The chitinase assay well diffusion method and calorimetric chitinase assay were performed. Further, time depended chitinase activity among pathogenic and nonpathogenic strain was evaluated with control as Escherichia coli. The expressed protein in variant environment was purified by cascade of chromatographic techniques. The partially purified protein was analyzed by SDS-PAGE in both the strain of V. cholera. Results The results have shown differential expression of chitinase gene among vibrio in time depended chitinase activity, purification of expressed protein and SDS-PAGE analysis. Conclusions From the current study, two conclusions came in picture, habitat is prime factor that regulation of chitin gene expression among many bacterial strains, second, moreover among the vibrio pathogenic strains (CT+) expression of chitinase gene is more precisely regulated by CT gene rather than external environments while in non-pathogenic strain ( CT-) completely absent.

  1. Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes.

    PubMed

    Acedo, Alberto; Sanz, David J; Durán, Mercedes; Infante, Mar; Pérez-Cabornero, Lucía; Miner, Cristina; Velasco, Eladio A

    2012-05-25

    The underlying pathogenic mechanism of a large fraction of DNA variants of disease-causing genes is the disruption of the splicing process. We aimed to investigate the effect on splicing of the BRCA2 variants c.8488-1G > A (exon 20) and c.9026_9030del (exon 23), as well as 41 BRCA2 variants reported in the Breast Cancer Information Core (BIC) mutation database. DNA variants were analyzed with the splicing prediction programs NNSPLICE and Human Splicing Finder. Functional analyses of candidate variants were performed by lymphocyte RT-PCR and/or hybrid minigene assays. Forty-one BIC variants of exons 19, 20, 23 and 24 were bioinformatically selected and generated by PCR-mutagenesis of the wild type minigenes. Lymphocyte RT-PCR of c.8488-1G > A showed intron 19 retention and a 12-nucleotide deletion in exon 20, whereas c.9026_9030del did not show any splicing anomaly. Minigene analysis of c.8488-1G > A displayed the aforementioned aberrant isoforms but also exon 20 skipping. We further evaluated the splicing outcomes of 41 variants of four BRCA2 exons by minigene analysis. Eighteen variants presented splicing aberrations. Most variants (78.9%) disrupted the natural splice sites, whereas four altered putative enhancers/silencers and had a weak effect. Fluorescent RT-PCR of minigenes accurately detected 14 RNA isoforms generated by cryptic site usage, exon skipping and intron retention events. Fourteen variants showed total splicing disruptions and were predicted to truncate or eliminate essential domains of BRCA2. A relevant proportion of BRCA2 variants are correlated with splicing disruptions, indicating that RNA analysis is a valuable tool to assess the pathogenicity of a particular DNA change. The minigene system is a straightforward and robust approach to detect variants with an impact on splicing and contributes to a better knowledge of this gene expression step.

  2. Nicotinamide-N-Methyltransferase gene rs694539 variant and migraine risk.

    PubMed

    Sazci, Ali; Sazci, Gensay; Sazci, Bilgen; Ergul, Emel; Idrisoglu, Halil Atilla

    2016-12-01

    Migraine is a common neurovascular disorder affecting 10 to 20 % of the world population usually subdivided into migraine with auro (MA) and migraine without auro (MO). Homocysteine is involved in the pathophysiology of a number of neurological disorders. Elevated levels of homocysteine in the plasma is produced by the MTHFR gene rs 1801133 and rs 1801131 variants as well as the NNMT gene rs 694539 variant. With the polymerase chain reaction-restriction fragment length polymorphism method developed recently in our laboratory, we were able to show an association between the NNMT gene rs694539 variant and migraine for the first time. Here we report the association of the Nicotinamide-N-methyltransferase gene (NNMT) rs694539 variant with migraine in a case-control study of 433 patients with migraine and 229 healthy controls (χ2 = 6.076, P = 0.048). After stratification, we were able only to show an association between the NNMT gene rs694539 variant and female patients with migraine on the genotype and allelic levels. However there was no association in male patients with migraine (χ2 = 1.054, P = 0.590). Consequently our results clearly indicate that the NNMT gene rs694539 variant is a genetic risk factor for migraine.

  3. Interleukin 1B Variant -1473G/C (rs1143623) Influences Triglyceride and Interleukin 6 Metabolism

    PubMed Central

    Delgado-Lista, Javier; Garcia-Rios, Antonio; Perez-Martinez, Pablo; Solivera, Juan; Yubero-Serrano, Elena M.; Fuentes, Francisco; Parnell, Laurence D.; Shen, Jian; Gomez, Purificacion; Jimenez-Gomez, Yolanda; Gomez-Luna, Maria J.; Marin, Carmen; Belisle, Sarah E.; Rodriguez-Cantalejo, Fernando; Meydani, Simin N.; Ordovas, Jose M.; Perez-Jimenez, Francisco

    2011-01-01

    Context: IL1b (IL1B or IL1β), a key modulator of the immune response, exerts its functions mainly via IL6 regulation. Fatty meals cause transient hypertriglyceridemia and are considered to be proinflammatory, but the extent of these responses shows high interindividual susceptibility. Objective: We evaluated the influence of a genetic variant located in the promoter region of IL1B (-1473G/C) on fasting and postprandial lipids and IL6. Design, Setting, and Participants: A total of 477 people over age 65 yr were genotyped for IL1B -1473G/C, and we evaluated fasting lipids depending on genotype. Then, 88 healthy young men were also genotyped and were fed a saturated fatty acid-rich meal. Serial blood samples were drawn for 11 h after the meal, and lipid fractions and IL6 were assayed. Main Outcome and Interventions: Fasting lipids were studied in the aged persons. Fasting and postprandial measurements of lipids and IL6 were performed in the healthy young men. Results: In the aged persons, CC subjects (minor allele homozygotes) showed higher triglyceride (P = 0.002) and cholesterol (P = 0.011) levels. Healthy young male carriers of the minor C allele showed higher postprandial triglycerides (P = 0.037), and those carried into large triglyceride-rich lipoproteins (P = 0.004). In addition, they showed higher postprandial IL6 concentrations (P = 0.008). Conclusions: Our work shows that inflammatory genes may regulate fasting and postprandial lipids because the carriers of the minor allele of an IL gene variant have altered lipid metabolism. To reinforce these gene-phenotype findings, IL6 (the natural effector of IL1B) was increased in these persons. PMID:21307135

  4. Interleukin 1B variant -1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism.

    PubMed

    Delgado-Lista, Javier; Garcia-Rios, Antonio; Perez-Martinez, Pablo; Solivera, Juan; Yubero-Serrano, Elena M; Fuentes, Francisco; Parnell, Laurence D; Shen, Jian; Gomez, Purificacion; Jimenez-Gomez, Yolanda; Gomez-Luna, Maria J; Marin, Carmen; Belisle, Sarah E; Rodriguez-Cantalejo, Fernando; Meydani, Simin N; Ordovas, Jose M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2011-05-01

    IL1b (IL1B or IL1β), a key modulator of the immune response, exerts its functions mainly via IL6 regulation. Fatty meals cause transient hypertriglyceridemia and are considered to be proinflammatory, but the extent of these responses shows high interindividual susceptibility. We evaluated the influence of a genetic variant located in the promoter region of IL1B (-1473G/C) on fasting and postprandial lipids and IL6. A total of 477 people over age 65 yr were genotyped for IL1B -1473G/C, and we evaluated fasting lipids depending on genotype. Then, 88 healthy young men were also genotyped and were fed a saturated fatty acid-rich meal. Serial blood samples were drawn for 11 h after the meal, and lipid fractions and IL6 were assayed. MAIN OUTCOME AND INTERVENTIONS: Fasting lipids were studied in the aged persons. Fasting and postprandial measurements of lipids and IL6 were performed in the healthy young men. In the aged persons, CC subjects (minor allele homozygotes) showed higher triglyceride (P = 0.002) and cholesterol (P = 0.011) levels. Healthy young male carriers of the minor C allele showed higher postprandial triglycerides (P = 0.037), and those carried into large triglyceride-rich lipoproteins (P = 0.004). In addition, they showed higher postprandial IL6 concentrations (P = 0.008). Our work shows that inflammatory genes may regulate fasting and postprandial lipids because the carriers of the minor allele of an IL gene variant have altered lipid metabolism. To reinforce these gene-phenotype findings, IL6 (the natural effector of IL1B) was increased in these persons.

  5. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    PubMed

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2017-02-27

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  6. Identification of msp1 Gene Variants in Populations of Meloidogyne incognita Using PCR-DGGE

    PubMed Central

    Adam, Mohamed; Hallmann, Johannes; Heuer, Holger

    2014-01-01

    Effectors of root-knot nematodes are essential for parasitism and prone to recognition by adapted variants of the host plants. This selective pressure initiates hypervariability of effector genes. Diversity of the gene variants within nematode populations might correlate with host preferences. In this study we developed a method to compare the distribution of variants of the effector gene msp1 among populations of Meloidogyne incognita. Primers were designed to amplify a 234-bp fragment of msp1. Sequencing of cloned PCR products revealed five msp1 variants from seven populations that were distinguishable in their reproduction on five host plants. A protocol for denaturing gradient gel electrophoresis (DGGE) was developed to separate these msp1 variants. DGGE for replicated pools of juveniles from the seven populations revealed ten variants of msp1. A correlation between the presence of a particular gene variant and the reproductive potential on particular hosts was not evident. Especially race 3 showed substantial variation within the population. DGGE fingerprints of msp1 tended to cluster the populations according to their reproduction rate on pepper. The developed method could be useful for analyzing population heterogeneity and epidemiology of M. incognita. PMID:25276001

  7. Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression.

    PubMed

    Davis, Albert A; Andruska, Kristin M; Benitez, Bruno A; Racette, Brad A; Perlmutter, Joel S; Cruchaga, Carlos

    2016-01-01

    Multiple genetic variants have been linked to risk of Parkinson disease (PD), but known mutations do not explain a large proportion of the total PD cases. Similarly, multiple loci have been associated with PD risk by genome-wide association studies (GWAS). The influence that genetic factors confer on phenotypic diversity remains unclear. Few studies have been performed to determine whether the GWAS loci are also associated with age at onset (AAO) or motor progression. We used 2 PD case-control data sets (Washington University and the Parkinson's Progression Markers Initiative) to determine whether polymorphisms located at the GWAS top hits (GBA, ACMSD/TMEM163, STK39, MCCC1/LAMP3, GAK/TMEM175, SNCA, and MAPT) show association with AAO or motor progression. We found associations between single nucleotide polymorphisms at the GBA and MAPT loci and PD AAO and progression. These findings reinforce the complex genetic basis of PD and suggest that distinct genes and variants explain the genetic architecture of PD risk, onset, and progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Using sheep genomes from diverse U.S. breeds to identify missense variants in genes affecting fecundity

    PubMed Central

    Heaton, Michael P.; Smith, Timothy P.L.; Freking, Bradley A.; Workman, Aspen M.; Bennett, Gary L.; Carnahan, Jacky K.; Kalbfleisch, Theodore S.

    2017-01-01

    Background:  Access to sheep genome sequences significantly improves the chances of identifying genes that may influence the health, welfare, and productivity of these animals.   Methods:  A public, searchable DNA sequence resource for U.S. sheep was created with whole genome sequence (WGS) of 96 rams.  The animals shared minimal pedigree relationships and represent nine popular U.S. breeds and a composite line.  The genomes are viewable online with the user-friendly Integrated Genome Viewer environment, and may be used to identify and decode gene variants present in U.S. sheep. Results:  The genomes had a combined average read depth of 16, and an average WGS genotype scoring rate and accuracy exceeding 99%.  The utility of this resource was illustrated by characterizing three genes with 14 known coding variants affecting litter size in global sheep populations:  growth and differentiation factor 9 ( GDF9), bone morphogenetic protein 15 ( BMP15), and bone morphogenetic protein receptor 1B ( BMPR1B).  In the 96 U.S. rams, nine missense variants encoding 11 protein variants were identified.  However, only one was previously reported to affect litter size ( GDF9 V371M, Finnsheep).  Two missense variants in BMP15 were identified that had not previously been reported:  R67Q in Dorset, and L252P in Dorper and White Dorper breeds. Also, two novel missense variants were identified in BMPR1B:  M64I in Katahdin, and T345N in Romanov and Finnsheep breeds.  Based on the strict conservation of amino acid residues across placental mammals, the four variants encoded by BMP15 and BMPR1B are predicted to interfere with their function.  However, preliminary analyses of litter sizes in small samples did not reveal a correlation with variants in BMP15 and BMPR1B with daughters of these rams.  Conclusions: Collectively, this report describes a new resource for discovering protein variants in silico and identifies alleles for further testing of their effects on litter

  9. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity.

    PubMed

    Hendricks, Audrey E; Bochukova, Elena G; Marenne, Gaëlle; Keogh, Julia M; Atanassova, Neli; Bounds, Rebecca; Wheeler, Eleanor; Mistry, Vanisha; Henning, Elana; Körner, Antje; Muddyman, Dawn; McCarthy, Shane; Hinney, Anke; Hebebrand, Johannes; Scott, Robert A; Langenberg, Claudia; Wareham, Nick J; Surendran, Praveen; Howson, Joanna M; Butterworth, Adam S; Danesh, John; Nordestgaard, Børge G; Nielsen, Sune F; Afzal, Shoaib; Papadia, Sofia; Ashford, Sofie; Garg, Sumedha; Millhauser, Glenn L; Palomino, Rafael I; Kwasniewska, Alexandra; Tachmazidou, Ioanna; O'Rahilly, Stephen; Zeggini, Eleftheria; Barroso, Inês; Farooqi, I Sadaf

    2017-06-29

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10(-3)), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.

  10. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells.

    PubMed

    Weijers, E M; van Wijhe, M H; Joosten, L; Horrevoets, A J G; de Maat, M P M; van Hinsbergh, V W M; Koolwijk, P

    2010-12-01

    Fibrin is a temporary matrix that not only seals a wound, but also provides a temporary matrix structure for invading cells during wound healing. Two naturally occurring fibrinogen variants, high molecular weight (HMW) and low molecular weight (LMW) fibrinogen, display different properties in supporting angiogenesis in vivo and in vitro. This study was aimed at investigating the functional characteristics and molecular mechanisms of human microvascular endothelial cells (HMVECs) cultured on HMW and LMW fibrin matrices. HMVECs on HMW fibrin matrices showed increased proliferation and tube formation as compared with their counterparts on unfractionated and LMW fibrin. Degradation of HMW fibrin was markedly enhanced by the presence of HMVECs, that of LMW fibrin was enhanced only slightly. However, the expression levels of fibrinolysis-regulating proteins and integrins were similar. Subsequent microarray analysis revealed that the expression of 377 genes differed significantly between HMVECs cultured on HMW fibrin and those cultured on LMW fibrin. Among these genes, UNC5B, DLL4 and the DLL4-Notch downstream targets Hey1, Hey2 and Hes1 showed increased expression in HMVECs on LMW fibrin. However, pharmacologic and genetic (DLL4 small interfering RNA) inhibition of DLL4-Notch signaling blunted rather than enhanced proliferation and tube formation by HMVECs on both fibrin variants. Heterogeneity in naturally occurring fibrinogen strongly influences endothelial cell proliferation and tube formation, and causes alterations in gene expression, including that of DLL4-Notch. The higher fibrinolytic sensitivity of HMW fibrin in the presence of HMVECs contributes to increased tube formation. Although the expression of DLL4-Notch was altered, it did not explain the enhanced tube formation in HMW fibrin. This study provides new perspectives for biological and tissue engineering applications. © 2010 International Society on Thrombosis and Haemostasis.

  11. Differential sensitivity to interferon influences the replication and transcription of Urabe AM9 mumps virus variants in nerve cells.

    PubMed

    Rosas-Murrieta, Nora; Herrera-Camacho, Irma; Vallejo-Ruiz, Verónica; Millán-Pérez-Peña, Lourdes; Cruz, Carlos; Tapia-Ramírez, José; Santos-López, Gerardo; Reyes-Leyva, Julio

    2007-06-01

    Urabe AM9 mumps virus vaccine causes post-vaccination meningitis. Two variants of Urabe AM9 virus differ in their replication efficiency in human nerve cells, HN-A(1081) variant being more neurotropic than HN-G(1081). The effect of interferon (IFN) on viral replication and transcription was analyzed. Priming of nerve cells with IFN reduced more significantly the replication of HN-G(1081) variant (from 10(2.5) to 10(1.3) TCID(50)) than that of HN-A(1081) (from 10(3.5) to 10(2.6) TCID(50)). IFN-priming also reduced the transcription of HN-G(1081) genes, but not of HN-A(1081). The effect of viral infection on the transcription of cellular IFN responsive genes was analyzed. HN-A(1081) virus reduced the transcription of STAT1, STAT2, p48 and MxA in both unprimed and IFN-primed cells; whereas HN-G(1081) virus just reduced MxA transcription. Since rubulavirus V protein inhibits IFN signaling, the V mRNA was cloned and sequenced, finding that HN-G(1081) but not HN-A(1081) presented three extra G in the P/V edition site, producing the insertion of Gly156 in the V protein. Our results suggest that the replication efficiency of Urabe AM9 mumps virus variants is influenced by their sensitivity to interferon and their capacity to reduce the antiviral response.

  12. Quantitative EEG during normal aging: association with the Alzheimer's disease genetic risk variant in PICALM gene.

    PubMed

    Ponomareva, Natalya V; Andreeva, Tatiana V; Protasova, Maria S; Shagam, Lef I; Malina, Daria D; Goltsov, Andrey Yu; Fokin, Vitaly F; Illarioshkin, Sergey N; Rogaev, Evgeny I

    2017-03-01

    Genome-wide association studies have identified novel risk variants for Alzheimer's disease (AD). Among these, a gene carrying one of the highest risks for AD is PICALM. The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain function in nondemented subjects remains largely unknown. We examined the possible effect of the PICALM rs3851179 genotype on quantitative electroencephalography recording at rest in 137 nondemented volunteers (age range: 20-79 years) subdivided into cohorts of those younger than and those older than 50 years of age. The homozygous presence of the AD risk variant PICALM GG was associated with an increase in beta relative power, with the effect being more pronounced in the older cohort. Beta power elevation in resting-state electroencephalography has previously been linked to cortical disinhibition and hyperexcitability. The increase in beta relative power in the carriers of the AD risk PICALM GG genotype suggests changes in the cortical excitatory-inhibitory balance, which are heightened during normal aging.

  13. Patterns of variant polyadenylation signal usage in human genes.

    PubMed

    Beaudoing, E; Freier, S; Wyatt, J R; Claverie, J M; Gautheret, D

    2000-07-01

    The formation of mature mRNAs in vertebrates involves the cleavage and polyadenylation of the pre-mRNA, 10-30 nt downstream of an AAUAAA or AUUAAA signal sequence. The extensive cDNA data now available shows that these hexamers are not strictly conserved. In order to identify variant polyadenylation signals on a large scale, we compared over 8700 human 3' untranslated sequences to 157,775 polyadenylated expressed sequence tags (ESTs), used as markers of actual mRNA 3' ends. About 5600 EST-supported putative mRNA 3' ends were collected and analyzed for significant hexameric sequences. Known polyadenylation signals were found in only 73% of the 3' fragments. Ten single-base variants of the AAUAAA sequence were identified with a highly significant occurrence rate, potentially representing 14.9% of the actual polyadenylation signals. Of the mRNAs, 28.6% displayed two or more polyadenylation sites. In these mRNAs, the poly(A) sites proximal to the coding sequence tend to use variant signals more often, while the 3'-most site tends to use a canonical signal. The average number of ESTs associated with each signal type suggests that variant signals (including the common AUUAAA) are processed less efficiently than the canonical signal and could therefore be selected for regulatory purposes. However, the position of the site in the untranslated region may also play a role in polyadenylation rate.

  14. Patterns of Variant Polyadenylation Signal Usage in Human Genes

    PubMed Central

    Beaudoing, Emmanuel; Freier, Susan; Wyatt, Jacqueline R.; Claverie, Jean-Michel; Gautheret, Daniel

    2000-01-01

    The formation of mature mRNAs in vertebrates involves the cleavage and polyadenylation of the pre-mRNA, 10–30 nt downstream of an AAUAAA or AUUAAA signal sequence. The extensive cDNA data now available shows that these hexamers are not strictly conserved. In order to identify variant polyadenylation signals on a large scale, we compared over 8700 human 3′ untranslated sequences to 157,775 polyadenylated expressed sequence tags (ESTs), used as markers of actual mRNA 3′ ends. About 5600 EST-supported putative mRNA 3′ ends were collected and analyzed for significant hexameric sequences. Known polyadenylation signals were found in only 73% of the 3′ fragments. Ten single-base variants of the AAUAAA sequence were identified with a highly significant occurrence rate, potentially representing 14.9% of the actual polyadenylation signals. Of the mRNAs, 28.6% displayed two or more polyadenylation sites. In these mRNAs, the poly(A) sites proximal to the coding sequence tend to use variant signals more often, while the 3′-most site tends to use a canonical signal. The average number of ESTs associated with each signal type suggests that variant signals (including the common AUUAAA) are processed less efficiently than the canonical signal and could therefore be selected for regulatory purposes. However, the position of the site in the untranslated region may also play a role in polyadenylation rate. PMID:10899149

  15. Targeted Resequencing of Deafness Genes Reveals a Founder MYO15A Variant in Northeastern Brazil.

    PubMed

    Manzoli, Gabrielle N; Bademci, Guney; Acosta, Angelina X; Félix, Têmis M; Cengiz, F Basak; Foster, Joseph; Da Silva, Danniel S Dias; Menendez, Ibis; Sanchez-Pena, Isalis; Tekin, Demet; Blanton, Susan H; Abe-Sandes, Kiyoko; Liu, Xue Zhong; Tekin, Mustafa

    2016-11-01

    Identifying the genetic etiology in a person with hearing loss (HL) is challenging due to the extreme genetic heterogeneity in HL and the population-specific variability. In this study, after excluding GJB2 variants, targeted resequencing of 180 deafness-related genes revealed the causative variants in 11 of 19 (58%) Brazilian probands with autosomal recessive HL. Identified pathogenic variants were in MYO15A (10 families) and CLDN14 (one family). Remarkably, the MYO15A p.(Val1400Met) variant was identified in eight families from the city of Monte Santo in the northeast region of Brazil. Haplotype analysis of this variant was consistent with a single founder. No other cases with this variant were detected among 105 simplex cases from other cities of northeastern Brazil, suggesting that this variant is confined to a geographical region. This study suggests that it is feasible to develop population-specific screening for deafness variants once causative variants are identified in different geographical groups.

  16. Understanding V(D)J recombination initiator RAG1 gene using molecular phylogenetic and genetic variant analyses and upgrading missense and non-coding variants of clinical importance.

    PubMed

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J; Muppavarapu, Sekhar; Tandon, Ravi

    2015-07-10

    The recombination-activating genes (RAGs) encode for V(D)J recombinases responsible for rearrangements of antigen-receptor genes during T and B cell development, and RAG expression is known to correlate strictly with the process of rearrangement. There have been several studies of RAG1 illustrating biochemical, physiological and immunological properties. Hitherto, there are limited studies on RAG1 focusing molecular phylogenetic analyses, evolutionary traits, and genetic variants in human populations. Hence, there is a need of a comprehensive study on this topic. In the current report, we have shed light into insights of evolutionary traits and genetic variants of human RAG1 gene using 1092 genomes from human populations. Syntenic analyses revealed that two RAG genes are physically linked and conserved on the same locus in head-to-head orientation from sea urchin to human for about 550 MY. Spliceosomal introns have been in invaded in fishes and sea urchin, whereas gene structures of RAG1 gene from tetrapods remained single exon architecture. We compiled 751 genetic variants in human RAG1 gene using 1092 human genomes; where major stockholders of variant classes are 79% single nucleotide polymorphisms (SNPs), 12.2% somatic single nucleotide variants (somatic SNVs) and 6.8% deletion. Out of 267 missense variants, 140 are deleterious mutations. We identified 284 non-coding variants with 94% regulatory in nature.

  17. Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.

    PubMed

    Pisciotta, Livia; Fresa, Raffaele; Bellocchio, Antonella; Guido, Virgilia; Priore Oliva, Claudio; Calandra, Sebastiano; Bertolini, Stefano

    2011-11-20

    Common variants of APOA5 gene affect plasma triglyceride (TG) in the population and a number of rare variants APOA5 have been reported in individuals with hypertriglyceridemia (HTG). APOA5 was analysed in 98 HTG individuals (plasma TG >9 mmol/L) in whom no mutations in LPL and APOC2 had been found. Two patients were found to be heterozygous for two novel APOA5 variants. The first variant (p.L253P) was identified in an obese male who consumed a diet rich in fat and simple sugars. He was also a carrier in trans of the common TG-raising p.S19W SNP (5*3 haplotype). The second variant (c.295-297 del GAG, p.E99 del) was found in a lean male with no life style or metabolic factors known to affect plasma TG. He was a carrier in trans of the TG-raising 5*2 haplotype and was homozygous for the rare c.1337T allele of a SNP of GCKR gene. No mutations in other genes affecting plasma TG (LMF1 and GPIHBP1) were found in these patients. These APOA5 variants, resulted to be deleterious in silico, were not found in 350 control subjects. These novel APOA5 variants predispose to HTG in combination with other genetic or nutritional factors. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Variants in microRNA genes in familial papillary thyroid carcinoma

    PubMed Central

    Tomsic, Jerneja; Fultz, Rebecca; Liyanarachchi, Sandya; Genutis, Luke K; Wang, Yanqiang; Li, Wei; Volinia, Stefano; Jazdzewski, Krystian; He, Huiling; Wakely, Paul E; Senter, Leigha; de Chapelle la, Albert

    2017-01-01

    Papillary Thyroid Carcinoma (PTC) displays one of the highest familiality scores of all cancers as measured by case-control studies, yet only a handful of genes have been implicated until now. Variants in microRNAs have been associated with the risk of several cancers including PTC but the magnitude of this involvement is unclear. This study was designed to test to what extent genomic variants in microRNAs contribute to PTC risk. We used SOLiD technology to sequence 321 genomic regions encoding 427 miRNAs in one affected individual from each of 80 PTC families. After excluding variants with frequency ≥ 1% in 1000 Genomes Phase 1 (n = 1092) we detected 1978 variants. After further functional filtering steps 25 variants in pre-miRs remained. Co-segregation was observed for six out of 16 tested miRNA variants with PTC in the families, namely let-7e, miR-181b, miR-135a, miR-15b, miR-320, and miR-484. Expression of miR-135a and miR-181b was tested in normal thyroid and tumor tissue from patients that carry the variants and a decrease in expression was observed. In vitro assays were applied to measure the effect of the variants on microRNAs’ maturation. Four out of six variants were tested. Only the let-7e and miR-181b variants showed an effect on processing leading to lower levels of mature miRNA. These two variants were not detected in 1170 sporadic PTC cases nor in 1404 controls. Taken together, our data show that high penetrance germline sequence variants of miRNAs potentially predispose to a fraction of all PTC but are not common. PMID:28031538

  19. Variants in microRNA genes in familial papillary thyroid carcinoma.

    PubMed

    Tomsic, Jerneja; Fultz, Rebecca; Liyanarachchi, Sandya; Genutis, Luke K; Wang, Yanqiang; Li, Wei; Volinia, Stefano; Jazdzewski, Krystian; He, Huiling; Wakely, Paul E; Senter, Leigha; de la Chapelle, Albert

    2017-01-24

    Papillary Thyroid Carcinoma (PTC) displays one of the highest familiality scores of all cancers as measured by case-control studies, yet only a handful of genes have been implicated until now. Variants in microRNAs have been associated with the risk of several cancers including PTC but the magnitude of this involvement is unclear. This study was designed to test to what extent genomic variants in microRNAs contribute to PTC risk. We used SOLiD technology to sequence 321 genomic regions encoding 427 miRNAs in one affected individual from each of 80 PTC families. After excluding variants with frequency ≥ 1% in 1000 Genomes Phase 1 (n = 1092) we detected 1978 variants. After further functional filtering steps 25 variants in pre-miRs remained. Co-segregation was observed for six out of 16 tested miRNA variants with PTC in the families, namely let-7e, miR-181b, miR-135a, miR-15b, miR-320, and miR-484. Expression of miR-135a and miR-181b was tested in normal thyroid and tumor tissue from patients that carry the variants and a decrease in expression was observed. In vitro assays were applied to measure the effect of the variants on microRNAs' maturation. Four out of six variants were tested. Only the let-7e and miR-181b variants showed an effect on processing leading to lower levels of mature miRNA. These two variants were not detected in 1170 sporadic PTC cases nor in 1404 controls. Taken together, our data show that high penetrance germline sequence variants of miRNAs potentially predispose to a fraction of all PTC but are not common.

  20. [Lack of association between the S447X variant of the lipoprotein lipase gene and plasma lipids. A preliminary study].

    PubMed

    Zambrano Morales, Mariana; Fernández Salgado, Erika; Balzán Urdaneta, Ligia; Labastidas, Neila; Aranguren-Méndez, José; Connell, Lissette; Molero Paredes, Tania; Rojas, Alicia; Panunzio, Amelia

    2014-06-01

    The increase in lipid plasma values is an important cardiovascular risk factor. Lipoprotein lipase (LPL) plays an important role in the lipoprotein metabolism and metabolic and genetic factors may influence its levels and functions. The S447X variant of the lipoprotein lipase gene is associated with changes in plasma lipids in different populations. The objective of this research was to analyze the S447X variant of the LPL gene and its relation with plasma lipids of individuals in Zulia state, Venezuela. With this purpose, we studied 75 individuals (34 men and 41 women) between 20 and 60 years of age. Each subject had a medical history which included family history, anthropometric characteristics, nutritional status evaluation and biochemical tests. Genomic DNA was extracted for the molecular study and the polymerase chain reaction was used, followed by enzyme digestion, for restriction fragments length polymorphisms using the Hinf I enzyme. The individuals studied had normal levels of blood glucose, triglycerides, total cholesterol and low density lipoproteins (LDL-C) and slightly decreased levels of high density lipoproteins (HDL-C). The genotypic distribution of the LPL gene S447X variant in the studied population was 90.6% for the homozygous genotype SS447 and 9.4% for the heterozygote SX447. The genotype 447XX was not identified. The population was found in Hardy Weinberg genetic equilibrium. No association between the S447X polymorphism of lipoprotein lipase gene and plasma lipids was observed.

  1. LOVD v.2.0: the next generation in gene variant databases.

    PubMed

    Fokkema, Ivo F A C; Taschner, Peter E M; Schaafsma, Gerard C P; Celli, J; Laros, Jeroen F J; den Dunnen, Johan T

    2011-05-01

    Locus-Specific DataBases (LSDBs) store information on gene sequence variation associated with human phenotypes and are frequently used as a reference by researchers and clinicians. We developed the Leiden Open-source Variation Database (LOVD) as a platform-independent Web-based LSDB-in-a-Box package. LOVD was designed to be easy to set up and maintain and follows the Human Genome Variation Society (HGVS) recommendations. Here we describe LOVD v.2.0, which adds enhanced flexibility and functionality and has the capacity to store sequence variants in multiple genes per patient. To reduce redundancy, patient and sequence variant data are stored in separate tables. Tables are linked to generate connections between sequence variant data for each gene and every patient. The dynamic structure allows database managers to add custom columns. The database structure supports fast queries and allows storage of sequence variants from high-throughput sequence analysis, as demonstrated by the X-chromosomal Mental Retardation LOVD installation. LOVD contains measures to ensure database security from unauthorized access. Currently, the LOVD Website (http://www.LOVD.nl/) lists 71 public LOVD installations hosting 3,294 gene variant databases with 199,000 variants in 84,000 patients. To promote LSDB standardization and thereby database interoperability, we offer free server space and help to establish an LSDB on our Leiden server. © 2011 Wiley-Liss, Inc.

  2. Distribution of saa gene variants in verocytotoxigenic Escherichia coli isolated from cattle and food.

    PubMed

    Lucchesi, Paula M A; Krüger, Alejandra; Parma, Alberto E

    2006-04-01

    The pathogenesis of verocytotoxigenic Escherichia coli (VTEC) infection in humans is multifactorial, given that verocytotoxins are the principal virulence factor. Most strains causing serious diseases possess the eae gene that encodes the adhesin intimin, but its presence is not essential for virulence as some cases are caused by eae-negative strains. An autoagglutinating adhesin designated Saa was found in some eae-negative strains. This protein varies in size as a consequence of variation in the number of copies of a 37-aa repeat unit in the C-terminal region. Based on these findings, we designed PCR primers to amplify the region coding for these differences to detect saa gene variants present in VTEC strains isolated in Argentina from cattle and meat. The gene saa was detected in 36 (31.6%) eae-negative strains and 5 variants were found. Strains isolated from cattle possessed 4 saa variants, whereas 2 variants were present in isolates from meat. Saa variant 1 predominated (18 strains) and was distributed in strains isolated both from cattle and from meat. Our study revealed the existence of two novel saa variants, termed 4 and 5, which have a higher number of 111-bp repeats than saa genes previously studied.

  3. FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.

    PubMed

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-09-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. © 2016 WILEY PERIODICALS, INC.

  4. Assessing the RNA effect of 26 DNA variants in the BRCA1 and BRCA2 genes.

    PubMed

    Menéndez, Mireia; Castellsagué, Joan; Mirete, Marc; Pros, Eva; Feliubadaló, Lídia; Osorio, Ana; Calaf, Mónica; Tornero, Eva; del Valle, Jesús; Fernández-Rodríguez, Juana; Quiles, Francisco; Salinas, Mónica; Velasco, Angela; Teulé, Alex; Brunet, Joan; Blanco, Ignacio; Capellá, Gabriel; Lázaro, Conxi

    2012-04-01

    Comprehensive genetic testing of the breast cancer susceptibility genes BRCA1 and BRCA2 identified approximately 16% of variants of unknown significance (VUS), a significant proportion of which could affect the correct splicing of the genes. Our aim is to establish a workflow for classifying VUS in these complex genes, the first stage of which is splicing analysis. We used a combined approach consisting of five in silico splicing prediction programs and RT-PCR analysis for a set of 26 variants not previously studied at the mRNA level and six variants that had already been studied, four of which were used as positive controls as they were found to affect the splicing of these genes and the other two were used as negative controls. We identified a splicing defect in 8 of the 26 newly studied variants and ruled out splicing alteration in the remaining 18 variants. The results for the four positive and the two negative control variants were consistent with results presented in the literature. Our results strongly suggest that the combination of RNA analysis and in silico programs is an important step towards the classification of VUS. The results revealed a very high correlation between experimental data and in silico programs when using tools for predicting acceptor/donor sites but a lower correlation in the case of tools for identifying ESE elements.

  5. Joint associations of 61 genetic variants in the nicotinic acetylcholine receptor genes with subclinical atherosclerosis in American Indians: a gene-family analysis.

    PubMed

    Yang, Jingyun; Zhu, Yun; Lee, Elisa T; Zhang, Ying; Cole, Shelley A; Haack, Karin; Best, Lyle G; Devereux, Richard B; Roman, Mary J; Howard, Barbara V; Zhao, Jinying

    2013-02-01

    Atherosclerosis is the underlying cause of cardiovascular disease, the leading cause of morbidity and mortality in all American populations, including American Indians. Genetic factors play an important role in the pathogenesis of atherosclerosis. Although a single-nucleotide polymorphism (SNP) may explain only a small portion of variability in disease, the joint effect of multiple variants in a pathway on disease susceptibility could be large. Using a gene-family analysis, we investigated the joint associations of 61 tag SNPs in 7 nicotinic acetylcholine receptor genes with subclinical atherosclerosis, as measured by carotid intima-media thickness and plaque score, in 3665 American Indians from 94 families recruited by the Strong Heart Family Study (SHFS). Although multiple SNPs showed marginal association with intima-media thickness and plaque score individually, only a few survived adjustments for multiple testing. However, simultaneously modeling of the joint effect of all 61 SNPs in 7 nicotinic acetylcholine receptor genes revealed significant association of the nicotinic acetylcholine receptor gene family with both intima-media thickness and plaque score independent of known coronary risk factors. Genetic variants in the nicotinic acetylcholine receptor gene family jointly contribute to subclinical atherosclerosis in American Indians who participated in the SHFS. These variants may influence the susceptibility of atherosclerosis through pathways other than cigarette smoking per se.

  6. Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    PubMed Central

    Mahajan, Anubha; Sim, Xueling; Ng, Hui Jin; Manning, Alisa; Rivas, Manuel A.; Highland, Heather M.; Locke, Adam E.; Grarup, Niels; Im, Hae Kyung; Cingolani, Pablo; Flannick, Jason; Fontanillas, Pierre; Fuchsberger, Christian; Gaulton, Kyle J.; Teslovich, Tanya M.; Rayner, N. William; Robertson, Neil R.; Beer, Nicola L.; Rundle, Jana K.; Bork-Jensen, Jette; Ladenvall, Claes; Blancher, Christine; Buck, David; Buck, Gemma; Burtt, Noël P.; Gabriel, Stacey; Gjesing, Anette P.; Groves, Christopher J.; Hollensted, Mette; Huyghe, Jeroen R.; Jackson, Anne U.; Jun, Goo; Justesen, Johanne Marie; Mangino, Massimo; Murphy, Jacquelyn; Neville, Matt; Onofrio, Robert; Small, Kerrin S.; Stringham, Heather M.; Syvänen, Ann-Christine; Trakalo, Joseph; Abecasis, Goncalo; Bell, Graeme I.; Blangero, John; Cox, Nancy J.; Duggirala, Ravindranath; Hanis, Craig L.; Seielstad, Mark; Wilson, James G.; Christensen, Cramer; Brandslund, Ivan; Rauramaa, Rainer; Surdulescu, Gabriela L.; Doney, Alex S. F.; Lannfelt, Lars; Linneberg, Allan; Isomaa, Bo; Tuomi, Tiinamaija; Jørgensen, Marit E.; Jørgensen, Torben; Kuusisto, Johanna; Uusitupa, Matti; Salomaa, Veikko; Spector, Timothy D.; Morris, Andrew D.; Palmer, Colin N. A.; Collins, Francis S.; Mohlke, Karen L.; Bergman, Richard N.; Ingelsson, Erik; Lind, Lars; Tuomilehto, Jaakko; Hansen, Torben; Watanabe, Richard M.; Prokopenko, Inga; Dupuis, Josee; Karpe, Fredrik; Groop, Leif; Laakso, Markku; Pedersen, Oluf; Florez, Jose C.; Morris, Andrew P.; Altshuler, David; Meigs, James B.; Boehnke, Michael; McCarthy, Mark I.; Lindgren, Cecilia M.; Gloyn, Anna L.

    2015-01-01

    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights. PMID:25625282

  7. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    PubMed

    Mahajan, Anubha; Sim, Xueling; Ng, Hui Jin; Manning, Alisa; Rivas, Manuel A; Highland, Heather M; Locke, Adam E; Grarup, Niels; Im, Hae Kyung; Cingolani, Pablo; Flannick, Jason; Fontanillas, Pierre; Fuchsberger, Christian; Gaulton, Kyle J; Teslovich, Tanya M; Rayner, N William; Robertson, Neil R; Beer, Nicola L; Rundle, Jana K; Bork-Jensen, Jette; Ladenvall, Claes; Blancher, Christine; Buck, David; Buck, Gemma; Burtt, Noël P; Gabriel, Stacey; Gjesing, Anette P; Groves, Christopher J; Hollensted, Mette; Huyghe, Jeroen R; Jackson, Anne U; Jun, Goo; Justesen, Johanne Marie; Mangino, Massimo; Murphy, Jacquelyn; Neville, Matt; Onofrio, Robert; Small, Kerrin S; Stringham, Heather M; Syvänen, Ann-Christine; Trakalo, Joseph; Abecasis, Goncalo; Bell, Graeme I; Blangero, John; Cox, Nancy J; Duggirala, Ravindranath; Hanis, Craig L; Seielstad, Mark; Wilson, James G; Christensen, Cramer; Brandslund, Ivan; Rauramaa, Rainer; Surdulescu, Gabriela L; Doney, Alex S F; Lannfelt, Lars; Linneberg, Allan; Isomaa, Bo; Tuomi, Tiinamaija; Jørgensen, Marit E; Jørgensen, Torben; Kuusisto, Johanna; Uusitupa, Matti; Salomaa, Veikko; Spector, Timothy D; Morris, Andrew D; Palmer, Colin N A; Collins, Francis S; Mohlke, Karen L; Bergman, Richard N; Ingelsson, Erik; Lind, Lars; Tuomilehto, Jaakko; Hansen, Torben; Watanabe, Richard M; Prokopenko, Inga; Dupuis, Josee; Karpe, Fredrik; Groop, Leif; Laakso, Markku; Pedersen, Oluf; Florez, Jose C; Morris, Andrew P; Altshuler, David; Meigs, James B; Boehnke, Michael; McCarthy, Mark I; Lindgren, Cecilia M; Gloyn, Anna L

    2015-01-01

    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.

  8. Meta-analysis of gene-level tests for rare variant association.

    PubMed

    Liu, Dajiang J; Peloso, Gina M; Zhan, Xiaowei; Holmen, Oddgeir L; Zawistowski, Matthew; Feng, Shuang; Nikpay, Majid; Auer, Paul L; Goel, Anuj; Zhang, He; Peters, Ulrike; Farrall, Martin; Orho-Melander, Marju; Kooperberg, Charles; McPherson, Ruth; Watkins, Hugh; Willer, Cristen J; Hveem, Kristian; Melander, Olle; Kathiresan, Sekar; Abecasis, Gonçalo R

    2014-02-01

    The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays.

  9. The influence of angiotensin converting enzyme and bradykinin receptor B2 gene variants on voluntary fluid intake and fluid balance in healthy men during moderate-intensity exercise in the heat.

    PubMed

    Yau, Adora M W; Moss, Andrew D; James, Lewis John; Gilmore, William; Ashworth, Jason J; Evans, Gethin H

    2015-02-01

    Angiotensin converting enzyme (ACE) and bradykinin receptor B2 (B2R) genetic variation may affect thirst because of effects on angiotensin II production and bradykinin activity, respectively. To examine this, 45 healthy Caucasian men completed 60 min of cycle exercise at 62% ± 5% peak oxygen uptake in a room heated to 30.5 ± 0.3 °C with ad libitum fluid intake. Blood samples were collected pre-, mid-, and immediately post-cycle. Fluid intake, body mass loss (BML), sweat loss (determined via changes in body mass and fluid intake), and thirst sensation were recorded. All participants were genotyped for the ACE insert fragment (I) and the B2R insert sequence (P). Participants were homozygous for the wild-type allele (WW or MM), heterozygous (WI or MP) or homozygous for the insert (II or PP). No differences between genotype groups were found in mean (±SD) voluntary fluid intake (WW: 613 ± 388, WI: 753 ± 385, II: 862 ± 421 mL, p = 0.31; MM: 599 ± 322, MP: 745 ± 374, PP: 870 ± 459 mL, p = 0.20), percentage BML or any other fluid balance variables for both the ACE and B2R genes, respectively. Mean thirst perception in the B2R PP group, however, was higher (p < 0.05) than both MM and MP at 30, 45, and 60 min. In conclusion, the results of this study suggest that voluntary fluid intake and fluid balance in healthy men performing 60 min of moderate-intensity exercise in the heat are not predominantly influenced by ACE or B2R genetic variation.

  10. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias.

    PubMed

    Fallgatter, A J; Ehlis, A-C; Herrmann, M J; Hohoff, C; Reif, A; Freitag, C M; Deckert, J

    2010-07-01

    Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbindin on prefrontal brain function at an underlying neurophysiological level has not yet been explored for these patients. The NoGo-anteriorization (NGA) is a topographical event-related potential measure, which has been established as a valid neurophysiological marker of prefrontal brain function. In the present study, we investigated the influence of seven dysbindin gene variants on the NGA in a group of 44 schizophrenic patients. In line with our a priori hypothesis, one DTNBP1 polymorphism previously linked to schizophrenia (rs2619528) was found to be associated with changes in the NGA; however, the direction of this association directly contrasts with our previous findings in a healthy control sample. This differential impact of DTNBP1 gene variation on prefrontal functioning in schizophrenic patients vs. healthy controls is discussed in terms of abnormal glutamatergic baseline levels in patients suffering from schizophrenic illnesses. This is the first report on a role of DTNBP1 gene variation for prefrontal functioning at a basic neurophysiological level in schizophrenic patients. An impact on fundamental processes of cognitive response control may be one mechanism by which DTNBP1 gene variants via glutamatergic transmission contribute to the pathophysiology underlying schizophrenic illnesses.

  11. Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network

    PubMed Central

    Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2014-01-01

    Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders. PMID:25166029

  12. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  13. Gene-Gene Interplay and Gene-Diet Interactions Involving the MTNR1B rs10830963 Variant with Body Weight Loss.

    PubMed

    Goni, Leticia; Cuervo, Marta; Milagro, Fermin I; Martínez, J Alfredo

    2014-01-01

    Investigation of the genetic makeup may facilitate the implementation of more personalized nutritional interventions. The aims were to examine whether the rs10830963 MTNR1B polymorphism affects weight loss in response to a hypocaloric diet and to find potential gene-gene interplays and gene-diet interactions. 167 subjects enrolled in a personalized nutritional intervention for weight loss (3-6 weeks) were examined for anthropometric measurements, dietary habits and physical activity at baseline and at the first follow-up visit. Three polymorphisms, which have previously been associated with body weight regulation, rs10830963 (MTNR1B), rs9939609 (FTO) and rs17782313 (MC4R), were analyzed using the Luminex® 100/200™ System. After adjusting for covariates, females with the rs10830963 CG/GG genotype showed lower weight loss than those with the CC genotype. In the total population, carriers of variant alleles of both FTO and MC4R showed a significant association with MTNR1B and weight loss outcome. Moreover, among women, higher total protein and animal protein intakes were associated with a lower weight loss in G allele carriers of the MTNR1B variant. Our data evidenced that rs10830963 MTNR1B polymorphism could be associated with individual differences in weight loss induced by a hypocaloric diet. This association was influenced by FTO and MC4R loci and modified by baseline protein intake. © 2015 S. Karger AG, Basel.

  14. Detection of putative functional angiotensinogen (AGT) gene variants controlling plasma AGT levels by combined segregation-linkage analysis.

    PubMed

    Brand, Eva; Chatelain, Nathalie; Paillard, Françoise; Tiret, Laurence; Visvikis, Sophie; Lathrop, Mark; Soubrier, Florent; Demenais, Florence

    2002-11-01

    Previous studies have suggested that angiotensinogen (AGT) gene variants are associated with increased plasma AGT levels, and may also contribute towards the inherited component of predisposition to essential hypertension in humans. To explore the potential functionality of several AGT polymorphisms and estimate their effects, together with other sources of familial correlations, on plasma AGT, we undertook a large study involving 545 healthy French volunteers in 130 nuclear families that include 285 offspring. Plasma AGT levels were measured in all participants, and bi-allelic AGT variants were analysed as candidate functional variants at three sites in the 5'-flanking region (C-532T, A-20C, G-6A), two sites in exon 2 (M235T, T174M) and two newly identified variant sites in the untranslated sequence of exon 5 and the 3'-flanking region (C+2054A, C+2127T) of the gene. Analysis with the class D regressive model showed significant effects influencing plasma AGT levels of all AGT polymorphisms tested, with the exception of T174M. The most significant result was found at C-532T (P=0.000001), which accounts for 4.3% of total plasma AGT variability in parents and 5.5% in offspring, with substantial residual familial correlations. Maximum likelihood estimates of haplotype frequencies and tests of linkage disequilibrium between each AGT polymorphism and a putative QTL are in agreement with a complete confounding of C-532T with the QTL, when taking into account sex and generation specific effects of the QTL. However, further combined segregation-linkage analyses showed significant evidence for additional effects of G-6A, M235T and C+2054A polymorphisms after accounting for C-532T, which supports a complex model with at least two functional variants within the AGT gene controlling AGT levels.

  15. Association of Fat Mass and Obesity-associated Gene Variant with Lifestyle Factors and Body Fat in Indian Children.

    PubMed

    Parthasarthy, Lavanya S; Phadke, Nikhil; Chiplonkar, Shashi; Khadilkar, Anuradha; Khatod, Kavita; Ekbote, Veena; Shah, Surabhi; Khadilkar, Vaman

    2017-01-01

    Common intronic variants of the fat mass and obesity-associated (FTO) gene have been associated with obesity-related traits in humans. (1) The aim of this study is to study the distribution of FTO gene variants across different body mass index (BMI) categories and (2) to explore the association between FTO gene variants and lifestyle factors in obese and normal weight Indian children. Fifty-six children (26 boys, mean age 10.3 ± 2.2 years) were studied. Height, weight, and waist and hip circumference were measured. Physical activity (questionnaire) and food intake (food frequency questionnaire) were assessed. Body fat percentage (%BF) was measured by dual-energy X-ray absorptiometry. FTO allelic variants at rs9939609 site were detected by SYBR Green Amplification Refractory Mutation System real-time polymerase chain reaction using allele-specific primers. Generalized linear model was used to investigate the simultaneous influence of genetic and lifestyle factors on %BF. Mean height, weight, and BMI of normal and obese children were 130.6 ± 7.1 versus 143.2 ± 15.6, 24.0 ± 5.2 versus 53.1 ± 15.8, and 13.9 ± 2.1 versus 25.3 ± 3.2, respectively. The frequency of AA allele was 57% among obese children and 35% in normal weight children. Children with the AA allele who were obese had least physical activity, whereas children with AT allele and obesity had the highest intake of calories when compared to children who had AT allele and were normal. %BF was positively associated with AA alleles and junk food intake and negatively with healthy food intake and moderate physical activity. Healthy lifestyle with high physical activity and diet low in calories and fat may help in modifying the risk imposed by FTO variants in children.

  16. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis.

    PubMed

    Furlan, Larissa Lazzarini; Ribeiro, José Dirceu; Bertuzzo, Carmen Sílvia; Salomão Junior, João Batista; Souza, Dorotéia Rossi Silva; Marson, Fernando Augusto Lima

    2017-07-15

    Interleukin 8 protein promotes inflammatory responses, even in airways. The presence of interleukin 8 gene variants causes altered inflammatory responses and possibly varied responses to inhaled bronchodilators. Thus, this study analyzed the interleukin 8 variants (rs4073, rs2227306, and rs2227307) and their association with the response to inhaled bronchodilators in cystic fibrosis patients. Analysis of interleukin 8 gene variants was performed by restriction fragment length polymorphism of polymerase chain reaction. The association between spirometry markers and the response to inhaled bronchodilators was evaluated by Mann-Whitney and Kruskal-Wallis tests. The analysis included all cystic fibrosis patients, and subsequently patients with two mutations in the cystic fibrosis transmembrane conductance regulator gene belonging to classes I to III. This study included 186 cystic fibrosis patients. There was no association of the rs2227307 variant with the response to inhaled bronchodilators. The rs2227306 variant was associated with FEF50% in the dominant group and in the group with two identified mutations in the cystic fibrosis transmembrane conductance regulator gene. The rs4073 variant was associated with spirometry markers in four genetic models: co-dominant (FEF25-75% and FEF75%), dominant (FEV1, FEF50%, FEF75%, and FEF25-75%), recessive (FEF75% and FEF25-75%), and over-dominant (FEV1/FVC). This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  17. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle.

    PubMed

    Sandor, Cynthia; Li, Wanbo; Coppieters, Wouter; Druet, Tom; Charlier, Carole; Georges, Michel

    2012-01-01

    We use >250,000 cross-over events identified in >10,000 bovine sperm cells to perform an extensive characterization of meiotic recombination in male cattle. We map Quantitative Trait Loci (QTL) influencing genome-wide recombination rate, genome-wide hotspot usage, and locus-specific recombination rate. We fine-map three QTL and present strong evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in PRDM9 influence genome-wide hotspot usage.

  18. Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease

    PubMed Central

    2011-01-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  19. Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    PubMed

    2011-09-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  20. Identification of Three Novel Splicing Variants and Expression Analysis of Chicken GPR1 Gene.

    PubMed

    Zhang, Xueyou; Xiao, Qihai; Tian, Kai; Wang, Yan; Zhao, Xiaoling; Yin, Huadong; Li, Diyan; Zhu, Qing

    2017-01-01

    GPR1 is a G protein-coupled receptor that plays critical roles in eukaryotic cells: typically, response to glucose stimulation, lipid accumulation, and transmitting nutrition signals to cAMP pathway. However, the alternative splicing of the GPR1 gene and its expression pattern in chicken tissues and ovarian follicles were unknown. In our current study, we used RACE-PCR to identify three GPR1 variants, including the full-length variant (GPR1-va1) and two alternatively spliced variants (GPR1-va2, GPR1-vb). Quantitative real-time PCR examined the expression pattern of GPR1 mRNA in chicken tissues and ovarian follicles. The result reveals that the coding sequence of the three variants cDNA is 1053, 1053, and 627 bp in length, encoding 350, 350, and 208 amino acids, respectively. The three variants of GPR1 show similar tissue distributions; GPR1 expression was abundant in the abdominal fat, lung, and heart. With the follicular development, the expression of GPR1 gene gradually increased, and GPR1-va1 and GPR1-va2 spliced variants expression in F2 were significantly higher than in F5, F4, and prehierarchical follicles (P < 0.05). Taken together, we found three novel variants of GPR1, and the results of GPR1 expression profiling in adipose tissues and ovarian follicles suggest that GPR1 may play a significant role in the lipid accumulation and progression of follicular development.

  1. Identification of Three Novel Splicing Variants and Expression Analysis of Chicken GPR1 Gene

    PubMed Central

    Zhang, Xueyou; Xiao, Qihai; Tian, Kai; Zhao, Xiaoling; Yin, Huadong; Li, Diyan

    2017-01-01

    GPR1 is a G protein-coupled receptor that plays critical roles in eukaryotic cells: typically, response to glucose stimulation, lipid accumulation, and transmitting nutrition signals to cAMP pathway. However, the alternative splicing of the GPR1 gene and its expression pattern in chicken tissues and ovarian follicles were unknown. In our current study, we used RACE-PCR to identify three GPR1 variants, including the full-length variant (GPR1-va1) and two alternatively spliced variants (GPR1-va2, GPR1-vb). Quantitative real-time PCR examined the expression pattern of GPR1 mRNA in chicken tissues and ovarian follicles. The result reveals that the coding sequence of the three variants cDNA is 1053, 1053, and 627 bp in length, encoding 350, 350, and 208 amino acids, respectively. The three variants of GPR1 show similar tissue distributions; GPR1 expression was abundant in the abdominal fat, lung, and heart. With the follicular development, the expression of GPR1 gene gradually increased, and GPR1-va1 and GPR1-va2 spliced variants expression in F2 were significantly higher than in F5, F4, and prehierarchical follicles (P < 0.05). Taken together, we found three novel variants of GPR1, and the results of GPR1 expression profiling in adipose tissues and ovarian follicles suggest that GPR1 may play a significant role in the lipid accumulation and progression of follicular development. PMID:28203567

  2. Functional Characterization of Promoter Variants of the Adiponectin Gene Complemented by Epidemiological Data

    PubMed Central

    Laumen, Helmut; Saningong, Akuma D.; Heid, Iris M.; Hess, Jochen; Herder, Christian; Claussnitzer, Melina; Baumert, Jens; Lamina, Claudia; Rathmann, Wolfgang; Sedlmeier, Eva-Maria; Klopp, Norman; Thorand, Barbara; Wichmann, H.-Erich; Illig, Thomas; Hauner, Hans

    2009-01-01

    OBJECTIVE Adiponectin (APM1, ACDC) is an adipocyte-derived protein with downregulated expression in obesity and insulin-resistant states. Several potentially regulatory single nucleotide polymorphisms (SNPs) within the APM1 gene promoter region have been associated with circulating adiponectin levels. None of them have been functionally characterized in adiponectin-expressing cells. Hence, we investigated three SNPs (rs16861194, rs17300539, and rs266729) for their influence on adiponectin promoter activity and their association with circulating adiponectin levels. RESEARCH DESIGN AND METHODS Basal and rosiglitazone-induced promoter activity of different SNP combinations (haplotypes) was analyzed in 3T3-L1 adipocytes using luciferase reporter gene assays and DNA binding studies comparing all possible APM1 haplotypes. This functional approach was complemented with analysis of epidemiological population-based data of 1,692 participants of the MONICA/KORA S123 cohort and 696 participants from the KORA S4 cohort for SNP and haplotype association with circulating adiponectin levels. RESULTS Major to minor allele replacements of the three SNPs revealed significant effects on promoter activity in luciferase assays. Particularly, a minor variant in rs16861194 resulted in reduced basal and rosiglitazone-induced promoter activity and hypoadiponectinemia in the epidemiological datasets. The haplotype with the minor allele in all three SNPs showed a complete loss of promoter activity, and no subject carried this haplotype in either of the epidemiological samples (combined P value for statistically significant difference from a random sample was 0.006). CONCLUSIONS Our results clearly demonstrate that promoter variants associated with hypoadiponectinemia in humans substantially affect adiponectin promoter activity in adipocytes. Our combination of functional experiments with epidemiological data overcomes the drawback of each approach alone. PMID:19074982

  3. HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease

    PubMed Central

    Ali-Rahmani, Fatima; Schengrund, Cara-Lynne; Connor, James R.

    2014-01-01

    Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer’s disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases. PMID:25071582

  4. 1914G variant of BCHE gene associated with enzyme activity, obesity and triglyceride levels.

    PubMed

    Lima, Jovana Karoline; Leite, Neiva; Turek, Luciane Viater; Souza, Ricardo Lehtonen Rodrigues; da Silva Timossi, Luciana; Osiecki, Ana Claudia Vecchi; Osiecki, Raul; Furtado-Alle, Lupe

    2013-12-10

    Polymorphisms of butyrylcholinesterase (BChE) have been reported to be associated to weight, BMI variance and hypertriglyceridemia in adults and adolescents. The aim of the present study was to investigate the association of -116A (SNP: G/A; rs1126680) and 1914G (SNP: A/G; rs3495) variants of BCHE gene with anthropometric and biochemical variables associated with obesity in population sample of 115 individuals, from Southern Brazil. Participants were grouped in two categories: obese (BMI≥30) and non-obese (BMI<30). The 1914G allele showed significantly higher frequency in the obese group, and carriers of 1914G allele showed lower mean BChE activity when compared to 1914A carriers (p=0.006). Higher means of BMI (p=0.02) and triglyceride (TG; p=0.01) were found in 1914G carriers (BMI=27.57 kg/m(2); TG=150.8 mg/dL) when compared to 1914A homozygotes (BMI=25.55 kg/m(2); TG=107.9 mg/dL). Carriers of the -116A allele showed lower mean BChE activity than usual homozygotes, and the -116A variant was found in cis with 1914G (p<0.0001; D'=1). The region of BCHE gene that contains the 1914G mutation site is target of microRNAs (miRs) and the response of BChE to glucocorticoids is especially influenced by these miRs. Therefore, it is possible that the 1914G allele can be interfering in gluconeogenesis, hyperglycemia, lipolysis and body fat distribution. This lower activity may cause an imbalance in lipid metabolism, which may lead to an increased predisposition to obesity and to a lower ability to maintain metabolic homeostasis. © 2013 Elsevier B.V. All rights reserved.

  5. Alternative spliced variants in the pantetheinase family of genes expressed in human neutrophils.

    PubMed

    Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-12-15

    Pantetheinase (EC 3.5.1.92) is an enzyme that hydrolyzes pantetheine, an intermediate metabolite of coenzyme A, into pantothenic acid (vitamin B(5)) and cysteamine, a potent antioxidant. The pantetheinase gene family consists of three independent genes, pantetheinase/vanin-1/VNN1, GPI-80/VNN2 and vanin-3/VNN3 that are each composed of seven exons. We herein report that human neutrophils express transcripts encoding at least nine splice variants of VNN3 and four splice variants of GPI-80/VNN2. Analysis of the DNA sequence of the human VNN3 gene demonstrated that the VNN3 locus in the human genome as well as the sequence of cDNA clones obtained in this study does not encode the complete VNN3 protein, as previously reported due to a frame shift caused by lack of one nucleotide. Moreover, the VNN3 locus indeed encodes smaller peptides compared to the proteins encoded by the mouse orthologous gene, vanin-3. The anti-GPI-80 monoclonal antibody 3H9 recognized amino acids 120-179 of the GPI-80/VNN2 protein as shown by the results of immunoblotting with recombinant GPI-80/VNN2 variant proteins. Immunoblotting with human neutrophil lysate suggests that the GPI-80/VNN2 variants exist in human neutrophils. The existence of splice variants in the pantetheinase gene family suggests the possibility of alternative roles in addition to canonical enzymatic activity in human neutrophils.

  6. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations.

    PubMed

    Caminsky, Natasha G; Mucaki, Eliseos J; Perri, Ami M; Lu, Ruipeng; Knoll, Joan H M; Rogan, Peter K

    2016-07-01

    BRCA1 and BRCA2 testing for hereditary breast and ovarian cancer (HBOC) does not identify all pathogenic variants. Sequencing of 20 complete genes in HBOC patients with uninformative test results (N = 287), including noncoding and flanking sequences of ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51B, STK11, TP53, and XRCC2, identified 38,372 unique variants. We apply information theory (IT) to predict and prioritize noncoding variants of uncertain significance in regulatory, coding, and intronic regions based on changes in binding sites in these genes. Besides mRNA splicing, IT provides a common framework to evaluate potential affinity changes in transcription factor (TFBSs), splicing regulatory (SRBSs), and RNA-binding protein (RBBSs) binding sites following mutation. We prioritized variants affecting the strengths of 10 splice sites (four natural, six cryptic), 148 SRBS, 36 TFBS, and 31 RBBS. Three variants were also prioritized based on their predicted effects on mRNA secondary (2°) structure and 17 for pseudoexon activation. Additionally, four frameshift, two in-frame deletions, and five stop-gain mutations were identified. When combined with pedigree information, complete gene sequence analysis can focus attention on a limited set of variants in a wide spectrum of functional mutation types for downstream functional and co-segregation analysis.

  7. Are all the previously reported genetic variants in limb girdle muscular dystrophy genes pathogenic?

    PubMed Central

    Di Fruscio, Giuseppina; Garofalo, Arcomaria; Mutarelli, Margherita; Savarese, Marco; Nigro, Vincenzo

    2016-01-01

    Hundreds of variants in autosomal genes associated with the limb girdle muscular dystrophies (LGMDs) have been reported as being causative. However, in most cases the proof of pathogenicity derives from their non-occurrence in hundreds of healthy controls and/or from segregation studies in small families. The limited statistics of the genetic variations in the general population may hamper a correct interpretation of the effect of variants on the protein. To clarify the meaning of low-frequency variants in LGMD genes, we have selected all variants described as causative in the Leiden Open Variation Database and the Human Gene Mutation Database. We have systematically searched for their frequency in the NHLBI GO Exome Sequencing Project (ESP) and in our internal database. Surprisingly, the ESP contains about 4% of the variants previously associated with a dominant inheritance and about 9% of those associated with a recessive inheritance. The putative disease alleles are much more frequent than those estimated considering the disease prevalence. In conclusion, we hypothesize that a number of disease-associated variants are non-pathogenic and that other variations are not fully penetrant, even if they affect the protein function, suggesting a more complex genetic mechanisms for such heterogeneous disorders. PMID:25898921

  8. NOS3 gene variants and male infertility: Association of 4a/4b with oligoasthenozoospermia.

    PubMed

    Vučić, N L J; Nikolić, Z Z; Vukotić, V D; Tomović, S M; Vuković, I I; Kanazir, S D; Savić-Pavićević, D L J; Brajušković, G N

    2017-05-03

    Results of recent studies confirmed that oxidative stress negatively affects sperm motility and causes sperm DNA damage. Produced by nitric oxide synthase 3 (NOS3), nitric oxide is considered to be one of the important mediators of oxidative stress in testis tissue. The aim of this study was to assess the possible association of three genetic variants (rs2070744, rs1799983 and intron variant 4a/4b) in NOS3 gene and infertility occurrence in two groups of infertile men (idiopathic azoospermia and oligoasthenozoospermia) and fertile controls. Genotypes for the single-nucleotide genetic variants rs1799983 and rs2070744 were determined by PCR-RFLP, while genotyping of intron 4 variant 4a/4b was performed by gel electrophoresis of PCR products. Statistical analysis was performed by SNPStats software. No significant association between the three genetic variants of the NOS3 gene and infertility risk was determined comparing allele and genotype frequencies among group of patients diagnosed with azoospermia and the control group. Nevertheless, there was a significant positive association between 4a/4b and infertility in the group of males diagnosed with oligoasthenozoospermia, under overdominant genetic model. Our findings suggest that tandem repeat variant within intron 4 of the NOS3 gene is associated with an increased risk of infertility in men diagnosed with idiopathic oligoasthenozoospermia. © 2017 Blackwell Verlag GmbH.

  9. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis.

    PubMed

    Gang, Qiang; Bettencourt, Conceição; Machado, Pedro M; Brady, Stefen; Holton, Janice L; Pittman, Alan M; Hughes, Deborah; Healy, Estelle; Parton, Matthew; Hilton-Jones, David; Shieh, Perry B; Needham, Merrilee; Liang, Christina; Zanoteli, Edmar; de Camargo, Leonardo Valente; De Paepe, Boel; De Bleecker, Jan; Shaibani, Aziz; Ripolone, Michela; Violano, Raffaella; Moggio, Maurizio; Barohn, Richard J; Dimachkie, Mazen M; Mora, Marina; Mantegazza, Renato; Zanotti, Simona; Singleton, Andrew B; Hanna, Michael G; Houlden, Henry

    2016-11-01

    Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders.

  10. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: A Next Generation Sequencing approach.

    PubMed

    Burillo-Sanz, Sergio; Montes-Cano, Marco-Antonio; García-Lozano, José-Raúl; Ortiz-Fernández, Lourdes; Ortego-Centeno, Norberto; García-Hernández, Francisco-José; Espinosa, Gerard; Graña-Gil, Genaro; Sánchez-Bursón, Juan; Rosa Juliá, María; Solans, Roser; Blanco, Ricardo; Barnosi-Marín, Ana-Celia; Gómez De la Torre, Ricardo; Fanlo, Patricia; Rodríguez-Carballeira, Mónica; Rodríguez-Rodríguez, Luis; Camps, Teresa; Castañeda, Santos; Alegre-Sancho, Juan-Jose; Martín, Javier; González-Escribano, María Francisca

    2017-08-16

    Behçet's disease (BD) is an immune-mediated systemic disorder with a well-established association with HLA class I and other genes. BD has clinical overlap with many autoinflammatory diseases (AIDs). The aim of this study was to investigate the role of rare variants in seven genes involved in AIDs: CECR1, MEFV, MVK, NLRP3, NOD2, PSTPIP1 and TNFRSF1A using a next generation sequencing (NGS) approach in 355 BD patients. To check global association of each gene, 4 tests: SKAT, CollapseBt, C(α) and weighted KBAC were used. Databases: 1000 Genomes Project Phase 3, Infevers, HGMD and ClinVar and algorithms: PolyPhen2 and SIFT were consulted to collect information of the 62 variants found. All the genes resulted associated using SKAT but only 3 (MVK, NOD2 and PSTPIP1) with C(α) and weighted KBAC. When all the genes are considered, 40 variants were associated to AIDs in clinical databases and 25 were predicted as pathogenic at least by one of the algorithms. Including only MVK, NOD2 and PSTPIP1, the associated to AIDs variants found in BD were 20 and the predicted as pathogenic, 12. The maxima contribution corresponds to NOD2. This study supports influence of rare variants in genes involved in AIDs in the pathogenesis of BD.

  11. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy

    PubMed Central

    Yotti, Raquel; Espinosa, Maria Angeles; Pérez-Serra, Alexandra; Fernandez-Avila, Ana Isabel; Coll, Monica; Méndez, Irene; Iglesias, Anna; del Olmo, Bernat; Riuró, Helena; Cuenca, Sofía; Allegue, Catarina; Campuzano, Oscar; Picó, Ferran; Ferrer-Costa, Carles; Álvarez, Patricia; Castillo, Sergio; Garcia-Pavia, Pablo; Gonzalez-Lopez, Esther; Padron-Barthe, Laura; Díaz de Bustamante, Aranzazu; Darnaude, María Teresa; González-Hevia, José Ignacio; Brugada, Josep; Fernandez-Aviles, Francisco; Brugada, Ramon

    2017-01-01

    Introduction Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of screening for minor and candidate genes, and the role of copy number variants (CNVs) deserves further evaluation. Methods Three hundred and eighty-seven consecutive unrelated patients with HCM were screened for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed 20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were compared with 427 patients without structural heart disease. Results The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main genes was 33.3%, without significant differences between the Sanger sequencing and NGS cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2, MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclusive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS) in TTN. The detection rate of rare variants in TTN was not significantly different to that found in the group of patients without structural heart disease. In the NGS cohort, 4 patients (1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the complete coding region of PLN. Conclusions A small percentage of HCM cases without point mutations in the 5 main genes are explained by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in HCM patients drastically increases the number of inconclusive tests, and shows a rate of VUS that is similar to patients without structural heart disease, suggesting that this gene should not be analyzed for clinical purposes in HCM. PMID:28771489

  12. FTO gene variants are associated with growth and carcass traits in cattle.

    PubMed

    Jevsinek Skok, D; Kunej, T; Kovac, M; Malovrh, S; Potocnik, K; Petric, N; Zgur, S; Dovc, P; Horvat, S

    2016-04-01

    An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR-RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny-tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker-assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.

  13. Effects of variant UDP-glucuronosyltransferase 1A1 gene, glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    PubMed Central

    Huang, Yang-Yang; Huang, Ching-Shui; Yang, Sien-Sing; Lin, Min-Shung; Huang, May-Jen; Huang, Ching-Shan

    2005-01-01

    AIM: To test the hypothesis that the variant UDP-glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0 ± 6.5 and 12.7 ± 2.9 μmol/L, respectively; P<0.001, Student’s t test). CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. PMID:16237771

  14. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    PubMed Central

    Lawrenson, Kate; Iversen, Edwin S.; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J.; Li, Qiyuan; Marks, Jeffrey R.; Berchuck, Andrew; Lee, Janet M.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y.; Kjaer, Susanne Kruger; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Budzilowska, Agnieszka; Sellers, Thomas A.; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Timorek, Agnieszka; Tworoger, Shelley S.; Nieuwenhuysen, Els Van; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A.; Freedman, Matthew L.; Monteiro, Alvaro N.A.; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D.; Gayther, Simon A.; Schildkraut, Joellen M.

    2015-01-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10–7). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r 2 with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11–1.24, P = 1.1×10−7). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10−8). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r 2 = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10-8). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene. PMID:26424751

  15. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    PubMed

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.

  16. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer.

    PubMed

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J; Li, Qiyuan; Marks, Jeffrey R; Berchuck, Andrew; Lee, Janet M; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y; Kjaer, Susanne Kruger; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Budzilowska, Agnieszka; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A; Freedman, Matthew L; Monteiro, Alvaro N A; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D; Gayther, Simon A; Schildkraut, Joellen M

    2015-11-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.

  17. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder.

    PubMed

    Torres, Anthony R; Sweeten, Thayne L; Johnson, Randall C; Odell, Dennis; Westover, Jonna B; Bray-Ward, Patricia; Ward, David C; Davies, Christopher J; Thomas, Aaron J; Croen, Lisa A; Benson, Michael

    2016-01-01

    The "common variant-common disease" hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the "common variant-common disease" hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism over

  18. Drosophila melanogaster genes for U1 snRNA variants and their expression during development.

    PubMed Central

    Lo, P C; Mount, S M

    1990-01-01

    We have cloned and characterized a complete set of seven U1-related sequences from Drosophila melanogaster. These sequences are located at the three cytogenetic loci 21D, 82E, and 95C. Three of these sequences have been previously studied: one U1 gene at 21D which encodes the prototype U1 sequence (U1a), one U1 gene at 82E which encodes a U1 variant with a single nucleotide substitution (U1b), and a pseudogene at 82E. The four previously uncharacterized genes are another U1b gene at 82E, two additional U1a genes at 95C, and a U1 gene at 95C which encodes a new variant (U1c) with a distinct single nucleotide change relative to U1a. Three blocks of 5' flanking sequence similarity are common to all six full length genes. Using specific primer extension assays, we have observed that the U1b RNA is expressed in Drosophila Kc cells and is associated with snRNP proteins, suggesting that the U1b-containing snRNP particles are able to participate in the process of pre-mRNA splicing. We have also examined the expression throughout Drosophila development of the two U1 variants relative to the prototype sequence. The U1c variant is undetectable by our methods, while the U1b variant exhibits a primarily embryonic pattern reminiscent of the expression of certain U1 variants in sea urchin, Xenopus, and mouse. Images PMID:2124674

  19. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis.

    PubMed

    Haller, Gabe; Alvarado, David; Mccall, Kevin; Yang, Ping; Cruchaga, Carlos; Harms, Matthew; Goate, Alison; Willing, Marcia; Morcuende, Jose A; Baschal, Erin; Miller, Nancy H; Wise, Carol; Dobbs, Matthew B; Gurnett, Christina A

    2016-01-01

    Adolescent idiopathic scoliosis (AIS) is a complex inherited spinal deformity whose etiology has been elusive. While common genetic variants are associated with AIS, they explain only a small portion of disease risk. To explore the role of rare variants in AIS susceptibility, exome sequence data of 391 severe AIS cases and 843 controls of European ancestry were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level then by Gene Ontology terms. Novel non-synonymous/splice-site variants in extracellular matrix genes were significantly enriched in AIS cases compared with controls (P = 6 × 10(-9), OR = 1.7, CI = 1.4-2.0). Specifically, novel variants in musculoskeletal collagen genes were present in 32% (126/391) of AIS cases compared with 17% (146/843) of in-house controls and 18% (780/4300) of EVS controls (P = 1 × 10(-9), OR = 1.9, CI = 1.6-2.4). Targeted resequencing of six collagen genes replicated this association in combined 919 AIS cases (P = 3 × 10(-12), OR = 2.2, CI = 1.8-2.7) and revealed a highly significant single-gene association with COL11A2 (P = 6 × 10(-9), OR = 3.8, CI = 2.6-7.2). Importantly, AIS cases harbor mainly non-glycine missense mutations and lack the clinical features of monogenic musculoskeletal collagenopathies. Overall, our study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk.

  20. Long genes and genes with multiple splice variants are enriched in pathways linked to cancer and other multigenic diseases.

    PubMed

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2016-03-12

    The role of random mutations and genetic errors in defining the etiology of cancer and other multigenic diseases has recently received much attention. With the view that complex genes should be particularly vulnerable to such events, here we explore the link between the simple properties of the human genes, such as transcript length, number of splice variants, exon/intron composition, and their involvement in the pathways linked to cancer and other multigenic diseases. We reveal a substantial enrichment of cancer pathways with long genes and genes that have multiple splice variants. Although the latter two factors are interdependent, we show that the overall gene length and splicing complexity increase in cancer pathways in a partially decoupled manner. Our systematic survey for the pathways enriched with top lengthy genes and with genes that have multiple splice variants reveal, along with cancer pathways, the pathways involved in various neuronal processes, cardiomyopathies and type II diabetes. We outline a correlation between the gene length and the number of somatic mutations. Our work is a step forward in the assessment of the role of simple gene characteristics in cancer and a wider range of multigenic diseases. We demonstrate a significant accumulation of long genes and genes with multiple splice variants in pathways of multigenic diseases that have already been associated with de novo mutations. Unlike the cancer pathways, we note that the pathways of neuronal processes, cardiomyopathies and type II diabetes contain genes long enough for topoisomerase-dependent gene expression to also be a potential contributing factor in the emergence of pathologies, should topoisomerases become impaired.

  1. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding.

    PubMed

    Fager Ferrari, Marcus; Leinoe, Eva; Rossing, Maria; Norström, Eva; Strandberg, Karin; Steen Sejersen, Tobias; Qvortrup, Klaus; Zetterberg, Eva

    2017-04-11

    Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised platelet function. Therefore, we aimed to investigate platelet degranulation in patients heterozygous for variants in UNC13D, STX11 and STXBP2. During the work-up of patients referred to the Coagulation Unit, Skåne University Hospital, Malmö, Sweden and the Department of Hematology, Rigshospitalet, Copenhagen, Denmark due to bleeding tendencies, 12 patients harboring heterozygous variants in UNC13D, STX11 or STXBP2 were identified using targeted whole exome sequencing. Transmission electron microscopy (TEM) was used to assess the secretion of platelet dense granules following thrombin stimulation. Platelet degranulation, activation and aggregation were further assessed by flow cytometry (FC) and light transmission aggregometry (LTA) with lumi-aggregometry. In total, eight out of twelve (67%) patients showed impaired degranulation by at least one of the assays (TEM, FC and LTA). In the 12 patients, eight different heterozygous variants were identified. One variant was strongly associated with impaired degranulation, while four of the variants were associated with impaired granule secretion to a slightly lesser extent. One additional variant was found in six out of the twelve patients, and was associated with varying degrees of degranulation impairment. Accordingly, six out of the eight (75%) identified variants were associated with impaired platelet degranulation. Our results suggest that heterozygous variants in UNC13D, STX11 and STXBP2 are sufficient to cause platelet secretion defects resulting in increased bleeding.

  2. Associations of common variants in genes involved in metabolism and response to exogenous chemicals with risk of multiple myeloma

    PubMed Central

    Gold, Laura S.; De Roos, Anneclaire J.; Brown, Elizabeth E.; Lan, Qing; Milliken, Kevin; Davis, Scott; Chanock, Stephen J.; Zhang, Yawei; Severson, Richard; Zahm, Sheila H.; Zheng, Tongzhang; Rothman, Nat; Baris, Dalsu

    2009-01-01

    Background We examined risk of multiple myeloma (MM) associated with variants in genes involved in metabolism and response to exogenous chemicals [cytochrome P450 enzymes (CYP1B1, CYP2C9), epoxide hydrolase (EPHX1), paraoxonase 1 (PON1), arylhydrocarbon hydroxylase receptor (AHR), and NAD(P)H:quinone oxidoreductase (NQO1)]. Methods This study included 279 MM cases and 782 controls in a pooled analysis of two population-based case control studies. One common variant from each candidate gene was genotyped using DNA from blood or buccal cells. We estimated risk of MM associated with each genotype, controlling for race, gender, study site, and age, using odds ratios (OR) and 95% confidence intervals (CI). Results Evaluations of the CYP1B1 V432L variant (rs1056836) suggested increased risk of MM among persons with the CG and GG genotypes compared to the CC genotype [OR (95% CI) = 1.4 (1.0–2.0)]. Similar results were seen in analyses stratified by race and gender. We did not find any associations between MM and the CYP2C9, EPHX1, NQO1, or PON1 genes. Conclusions CYP1B1 activates chemicals such as polycyclic aromatic hydrocarbons and dioxins to create oxidized, reactive intermediates, and higher gene activity has been shown for the G allele. We conducted the largest analysis to date on MM and these genetic variants and our results provide preliminary evidence that variation in CYP1B1 may influence susceptibility to MM. PMID:19736056

  3. Cis and trans effects of human genomic variants on gene expression.

    PubMed

    Bryois, Julien; Buil, Alfonso; Evans, David M; Kemp, John P; Montgomery, Stephen B; Conrad, Donald F; Ho, Karen M; Ring, Susan; Hurles, Matthew; Deloukas, Panos; Davey Smith, George; Dermitzakis, Emmanouil T

    2014-07-01

    Gene expression is a heritable cellular phenotype that defines the function of a cell and can lead to diseases in case of misregulation. In order to detect genetic variations affecting gene expression, we performed association analysis of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with gene expression measured in 869 lymphoblastoid cell lines of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort in cis and in trans. We discovered that 3,534 genes (false discovery rate (FDR) = 5%) are affected by an expression quantitative trait locus (eQTL) in cis and 48 genes are affected in trans. We observed that CNVs are more likely to be eQTLs than SNPs. In addition, we found that variants associated to complex traits and diseases are enriched for trans-eQTLs and that trans-eQTLs are enriched for cis-eQTLs. As a variant affecting both a gene in cis and in trans suggests that the cis gene is functionally linked to the trans gene expression, we looked specifically for trans effects of cis-eQTLs. We discovered that 26 cis-eQTLs are associated to 92 genes in trans with the cis-eQTLs of the transcriptions factors BATF3 and HMX2 affecting the most genes. We then explored if the variation of the level of expression of the cis genes were causally affecting the level of expression of the trans genes and discovered several causal relationships between variation in the level of expression of the cis gene and variation of the level of expression of the trans gene. This analysis shows that a large sample size allows the discovery of secondary effects of human variations on gene expression that can be used to construct short directed gene regulatory networks.

  4. Cis and Trans Effects of Human Genomic Variants on Gene Expression

    PubMed Central

    Bryois, Julien; Buil, Alfonso; Evans, David M.; Kemp, John P.; Montgomery, Stephen B.; Conrad, Donald F.; Ho, Karen M.; Ring, Susan; Hurles, Matthew; Deloukas, Panos; Davey Smith, George; Dermitzakis, Emmanouil T.

    2014-01-01

    Gene expression is a heritable cellular phenotype that defines the function of a cell and can lead to diseases in case of misregulation. In order to detect genetic variations affecting gene expression, we performed association analysis of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with gene expression measured in 869 lymphoblastoid cell lines of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort in cis and in trans. We discovered that 3,534 genes (false discovery rate (FDR) = 5%) are affected by an expression quantitative trait locus (eQTL) in cis and 48 genes are affected in trans. We observed that CNVs are more likely to be eQTLs than SNPs. In addition, we found that variants associated to complex traits and diseases are enriched for trans-eQTLs and that trans-eQTLs are enriched for cis-eQTLs. As a variant affecting both a gene in cis and in trans suggests that the cis gene is functionally linked to the trans gene expression, we looked specifically for trans effects of cis-eQTLs. We discovered that 26 cis-eQTLs are associated to 92 genes in trans with the cis-eQTLs of the transcriptions factors BATF3 and HMX2 affecting the most genes. We then explored if the variation of the level of expression of the cis genes were causally affecting the level of expression of the trans genes and discovered several causal relationships between variation in the level of expression of the cis gene and variation of the level of expression of the trans gene. This analysis shows that a large sample size allows the discovery of secondary effects of human variations on gene expression that can be used to construct short directed gene regulatory networks. PMID:25010687

  5. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A.

    PubMed

    Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E

    2017-01-01

    Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy.

  6. Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes.

    PubMed

    Balasubramanian, Suganthi; Fu, Yao; Pawashe, Mayur; McGillivray, Patrick; Jin, Mike; Liu, Jeremy; Karczewski, Konrad J; MacArthur, Daniel G; Gerstein, Mark

    2017-08-29

    Variants predicted to result in the loss of function of human genes have attracted interest because of their clinical impact and surprising prevalence in healthy individuals. Here, we present ALoFT (annotation of loss-of-function transcripts), a method to annotate and predict the disease-causing potential of loss-of-function variants. Using data from Mendelian disease-gene discovery projects, we show that ALoFT can distinguish between loss-of-function variants that are deleterious as heterozygotes and those causing disease only in the homozygous state. Investigation of variants discovered in healthy populations suggests that each individual carries at least two heterozygous premature stop alleles that could potentially lead to disease if present as homozygotes. When applied to de novo putative loss-of-function variants in autism-affected families, ALoFT distinguishes between deleterious variants in patients and benign variants in unaffected siblings. Finally, analysis of somatic variants in >6500 cancer exomes shows that putative loss-of-function variants predicted to be deleterious by ALoFT are enriched in known driver genes.Variants causing loss of function (LoF) of human genes have clinical implications. Here, the authors present a method to predict disease-causing potential of LoF variants, ALoFT (annotation of Loss-of-Function Transcripts) and show its application to interpreting LoF variants in different contexts.

  7. Identifying the source of unknown microcystin genes and predicting microcystin variants by comparing genes within uncultured cyanobacterial cells.

    PubMed

    Allender, Christopher J; LeCleir, Gary R; Rinta-Kanto, Johanna M; Small, Randall L; Satchwell, Michael F; Boyer, Gregory L; Wilhelm, Steven W

    2009-06-01

    While multiple phylogenetic markers have been used in the culture-independent study of microcystin-producing cyanobacteria, in only a few instances have multiple markers been studied within individual cells, and in all cases these studies have been conducted with cultured isolates. Here, we isolate and evaluate large DNA fragments (>6 kb) encompassing two genes involved in microcystin biosynthesis (mcyA2 and mcyB1) and use them to identify the source of gene fragments found in water samples. Further investigation of these gene loci from individual cyanobacterial cells allowed for improved analysis of the genetic diversity within microcystin producers as well as a method to predict microcystin variants for individuals. These efforts have also identified the source of the novel mcyA genotype previously termed Microcystis-like that is pervasive in the Laurentian Great Lakes and they predict the microcystin variant(s) that it produces.

  8. Increased burden of deleterious variants in essential genes in autism spectrum disorder

    PubMed Central

    Kember, Rachel L.; Brown, Christopher D.; Bućan, Maja

    2016-01-01

    Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease. PMID:27956632

  9. Carrier re-sequencing reveals rare but benign variants in recessive deafness genes.

    PubMed

    He, Longxia; Pang, Xiuhong; Chen, Penghui; Wang, Xiaowen; Yang, Tao; Wu, Hao

    2017-09-12

    For recessive Mendelian disorders, determining the pathogenicity of rare, non-synonymous variants in known causative genes can be challenging without expanded pedigrees and/or functional analysis. In this study, we proposed to establish a database of rare but benign variants in recessive deafness genes by systematic carrier re-sequencing. As a pilot study, 30 heterozygous carriers of pathogenic variants for deafness were identified from unaffected family members of 18 deaf probands. The entire coding regions of the corresponding genes were re-sequenced in those carriers by targeted next-generation sequencing or Sanger sequencing. A total of 32 non-synonymous variants were identified in the normal-hearing carriers in trans with the pathogenic variant and therefore were classified as benign. Among them were five rare (minor allele frequencies less than 0.005) variants that had previously undefined, disputable or even misclassified function: p.A434T (c.1300 G > A) in SLC26A4, p.R266Q (c.797 G > A) in LOXHD1, p.K96Q (c.286 A > C) in MYO15A, p.T123N (c.368 C > A) in GJB2 and p.V1299I (c.797 G > A) in CDH23. Our results suggested that large scale carrier re-sequencing may be warranted to establish a database of rare but benign variants in causative genes in order to reduce false positive genetic diagnosis of recessive Mendelian disorders.

  10. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1

    PubMed Central

    Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844

  11. The PTPN22 C1858T gene variant is associated with proinsulin in new-onset type 1 diabetes

    PubMed Central

    2011-01-01

    Background The protein tyrosine phosphatase nonreceptor type 2 (PTPN22) has been established as a type 1 diabetes susceptibility gene. A recent study found the C1858T variant of this gene to be associated with lower residual fasting C-peptide levels and poorer glycemic control in patients with type 1 diabetes. We investigated the association of the C1858T variant with residual beta-cell function (as assessed by stimulated C-peptide, proinsulin and insulin dose-adjusted HbA1c), glycemic control, daily insulin requirements, diabetic ketoacidosis (DKA) and diabetes-related autoantibodies (IA-2A, GADA, ICA, ZnT8Ab) in children during the first year after diagnosis of type 1 diabetes. Methods The C1858T variant was genotyped in an international cohort of children (n = 257 patients) with newly diagnosed type 1 diabetes during 12 months after onset. We investigated the association of this variant with liquid-meal stimulated beta-cell function (proinsulin and C-peptide) and antibody status 1, 6 and 12 months after onset. In addition HbA1c and daily insulin requirements were determined 1, 3, 6, 9 and 12 months after diagnosis. DKA was defined at disease onset. Results A repeated measurement model of all time points showed the stimulated proinsulin level is significantly higher (22%, p = 0.03) for the T allele carriers the first year after onset. We also found a significant positive association between proinsulin and IA levels (est.: 1.12, p = 0.002), which did not influence the association between PTPN22 and proinsulin (est.: 1.28, p = 0.03). Conclusions The T allele of the C1858T variant is positively associated with proinsulin levels during the first 12 months in newly diagnosed type 1 diabetes children. PMID:21429197

  12. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo.

    PubMed

    Maurano, Matthew T; Haugen, Eric; Sandstrom, Richard; Vierstra, Jeff; Shafer, Anthony; Kaul, Rajinder; Stamatoyannopoulos, John A

    2015-12-01

    The function of human regulatory regions depends exquisitely on their local genomic environment and on cellular context, complicating experimental analysis of common disease- and trait-associated variants that localize within regulatory DNA. We use allelically resolved genomic DNase I footprinting data encompassing 166 individuals and 114 cell types to identify >60,000 common variants that directly influence transcription factor occupancy and regulatory DNA accessibility in vivo. The unprecedented scale of these data enables systematic analysis of the impact of sequence variation on transcription factor occupancy in vivo. We leverage this analysis to develop accurate models of variation affecting the recognition sites for diverse transcription factors and apply these models to discriminate nearly 500,000 common regulatory variants likely to affect transcription factor occupancy across the human genome. The approach and results provide a new foundation for the analysis and interpretation of noncoding variation in complete human genomes and for systems-level investigation of disease-associated variants.

  13. Peeling skin syndrome associated with novel variant in FLG2 gene.

    PubMed

    Alfares, Ahmed; Al-Khenaizan, Sultan; Al Mutairi, Fuad

    2017-09-08

    Peeling skin syndrome is a rare genodermatosis characterized by variably pruritic superficial generalized peeling of the skin with several genes involved until now little is known about the association between FLG2 and peeling skin syndrome. We describe multiple family members from a consanguineous Saudi family with peeling skin syndrome. Next Generation Sequencing identifies a cosegregating novel variant in FLG2 c.632C>G (p.Ser211*) as a likely etiology in this family. Here, we reported on the clinical manifestation of homozygous loss of function variant in FLG2 as a disease-causing gene for peeling skin syndrome and expand the dermatology findings. © 2017 Wiley Periodicals, Inc.

  14. NATRIURETIC PEPTIDE SYSTEM GENE VARIANTS ARE ASSOCIATED WITH VENTRICULAR DYSFUNCTION AFTER CORONARY ARTERY BYPASS GRAFTING

    PubMed Central

    Fox, Amanda A.; Collard, Charles D.; Shernan, Stanton K.; Seidman, Christine E.; Seidman, Jonathan G.; Liu, Kuang-Yu; Muehlschlegel, Jochen D.; Perry, Tjorvi E.; Aranki, Sary F.; Lange, Christoph; Herman, Daniel S.; Meitinger, Thomas; Lichtner, Peter; Body, Simon C.

    2009-01-01

    Background Ventricular dysfunction (VnD) after primary coronary artery bypass grafting is associated with increased hospital stay and mortality. Natriuretic peptides have compensatory vasodilatory, natriuretic and paracrine influences on myocardial failure and ischemia. We hypothesized that natriuretic peptide system gene variants independently predict risk of VnD after primary coronary artery bypass grafting. Methods 1164 patients undergoing primary coronary artery bypass grafting with cardiopulmonary bypass at two institutions were prospectively enrolled. After prospectively defined exclusions, 697 Caucasian patients (76 with VnD) were analyzed. VnD was defined as need for ≥ 2 new inotropes and/or new mechanical ventricular support after coronary artery bypass grafting. 139 haplotype-tagging SNPs within 7 genes (NPPA; NPPB; NPPC; NPR1; NPR2; NPR3; CORIN) were genotyped. SNPs univariately associated with VnD were entered into logistic regression models adjusting for clinical covariates predictive of VnD. To control for multiple comparisons, permutation analyses were conducted for all SNP associations. Results After adjusting for clinical covariates and multiple comparisons within each gene, seven NPPA/NPPB SNPs (rs632793, rs6668352, rs549596, rs198388, rs198389, rs6676300, rs1009592) were associated with decreased risk of postoperative VnD (additive model; odds ratios 0.44–0.55; P = 0.010–0.036), and four NPR3 SNPs (rs700923, rs16890196, rs765199, rs700926) were associated with increased risk of postoperative VnD (recessive model; odds ratios 3.89–4.28; P = 0.007–0.034). Conclusions Genetic variation within the NPPA/NPPB and NPR3 genes is associated with risk of VnD after primary coronary artery bypass grafting. Knowledge of such genotypic predictors may result in better understanding of the molecular mechanisms underlying postoperative VnD. PMID:19326473

  15. TOLLIP gene variant is associated with Plasmodium vivax malaria in the Brazilian Amazon.

    PubMed

    Brasil, Larissa W; Barbosa, Laila R A; de Araujo, Felipe J; da Costa, Allyson G; da Silva, Luan D O; Pinheiro, Suzana K; de Almeida, Anne C G; Kuhn, Andrea; Vitor-Silva, Sheila; de Melo, Gisely C; Monteiro, Wuelton M; de Lacerda, Marcus V G; Ramasawmy, Rajendranath

    2017-03-13

    Toll-interacting protein is a negative regulator in the TLR signaling cascade, particularly by impeding the TLR2 and, TLR4 pathway. Recently, TOLLIP was shown to regulate human TLR signaling pathways. Two common TOLLIP polymorphisms (rs5743899 and rs3750920) were reported to be influencing IL-6, TNF and IL-10 expression. In this study, TOLLIP variants were investigated to their relation to Plasmodium vivax malaria in the Brazilian Amazon. This cohort study was performed in the municipalities of Careiro and, Manaus, in Western Brazilian Amazon. A total of 319 patients with P. vivax malaria and, 263 healthy controls with no previous history of malaria were included in the study. Genomic DNA was extracted from blood collected on filter paper, using the QIAamp(®) DNA Mini Kit, according to the manufacturer's suggested protocol. The rs5743899 and rs3750920 polymorphisms of the TOLLIP gene were typed by PCR-RFLP. Homozygous individuals for the rs3750920 T allele gene had twice the risk of developing malaria when compared to individuals homozygous for the C allele (OR 2.0 [95% CI 1.23-3.07]; p = 0.004). In the dominant model, carriers the C allele indicates protection to malaria, carriers of the C allele were compared to individuals with the T allele, and the difference is highly significant (OR 0.52 [95% CI 0.37-0.76]; p = 0.0006). The linkage disequilibrium between the two polymorphisms was weak (r(2) = 0.037; D' = 0.27). These findings suggest that genes involved in the TLRs-pathway may be involved in malaria susceptibility. The association of the TOLLIP rs3750920 T allele with susceptibility to malaria further provides evidence that genetic variations in immune response genes may predispose individuals to malaria.

  16. Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure.

    PubMed

    Warstadt, Nicholus M; Dennis, Emily L; Jahanshad, Neda; Kohannim, Omid; Nir, Talia M; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Henders, Anjali K; Martin, Nicholas G; Whitfield, John B; Jack, Clifford R; Bernstein, Matt A; Weiner, Michael W; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2014-11-01

    Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4 years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4 Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3 years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain.

  17. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis.

    PubMed

    Wang, Zhenling; Hong, Yuan; Zou, Li; Zhong, Rong; Zhu, Beibei; Shen, Na; Chen, Wei; Lou, Jiao; Ke, Juntao; Zhang, Ti; Wang, Weipeng; Miao, Xiaoping

    2014-03-01

    Autism spectrum disorder (ASD) is a severe neurological disorder with a high degree of heritability. Reelin gene (RELN), which plays a crucial role in the migration and positioning of neurons during brain development, has been strongly posed as a candidate gene for ASD. Genetic variants in RELN have been investigated as risk factors of ASD in numerous epidemiologic studies but with inconclusive results. To clearly discern the effects of RELN variants on ASD, the authors conducted a meta-analysis integrating case-control and transmission disequilibrium test (TDT) studies published through 2001 to 2013. Odds ratios (ORs) with 95% confidence intervals were used to estimate the associations between three RELN variants (rs736707, rs362691, and GGC repeat variant) and ASD. In overall meta-analysis, the summary ORs for rs736707, rs362691, and GGC repeat variant were 1.11 [95% confidence interval (CI): 0.80-1.54], 0.69 (95% CI: 0.56-0.86), and 1.09 (95% CI: 0.97-1.23), respectively. Besides, positive result was also obtained in subgroup of broadly-defined ASD for rs362691 (OR = 0.67, 95% CI: 0.52-0.86). Our meta-analysis revealed that the RELN rs362691, rather than rs736707 or GGC repeat variant, might contribute significantly to ASD risk. © 2014 Wiley Periodicals, Inc.

  18. A functional variant in the UBE2B gene promoter is associated with idiopathic azoospermia.

    PubMed

    Mou, Lisha; Zhang, Qiang; Diao, Ruiying; Cai, Zhiming; Gui, Yaoting

    2015-07-30

    A variety of genetic variants lead to abnormal human spermatogenesis. The ubiquitin-conjugating enzyme E2B (UBE2B) plays a significant role in spermatogenesis as Ube2b-knockout male mice are infertile. In this study, we sequenced the exon and promoter region of UBE2B in 776 patients diagnosed with idiopathic azoospermia (IA) and 709 proven fertile men to examine whether UBE2B is involved in the pathogenesis of IA. In the exon region, two novel synonymous variants were detected in the patient group. In the promoter region, four known variants and four novel variants were identified in the patient group. Of the novel variants in the promoter region, three were located at the binding site of specificity protein 1 (SP1) transcription factor analyzed by TRANSFAC software. Luciferase assays demonstrated that one heterozygous variant (Chr5.133706925 A > G) inhibited the transcriptional regulation activity of SP1. A novel variant (Chr5.133706925 A > G) residing in the UBE2B gene promoter region confers a high risk for IA in a Chinese population. These results support a role for UBE2B in the pathogenesis of IA.

  19. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-09-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  20. Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants

    PubMed Central

    Duan, Jubao; Sanders, Alan R.; Moy, Winton; Drigalenko, Eugene I.; Brown, Eric C.; Freda, Jessica; Leites, Catherine; Göring, Harald H. H.; Gejman, Pablo V.

    2015-01-01

    We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms. PMID:26022996

  1. Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants.

    PubMed

    Duan, Jubao; Sanders, Alan R; Moy, Winton; Drigalenko, Eugene I; Brown, Eric C; Freda, Jessica; Leites, Catherine; Göring, Harald H H; Gejman, Pablo V

    2015-08-15

    We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms.

  2. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    PubMed

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M; Pistis, Giorgio; d'Adamo, Pio; Amin, Najaf; d'Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  3. A comprehensive analysis of mitochondrial genes variants and their association with antipsychotic-induced weight gain.

    PubMed

    Mittal, Kirti; Gonçalves, Vanessa F; Harripaul, Ricardo; Cuperfain, Ari B; Rollins, Brandi; Tiwari, Arun K; Zai, Clement C; Maciukiewicz, Malgorzata; Müller, Daniel J; Vawter, Marquis P; Kennedy, James L

    2017-09-01

    Antipsychotic Induced Weight Gain (AIWG) is a common and severe side effect of many antipsychotic medications. Mitochondria play a vital role for whole-body energy homeostasis and there is increasing evidence that antipsychotics modulate mitochondrial function. This study aimed to examine the role of variants in nuclear-encoded mitochondrial genes and the mitochondrial DNA (mtDNA) in conferring risk for AIWG. We selected 168 European-Caucasian individuals from the CATIE sample based upon meeting criteria of multiple weight measures while taking selected antipsychotics (risperidone, quetiapine or olanzapine). We tested the association of 670 nuclear-encoded mitochondrial genes with weight change (%) using MAGMA software. Thirty of these genes showed nominally significant P-values (<0.05). We were able to replicate the association of three genes, CLPB, PARL, and ACAD10, with weight change (%) in an independent prospectively assessed AIWG sample. We analyzed mtDNA variants in a subset of 74 of these individuals using next-generation sequencing. No common or rare mtDNA variants were found to be significantly associated with weight change (%) in our sample. Additionally, analysis of mitochondrial haplogroups showed no association with weight change (%). In conclusion, our findings suggest nuclear-encoded mitochondrial genes play a role in AIWG. Replication in larger sample is required to validate our initial report of mtDNA variants in AIWG. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Targeted next-generation sequencing reveals multiple deleterious variants in OPLL-associated genes

    PubMed Central

    Chen, Xin; Guo, Jun; Cai, Tao; Zhang, Fengshan; Pan, Shengfa; Zhang, Li; Wang, Shaobo; Zhou, Feifei; Diao, Yinze; Zhao, Yanbin; Chen, Zhen; Liu, Xiaoguang; Chen, Zhongqiang; Liu, Zhongjun; Sun, Yu; Du, Jie

    2016-01-01

    Ossification of the posterior longitudinal ligament of the spine (OPLL), which is characterized by ectopic bone formation in the spinal ligaments, can cause spinal-cord compression. To date, at least 11 susceptibility genes have been genetically linked to OPLL. In order to identify potential deleterious alleles in these OPLL-associated genes, we designed a capture array encompassing all coding regions of the target genes for next-generation sequencing (NGS) in a cohort of 55 unrelated patients with OPLL. By bioinformatics analyses, we successfully identified three novel and five extremely rare variants (MAF < 0.005). These variants were predicted to be deleterious by commonly used various algorithms, thereby resulting in missense mutations in four OPLL-associated genes (i.e., COL6A1, COL11A2, FGFR1, and BMP2). Furthermore, potential effects of the patient with p.Q89E of BMP2 were confirmed by a markedly increased BMP2 level in peripheral blood samples. Notably, seven of the variants were found to be associated with the patients with continuous subtype changes by cervical spinal radiological analyses. Taken together, our findings revealed for the first time that deleterious coding variants of the four OPLL-associated genes are potentially pathogenic in the patients with OPLL. PMID:27246988

  5. Cystinuria Associated with Different SLC7A9 Gene Variants in the Cat

    PubMed Central

    Raj, Karthik; Osborne, Carl; Giger, Urs

    2016-01-01

    Cystinuria is a classical inborn error of metabolism characterized by a selective proximal renal tubular defect affecting cystine, ornithine, lysine, and arginine (COLA) reabsorption, which can lead to uroliths and urinary obstruction. In humans, dogs and mice, cystinuria is caused by variants in one of two genes, SLC3A1 and SLC7A9, which encode the rBAT and bo,+AT subunits of the bo,+ basic amino acid transporter system, respectively. In this study, exons and flanking regions of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA of cats (Felis catus) with COLAuria and cystine calculi. Relative to the Felis catus-6.2 reference genome sequence, DNA sequences from these affected cats revealed 3 unique homozygous SLC7A9 missense variants: one in exon 5 (p.Asp236Asn) from a non-purpose-bred medium-haired cat, one in exon 7 (p.Val294Glu) in a Maine Coon and a Sphinx cat, and one in exon 10 (p.Thr392Met) from a non-purpose-bred long-haired cat. A genotyping assay subsequently identified another cystinuric domestic medium-haired cat that was homozygous for the variant originally identified in the purebred cats. These missense variants result in deleterious amino acid substitutions of highly conserved residues in the bo,+AT protein. A limited population survey supported that the variants found were likely causative. The remaining 2 sequenced domestic short-haired cats had a heterozygous variant at a splice donor site in intron 10 and a homozygous single nucleotide variant at a branchpoint in intron 11 of SLC7A9, respectively. This study identifies the first SLC7A9 variants causing feline cystinuria and reveals that, as in humans and dogs, this disease is genetically heterogeneous in cats. PMID:27404572

  6. Association between genetic variants of the clock gene and obesity and sleep duration.

    PubMed

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  7. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease

    DOE PAGES

    Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.; ...

    2016-09-29

    Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less

  8. Dual Role of the Histone Variant H2A.Z in Transcriptional Regulation of Stress-Response Genes.

    PubMed

    Sura, Weronika; Kabza, Michał; Karlowski, Wojciech M; Bieluszewski, Tomasz; Kus-Slowinska, Marta; Pawełoszek, Łukasz; Sadowski, Jan; Ziolkowski, Piotr A

    2017-04-01

    The influence of the histone variant H2A.Z on transcription remains a long-standing conundrum. Here, by analyzing the actin-related protein6 mutant, which is impaired in H2A.Z deposition, and by H2A.Z profiling in stress conditions, we investigated the impact of this histone variant on gene expression in Arabidopsis thaliana We demonstrate that the arp6 mutant exhibits anomalies in response to osmotic stress. Indeed, stress-responsive genes are overrepresented among those hyperactive in arp6. In wild-type plants, these genes exhibit high levels of H2A.Z in the gene body. Furthermore, we observed that in drought-responsive genes, levels of H2A.Z in the gene body correlate with transcript levels. H2A.Z occupancy, but not distribution, changes in parallel with transcriptional changes. In particular, we observed H2A.Z loss upon transcriptional activation and H2A.Z gain upon repression. These data suggest that H2A.Z has a repressive role in transcription and counteracts unwanted expression in noninductive conditions. However, reduced activity of some genes in arp6 is associated with distinct behavior of H2A.Z at their +1 nucleosome, which exemplifies the requirement of this histone for transcription. Our data support a model where H2A.Z in gene bodies has a strong repressive effect on transcription, whereas in +1 nucleosomes, it is important for maintaining the activity of some genes. © 2017 ASPB.

  9. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    PubMed Central

    2010-01-01

    Background CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs), it represents an attractive candidate gene for studies into colorectal cancer susceptibility. Methods We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls. Results The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect. Conclusion Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations. PMID:20701755

  10. Evaluation of PARKIN gene variants in West Bengal Parkinson's disease patients.

    PubMed

    Sanyal, Jaya; Jana, Arpita; Ghosh, Epsita; Banerjee, Tapas K; Chakraborty, Durga P; Rao, Vadlamudi R

    2015-09-01

    Little information is available regarding the molecular pathogenesis of Parkinson's disease (PD) among the Bengalee population in West Bengal, India. This study was undertaken to determine the contribution of Parkin variants in well-defined ethnically identical Bengalee population of India and further to describe the clinical spectrum associated with these mutations. A total of 150 unrelated PD patients and 150 controls were recruited for the study. The entire cohort was screened for mutations in all the 12 exons of the gene along with flanking splice junctions by polymerase chain reaction and DNA sequencing. Eleven nucleotide variants including two novel changes were detected. Cerebrospinal fluid (CSF) parkin protein expression of the novel mutation, Val186Ile (found in heterozygous condition in one patient only) was almost 2.7 folds lower than the controls and other PD patients. Molecular characterization of polymorphisms Ser167Asn and Val380Leu depicted that homozygous Ser167 and Val380 are significantly associated with the disease. We did not find any linkage disequilibrium among the SNPs, the low r(2) for every pair of single-nucleotide polymorphisms (SNPs) indicated that these SNPs cannot be tagged by each other. Another novel intronic change, IVS8+48C>T was present in almost equally in PD patients and controls. Among the ethnically defined Bengalee population of West Bengal, occurrence of Parkin mutation is 4% (6/150) of the PD patient pool supported with decreased folds of expression of CSF PARKIN protein. Parkin polymorphisms, Ser167 and Val380 are risk factors for the progression of the disease, and their frequency is greatly influenced by ethnic origin.

  11. Community acquired pneumonia: genetic variants influencing systemic inflammation.

    PubMed

    Ferrer Agüero, J M; Millán, S; Rodríguez de Castro, F; Martín-Loeches, I; Solé Violán, J

    2014-01-01

    The inflammatory response depends on several factors, including pathogenicity and duration of the stimulus, and also on the balance between inflammatory and antiinflammatory response. Several studies have presented evidence of the importance of genetic factors in severe infections. The innate immune response prevents the invasion and spread of pathogens during the first hours after infection. Each of the different processes involved in innate immunity may be affected by genetic polymorphisms, which can result in susceptibility or resistance to infection. The results obtained in the different studies do not irrefutably prove the role or function of a gene in the pathogenesis of respiratory infections. However, they can generate new hypotheses, suggest new candidate genes based on their role in the inflammatory response, and constitute a first step in understanding the underlying genetic factors.

  12. Positive correlation between variants of lipid metabolism-related genes and coronary heart disease

    PubMed Central

    ZHANG, LI-NA; LIU, PAN-PAN; ZHOU, JIANQING; HUANG, R. STEPHANIE; YUAN, FANG; FEI, LI-JUAN; HUANG, YI; XU, LIMIN; HAO, LING-MEI; QIU, XU-JUN; LE, YANPING; YANG, XI; XU, WEIFENG; HUANG, XIAOYAN; YE, MENG; LIAN, JIANGFANG; DUAN, SHIWEI

    2013-01-01

    Four gene variants related to lipid metabolism (including the rs562338 and rs503662 variants of the APOB gene, the rs7767084 variant of the LPA gene and the rs2246942 variant of the LIPA gene) have been shown to be associated with coronary heart disease (CHD). The aim of the present study was to assess their association with CHD in the Han Chinese population and to assess the contribution of these gene variants to CHD. Using the standardized coronary angiography method, we enrolled 290 CHD patients and 193 non-CHD patients as non-CHD controls from Lihuili Hospital (Ningbo, China). In addition, we recruited 330 unrelated healthy volunteers as healthy controls from the Xi Men Community (Ningbo, China). Our results demonstrated that the rs503662 and rs562338 variants of the APOB gene were extremely rare in the Han Chinese population (minor allele frequency <1%). Genotype rs2246942-GG of the LIPA gene was associated with an increased risk of CHD [CHD cases versus healthy controls: P=0.04; odds ratio (OR)=1.63; 95% confidence interval (CI)=1.02–2.60). Genotype rs7767084-CC of the LPA gene was identified as a protective factor against CHD in females (CHD cases versus non-CHD controls: P=0.04, OR=0.21; CHD cases versus healthy controls: P=0.02, OR=0.21). The results of our meta-analysis indicated that rs7767084 was not associated with a high risk of CHD (P=0.83; combined OR=0.93; 95% CI=0.47–1.85). In the present study, two single nucleotide polymorphisms (SNPs) of genes involved in lipid metabolism (rs2246942 and rs7767084) were identified to be significantly associated with CHD in the Han Chinese population. Specifically, rs2246942-GG of the LIPA gene was a risk factor for CHD, while rs7767084-CC of the LPA gene was a protective factor against CHD in females. However, our meta-analysis indicated that rs7767084 is not associated with a higher risk of CHD. PMID:23653095

  13. Novel splice variants associated with one of the zebrafish dnmt3 genes

    PubMed Central

    Smith, Tamara HL; Dueck, Christine C; Mhanni, Aizeddin A; McGowan, Ross A

    2005-01-01

    Background DNA methylation and the methyltransferases are known to be important in vertebrate development and this may be particularly true for the Dnmt3 family of enzymes because they are thought to be the de novo methyltransferases. Mammals have three Dnmt3 genes; Dnmt3a, Dnmt3b, and Dnmt3L, two of which encode active enzymes and one of which produces an inactive but necessary cofactor. However, due to multiple promoter use and alternative splicing there are actually a number of dnmt3 isoforms present. Six different dnmt3 genes have recently been identified in zebrafish. Results We have examined two of the dnmt3 genes in zebrafish that are located in close proximity in the same linkage group and we find that the two genes are more similar to each other than they are to the other zebrafish dnmt3 genes. We have found evidence for the existence of several different splice variants and alternative splice sites associated with one of the two genes and have examined the relative expression of these genes/variants in a number of zebrafish developmental stages and tissues. Conclusion The similarity of the dnmt3-1 and dnmt3-2 genes suggests that they arose due to a relatively recent gene duplication event. The presence of alternative splice and start sites, reminiscent of what is seen with the human DNMT3s, demonstrates strong parallels between the control/function of these genes across vertebrate species. The dynamic expression levels of these genes/variants suggest that they may well play a role in early development and this is particularly true for dnmt3-2-1 and dnmt3-1. dnmt3-2-1 is the predominantly expressed form prior to zygotic gene activation whereas dnmt3-1 predominates post zygotic gene activation suggesting a distinct developmental role for each. PMID:16236173

  14. Common variants of xeroderma pigmentosum genes and prostate cancer risk.

    PubMed

    Mirecka, Aneta; Paszkowska-Szczur, Katarzyna; Scott, Rodney J; Górski, Bohdan; van de Wetering, Thierry; Wokołorczyk, Dominika; Gromowski, Tomasz; Serrano-Fernandez, Pablo; Cybulski, Cezary; Kashyap, Aniruddh; Gupta, Satish; Gołąb, Adam; Słojewski, Marcin; Sikorski, Andrzej; Lubiński, Jan; Dębniak, Tadeusz

    2014-08-10

    The genetic basis of prostate cancer (PC) is complex and appears to involve multiple susceptibility genes. A number of studies have evaluated a possible correlation between several NER gene polymorphisms and PC risk, but most of them evaluated only single SNPs among XP genes and the results remain inconsistent. Out of 94 SNPs located in seven XP genes (XPA-XPG) a total of 15 SNPs were assayed in 720 unselected patients with PC and compared to 1121 healthy adults. An increased risk of disease was associated with the XPD SNP, rs1799793 (Asp312Asn) AG genotype (OR=2.60; p<0.001) and with the AA genotype (OR=531; p<0.0001) compared to the control population. Haplotype analysis of XPD revealed one protective haplotype and four associated with an increased disease risk, which showed that the A allele (XPD rs1799793) appeared to drive the main effect on promoting prostate cancer risk. Polymorphism in XPD gene appears to be associated with the risk of prostate cancer.

  15. cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes.

    PubMed

    Li, Mulin Jun; Li, Miaoxin; Liu, Zipeng; Yan, Bin; Pan, Zhicheng; Huang, Dandan; Liang, Qian; Ying, Dingge; Xu, Feng; Yao, Hongcheng; Wang, Panwen; Kocher, Jean-Pierre A; Xia, Zhengyuan; Sham, Pak Chung; Liu, Jun S; Wang, Junwen

    2017-03-16

    It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant's regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

  16. [Analysis of the association of interleukin 4 and interleukin 10 gene variants with basic personality traits].

    PubMed

    Golimbet, V E; Alfimova, M V; Korovaitseva, G I; Lezheiko, T V

    2016-01-01

    There is growing evidence that serum levels of various inflammation markers are associated with personality traits. However, only few studies investigated the link between genetic variants of cytokine encoding genes and psychological characteristics. In this study, we examined genotypes in 297 individuals to assess the association between common variants of interleukin 4 (IL-4) and interleukin 10 (IL-10) genes and basic personality traits of extraversion and neuroticism, measured using the Eysenck Personality Questionnaire (EPQ). We found that, in homozygous female carriers of high expression alleles Т (IL-4 C-589T) and G (IL-10 G-1082A), neuroticism scores were higher (p = 0.045 and p = 0.08, respectively). In turn, extraversion scores were significantly higher in both male and female carriers of heterozygous variants CT and GA (p = 0.01). Our results are in accordance with the behavioral immune system hypothesis, and the general paradigm on the role of personality traits in health and longevity.

  17. Expression of splice variants of mts1 gene in normal and neoplastic human tissues

    SciTech Connect

    Ambartsumyan, N.S. |; Grigorian, M.S.; Lukanidin, E.M.

    1995-09-01

    Data on cloning of cDNA corresponding to human mts1 gene transcripts are presented. By comparing nucleotide sequences of the genomic DNA clone and cDNA of mts1, it was shown that human osteosarcoma OHS cells contain two alternative splice variants of mts1 transcripts. Alternative splicing occurs in the 5{prime}-untranslated region of the mts1 pre-mRNA. Both splice variants, hu-mts1 and hu-mts1(var), demonstrate similar stability in the cells, and each contains one open reading frame for the MTS1 protein. However, the two types of transcripts are translated with different effectiveness. The level of transcription of mts1 splice variants in different normal and neoplastic tissues and cell lines varies significantly. The role of alternative splicing as the mechanism responsible for posttranscriptional regulation of mts1 gene expression is discussed. 31 refs., 5 figs.

  18. Role of 2 common variants of 5HT2A gene in medication overuse headache.

    PubMed

    Terrazzino, Salvatore; Sances, Grazia; Balsamo, Francesca; Viana, Michele; Monaco, Francesco; Bellomo, Giorgio; Martignoni, Emilia; Tassorelli, Cristina; Nappi, Giuseppe; Canonico, Pier Luigi; Genazzani, Armando A

    2010-11-01

    The aim of the present study was to evaluate a possible involvement of 2 polymorphisms of the serotonin 5HT2A receptor gene (A-1438G and C516T) as risk factors for medication overuse headache (MOH) and whether the presence of these polymorphic variants might determine differences within MOH patients in monthly drug consumption. Despite a growing scientific interest in the mechanisms underlying the pathophysiology of MOH, few studies have focused on the role of genetics in the development of the disease, as well as on the genetic determinants of the inter-individual variability in the number of drug doses taken per month. Our study was performed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism on genomic DNA extracted from peripheral blood of 227 MOH patients and 312 control subjects. Genotype-specific risks were estimated as odds ratios with associated 95% confidence intervals by unconditional logistic regression and adjusted for age and gender. A stepwise multiple linear regression analysis was employed to identify significant predictors of the number of drug doses taken per month. No significant association was found between 5HT2A A and 1438G and C516T gene polymorphisms and MOH risk. In contrast, a higher consumption of monthly drug doses was observed among 516T 5HT2A carriers (median 50, range 13-120) compared to 516CC patients (median 30, range 12-128) (Mann-Whitney U-test, P = .018). In the stepwise multiple regression analysis, C516T 5HT2A polymorphism (P = .018) and class of overused drug (P = .047) emerged as significant, independent predictors of the monthly drug consumption in MOH patients. Although our results do not support a major role of the A-1438G and C516T polymorphic variants of the 5HT2A gene in the susceptibility of MOH, our findings support an influence of the C516T polymorphism on the number of symptomatic drug doses taken and, possibly, on the drug-seeking behavior in these patients. © 2010 American

  19. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    PubMed Central

    Torres, Anthony R.; Sweeten, Thayne L.; Johnson, Randall C.; Odell, Dennis; Westover, Jonna B.; Bray-Ward, Patricia; Ward, David C.; Davies, Christopher J.; Thomas, Aaron J.; Croen, Lisa A.; Benson, Michael

    2016-01-01

    The “common variant—common disease” hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the “common variant—common disease” hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in

  20. Cholelithiasis in Patients with Gaucher Disease type 1: Risk Factors and the Role of ABCG5/ABCG8 Gene Variants.

    PubMed

    Zimmermann, Anca; Popp, Radu A; Al-Khzouz, Camelia; Bucerzan, Simona; Naşcu, Ioana; Leucuta, Daniel; Galle, Peter R; Grigorescu-Sido, Paula

    2016-12-01

    Patients with Gaucher disease type 1 (GD1) show an altered lipid profile and a certain degree of insulin resistance, which might contribute to cholelithiasis (CL) and could possibly be associated with ABCG5/ABCG8 gene variants. We aimed to investigate the prevalence of CL in Caucasian adult patients with GD1 and the possible risk factors, including gene variants of the ABCG5/ABCG8 genes. 61 Caucasian patients with GD1 (38 female/23male), aged 18-62 years and 61 healthy subjects matched for age, gender and BMI, without CL, for comparison of lipid profiles. Data before start of enzyme replacement therapy (ERT) were recorded: clinical, haematological, severity parameters, splenectomy, genotype. Fasting lipid profiles before ERT, glycemia, insulinaemia, HOMA-IR at the last visit were documented. Genotyping for the gene variants D19H, Y54C, T400K, A632V (ABCG8); Q604E (ABCG5) was performed. CL occurred in 45.9% of patients. Risk factors were: age, family history of CL, higher BMI values, LDL-cholesterol (LDL-C), disease severity, splenectomy. A specific dyslipidemia was found in patients vs. controls. Total serum cholesterol (TC) and LDL-C were higher in patients with CL than in those without; no obvious influence of insulin-resistance to lithogenesis was found. Patients with the GG genotype of D19H and the CC genotype of T400K (ABCG8 gene) had significantly higher levels of TC and LDL-C. Patients with GD1 showed an increased prevalence of CL, which was associated with common and disease-specific risk factors. Starting ERT soon after clinical onset and avoiding splenectomy might reduce the risk of CL in GD1.

  1. Unique frequencies of HFE gene variants in Roma/Gypsies.

    PubMed

    Gabriková, Dana; Bernasovská, Jarmila; Mačeková, Soňa; Bôžiková, Alexandra; Bernasovský, Ivan; Bališinová, Alena; Sovičová, Adriana; Behulová, Regína; Petrejčíková, Eva; Soták, Miroslav; Boroňová, Iveta

    2012-05-01

    The aim of this study was to assess the frequencies of three hemochromatosis gene (HFE) mutations in ethnic Roma/Gypsies in Slovakia. A cohort of 367 individuals representing general population and not preselected for health status was genotyped by TaqMan real-time PCR assay for C282Y, H63D and S65C mutations in HFE gene. A unique genetic profile was revealed: C282Y is found in the highest frequency of all Central European countries (4.90%), while the frequency of H63D mutation (4.09%) is lower than any reported in Europe so far. S65C mutation was not present in the cohort. These mutation frequencies can be explained rather by gene influx and genetic isolation than by genetic inheritance from a former Roma/Gypsy homeland.

  2. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants

    SciTech Connect

    Shaw, G.M.; Wasserman, C.R.; O`Malley, C.D.

    1996-03-01

    Results of studies determine whether women who smoke during early pregnancy are at increased risk of delivering infants with orofacial clefts have been mixed, and recently a gene-environment interaction between maternal smoking, transforming growth factor-alpha (TGFa), and clefting has been reported. Using a large population-based case-control study, we investigated whether parental periconceptional cigarette smoking was associated with an increased risk for having offspring with orofacial clefts. We also investigated the influence of genetic variation of the TGFa locus on the relation between smoking and clefting. Parental smoking information was obtained from telephone interviews with mothers of 731 (84.7% of eligible) orofacial cleft case infants and with mothers of 734 (78.2%) nonmalformed control infants. DNA was obtained from newborn screening blood spots and genotyped for the allelic variants of TGFa. We found that risks associated with maternal smoking were most elevated for isolated cleft lip with or without cleft palate, (odds ratio 2.1 [95% confidence interval 1.3-3.6]) and for isolated cleft palate (odds ratio 2.2 [1.1-4.5]) when mothers smoked {ge} 20 cigarrettes/d. These risks for white infants ranged from 3-fold to 11-fold across phenotypic groups. Paternal smoking was not associated with clefting among the offspring of nonsmoking mothers, and passive smoke exposures were associated with at most slightly increased risks. This study offers evidence that the risk for orofacial clefting in infants may be influenced by maternal smoke exposures alone as well as in combination (gene-environment interaction) with the presence of the uncommon TGFa allele. 56 refs., 5 tabs.

  3. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    PubMed Central

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  4. Common variants in Mendelian kidney disease genes and their association with renal function.

    PubMed

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  5. Pharmacodynamic Impact of Carboxylesterase 1 Gene Variants in Patients with Congestive Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Bie, Peter; Ferrero, Laura; Bjerre, Ditte; Bruun, Niels E.; Egfjord, Martin; Rasmussen, Henrik B.; Hansen, Peter R.

    2016-01-01

    Background Variation in the carboxylesterase 1 gene (CES1) may contribute to the efficacy of ACEIs. Accordingly, we examined the impact of CES1 variants on plasma angiotensin II (ATII)/angiotensin I (ATI) ratio in patients with congestive heart failure (CHF) that underwent ACEI dose titrations. Five of these variants have previously been associated with drug response or increased CES1 expression, i.e., CES1 copy number variation, the variant of the duplicated CES1 gene with high transcriptional activity, rs71647871, rs2244613, and rs3815583. Additionally, nine variants, representatives of CES1Var, and three other CES1 variants were examined. Methods Patients with CHF, and clinical indication for ACEIs were categorized according to their CES1 genotype. Differences in mean plasma ATII/ATI ratios between genotype groups after ACEI dose titration, expressed as the least square mean (LSM) with 95% confidence intervals (CIs), were assessed by analysis of variance. Results A total of 200 patients were recruited and 127 patients (63.5%) completed the study. The mean duration of the CHF drug dose titration was 6.2 (SD 3.6) months. After ACEI dose titration, there was no difference in mean plasma ATII/ATI ratios between subjects with the investigated CES1 variants, and only one previously unexplored variation (rs2302722) qualified for further assessment. In the fully adjusted analysis of effects of rs2302722 on plasma ATII/ATI ratios, the difference in mean ATII/ATI ratio between the GG genotype and the minor allele carriers (GT and TT) was not significant, with a relative difference in LSMs of 0.67 (95% CI 0.43–1.07; P = 0.10). Results of analyses that only included enalapril-treated patients remained non-significant after Bonferroni correction for multiple parallel comparisons (difference in LSM 0.60 [95% CI 0.37–0.98], P = 0.045). Conclusion These findings indicate that the included single variants of CES1 do not significantly influence plasma ATII/ATI ratios in CHF

  6. Association of adenovirus 36 infection with obesity-related gene variants in adolescents.

    PubMed

    Dušátková, L; Zamrazilová, H; Aldhoon Hainerová, I; Atkinson, R L; Sedláčková, B; Lee, Z P; Včelák, J; Bendlová, B; Kunešová, M; Hainer, V

    2015-01-01

    Both, common gene variants and human adenovirus 36 (Adv36) are involved in the pathogenesis of obesity. The potential relationship between these two pathogenic factors has not yet been investigated. The aim of our study was to examine the association of obesity susceptibility loci with Adv36 status. Genotyping of ten gene variants (in/near TMEM18, SH2B1, KCTD15, PCSK1, BDNF, SEC16B, MC4R, FTO) and analysis of Adv36 antibodies was performed in 1,027 Czech adolescents aged 13.0-17.9 years. Variants of two genes (PCSK1 and BDNF) were associated with Adv36 seropositivity. A higher prevalence of Adv36 antibody positivity was observed in obesity risk allele carriers of PCSK1 rs6232, rs6235 and BDNF rs4923461 vs. non-carriers (chi(2)=6.59, p=0.010; chi(2)=7.56, p=0.023 and chi(2)=6.84, p=0.033, respectively). The increased risk of Adv36 positivity was also found in PCSK1 variants: rs6232 (OR=1.67, 95 % CI 1.11-2.49, p=0.016) and rs6235 (OR=1.34, 95 % CI 1.08-1.67, p=0.010). PCSK1 rs6232 and BDNF rs925946 variants were closely associated with Adv36 status in boys and girls, respectively (chi(2)=5.09, p=0.024; chi(2)=7.29, p=0.026). Furthermore, PCSK1 rs6235 risk allele was related to Adv36 seropositivity (chi(2)=6.85, p=0.033) in overweight/obese subgroup. In conclusion, our results suggest that obesity risk variants of PCSK1 and BDNF genes may be related to Adv36 infection.

  7. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression.

    PubMed

    Soldner, Frank; Stelzer, Yonatan; Shivalila, Chikdu S; Abraham, Brian J; Latourelle, Jeanne C; Barrasa, M Inmaculada; Goldmann, Johanna; Myers, Richard H; Young, Richard A; Jaenisch, Rudolf

    2016-05-05

    Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.

  8. Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium

    PubMed Central

    Fedorowski, Artur; Franceschini, Nora; Brody, Jennifer; Liu, Chunyu; Verwoert, Germaine C.; Boerwinkle, Eric; Couper, David; Rice, Kenneth M.; Rotter, Jerome I.; Mattace-Raso, Francesco; Uitterlinden, Andre; Hofman, Albert; Almgren, Peter; Sjögren, Marketa; Hedblad, Bo; Larson, Martin G.; Newton-Cheh, Christopher; Wang, Thomas J.; Rose, Kathryn M.; Psaty, Bruce M.; Levy, Daniel; Witteman, Jacqueline; Melander, Olle

    2012-01-01

    Aims Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown. Methods and results A total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8%) met the diagnostic criteria for OH (systolic/diastolic BP drop ≥20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95% confidence interval: 0.90, 0.85–0.96; P = 0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.75–0.95; P = 0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.87–0.98; P= 0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.02–1.24; P = 0.02, rs198358: 1.10, 1.01–1.20; P = 0.04, and rs5068: 1.22, 1.04–1.43; P = 0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P= 0.04). Conclusion The overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components. PMID:22504314

  9. Telomere structure and maintenance gene variants and risk of five cancer types.

    PubMed

    Karami, Sara; Han, Younghun; Pande, Mala; Cheng, Iona; Rudd, James; Pierce, Brandon L; Nutter, Ellen L; Schumacher, Fredrick R; Kote-Jarai, Zsofia; Lindstrom, Sara; Witte, John S; Fang, Shenying; Han, Jiali; Kraft, Peter; Hunter, David J; Song, Fengju; Hung, Rayjean J; McKay, James; Gruber, Stephen B; Chanock, Stephen J; Risch, Angela; Shen, Hongbing; Haiman, Christopher A; Boardman, Lisa; Ulrich, Cornelia M; Casey, Graham; Peters, Ulrike; Amin Al Olama, Ali; Berchuck, Andrew; Berndt, Sonja I; Bezieau, Stephane; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Caporaso, Neil; Chan, Andrew T; Chang-Claude, Jenny; Christiani, David C; Cunningham, Julie M; Easton, Douglas; Eeles, Rosalind A; Eisen, Timothy; Gala, Manish; Gallinger, Steven J; Gayther, Simon A; Goode, Ellen L; Grönberg, Henrik; Henderson, Brian E; Houlston, Richard; Joshi, Amit D; Küry, Sébastien; Landi, Mari T; Le Marchand, Loic; Muir, Kenneth; Newcomb, Polly A; Permuth-Wey, Jenny; Pharoah, Paul; Phelan, Catherine; Potter, John D; Ramus, Susan J; Risch, Harvey; Schildkraut, Joellen; Slattery, Martha L; Song, Honglin; Wentzensen, Nicolas; White, Emily; Wiklund, Fredrik; Zanke, Brent W; Sellers, Thomas A; Zheng, Wei; Chatterjee, Nilanjan; Amos, Christopher I; Doherty, Jennifer A

    2016-12-15

    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10(-5) ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk. © 2016 UICC.

  10. A Common Variant in the PTPN11 Gene Contributes to the Risk of Tetralogy of Fallot

    PubMed Central

    Goodship, Judith A.; Hall, Darroch; Topf, Ana; Mamasoula, Chrysovalanto; Griffin, Helen; Rahman, Thahira J.; Glen, Elise; Tan, Huay; Doza, Julian Palomino; Relton, Caroline L.; Bentham, Jamie; Bhattacharya, Shoumo; Cosgrove, Catherine; Brook, David; Granados-Riveron, Javier; Bu’Lock, Frances A.; O’Sullivan, John; Stuart, A. Graham; Parsons, Jonathan; Cordell, Heather J.; Keavney, Bernard

    2015-01-01

    Background Tetralogy of Fallot (TOF) is the commonest cyanotic form of congenital heart disease. In 80% of cases, TOF behaves as a complex genetic condition exhibiting significant heritability. As yet, no common genetic variants influencing TOF risk have been robustly identified. Methods and Results Two hundred and seven haplotype-tagging single nucleotide polymorphisms in 22 candidate genes were genotyped in a test cohort comprising 362 nonsyndromic British white patients with TOF together with 717 unaffected parents of patients and 183 unrelated healthy controls. Single nucleotide polymorphisms with suggestive evidence of association in the test cohort (P<0.01) were taken forward for genotyping in an independent replication cohort comprising 392 cases of TOF, 218 unaffected parents of patients, and 1319 controls. Significant association was observed for 1 single nucleotide polymorphism, rs11066320 in the PTPN11 gene, in both the test and the replication cohort. Genotype at rs11066320 was associated with a per-allele odds ratio of 1.34 (95% confidence interval [CI], 1.19 to 1.52; P=2.9×10−6) in the total cohort of TOF cases and controls; this remained highly significant after Bonferroni correction for 207 analyses (corrected P=0.00061). Genotype at rs11066320 was responsible for a population-attributable risk of TOF of approximately 10%. Conclusions Common variation in the linkage disequilibrium block including the PTPN11 gene contributes to the risk of nonsyndromic TOF. Rare mutations in PTPN11 are known to cause the autosomal dominant condition Noonan syndrome, which includes congenital heart disease, by upregulating Ras/mitogen-activated protein kinase (MAPK) signaling. Our results suggest a role for milder perturbations in PTPN11 function in sporadic, nonsyndromic congenital heart disease. PMID:22503907

  11. A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot.

    PubMed

    Goodship, Judith A; Hall, Darroch; Topf, Ana; Mamasoula, Chrysovalanto; Griffin, Helen; Rahman, Thahira J; Glen, Elise; Tan, Huay; Palomino Doza, Julian; Relton, Caroline L; Bentham, Jamie; Bhattacharya, Shoumo; Cosgrove, Catherine; Brook, David; Granados-Riveron, Javier; Bu'Lock, Frances A; O'Sullivan, John; Stuart, A Graham; Parsons, Jonathan; Cordell, Heather J; Keavney, Bernard

    2012-06-01

    Tetralogy of Fallot (TOF) is the commonest cyanotic form of congenital heart disease. In 80% of cases, TOF behaves as a complex genetic condition exhibiting significant heritability. As yet, no common genetic variants influencing TOF risk have been robustly identified. Two hundred and seven haplotype-tagging single nucleotide polymorphisms in 22 candidate genes were genotyped in a test cohort comprising 362 nonsyndromic British white patients with TOF together with 717 unaffected parents of patients and 183 unrelated healthy controls. Single nucleotide polymorphisms with suggestive evidence of association in the test cohort (P<0.01) were taken forward for genotyping in an independent replication cohort comprising 392 cases of TOF, 218 unaffected parents of patients, and 1319 controls. Significant association was observed for 1 single nucleotide polymorphism, rs11066320 in the PTPN11 gene, in both the test and the replication cohort. Genotype at rs11066320 was associated with a per-allele odds ratio of 1.34 (95% confidence interval [CI], 1.19 to 1.52; P=2.9 × 10(-6)) in the total cohort of TOF cases and controls; this remained highly significant after Bonferroni correction for 207 analyses (corrected P=0.00061). Genotype at rs11066320 was responsible for a population-attributable risk of TOF of approximately 10%. Common variation in the linkage disequilibrium block including the PTPN11 gene contributes to the risk of nonsyndromic TOF. Rare mutations in PTPN11 are known to cause the autosomal dominant condition Noonan syndrome, which includes congenital heart disease, by upregulating Ras/mitogen-activated protein kinase (MAPK) signaling. Our results suggest a role for milder perturbations in PTPN11 function in sporadic, nonsyndromic congenital heart disease.

  12. Cytotoxic T Lymphocyte Antigen-4 Gene Variants in Type 2 Diabetic Patients with or without Neuropathy.

    PubMed

    Kiani, Javad; Khadempar, Saedeh; Hajilooi, Mehrdad; Rezaei, Hamzeh; Keshavarzi, Fatemeh; Solgi, Ghasem

    2016-06-01

    Many studies have shown that cytotoxic T lymphocyte antigen-4 (CTLA-4) gene variants are associated with several autoimmune diseases particularly type 1 diabetes. Due to the lack of consistent data for this association with type 2 diabetes (T2D), this study explored the possible influence of CTLA-4 gene polymorphisms at -1722 (T/C), -318 (C/T), and +49 (G/A) positions for susceptibility to T2D in relation with neuropathy. One hundred and eleven unrelated patients with T2D [49 patients with diabetic peripheral neuropathy (DPN) and 62 patients without PDN] and 100 healthy ethnic- and gender-matched controls were included in this study. The dimorphisms at -1722 (C/T), -318 (C/T) and +49 (A/G) for CTLA-4 gene were determined using ARMS-PCR. The CTLA-4 (+49 G/G) and (+49 A/A) genotypes were found to be positively and negatively associated with T2D, respectively (p=0.03). The -318 C/T and T/T genotypes were more frequent in patients than controls and -318 C/C genotype was shown to be protective for T2D (p=0.003). ACT and GTT Haplotypes were less and more frequent in controls and patients, respectively (p=3.86×10-7 and p=2.29×10-5). Genotypes distribution among T2D patients with and without DPN compared to healthy controls showed significantly lower frequencies for -318 C/C and +49 A/A genotypes and significantly higher frequencies for -318 C/T and T/T genotypes as well. Our findings indicate that CTLA-4 (+49 A/G) and (-318 C/T) genotypes could be considered as genetic risk factors associated with susceptibility or protection for T2D.

  13. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    PubMed

    Ehret, Georg B; Munroe, Patricia B; Rice, Kenneth M; Bochud, Murielle; Johnson, Andrew D; Chasman, Daniel I; Smith, Albert V; Tobin, Martin D; Verwoert, Germaine C; Hwang, Shih-Jen; Pihur, Vasyl; Vollenweider, Peter; O'Reilly, Paul F; Amin, Najaf; Bragg-Gresham, Jennifer L; Teumer, Alexander; Glazer, Nicole L; Launer, Lenore; Zhao, Jing Hua; Aulchenko, Yurii; Heath, Simon; Sõber, Siim; Parsa, Afshin; Luan, Jian'an; Arora, Pankaj; Dehghan, Abbas; Zhang, Feng; Lucas, Gavin; Hicks, Andrew A; Jackson, Anne U; Peden, John F; Tanaka, Toshiko; Wild, Sarah H; Rudan, Igor; Igl, Wilmar; Milaneschi, Yuri; Parker, Alex N; Fava, Cristiano; Chambers, John C; Fox, Ervin R; Kumari, Meena; Go, Min Jin; van der Harst, Pim; Kao, Wen Hong Linda; Sjögren, Marketa; Vinay, D G; Alexander, Myriam; Tabara, Yasuharu; Shaw-Hawkins, Sue; Whincup, Peter H; Liu, Yongmei; Shi, Gang; Kuusisto, Johanna; Tayo, Bamidele; Seielstad, Mark; Sim, Xueling; Nguyen, Khanh-Dung Hoang; Lehtimäki, Terho; Matullo, Giuseppe; Wu, Ying; Gaunt, Tom R; Onland-Moret, N Charlotte; Cooper, Matthew N; Platou, Carl G P; Org, Elin; Hardy, Rebecca; Dahgam, Santosh; Palmen, Jutta; Vitart, Veronique; Braund, Peter S; Kuznetsova, Tatiana; Uiterwaal, Cuno S P M; Adeyemo, Adebowale; Palmas, Walter; Campbell, Harry; Ludwig, Barbara; Tomaszewski, Maciej; Tzoulaki, Ioanna; Palmer, Nicholette D; Aspelund, Thor; Garcia, Melissa; Chang, Yen-Pei C; O'Connell, Jeffrey R; Steinle, Nanette I; Grobbee, Diederick E; Arking, Dan E; Kardia, Sharon L; Morrison, Alanna C; Hernandez, Dena; Najjar, Samer; McArdle, Wendy L; Hadley, David; Brown, Morris J; Connell, John M; Hingorani, Aroon D; Day, Ian N M; Lawlor, Debbie A; Beilby, John P; Lawrence, Robert W; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Dreisbach, Albert W; Li, Yali; Young, J Hunter; Bis, Joshua C; Kähönen, Mika; Viikari, Jorma; Adair, Linda S; Lee, Nanette R; Chen, Ming-Huei; Olden, Matthias; Pattaro, Cristian; Bolton, Judith A Hoffman; Köttgen, Anna; Bergmann, Sven; Mooser, Vincent; Chaturvedi, Nish; Frayling, Timothy M; Islam, Muhammad; Jafar, Tazeen H; Erdmann, Jeanette; Kulkarni, Smita R; Bornstein, Stefan R; Grässler, Jürgen; Groop, Leif; Voight, Benjamin F; Kettunen, Johannes; Howard, Philip; Taylor, Andrew; Guarrera, Simonetta; Ricceri, Fulvio; Emilsson, Valur; Plump, Andrew; Barroso, Inês; Khaw, Kay-Tee; Weder, Alan B; Hunt, Steven C; Sun, Yan V; Bergman, Richard N; Collins, Francis S; Bonnycastle, Lori L; Scott, Laura J; Stringham, Heather M; Peltonen, Leena; Perola, Markus; Vartiainen, Erkki; Brand, Stefan-Martin; Staessen, Jan A; Wang, Thomas J; Burton, Paul R; Soler Artigas, Maria; Dong, Yanbin; Snieder, Harold; Wang, Xiaoling; Zhu, Haidong; Lohman, Kurt K; Rudock, Megan E; Heckbert, Susan R; Smith, Nicholas L; Wiggins, Kerri L; Doumatey, Ayo; Shriner, Daniel; Veldre, Gudrun; Viigimaa, Margus; Kinra, Sanjay; Prabhakaran, Dorairaj; Tripathy, Vikal; Langefeld, Carl D; Rosengren, Annika; Thelle, Dag S; Corsi, Anna Maria; Singleton, Andrew; Forrester, Terrence; Hilton, Gina; McKenzie, Colin A; Salako, Tunde; Iwai, Naoharu; Kita, Yoshikuni; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ueshima, Hirotsugu; Umemura, Satoshi; Eyheramendy, Susana; Meitinger, Thomas; Wichmann, H-Erich; Cho, Yoon Shin; Kim, Hyung-Lae; Lee, Jong-Young; Scott, James; Sehmi, Joban S; Zhang, Weihua; Hedblad, Bo; Nilsson, Peter; Smith, George Davey; Wong, Andrew; Narisu, Narisu; Stančáková, Alena; Raffel, Leslie J; Yao, Jie; Kathiresan, Sekar; O'Donnell, Christopher J; Schwartz, Stephen M; Ikram, M Arfan; Longstreth, W T; Mosley, Thomas H; Seshadri, Sudha; Shrine, Nick R G; Wain, Louise V; Morken, Mario A; Swift, Amy J; Laitinen, Jaana; Prokopenko, Inga; Zitting, Paavo; Cooper, Jackie A; Humphries, Steve E; Danesh, John; Rasheed, Asif; Goel, Anuj; Hamsten, Anders; Watkins, Hugh; Bakker, Stephan J L; van Gilst, Wiek H; Janipalli, Charles S; Mani, K Radha; Yajnik, Chittaranjan S; Hofman, Albert; Mattace-Raso, Francesco U S; Oostra, Ben A; Demirkan, Ayse; Isaacs, Aaron; Rivadeneira, Fernando; Lakatta, Edward G; Orru, Marco; Scuteri, Angelo; Ala-Korpela, Mika; Kangas, Antti J; Lyytikäinen, Leo-Pekka; Soininen, Pasi; Tukiainen, Taru; Würtz, Peter; Ong, Rick Twee-Hee; Dörr, Marcus; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Zelenika, Diana; Deloukas, Panos; Mangino, Massimo; Spector, Tim D; Zhai, Guangju; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Terzic, Janos; Kumar, M V Kranthi; Denniff, Matthew; Zukowska-Szczechowska, Ewa; Wagenknecht, Lynne E; Fowkes, F Gerald R; Charchar, Fadi J; Schwarz, Peter E H; Hayward, Caroline; Guo, Xiuqing; Rotimi, Charles; Bots, Michiel L; Brand, Eva; Samani, Nilesh J; Polasek, Ozren; Talmud, Philippa J; Nyberg, Fredrik; Kuh, Diana; Laan, Maris; Hveem, Kristian; Palmer, Lyle J; van der Schouw, Yvonne T; Casas, Juan P; Mohlke, Karen L; Vineis, Paolo; Raitakari, Olli; Ganesh, Santhi K; Wong, Tien Y; Tai, E Shyong; Cooper, Richard S; Laakso, Markku; Rao, Dabeeru C; Harris, Tamara B; Morris, Richard W; Dominiczak, Anna F; Kivimaki, Mika; Marmot, Michael G; Miki, Tetsuro; Saleheen, Danish; Chandak, Giriraj R; Coresh, Josef; Navis, Gerjan; Salomaa, Veikko; Han, Bok-Ghee; Zhu, Xiaofeng; Kooner, Jaspal S; Melander, Olle; Ridker, Paul M; Bandinelli, Stefania; Gyllensten, Ulf B; Wright, Alan F; Wilson, James F; Ferrucci, Luigi; Farrall, Martin; Tuomilehto, Jaakko; Pramstaller, Peter P; Elosua, Roberto; Soranzo, Nicole; Sijbrands, Eric J G; Altshuler, David; Loos, Ruth J F; Shuldiner, Alan R; Gieger, Christian; Meneton, Pierre; Uitterlinden, Andre G; Wareham, Nicholas J; Gudnason, Vilmundur; Rotter, Jerome I; Rettig, Rainer; Uda, Manuela; Strachan, David P; Witteman, Jacqueline C M; Hartikainen, Anna-Liisa; Beckmann, Jacques S; Boerwinkle, Eric; Vasan, Ramachandran S; Boehnke, Michael; Larson, Martin G; Järvelin, Marjo-Riitta; Psaty, Bruce M; Abecasis, Gonçalo R; Chakravarti, Aravinda; Elliott, Paul; van Duijn, Cornelia M; Newton-Cheh, Christopher; Levy, Daniel; Caulfield, Mark J; Johnson, Toby

    2011-09-11

    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

  14. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk

    PubMed Central

    2011-01-01

    Blood pressure (BP) is a heritable trait1 influenced by multiple biological pathways and is responsive to environmental stimuli. Over one billion people worldwide have hypertension (BP ≥140 mm Hg systolic [SBP] or ≥90 mm Hg diastolic [DBP])2. Even small increments in BP are associated with increased risk of cardiovascular events3. This genome-wide association study of SBP and DBP, which used a multi-stage design in 200,000 individuals of European descent, identified 16 novel loci: six of these loci contain genes previously known or suspected to regulate BP (GUCY1A3-GUCY1B3; NPR3-C5orf23; ADM; FURIN-FES; GOSR2; GNAS-EDN3); the other 10 provide new clues to BP physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke, and coronary artery disease, but not kidney disease or kidney function. We also observed associations with BP in East Asian, South Asian, and African ancestry individuals. Our findings provide new insights into the genetics and biology of BP, and suggest novel potential therapeutic pathways for cardiovascular disease prevention. PMID:21909115

  15. Identification of common variants influencing risk of the tauopathy Progressive Supranuclear Palsy

    PubMed Central

    Höglinger, Günter U.; Melhem, Nadine M.; Dickson, Dennis W.; Sleiman, Patrick M.A.; Wang, Li-San; Klei, Lambertus; Rademakers, Rosa; de Silva, Rohan; Litvan, Irene; Riley, David E.; van Swieten, John C.; Heutink, Peter; Wszolek, Zbigniew K.; Uitti, Ryan J.; Vandrovcova, Jana; Hurtig, Howard I.; Gross, Rachel G.; Maetzler, Walter; Goldwurm, Stefano; Tolosa, Eduardo; Borroni, Barbara; Pastor, Pau; Cantwell, Laura B.; Han, Mi Ryung; Dillman, Allissa; van der Brug, Marcel P.; Gibbs, J Raphael; Cookson, Mark R.; Hernandez, Dena G.; Singleton, Andrew B.; Farrer, Matthew J.; Yu, Chang-En; Golbe, Lawrence I.; Revesz, Tamas; Hardy, John; Lees, Andrew J.; Devlin, Bernie; Hakonarson, Hakon; Müller, Ulrich; Schellenberg, Gerard D.

    2011-01-01

    Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common being Alzheimer’s disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 PSP cases and 3,247 controls (Stage 1) followed up by a second stage where 1,051 cases and 3,560 controls were genotyped for Stage 1 SNPs that yielded P ≤ 10−3. We found significant novel signals (P < 5 × 10−8) associated with PSP risk at STX6, EIF2AK3, and MOBP. We confirmed two independent variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The genes implicated encode proteins for vesicle-membrane fusion at the Golgi-endosomal interface, for the endoplasmic reticulum unfolded protein response, and for a myelin structural component. PMID:21685912

  16. Dopamine Inactivation Efficacy Related to Functional DAT1 and COMT Variants Influences Motor Response Evaluation

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting, response anticipation and movement evaluation. Thus, we examined the influence of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of motor processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as motor postimperative negative variation were assessed. Adolescents were genotyped for the COMT Val158Met and two DAT1 polymorphisms (variable number tandem repeats in the 3′-untranslated region and in intron 8). Results The results revealed a significant interaction between COMT and DAT1, indicating that COMT exerted stronger effects on lateralized motor post-processing (centro-parietal motor postimperative negative variation) in homozygous carriers of a DAT1 haplotype increasing DAT1 expression. Source analysis showed that the time interval 500–1000 ms after the motor response was specifically affected in contrast to preceding movement anticipation and programming stages, which were not altered. Conclusions Motor slow negative waves allow the genomic imaging of dopamine inactivation effects on cortical motor post-processing during response evaluation. This is the first report to point towards epistatic effects in the motor system during response evaluation, i.e. during the post-processing of an already executed movement rather than during movement programming. PMID:22649558

  17. Introduction of novel splice variants for CASC18 gene and its relation to the neural differentiation.

    PubMed

    Mehravar, Majid; Jafarzadeh, Meisam; Kay, Maryam; Najafi, Hadi; Hosseini, Fahimeh; Mowla, Seyed Javad; Soltani, Bahram M

    2017-03-01

    CASC18 along with APPL2, OCC-1 and NUAK1 flanking genes are located in 12q23.3 locus which is known as a potential cancer predisposition locus. Only an uncharacterized EST was initially reported for CASC18 and it was crucial to find its full length sequence and function. In an attempt to search for the CASC18's full-length gene sequence, other related ESTs were bioinformatically collected and four novel splice variants (designated as; CASC18-A, -B, -C and -D) were deduced and some were experimentally validated. Two transcription start sites and two alternative polyadenylation sites were deduced for CASC18 gene, using EST data mining and RACE method. CASC18-A and CASC18-D were exclusively expressed in neural cell lines and CASC18-D expression level was gradually increased during the NT2 differentiation to the neuron-like cells. Consistently, overexpression of CASC18-D variant in NT2 cells resulted in remarkable up-regulation of PAX6 neural differentiation marker, suggesting a crucial role of this variant in neural differentiation. Here, we introduced seven novel transcription variants for human CASC18 gene in which CASC18-D has the potential of being used as a neural cell differentiation marker. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Orsomucoid: A new variant and additional duplicated ORM1 gene in Qatari population

    SciTech Connect

    Sebetan, I.M.; Alali, K.A.; Alzaman, A.

    1994-09-01

    A new genetically determined ORM2 variant and additional duplicated ORM1 gene were observed in Qatari population using isoelectric focusing in ultra thin layer polyacrylamide gels. The studied population samples indicate occurence of six ORM1 alleles and three ORM2 ones. A simple reliable method for separation of orsomucoid variations with comparison of different reported methods will be presented.

  19. Disease Risk Assessment Using a Voronoi-Based Network Analysis of Genes and Variants Scores

    PubMed Central

    Chen, Lin; Mukerjee, Gouri; Dorfman, Ruslan; Moghadas, Seyed M.

    2017-01-01

    Much effort has been devoted to assess disease risk based on large-scale protein-protein network and genotype-phenotype associations. However, the challenge of risk prediction for complex diseases remains unaddressed. Here, we propose a framework to quantify the risk based on a Voronoi tessellation network analysis, taking into account the disease association scores of both genes and variants. By integrating ClinVar, SNPnexus, and DISEASES databases, we introduce a gene-variant map that is based on the pairwise disease-associated gene-variant scores. This map is clustered using Voronoi tessellation and network analysis with a threshold obtained from fitting the background Voronoi cell density distribution. We define the relative risk of disease that is inferred from the scores of the data points within the related clusters on the gene-variant map. We identify autoimmune-associated clusters that may interact at the system-level. The proposed framework can be used to determine the clusters that are specific to a subtype or contribute to multiple subtypes of complex diseases. PMID:28326099

  20. Friendships Moderate an Association Between a Dopamine Gene Variant and Political Ideology

    PubMed Central

    Settle, Jaime E.; Dawes, Christopher T.; Christakis, Nicholas A.; Fowler, James H.

    2012-01-01

    Scholars in many fields have long noted the importance of social context in the development of political ideology. Recent work suggests that political ideology also has a heritable component, but no specific gene variant or combination of variants associated with political ideology have so far been identified. Here, we hypothesize that individuals with a genetic predisposition toward seeking out new experiences will tend to be more liberal, but only if they are embedded in a social context that provides them with multiple points of view. Using data from the National Longitudinal Study of Adolescent Health, we test this hypothesis by investigating an association between self-reported political ideology and the 7R variant of the dopamine receptor D4 gene (DRD4), which has previously been associated with novelty seeking. Among those with DRD4-7R, we find that the number of friendships a person has in adolescence is significantly associated with liberal political ideology. Among those without the gene variant, there is no association. This is the first study to elaborate a specific gene-environment interaction that contributes to ideological self-identification, and it highlights the importance of incorporating both nature and nurture into the study of political preferences. PMID:22282583

  1. Friendships Moderate an Association Between a Dopamine Gene Variant and Political Ideology.

    PubMed

    Settle, Jaime E; Dawes, Christopher T; Christakis, Nicholas A; Fowler, James H

    2010-01-01

    Scholars in many fields have long noted the importance of social context in the development of political ideology. Recent work suggests that political ideology also has a heritable component, but no specific gene variant or combination of variants associated with political ideology have so far been identified. Here, we hypothesize that individuals with a genetic predisposition toward seeking out new experiences will tend to be more liberal, but only if they are embedded in a social context that provides them with multiple points of view. Using data from the National Longitudinal Study of Adolescent Health, we test this hypothesis by investigating an association between self-reported political ideology and the 7R variant of the dopamine receptor D4 gene (DRD4), which has previously been associated with novelty seeking. Among those with DRD4-7R, we find that the number of friendships a person has in adolescence is significantly associated with liberal political ideology. Among those without the gene variant, there is no association. This is the first study to elaborate a specific gene-environment interaction that contributes to ideological self-identification, and it highlights the importance of incorporating both nature and nurture into the study of political preferences.

  2. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants.

    PubMed

    Pilling, Luke C; Atkins, Janice L; Bowman, Kirsty; Jones, Samuel E; Tyrrell, Jessica; Beaumont, Robin N; Ruth, Katherine S; Tuke, Marcus A; Yaghootkar, Hanieh; Wood, Andrew R; Freathy, Rachel M; Murray, Anna; Weedon, Michael N; Xue, Luting; Lunetta, Kathryn; Murabito, Joanne M; Harries, Lorna W; Robine, Jean-Marie; Brayne, Carol; Kuchel, George A; Ferrucci, Luigi; Frayling, Timothy M; Melzer, David

    2016-03-01

    Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus(CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7x10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable.

  3. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants

    PubMed Central

    Pilling, Luke C.; Atkins, Janice L.; Bowman, Kirsty; Jones, Samuel E.; Tyrrell, Jessica; Beaumont, Robin N.; Ruth, Katherine S.; Tuke, Marcus A.; Yaghootkar, Hanieh; Wood, Andrew R.; Freathy, Rachel M.; Murray, Anna; Weedon, Michael N.; Xue, Luting; Lunetta, Kathryn; Murabito, Joanne M.; Harries, Lorna W.; Robine, Jean-Marie; Brayne, Carol; Kuchel, George A.; Ferrucci, Luigi; Frayling, Timothy M.; Melzer, David

    2016-01-01

    Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus (CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7×10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable. PMID:27015805

  4. Loss-of-function variants influence the human serum metabolome

    PubMed Central

    Yu, Bing; Li, Alexander H.; Metcalf, Ginger A.; Muzny, Donna M.; Morrison, Alanna C.; White, Simon; Mosley, Thomas H.; Gibbs, Richard A.; Boerwinkle, Eric

    2016-01-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study. PMID:27602404

  5. Classification and Clinical Management of Variants of Uncertain Significance in High Penetrance Cancer Predisposition Genes.

    PubMed

    Moghadasi, Setareh; Eccles, Diana M; Devilee, Peter; Vreeswijk, Maaike P G; van Asperen, Christi J

    2016-04-01

    In 2008, the International Agency for Research on Cancer (IARC) proposed a system for classifying sequence variants in highly penetrant breast and colon cancer susceptibility genes, linked to clinical actions. This system uses a multifactorial likelihood model to calculate the posterior probability that an altered DNA sequence is pathogenic. Variants between 5%-94.9% (class 3) are categorized as variants of uncertain significance (VUS). This interval is wide and might include variants with a substantial difference in pathogenicity at either end of the spectrum. We think that carriers of class 3 variants would benefit from a fine-tuning of this classification. Classification of VUS to a category with a defined clinical significance is very important because for carriers of a pathogenic mutation full surveillance and risk-reducing surgery can reduce cancer incidence. Counselees who are not carriers of a pathogenic mutation can be discharged from intensive follow-up and avoid unnecessary risk-reducing surgery. By means of examples, we show how, in selected cases, additional data can lead to reclassification of some variants to a different class with different recommendations for surveillance and therapy. To improve the clinical utility of this classification system, we suggest a pragmatic adaptation to clinical practice. © 2016 WILEY PERIODICALS, INC.

  6. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment

    PubMed Central

    Chen, Xiaowei Sylvia; Reader, Rose H.; Hoischen, Alexander; Veltman, Joris A.; Simpson, Nuala H.; Francks, Clyde; Newbury, Dianne F.; Fisher, Simon E.

    2017-01-01

    A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential “multiple-hit” cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation. PMID:28440294

  7. Differential effect of H1 variant overexpression on cell cycle progression and gene expression.

    PubMed Central

    Brown, D T; Alexander, B T; Sittman, D B

    1996-01-01

    To identify functional differences among non-allelic variants of the mammalian H1 linker histones a system for the overexpression of individual H1 variants in vivo was developed. Mouse 3T3 cells were transformed with an expression vector containing the coding regions for the H1c or H10 variant under the control of an inducible promoter. Stable, single colony transformants, in which the normal stoichiometry of H1 variants was perturbed, displayed normal viability, unaltered morphology and no long-term growth arrest. However, upon release from synchronization at different points in the cell cycle transformants significantly overproducing H10 exhibited transient inhibition of both G1 and S phase progression. Overexpression of H1c to comparable levels had no effect on cell cycle progression. Analysis of transcript levels for several cell cycle-regulated and housekeeping genes indicated that overexpression of H10 resulted in significantly reduced expression of all genes tested. Surprisingly, overexpression of H1c to comparable levels resulted in either a negligible effect or, in some cases, a dramatic increase in transcript levels. These results support the suggestion that functional differences exist among H1 variants. PMID:8602362

  8. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene

    PubMed Central

    Sosnay, Patrick R; Siklosi, Karen R; Van Goor, Fredrick; Kaniecki, Kyle; Yu, Haihui; Sharma, Neeraj; Ramalho, Anabela S; Amaral, Margarida D; Dorfman, Ruslan; Zielenski, Julian; Masica, David L; Karchin, Rachel; Millen, Linda; Thomas, Philip J; Patrinos, George P; Corey, Mary; Lewis, Michelle H; Rommens, Johanna M; Castellani, Carlo; Penland, Christopher M; Cutting, Garry R

    2013-01-01

    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation to clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 cystic fibrosis patients in registries and clinics in North America and Europe. Among these patients, 159 CFTR variants had an allele frequency of ≥0.01%. These variants were evaluated for both clinical severity and functional consequence with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of cystic fibrosis patients enabled assignment of 12 of the remaining 32 variants as neutral while the other 20 variants remained indeterminate. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically-relevant genomic variation. PMID:23974870

  9. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum.

    PubMed

    Jurečková, Jana Fišerová; Sýkorová, Eva; Hafidh, Said; Honys, David; Fajkus, Jiří; Fojtová, Miloslava

    2017-03-01

    In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance

  10. Analysis of PAC1 receptor gene variants in Caucasian and African American infants dying of sudden infant death syndrome.

    PubMed

    Barrett, Karlene T; Rodikova, Ekaterina; Weese-Mayer, Debra E; Rand, Casey M; Marazita, Mary L; Cooper, Margaret E; Berry-Kravis, Elizabeth M; Bech-Hansen, N Torben; Wilson, Richard J A

    2013-12-01

    Stress peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has been implicated in sudden infant death syndrome (SIDS). The aim of this exploratory study was to determine whether variants in the gene encoding the PACAP-specific receptor, PAC1, are associated with SIDS in Caucasian and African American infants. Polymerase chain reaction and Sanger DNA sequencing was used to compare variants in the 5'-untranslated region, exons and intron-exon boundaries of the PAC1 gene in 96 SIDS cases and 96 race- and gender-matched controls. The intron 3 variant, A/G: rs758995 (variant 'h'), and the intron 6 variant, C/T: rs10081254 (variant 'n'), were significantly associated with SIDS in Caucasians and African Americans, respectively (p < 0.05). Also associated with SIDS were interactions between the variants rs2302475 (variant 'i') in PAC1 and rs8192597 and rs2856966 in PACAP among Caucasians (p < 0.02) and rs2267734 (variant 'q') in PAC1 and rs1893154 in PACAP among African Americans (p < 0.01). However, none of these differences survived post hoc analysis. Overall, this study does not support a strong association between variants in the PAC1 gene and SIDS; however, a number of potential associations between race-specific variants and SIDS were identified that warrant targeted investigations in future studies. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  11. New variants of lepidoptericidal toxin genes encoding Bacillus thuringiensis Vip3Aa proteins.

    PubMed

    Sauka, Diego H; Rodriguez, Sonia E; Benintende, Graciela B

    2012-01-01

    Bacillus thuringiensis is an entomopathogenic bacterium characterized by producing parasporal proteinaceous insecticidal crystal inclusions during sporulation. Many strains are capable of also expressing other insecticidal proteins called Vip during the vegetative growing phase. Particularly, Vip3A proteins have activity against certain Lepidoptera species through a unique mechanism of action which emphasized their possible use in resistance management strategies against resistant pests. The aim of the work was to develop a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that can distinguish between vip3A genes from B. thuringiensis strains. In addition, 4 novel vip3Aa genes were cloned and sequenced. The method was originally based on amplification of a single PCR amplicon and the use of 2 restriction enzymes with recognition sites that facilitate simultaneous detection. Subsequently, a third restriction enzyme was used to distinguish between vip3A variants. Thirteen vip3Aa genes were identified in strains belonging to 10 different B. thuringiensis serovars. Three intra-subclass variants of vip3Aa genes could be differentiated. The presented method can serve as an invaluable tool for the investigation of known and novel vip3A genes in B. thuringiensis strains. To the best of our knowledge, this is the first report where variants of a same subclass of insecticidal genes could be distinguished following PCR-RFLP.

  12. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation.

    PubMed

    Monies, Dorota; Maddirevula, Sateesh; Kurdi, Wesam; Alanazy, Mohammed H; Alkhalidi, Hisham; Al-Owain, Mohammed; Sulaiman, Raashda A; Faqeih, Eissa; Goljan, Ewa; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Shaheen, Ranad; Arold, Stefan T; Alkuraya, Fowzan S

    2017-10-01

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern. Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples. We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes. Our results show that, in the era of genomic sequencing and "reverse phenotyping," recessive variants in dominant genes should not be dismissed based on perceived "incompatibility" with the patient's phenotype before careful consideration.Genet Med advance online publication 06 April 2017.

  13. Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes.

    PubMed

    Rees, Matthew G; Ng, David; Ruppert, Sarah; Turner, Clesson; Beer, Nicola L; Swift, Amy J; Morken, Mario A; Below, Jennifer E; Blech, Ilana; Mullikin, James C; McCarthy, Mark I; Biesecker, Leslie G; Gloyn, Anna L; Collins, Francis S

    2012-01-01

    Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.

  14. A haplotype derived from the common variants at the -1997G/T and Sp1 binding site of the COL1A1 gene influences risk of postmenopausal osteoporosis in India.

    PubMed

    Singh, Monica; Singh, Puneetpal; Singh, Surinder; Juneja, Pawan Kumar; Kaur, Taranpal

    2013-02-01

    The aim of the present study was to investigate the association between Collagen 1 alpha 1 (COL1A1) polymorphism and osteoporosis in DEXA verified 349 (145 osteoporotic, 87 osteopenic and 117 normal) postmenopausal women of India, who were not taking hormone replacement therapy. Two single-nucleotide polymorphisms (SNPs), that is, -1997G/T (rs1107946) and +1245G/T (rs1800012, Sp1) of the COL1A1 gene, were analyzed. Minor allele frequencies of rs1107946 and rs1800012 were 0.15 and 0.20 in osteoporotic women, 0.18 and 0.18 in osteopenic and 0.20 and 0.17 in women having normal bone mass. An allele dose effect with BMD of lumbar spine has been exhibited by major allele G of rs1107946 (GG: 0.86 g/cm(2), GT: 0.91 g/cm(2) and TT: 0.93 g/cm(2)) and minor allele T of rs1800012 (GG: 0.91 g/cm(2), GT: 0.87 g/cm(2) and TT: 0.81 g/cm(2)). Disease association analysis revealed a haplotype GT that confers approximately threefold higher risk of osteoporosis in the carriers (OR 3.12, 95% CI 1.24-8.88, P = 0.008) after adjusting the confounding effect of age, BMI and years since menopause. These results suggest that GT haplotype of COL1A1 gene is associated with a higher risk of postmenopausal osteoporosis in Northwest Indian women.

  15. ACSS2 gene variant associated with cleft lip and palate in two independent Hispanic populations.

    PubMed

    Dodhia, Sonam; Celis, Katrina; Aylward, Alana; Cai, Yi; Fontana, Maria E; Trespalacios, Alberto; Hoffman, David C; Alfonso, Henry Ostos; Eisig, Sidney B; Su, Gloria H; Chung, Wendy K; Haddad, Joseph

    2017-10-01

    A candidate variant (p.Val496Ala) of the ACSS2 gene (T > C missense, rs59088485 variant at chr20: bp37 33509608) was previously found to consistently segregate with nonsyndromic cleft lip and/or palate (NSCLP) in three Honduran families. Objectives of this study were 1) to investigate the frequency of this ACSS2 variant in Honduran unrelated NSCLP patients and unrelated unaffected controls and 2) to investigate the frequency of this variant in Colombian unrelated affected NSCLP patients and unrelated unaffected controls. Case-control studies. Sanger sequencing of 99 unrelated Honduran NSCLP patients and 215 unrelated unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in NSCLP patients and controls. Sanger sequencing of 230 unrelated Colombian NSCLP patients and 146 unrelated unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in NSCLP patients and controls. In the Honduran population, the odds ratio of having NSCLP among carriers of the p.Val496Ala ACSS2 variant was 4.0 (P = .03), with a carrier frequency of seven of 99 (7.1%) in unrelated affected and four of 215 (1.9%) in unrelated unaffected individuals. In the Colombian population, the odds ratio of having NSCLP among carriers of the p.Val496Ala ACSS2 variant was 2.6 (P = .04), with a carrier frequency of 23 of 230 (10.0%) in unrelated affected and six of 146 (4.1%) in unrelated unaffected individuals. These findings support the role of ACSS2 in NSCLP in two independent Hispanic populations from Honduras and Colombia. NA Laryngoscope, 127:E336-E339, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder

    PubMed Central

    2014-01-01

    Background Obsessive-compulsive disorder (OCD), a severe mental disease manifested in time-consuming repetition of behaviors, affects 1 to 3% of the human population. While highly heritable, complex genetics has hampered attempts to elucidate OCD etiology. Dogs suffer from naturally occurring compulsive disorders that closely model human OCD, manifested as an excessive repetition of normal canine behaviors that only partially responds to drug therapy. The limited diversity within dog breeds makes identifying underlying genetic factors easier. Results We use genome-wide association of 87 Doberman Pinscher cases and 63 controls to identify genomic loci associated with OCD and sequence these regions in 8 affected dogs from high-risk breeds and 8 breed-matched controls. We find 119 variants in evolutionarily conserved sites that are specific to dogs with OCD. These case-only variants are significantly more common in high OCD risk breeds compared to breeds with no known psychiatric problems. Four genes, all with synaptic function, have the most case-only variation: neuronal cadherin (CDH2), catenin alpha2 (CTNNA2), ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase (PGCP). In the 2 Mb gene desert between the cadherin genes CDH2 and DSC3, we find two different variants found only in dogs with OCD that disrupt the same highly conserved regulatory element. These variants cause significant changes in gene expression in a human neuroblastoma cell line, likely due to disrupted transcription factor binding. Conclusions The limited genetic diversity of dog breeds facilitates identification of genes, functional variants and regulatory pathways underlying complex psychiatric disorders that are mechanistically similar in dogs and humans. PMID:24995881

  17. Bayesian models for syndrome- and gene-specific probabilities of novel variant pathogenicity.

    PubMed

    Ruklisa, Dace; Ware, James S; Walsh, Roddy; Balding, David J; Cook, Stuart A

    2015-01-01

    With the advent of affordable and comprehensive sequencing technologies, access to molecular genetics for clinical diagnostics and research applications is increasing. However, variant interpretation remains challenging, and tools that close the gap between data generation and data interpretation are urgently required. Here we present a transferable approach to help address the limitations in variant annotation. We develop a network of Bayesian logistic regression models that integrate multiple lines of evidence to evaluate the probability that a rare variant is the cause of an individual's disease. We present models for genes causing inherited cardiac conditions, though the framework is transferable to other genes and syndromes. Our models report a probability of pathogenicity, rather than a categorisation into pathogenic or benign, which captures the inherent uncertainty of the prediction. We find that gene- and syndrome-specific models outperform genome-wide approaches, and that the integration of multiple lines of evidence performs better than individual predictors. The models are adaptable to incorporate new lines of evidence, and results can be combined with familial segregation data in a transparent and quantitative manner to further enhance predictions. Though the probability scale is continuous, and innately interpretable, performance summaries based on thresholds are useful for comparisons. Using a threshold probability of pathogenicity of 0.9, we obtain a positive predictive value of 0.999 and sensitivity of 0.76 for the classification of variants known to cause long QT syndrome over the three most important genes, which represents sufficient accuracy to inform clinical decision-making. A web tool APPRAISE [http://www.cardiodb.org/APPRAISE] provides access to these models and predictions. Our Bayesian framework provides a transparent, flexible and robust framework for the analysis and interpretation of rare genetic variants. Models tailored to specific

  18. MC1R gene variants and sporadic malignant melanoma susceptibility in the Canary Islands population.

    PubMed

    Córdoba-Lanús, Elizabeth; Hernández-Jiménez, José G; Medina-Coello, Chaxiraxi; Espinoza-Jiménez, Adriana; González, Ana; Rodríguez-Pérez, María-Del-Cristo; Carretero-Hernández, Gregorio; Almeida, Pablo; Suárez-Hernández, José; Perera-Molinero, Antonio; Fernández-de-Misa, Ricardo

    2014-01-01

    Several MC1R variants are associated with increased risk of malignant melanoma (MM) in a variety of populations. We aim to examine the influence of the MC1R variants (RHC: D84E, R151C, R160W; NRHC: V60L, R163Q and the synonymous polymorphism T314T) on the MM risk in a population from the Canary Islands. Overall, 1,046 Caucasian individuals were included in the study. A thousand of them were genotyped for MC1R variants: 509 were sporadic MM patients and 491 were healthy control subjects from general population. The analysis was adjusted for age, sex, hair colour, eye colour, skin phototype and ancestry. We found that carriers of the R151C and R163Q variants were at an increased risk for melanoma OR 2.76 (1.59-4.78) and OR 5.62 (2.54-12.42), respectively. The risk of carrying RHC variants was 3.04 (1.90-4.86). Current study confirms the increased MM risk for R151C carriers. It also supports the association between R163Q variant and MM risk in the population on the Canary Islands, as opposed to reported on northern populations. These results highlight the importance of the sample population selection in this kind of studies.

  19. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes.

    PubMed

    Lin, Eugene; Pei, Dee; Huang, Yi-Jen; Hsieh, Chang-Hsun; Wu, Lawrence Shih-Hsin

    2009-08-01

    Recent studies indicate that obesity may play a key role in modulating genetic predispositions to type 2 diabetes (T2D). This study examines the main effects of both single-locus and multilocus interactions among genetic variants in Taiwanese obese and nonobese individuals to test the hypothesis that obesity-related genes may contribute to the etiology of T2D independently and/or through such complex interactions. We genotyped 11 single nucleotide polymorphisms for 10 obesity candidate genes including adrenergic beta-2-receptor surface, adrenergic beta-3-receptor surface, angiotensinogen, fat mass and obesity associated gene, guanine nucleotide binding protein beta polypeptide 3 (GNB3), interleukin 6 receptor, proprotein convertase subtilisin/kexin type 1 (PCSK1), uncoupling protein 1, uncoupling protein 2, and uncoupling protein 3. There were 389 patients diagnosed with T2D and 186 age- and sex-matched controls. Single-locus analyses showed significant main effects of the GNB3 and PCSK1 genes on the risk of T2D among the nonobese group (p = 0.002 and 0.047, respectively). Further, interactions involving GNB3 and PCSK1 were suggested among the nonobese population using the generalized multifactor dimensionality reduction method (p = 0.001). In addition, interactions among angiotensinogen, fat mass and obesity associated gene, GNB3, and uncoupling protein 3 genes were found in a significant four-locus generalized multifactor dimensionality reduction model among the obese population (p = 0.001). The results suggest that the single nucleotide polymorphisms from the obesity candidate genes may contribute to the risk of T2D independently and/or in an interactive manner according to the presence or absence of obesity.

  20. Exon skipping creates novel splice variants of DMC1 gene in ruminants.

    PubMed

    Ahlawat, S; Chopra, M; Jaiswal, L; Sharma, R; Arora, R; Brahma, B; Lal, S V; De, S

    2016-04-01

    Disrupted meiotic cDNA1 (DMC1) recombinase plays a pivotal role in homology search and strand exchange reactions during meiotic homologous recombination. In the present study, full length coding sequence of DMC1 gene was sequence characterized for the first time from four ruminant species (cattle, buffalo, sheep and goat) and phylogenetic relationship of ruminant DMC1 with other eukaryotes was analyzed. DMC1 gene encodes a putative protein of 340 amino acids in cattle, sheep and buffalo and 341 amino acids in goat. A high degree of evolutionary conservation at both nucleotide and amino acid level was observed for the four ruminant orthologs. In cattle and sheep, novel alternatively spliced mRNAs with skipping of exons 7 and 8 (Transcript variant 1, TV1) were isolated in addition to the full length (FL) transcript. Novel transcript variants with partial skipping of exon 7 and complete skipping of exon 8 (Transcript variant 2, TV2) were found in sheep and goat. The presence of these variants was validated by amplifying cDNA isolated from testis tissue of ruminants using two oligonucleotides flanking the deleted region. To accurately estimate their relative proportions, real-time PCR was performed using primers specific for each variant. Expression level of DMC1-FL was significantly higher than that of TV1 in cattle and TV2 in goat (P < 0.05). Relative ratio for expression of DMC1-FL: TV1: TV2 in sheep was 6.78: 1.43: 1. In-silico analysis revealed presence of splice variants of DMC1 gene across other mammalian species underpinning the role of alternative splicing in functional innovation.

  1. Contributions of PTCH Gene Variants to Isolated Cleft Lip and Palate

    PubMed Central

    Mansilla, M.A.; Cooper, M.E.; Goldstein, T.; Castilla, E.E.; Camelo, J.S. Lopez; Marazita, M.L.; Murray, J.C.

    2007-01-01

    Objective Mutations in patched (PTCH) cause the nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome. Nevoid basal cell carcinoma syndrome may present with developmental anomalies, including rib and craniofacial abnormalities, and predisposes to several tumor types, including basal cell carcinoma and medulloblastoma. Cleft palate is found in 4% of individuals with nevoid basal cell carcinoma syndrome. Because there might be specific sequence alterations in PTCH that limit expression to orofacial clefting, a genetic study of PTCH was undertaken in cases with cleft lip and/or palate (CL/P) known not to have nevoid basal cell carcinoma syndrome. Results Seven new normal variants spread along the entire gene and three missense mutations were found among cases with cleft lip and/or palate. One of these variants (P295S) was not found in any of 1188 control samples. A second variant was found in a case and also in 1 of 1119 controls. The third missense (S827G) was found in 5 of 1369 cases and in 5 of 1104 controls and is likely a rare normal variant. Linkage and linkage desequilibrium also was assessed using normal variants in and adjacent to the PTCH gene in 220 families (1776 individuals), each with two or more individuals with isolated clefting. Although no statistically significant evidence of linkage (multipoint HLOD peak = 2.36) was uncovered, there was borderline evidence of significant transmission distortion for one haplotype of two single nucleotide polymorphisms located within the PTCH gene (p = .08). Conclusion Missense mutations in PTCH may be rare causes of isolated cleft lip and/or palate. An as yet unidentified variant near PTCH may act as a modifier of cleft lip and/or palate. PMID:16405370

  2. Both rare and common variants in PCSK9 influence plasma low-density lipoprotein cholesterol level in American Indians.

    PubMed

    Tsai, Ching-Wei; North, Kari E; Tin, Adrienne; Haack, Karin; Franceschini, Nora; Saroja Voruganti, V; Laston, Sandy; Zhang, Ying; Best, Lyle G; MacCluer, Jean W; Beaty, Terri H; Navas-Acien, Ana; Kao, W H Linda; Howard, Barbara V

    2015-02-01

    Elevated LDL cholesterol (LDL-C) is an important risk factor for atherosclerosis and cardiovascular disease. Variants in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have been associated not only with plasma LDL-C concentration, but also with ischemic heart disease. Little is known about the genetic architecture of PCSK9 and its influence on LDL-C in American Indians. We aimed to investigate the genetic architecture in the 1p32 region encompassing PCSK9 and its influence on LDL-C in American Indians. The Strong Heart Family Study (SHFS) is a family-based genetic study. Two thousand four hundred fifty eight American Indians from Arizona, Oklahoma, North Dakota, and South Dakota, who were genotyped by Illumina MetaboChip. We genotyped 486 SNPs in a 3.9 Mb region at chromosome 1p32 encompassing PCSK9 in 2458 American Indians. We examined the association between these SNPs and LDL-C. For common variants (MAF ≥ 1%), meta-analysis across the three geographic regions showed common variants in PCSK9 were significantly associated with higher LDL-C. The most significant SNP rs12067569 (MAF = 1.7 %, β = 16.9 ± 3.7, P = 5.9 × 10(-6)) was in complete LD (r(2) = 1) with a nearby missense SNP, rs505151 (E670G) (β = 15.0 ± 3.6, P = 3.6 × 10(-5)). For rare variants (MAF < 1%), rs11591147 (R46L, MAF = 0.9%) was associated with lower LDL-C (β = - 31.1 ± 7.1, P = 1.4 × 10(-5)). The mean (SD) of LDL-C was 76.9 (7.8) and 107.4 (1.0) mg/dL for those with and without the R46L mutation, respectively. One person who was homozygous for R46L had LDL-C levels of 11 mg/dL. In one family, 6 out of 8 members carrying the R46L mutation had LDL-C levels below the lower 10% percentile of LDL-C among all study participants. Both rare and common variants in PCSK9 influence plasma LDL-C levels in American Indians. Follow-up studies may disclose the influence of these mutations on the risk of CVD and responses to cholesterol-lowering medications.

  3. Both Rare and Common Variants in PCSK9 Influence Plasma Low-Density Lipoprotein Cholesterol Level in American Indians

    PubMed Central

    North, Kari E.; Tin, Adrienne; Haack, Karin; Franceschini, Nora; Saroja Voruganti, V.; Laston, Sandy; Zhang, Ying; Best, Lyle G.; MacCluer, Jean W.; Beaty, Terri H.; Kao, W. H. Linda; Howard, Barbara V.

    2015-01-01

    Context: Elevated LDL cholesterol (LDL-C) is an important risk factor for atherosclerosis and cardiovascular disease. Variants in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have been associated not only with plasma LDL-C concentration, but also with ischemic heart disease. Little is known about the genetic architecture of PCSK9 and its influence on LDL-C in American Indians. Objective: We aimed to investigate the genetic architecture in the 1p32 region encompassing PCSK9 and its influence on LDL-C in American Indians. Design: The Strong Heart Family Study (SHFS) is a family-based genetic study. Participants: Two thousand four hundred fifty eight American Indians from Arizona, Oklahoma, North Dakota, and South Dakota, who were genotyped by Illumina MetaboChip. Results: We genotyped 486 SNPs in a 3.9 Mb region at chromosome 1p32 encompassing PCSK9 in 2458 American Indians. We examined the association between these SNPs and LDL-C. For common variants (MAF ≥ 1%), meta-analysis across the three geographic regions showed common variants in PCSK9 were significantly associated with higher LDL-C. The most significant SNP rs12067569 (MAF = 1.7 %, β = 16.9 ± 3.7, P = 5.9 × 10−6) was in complete LD (r2 = 1) with a nearby missense SNP, rs505151 (E670G) (β = 15.0 ± 3.6, P = 3.6 × 10−5). For rare variants (MAF < 1%), rs11591147 (R46L, MAF = 0.9%) was associated with lower LDL-C (β = − 31.1 ± 7.1, P = 1.4 × 10−5). The mean (SD) of LDL-C was 76.9 (7.8) and 107.4 (1.0) mg/dL for those with and without the R46L mutation, respectively. One person who was homozygous for R46L had LDL-C levels of 11 mg/dL. In one family, 6 out of 8 members carrying the R46L mutation had LDL-C levels below the lower 10% percentile of LDL-C among all study participants. Conclusions: Both rare and common variants in PCSK9 influence plasma LDL-C levels in American Indians. Follow-up studies may disclose the influence of these mutations on the risk of CVD and responses

  4. Correlation of a set of gene variants, life events and personality features on adult ADHD severity.

    PubMed

    Müller, Daniel J; Chiesa, Alberto; Mandelli, Laura; De Luca, Vincenzo; De Ronchi, Diana; Jain, Umesh; Serretti, Alessandro; Kennedy, James L

    2010-07-01

    Increasing evidence suggests that symptoms of attention deficit hyperactivity disorder (ADHD) could persist into adult life in a substantial proportion of cases. The aim of the present study was to investigate the impact of (1) adverse events, (2) personality traits and (3) genetic variants chosen on the basis of previous findings and (4) their possible interactions on adult ADHD severity. One hundred and ten individuals diagnosed with adult ADHD were evaluated for occurrence of adverse events in childhood and adulthood, and personality traits by the Temperament and Character Inventory (TCI). Common polymorphisms within a set of nine important candidate genes (SLC6A3, DBH, DRD4, DRD5, HTR2A, CHRNA7, BDNF, PRKG1 and TAAR9) were genotyped for each subject. Life events, personality traits and genetic variations were analyzed in relationship to severity of current symptoms, according to the Brown Attention Deficit Disorder Scale (BADDS). Genetic variations were not significantly associated with severity of ADHD symptoms. Life stressors displayed only a minor effect as compared to personality traits. Indeed, symptoms' severity was significantly correlated with the temperamental trait of Harm avoidance and the character trait of Self directedness. The results of the present work are in line with previous evidence of a significant correlation between some personality traits and adult ADHD. However, several limitations such as the small sample size and the exclusion of patients with other severe comorbid psychiatric disorders could have influenced the significance of present findings.

  5. Surveying genetic variants and molecular phylogeny of cerebral cavernous malformation gene, CCM3/PDCD10.

    PubMed

    Kumar, Abhishek; Bhandari, Anita; Goswami, Chandan

    2014-12-05

    The three cerebral cavernous malformations (CCMs) genes namely CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10 have been identified for which mutations cause cerebral cavernous malformations. However, the protein products of these genes involved in forming CCM signaling, are still poorly understood imposing an urgent need to understand these genes and their signaling processes in details. So far involvement of CCM3/PDCD10 in the cavernous angioma has been characterized from biochemical and biophysical analyses. However, there is no comprehensive study illustrating the phylogenetic history and comprehensive genetic variants of CCM3/PDCD10. Herein, we explored the phylogenetic history and genetic variants of CCM3/PDCD10 gene. Synteny analyses revealed that CCM3/PDCD10 gene shared same genomic loci from Drosophila to human and the gene structure of CCM3/PDCD10 is conserved from human to Branchiostoma floridae for about 500 MYs with some changes in sea urchin and in insects. The conserved CCM3/PDCD10 is characterized by presence of indels in the N-terminal dimerization domain. We identified 951 CCM3/PDCD10 variants by analysis of 1092 human genomes with top three variation classes belongs to 84% SNPs, 6.9% insertions and 6.2% deletions. We identified 22 missense mutations in the human CCM3/PDCD10 protein and out of which three mutations are deleterious. We also identified four stop-codon gaining mutations at the positions E34*, E68*, E97* and E140*, respectively. This study is the first comprehensive analysis of the CCM3/PDCD10 gene based on phylogenetic origin and genetic variants. This study corroborates that the evolution of CCM proteins with tubular organization evolvements by endothelial cells.

  6. Five gene variants in nonagenarians, centenarians and average individuals.

    PubMed

    Kolovou, Vana; Bilianou, Helen; Giannakopoulou, Vasiliki; Kalogeropoulos, Petros; Mihas, Constantinos; Kouris, Markos; Cokkinos, Dennis V; Boutsikou, Maria; Hoursalas, Ioannis; Mavrogeni, Sophie; Katsiki, Niki; Kolovou, Genovefa

    2017-08-01

    Genetic factors contribute to the variation of human life span which is believed to be more profound after 85 years of age. The aim of the present study was to evaluate the frequency of 5 gene polymorphisms between nonagenarians, centenarians and average individuals. Single nucleotide polymorphisms (SNPs) of telomerase reverse transcriptase (TERT; rs2736098), insulin-like growth factor-1 binding protein-3 (IGFBP3; A-202C, rs2857744), fork-head box O3A (FOXO3A; rs13217795 and rs2764264) factor and adiponectin (ADIPOQ; rs2241766) were evaluated in 405 individuals: n = 256 nonagenarians and centenarians (study group) and n = 149 average lifespan individuals (control group aged 18 - < 80 years). The frequency of women was significantly higher in the study group than the control group (64.5 vs. 49.7%, p = 0.004). Genotypic and allele frequencies did not differ between groups according to gender. However, in men, the frequency of TT genotype of FOXO3A; rs2764264 was higher in the study group than the control group (45.6 vs. 28.0%, p = 0.05). Overall, the frequency of the C allele of FOXO3A; rs2764264 was significantly lower in the study group than the control group (3.9 vs. 9.5%, respectively, p = 0.023). Furthermore, in the study group, the T allele was significantly more frequent in the nonagenarians (n = 239) than the centenarians (n = 17) in both FOXO3A; rs13217795 and rs2764264 (64.4 vs. 44.1%, p = 0.018 and 69.7 vs. 50.0%, p = 0.017, respectively). According to survival status, there is differentiation in the prevalence of both studied FOXO3A gene polymorphisms. The study group had half of the C alleles compared with the control group and centenarians less frequently had the T allele of both FOXO3A gene polymorphisms compared with nonagenarians. No difference was found between groups according to TERT, IGFBP3 and ADIPOQ gene polymorphisms. It seems that some polymorphisms may be significant in prolonging our lifespan. Nevertheless, confirmation in additional study

  7. Finding the 'Guilty' Gene Variant of Sporadic Parkinson's Disease Via CRISPR/Cas9.

    PubMed

    Lu, Shenzhao; Zhou, Jiawei

    2017-02-01

    Parkinson's disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide, but its cause and pathogenesis are still not fully understood. Earlier studies have shown that SNCA, which encodes α-synuclein, is one of the key genes associated with PD. Single-nucleotide polymorphism (SNP) variants of SNCA are thought to be correlated with disease onset. The underlying mechanisms however are enigmatic. A recent study published in Nature revealed that one of the SNP variants in the SNCA non-coding element elevated α-synuclein expression in human neurons by reducing the binding efficiency of transcription factors, demonstrating a previously uncharted role for SNPs in the pathogenesis of PD.

  8. Caffeine, selected metabolic gene variants, and risk for neural tube defects.

    PubMed

    Schmidt, Rebecca J; Romitti, Paul A; Burns, Trudy L; Murray, Jeffrey C; Browne, Marilyn L; Druschel, Charlotte M; Olney, Richard S

    2010-07-01

    Investigations of maternal caffeine intake and neural tube defects (NTDs) have not considered genetic influences. Caffeine metabolism gene effects were examined in the National Birth Defects Prevention Study. Average daily caffeine was summed from self-reported coffee, tea, soda, and chocolate intake for mothers of 768 NTD cases, and 4143 controls delivered from 1997 to 2002. A subset of 306 NTD and 669 control infants and their parents were genotyped for CYP1A2*1F, NAT2 481C>T, and NAT2 590G>A. CYP1A2*1F was classified by fast or slow oxidation status, and NAT2 variants were categorized into rapid or slow acetylation status. Case-control logistic regression analyses, family-based transmission/disequilibrium tests and log-linear analyses, and hybrid log-linear analyses were conducted to produce odds ratios (ORs) or relative risks (RRs) and 95% confidence intervals (CIs) for caffeine intake and maternal and infant gene variants, and to examine interaction effects. NTDs were independently associated with infant slow NAT2 acetylator status (RR, 2.00; 95% CI, 1.10-3.64) and maternal CYP1A2*1F fast oxidation status (OR, 1.49; 95% CI, 1.10-2.03). Mothers who consumed caffeine, oxidized CYP1A2*1F quickly, and acetylized NAT2 slowly had a nonsignificantly elevated estimated risk for an NTD-affected pregnancy (OR, 3.10; 95% CI, 0.86-11.21). Multiplicative interaction effects were observed between maternal caffeine and infant CYP1A2*1F fast oxidizer status (p(interaction) = 0.03). The association identified between maternal CYP1A2*1F fast oxidation status and NTDs should be examined further in the context of the other substrates of CYP1A2. Maternal caffeine and its metabolites may be associated with increased risk for NTD-affected pregnancies in genetically susceptible subgroups. 2010 Wiley-Liss, Inc.

  9. Caffeine, Selected Metabolic Gene Variants, and Risk for Neural Tube Defects

    PubMed Central

    Schmidt, Rebecca J.; Romitti, Paul A.; Burns, Trudy L.; Murray, Jeffrey C.; Browne, Marilyn L.; Druschel, Charlotte M.; Olney, Richard S.

    2010-01-01

    Background Investigations of maternal caffeine intake and neural tube defects (NTDs) have not considered genetic influences. Caffeine metabolism gene effects were examined in the National Birth Defects Prevention Study. Methods Average daily caffeine was summed from self-reported coffee, tea, soda, and chocolate intake for mothers of 768 NTD cases and 4143 controls delivered from 1997–2002. A subset of 306 NTD and 669 control infants and their parents were genotyped for CYP1A2*1F, NAT2 481C>T and NAT2 590G>A. CYP1A2*1F was classified by fast or slow oxidation status and NAT2 variants were categorized into rapid or slow acetylation status. Case-control logistic regression analyses, family-based transmission/disequilibrium tests and log-linear analyses, and hybrid log-linear analyses were conducted to produce odds ratios (OR) or relative risks (RR) and 95% confidence intervals (CI) for caffeine intake and maternal and infant gene variants, and to examine interaction effects. Results NTDs were independently associated with infant slow NAT2 acetylator status (RR: 2.00, 95% CI: 1.10–3.64) and maternal CYP1A2*1F fast oxidation status (OR: 1.49 95% CI: 1.10–2.03). Caffeine-consuming mothers who were CYP1A2*1F fast oxidizers and NAT2 slow acetylators had non-significantly elevated estimated risk for an NTD-affected pregnancy (OR: 3.10 95% CI: 0.86–11.21). Multiplicative interaction effects were observed between maternal caffeine and infant CYP1A2*1F fast oxidizer status (pinteraction = 0.03). Conclusions The association identified between maternal CYP1A2*1F fast oxidation status and NTDs should be examined further in the context of CYP1A2’s other substrates. Maternal caffeine and its metabolites may be associated with increased risk for NTD-affected pregnancies in genetically susceptible subgroups. PMID:20641098

  10. Gene-based segregation method for identifying rare variants in family-based sequencing studies.

    PubMed

    Qiao, Dandi; Lange, Christoph; Laird, Nan M; Won, Sungho; Hersh, Craig P; Morrow, Jarrett; Hobbs, Brian D; Lutz, Sharon M; Ruczinski, Ingo; Beaty, Terri H; Silverman, Edwin K; Cho, Michael H

    2017-02-13

    Whole-exome sequencing using family data has identified rare coding variants in Mendelian diseases or complex diseases with Mendelian subtypes, using filters based on variant novelty, functionality, and segregation with the phenotype within families. However, formal statistical approaches are limited. We propose a gene-based segregation test (GESE) that quantifies the uncertainty of the filtering approach. It is constructed using the probability of segregation events under the null hypothesis of Mendelian transmission. This test takes into account different degrees of relatedness in families, the number of functional rare variants in the gene, and their minor allele frequencies in the corresponding population. In addition, a weighted version of this test allows incorporating additional subject phenotypes to improve statistical power. We show via simulations that the GESE and weighted GESE tests maintain appropriate type I error rate, and have greater power than several commonly used region-based methods. We apply our method to whole-exome sequencing data from 49 extended pedigrees with severe, early-onset chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD study (BEOCOPD) and identify several promising candidate genes. Our proposed methods show great potential for identifying rare coding variants of large effect and high penetrance for family-based sequencing data. The proposed tests are implemented in an R package that is available on CRAN (https://cran.r-project.org/web/packages/GESE/).

  11. MTP Gene Variants and Response to Lomitapide in Patients with Homozygous Familial Hypercholesterolemia.

    PubMed

    Kolovou, Genovefa D; Kolovou, Vana; Papadopoulou, Anna; Watts, Gerald F

    2016-07-01

    Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder, which leads to premature cardiovascular diseases. Microsomal triglyceride transport protein (MTP) inhibitors, such as lomitapide, offer a new therapeutic approach for treating these patients. We evaluated the lipid lowering (LL) efficacy of lomitapide according to several gene variants in MTP. Four clinically and/or molecularly defined HoFH patients were treated with lomitapide in addition to conventional high intensity LL therapy and regular lipoprotein apheresis. Two patients responded to the therapy, with a significant reduction of LDL cholesterol (LDL-C>50%, hyper-responders). Sequencing of all exonic and intronic flanking regions of the MTP gene in all patients revealed 36 different variants. The hyper-responders to lomitapide shared six common variants: rs17533489, rs79194015, rs745075, rs41275715, rs1491246, and rs17533517, which were not seen in hypo-responders (reduction in LDL-C<50%). We suggest that in HoFH variants in the MTP gene may impact on the therapeutic response to lomitapide, but this requires further investigation.

  12. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  13. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry.

    PubMed

    Sveinbjornsson, Gardar; Gudbjartsson, Daniel F; Halldorsson, Bjarni V; Kristinsson, Karl G; Gottfredsson, Magnus; Barrett, Jeffrey C; Gudmundsson, Larus J; Blondal, Kai; Gylfason, Arnaldur; Gudjonsson, Sigurjon Axel; Helgadottir, Hafdis T; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Karason, Ari; Kardum, Ljiljana Bulat; Knežević, Jelena; Kristjansson, Helgi; Kristjansson, Mar; Love, Arthur; Luo, Yang; Magnusson, Olafur T; Sulem, Patrick; Kong, Augustine; Masson, Gisli; Thorsteinsdottir, Unnur; Dembic, Zlatko; Nejentsev, Sergey; Blondal, Thorsteinn; Jonsdottir, Ingileif; Stefansson, Kari

    2016-03-01

    Mycobacterium tuberculosis infections cause 9 million new tuberculosis cases and 1.5 million deaths annually. To identify variants conferring risk of tuberculosis, we tested 28.3 million variants identified through whole-genome sequencing of 2,636 Icelanders for association with tuberculosis (8,162 cases and 277,643 controls), pulmonary tuberculosis (PTB) and M. tuberculosis infection. We found association of three variants in the region harboring genes encoding the class II human leukocyte antigens (HLAs): rs557011[T] (minor allele frequency (MAF) = 40.2%), associated with M. tuberculosis infection (odds ratio (OR) = 1.14, P = 3.1 × 10(-13)) and PTB (OR = 1.25, P = 5.8 × 10(-12)), and rs9271378[G] (MAF = 32.5%), associated with PTB (OR = 0.78, P = 2.5 × 10(-12))--both located between HLA-DQA1 and HLA-DRB1--and a missense variant encoding p.Ala210Thr in HLA-DQA1 (MAF = 19.1%, rs9272785), associated with M. tuberculosis infection (P = 9.3 × 10(-9), OR = 1.14). We replicated association of these variants with PTB in samples of European ancestry from Russia and Croatia (P < 5.9 × 10(-4)). These findings show that the HLA class II region contributes to genetic risk of tuberculosis, possibly through reduced presentation of protective M. tuberculosis antigens to T cells.

  14. Mannose-binding lectin gene polymorphic variants predispose to the development of bronchopulmonary complications but have no influence on other clinical and laboratory symptoms or signs of common variable immunodeficiency

    PubMed Central

    Litzman, J; Freiberger, T; Grimbacher, B; Gathmann, B; Salzer, U; Pavlík, T; Vlček, J; Postránecká, V; Trávníčková, Z; Thon, V

    2008-01-01

    Mannose-binding lectin (MBL), activating protein of the lectin pathway of the complement system, is an important component of the non-specific immune response. MBL2 gene polymorphisms, both in the coding and promoter regions, lead to low or deficient serum MBL levels. Low serum MBL levels were shown to be associated with serious infectious complications, mainly in patients in whom other non-specific immune system barriers were disturbed (granulocytopenia, cystic fibrosis). We have analysed two promoter (−550 and −221) and three exon (codons 52, 54 and 57) MBL2 polymorphisms in a total of 94 patients with common variable immunodeficiency (CVID) from two immunodeficiency centres. Low-producing genotypes were associated with the presence of bronchiectasis (P = 0·009), lung fibrosis (P = 0·037) and also with respiratory insufficiency (P = 0·029). We could not demonstrate any association of MBL deficiency with age at onset of clinical symptoms, age at diagnosis, the number of pneumonias before diagnosis or serum immunoglobulin (Ig)G, IgA and IgM levels before initiation of Ig treatment. No association with emphysema development was observed, such as with lung function test abnormalities. No effect of MBL2 genotypes on the presence of diarrhoea, granuloma formation, lymphadenopathy, splenomegaly, frequency of respiratory tract infection or the number of antibiotic courses of the patients was observed. Our study suggests that low MBL-producing genotypes predispose to bronchiectasis formation, and also fibrosis and respiratory insufficiency development, but have no effect on other complications in CVID patients. PMID:18637104

  15. Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels

    PubMed Central

    Sáez, María E; Martínez-Larrad, María T; Ramírez-Lorca, Reposo; González-Sánchez, José L; Zabena, Carina; Martinez-Calatrava, María J; González, Alejandro; Morón, Francisco J; Ruiz, Agustín; Serrano-Ríos, Manuel

    2007-01-01

    Background Genes implicated in common complex disorders such as obesity, type 2 diabetes mellitus (T2DM) or cardiovascular diseases are not disease specific, since clinically related disorders also share genetic components. Cysteine protease Calpain 10 (CAPN10) has been associated with T2DM, hypertension, hypercholesterolemia, increased body mass index (BMI) and polycystic ovary syndrome (PCOS), a reproductive disorder of women in which isunlin resistance seems to play a pathogenic role. The calpain 5 gene (CAPN5) encodes a protein homologue of CAPN10. CAPN5 has been previously associated with PCOS by our group. In this new study, we have analysed the association of four CAPN5 gene variants(rs948976A>G, rs4945140G>A, rs2233546C>T and rs2233549G>A) with several cardiovascular risk factors related to metabolic syndrome in general population. Methods Anthropometric measurements, blood pressure, insulin, glucose and lipid profiles were determined in 606 individuals randomly chosen from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille), recruited to investigate the prevalence of anthropometric and physiological parameters related to obesity and other components of the metabolic syndrome. Genotypes at the four polymorphic loci in CAPN5 gene were detected by polymerase chain reaction (PCR). Results Genotype association analysis was significant for BMI (p ≤ 0.041), diastolic blood pressure (p = 0.015) and HDL-cholesterol levels (p = 0.025). Different CAPN5 haplotypes were also associated with diastolic blood pressure (DBP) (0.0005 ≤ p ≤ 0.006) and total cholesterol levels (0.001 ≤ p ≤ 0.029). In addition, the AACA haplotype, over-represented in obese individuals, is also more frequent in individuals with metabolic syndrome defined by ATPIII criteria (p = 0.029). Conclusion As its homologue CAPN10, CAPN5 seems to influence traits related to increased risk for cardiovascular diseases. Our results also

  16. Ancient Out-of-Africa Mitochondrial DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns

    PubMed Central

    Mishmar, Dan

    2016-01-01

    Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world. PMID:27812116

  17. Transcription variants of SLA-7, a swine non classical MHC class I gene.

    PubMed

    Hu, Rui; Lemonnier, Gaëtan; Bourneuf, Emmanuelle; Vincent-Naulleau, Silvia; Rogel-Gaillard, Claire

    2011-06-03

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation.

  18. Transcription variants of SLA-7, a swine non classical MHC class I gene

    PubMed Central

    2011-01-01

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation. PMID:21645289

  19. High Frequency of Variants of Candidate Genes in Black Africans with Low Renin-Resistant Hypertension.

    PubMed

    Jones, Erika S; Spence, J D; Mcintyre, Adam D; Nondi, Justus; Gogo, Kennedy; Akintunde, Adeseye; Hackam, Daniel G; Rayner, Brian L

    2017-05-01

    Black subjects tend to retain salt and water, be more sensitive to aldosterone, and have suppression of plasma renin activity. Variants of the renal sodium channel (ENaC, SCNN1B) account for approximately 6% of resistant hypertension (RHT) in Blacks; other candidate genes may be important. Six candidate genes associated with low renin-resistant hypertension were sequenced in Black Africans from clinics in Kenya and South Africa. CYP11B2 was sequenced if the aldosterone level was high (primary aldosteronism phenotype); SCNN1B, NEDD4L, GRK4, UMOD, and NPPA genes were sequenced if the aldosterone level was low (Liddle phenotype). There were 14 nonsynonymous variants (NSVs) of CYP11B2: 3 previously described and associated with alterations in aldosterone synthase production (R87G, V386A, and G435S). Out of 14, 9 variants were found in all 9 patients sequenced. There were 4 NSV of GRK4 (R65L, A116T, A142V, V486A): at least one was found in all 9 patients; 3 were previously described and associated with hypertension. There were 3 NSV of SCNN1B (R206Q, G442V, and R563Q); 2 previously described and 1 associated with hypertension. NPPA was found to have 1 NSV (V32M), not previously described and NEDD4L did not have any variants. UMOD had 3 NSV: D25G, L180V, and T585I. A phenotypic approach to investigating the genetic architecture of RHT uncovered a surprisingly high yield of variants in candidate genes. These preliminary findings suggest that this novel approach may assist in understanding the genetic architecture of RHT in Blacks and explain their two fold risk of stroke.

  20. PTSD and gene variants: new pathways and new thinking.

    PubMed

    Skelton, Kelly; Ressler, Kerry J; Norrholm, Seth D; Jovanovic, Tanja; Bradley-Davino, Bekh

    2012-02-01

    Posttraumatic Stress Disorder (PTSD) is an anxiety disorder which can develop as a result of exposure to a traumatic event and is associated with significant functional impairment. Family and twin studies have found that risk for PTSD is associated with an underlying genetic vulnerability and that more than 30% of the variance associated with PTSD is related to a heritable component. Using a fear conditioning model to conceptualize the neurobiology of PTSD, three primary neuronal systems have been investigated - the hypothalamic-pituitary-adrenal axis, the locus coeruleus-noradrenergic system, and neurocircuitry interconnecting the limbic system and frontal cortex. The majority of the initial investigations into main effects of candidate genes hypothesized to be associated with PTSD risk have been negative, but studies examining the interaction of genetic polymorphisms with specific environments in predicting PTSD have produced several positive results which have increased our understanding of the determinants of risk and resilience in the aftermath of trauma. Promising avenues of inquiry into the role of epigenetic modification have also been proposed to explain the enduring impact of environmental exposures which occur during key, often early, developmental periods on gene expression. Studies of PTSD endophenotypes, which are heritable biomarkers associated with a circumscribed trait within the more complex psychiatric disorder, may be more directly amenable to analysis of the underlying genetics and neural pathways and have provided promising targets for elucidating the neurobiology of PTSD. Knowledge of the genetic underpinnings and neuronal pathways involved in the etiology and maintenance of PTSD will allow for improved targeting of primary prevention amongst vulnerable individuals or populations, as well as timely, targeted treatment interventions. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier

  1. Complementation of Yeast Genes with Human Genes as an Experimental Platform for Functional Testing of Human Genetic Variants.

    PubMed

    Hamza, Akil; Tammpere, Erik; Kofoed, Megan; Keong, Christelle; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Hieter, Philip

    2015-11-01

    While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. Using cross-species complementation, model organisms like the budding yeast, Saccharomyces cerevisiae, can be utilized to fill this gap and serve as a platform for testing human genetic variants. To this end, we performed two parallel screens, a one-to-one complementation screen for essential yeast genes implicated in chromosome instability and a pool-to-pool screen that queried all possible essential yeast genes for rescue of lethality by all possible human homologs. Our work identified 65 human cDNAs that can replace the null allele of essential yeast genes, including the nonorthologous pair yRFT1/hSEC61A1. We chose four human cDNAs (hLIG1, hSSRP1, hPPP1CA, and hPPP1CC) for which their yeast gene counterparts function in chromosome stability and assayed in yeast 35 tumor-specific missense mutations for growth defects and sensitivity to DNA-damaging agents. This resulted in a set of human-yeast gene complementation pairs that allow human genetic variants to be readily characterized in yeast, and a prioritized list of somatic mutations that could contribute to chromosome instability in human tumors. These data establish the utility of this cross-species experimental approach. Copyright © 2015 by the Genetics Society of America.

  2. Imputing Variants in HLA-DR Beta Genes Reveals That HLA-DRB1 Is Solely Associated with Rheumatoid Arthritis and Systemic Lupus Erythematosus

    PubMed Central

    Kim, Kwangwoo; Bang, So-Young; Yoo, Dae Hyun; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Kang, Young Mo; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Kim, Seong-Kyu; Choe, Jung-Yoon; Nath, Swapan K.; Lee, Hye-Soon; Bae, Sang-Cheol

    2016-01-01

    The genetic association of HLA-DRB1 with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is well documented, but association with other HLA-DR beta genes (HLA-DRB3, HLA-DRB4 and HLA-DRB5) has not been thoroughly studied, despite their similar functions and chromosomal positions. We examined variants in all functional HLA-DR beta genes in RA and SLE patients and controls, down to the amino-acid level, to better understand disease association with the HLA-DR locus. To this end, we improved an existing HLA reference panel to impute variants in all protein-coding HLA-DR beta genes. Using the reference panel, HLA variants were inferred from high-density SNP data of 9,271 RA-control subjects and 5,342 SLE-control subjects. Disease association tests were performed by logistic regression and log-likelihood ratio tests. After imputation using the newly constructed HLA reference panel and statistical analysis, we observed that HLA-DRB1 variants better accounted for the association between MHC and susceptibility to RA and SLE than did the other three HLA-DRB variants. Moreover, there were no secondary effects in HLA-DRB3, HLA-DRB4, or HLA-DRB5 in RA or SLE. Of all the HLA-DR beta chain paralogs, those encoded by HLA-DRB1 solely or dominantly influence susceptibility to RA and SLE. PMID:26919467

  3. Dynamic expression of combinatorial replication-dependent histone variant genes during mouse spermatogenesis.

    PubMed

    Sun, Rongfang; Qi, Huayu

    2014-01-01

    Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here

  4. Serotonin transporter promoter polymorphism and monoamine oxidase type A VNTR allelic variants together influence alcohol binge drinking risk in young women.

    PubMed

    Herman, Aryeh I; Kaiss, Kristi M; Ma, Rui; Philbeck, John W; Hasan, Asfar; Dasti, Humza; DePetrillo, Paolo B

    2005-02-05

    The short allelic variant of the serotonin transporter protein promoter polymorphism (5HTTLPR) appears to influence binge drinking in college students. Both monoamine oxidase type A (MAOA) and the serotonin transporter protein are involved in the processing of serotonin, and allelic variants are both associated with differences in the efficiency of expression. We hypothesized that a significant gene x gene interaction would further stratify the risk of binge drinking in this population. Participants were college students (n = 412) who completed the College Alcohol Study, used to measure binge drinking behaviors. Genomic DNA was extracted from saliva for PCR based genotyping. The risk function for binge drinking was modeled using logistic regression, with final model fit P < 0.0005. This model was valid only for Caucasian females (n = 223), but the power to detect sex and ethnic effects was small. Young Caucasian women carrying higher expression MAOA VNTR alleles homozygous for the short allelic variant of the 5HTTLPR demonstrated the highest rate of binge drinking by self-report, odds ratio (genotype odds: population odds) and 95% confidence intervals, 3.11 (1.14-18.10). Individuals carrying higher expression MAOA VNTR alleles carrying at least one long 5HTTLPR allelic variant had the lowest risk of binge drinking 0.46 (0.28-0.71). These results support the hypothesis that binge drinking behavior in young adulthood may be influenced by neurobiological differences in serotonergic function conferred by functional polymorphisms in genes involved in serotonin processing. (c) 2004 Wiley-Liss, Inc.

  5. ELN and FBN2 gene variants as risk factors for two sports-related musculoskeletal injuries.

    PubMed

    Khoury, L El; Posthumus, M; Collins, M; van der Merwe, W; Handley, C; Cook, J; Raleigh, S M

    2015-04-01

    The proteins ELN and FBN2 are important in extracellular matrix function. The ELN rs2071307 and FBN2 rs331079 gene variants have been associated with soft tissue pathologies. We aimed to determine whether these variants were predisposing factors for both Achilles tendinopathy (AT) and anterior cruciate ligament (ACL) ruptures. For the AT study, 135 cases (TEN group) and 239 asymptomatic controls were recruited. For the ACL rupture study our cohort consisted of 141 cases (ACL group) and 219 controls. Samples were genotyped for both the ELN rs2071307 and FBN2 rs331079 variants using TaqMan assays. Analysis of variance and chi-squared tests were used to determine whether either variant was associated with AT or ACL rupture with significance set at p<0.05. The GG genotype of the FBN2 variant was significantly over-represented within the TEN group (p=0.035; OR=1.83; 95% CI 1.04-3.25) compared to the CON group. We also found that the frequency of the G allele was significantly different between the TEN (p=0.017; OR=1.90; 95% CI 1.11-3.27) and ACL groups (p=0.047; OR=1.76; 95% CI 1.00-3.10) compared to controls. The ELN rs207137 variant was not associated with either AT or ACL rupture. In conclusion, DNA sequence variation within the FBN2 gene is associated with both AT and ACL rupture. © Georg Thieme Verlag KG Stuttgart · New York.

  6. The CFTR M470V gene variant as a potential modifier of COPD severity: study of Serbian population.

    PubMed

    Stankovic, Marija; Nikolic, Aleksandra; Divac, Aleksandra; Tomovic, Andrija; Petrovic-Stanojevic, Natasa; Andjelic, Marina; Dopudja-Pantic, Vesna; Surlan, Mirjana; Vujicic, Ivan; Ponomarev, Dimitrije; Mitic-Milikic, Marija; Kusic, Jelena; Radojkovic, Dragica

    2008-09-01

    Chronic obstructive pulmonary disease (COPD) is a complex disease influenced by genetic and environmental factors. Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an important component of the lung tissue homeostasis, involved in the regulation of the rate of mucociliary clearance. As it is known that certain CFTR variants have consequences on the function of CFTR protein, the aim of this study was to examine the possible role of F508del, M470V, Tn locus, and R75Q variants in COPD development and modulation. Total number of 86 COPD patients and 102 control subjects were included in the study. Possible association between COPD susceptibility, severity, and onset of the disease and allele or genotype of four analyzed CFTR variants was examined. No associations were detected between COPD development, onset of the disease and tested CFTR alleles and genotypes. However, VV470 genotype was associated with mild/moderate COPD stages in comparison to severe/very severe ones (OR = 0.29, 95%CI = 0.11-0.80, p = 0.016). Our study showed that patients with VV470 genotype had a 3.4-fold decreased risk for the appearance of severe/very severe COPD symptoms, and the obtained results indicate that this genotype may have a protective role. These results also suggest the importance of studying CFTR gene as a modifier of this disease.

  7. Contribution of Transcription Factor Binding Site Motif Variants to Condition-Specific Gene Expression Patterns in Budding Yeast

    PubMed Central

    Rest, Joshua S.; Bullaughey, Kevin; Morris, Geoffrey P.; Li, Wen-Hsiung

    2012-01-01

    It is now experimentally well known that variant sequences of a cis transcription factor binding site motif can contribute to differential regulation of genes. We characterize the relationship between motif variants and gene expression by analyzing expression microarray data and binding site predictions. To accomplish this, we statistically detect motif variants with effects that differ among environments. Such environmental specificity may be due to either affinity differences between variants or, more likely, differential interactions of TFs bound to these variants with cofactors, and with differential presence of cofactors across environments. We examine conservation of functional variants across four Saccharomyces species, and find that about a third of transcription factors have target genes that are differentially expressed in a condition-specific manner that is correlated with the nucleotide at variant motif positions. We find good correspondence between our results and some cases in the experimental literature (Reb1, Sum1, Mcm1, and Rap1). These results and growing consensus in the literature indicates that motif variants may often be functionally distinct, that this may be observed in genomic data, and that variants play an important role in condition-specific gene regulation. PMID:22384202

  8. Sensory gating and alpha-7 nicotinic receptor gene allelic variants in schizoaffective disorder, bipolar type.

    PubMed

    Martin, Laura F; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R; Freedman, Robert; Olincy, Ann

    2007-07-05

    Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects' DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia.

  9. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    PubMed

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (p<0.05). The frequency of C282Y, S65C and H63D HFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  10. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure

    PubMed Central

    Freedman, Barry I.; Julian, Bruce A.; Pastan, Stephen O.; Israni, Ajay K.; Schladt, David; Gautreaux, Michael D.; Hauptfeld, Vera; Bray, Robert A.; Gebel, Howard M.; Kirk, Allan D.; Gaston, Robert S.; Rogers, Jeffrey; Farney, Alan C.; Orlando, Giuseppe; Stratta, Robert J.; Mohan, Sumit; Ma, Lijun; Langefeld, Carl D.; Hicks, Pamela J.; Palmer, Nicholette D.; Adams, Patricia L.; Palanisamy, Amudha; Reeves-Daniel, Amber M.; Divers, Jasmin

    2016-01-01

    Apolipoprotein L1 gene (APOL1) nephropathy variants in African American deceased kidney donors were associated with shorter renal allograft survival in a prior single-center report. APOL1 G1 and G2 variants were genotyped in newly accrued DNA samples from African American deceased donors of kidneys recovered and/or transplanted in Alabama and North Carolina. APOL1 genotypes and allograft outcomes in subsequent transplants from 55 U.S. centers were linked, adjusting for age, sex and race/ethnicity of recipients, HLA match, cold ischemia time, panel reactive antibody levels, and donor type. For 221 transplantations from kidneys recovered in Alabama, there was a statistical trend toward shorter allograft survival in recipients of two-APOL1-nephropathy-variant kidneys (hazard ratio [HR] 2.71; p=0.06). For all 675 kidneys transplanted from donors at both centers, APOL1 genotype (HR 2.26; p=0.001) and African American recipient race/ethnicity (HR 1.60; p=0.03) were associated with allograft failure. Kidneys from African American deceased donors with two APOL1 nephropathy variants reproducibly associate with higher risk for allograft failure after transplantation. These findings warrant consideration of rapidly genotyping deceased African American kidney donors for APOL1 risk variants at organ recovery and incorporation of results into allocation and informed-consent processes. PMID:25809272

  11. Increased frequency of double and triple heterozygous gene variants in children with intrahepatic cholestasis

    PubMed Central

    Goldschmidt, Monique L.; Mourya, Reena; Connor, Jessica; Dexheimer, Phillip; Karns, Rebekah; Miethke, Alexander; Sheridan, Rachel; Zhang, Kejian; Bezerra, Jorge A.

    2016-01-01

    Background and Aims Single-gene mutations cause syndromes of intrahepatic cholestasis, but previous multi-gene mutation screening in children with idiopathic cholestasis failed to fulfill diagnostic criteria in about two-thirds of children. In adults with fibrosing cholestatic disease, heterozygous ABCB4 mutations were present in 34% of patients. Here, we hypothesized that children with idiopathic cholestasis have a higher frequency of heterozygous non-synonymous gene sequence variants. Methods We analyzed the frequency and types of variants in 717 children in whom high-throughput sequencing of the genes SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 was performed as part of an evaluation for intrahepatic idiopathic cholestasis. The frequency of non-synonymous variants (NSVs) was compared to those of 1092 control subjects enrolled in the 1000-Genome-Project. Results The frequency of NSVs in single genes was similar between disease (25%) and controls (26%, P=0.518). In contrast, double or triple NSVs in 2 or more genes were more frequent in disease (N= 7%) than controls (N=4.7%, P=0.028). Detailed review of clinical and laboratory information in a subgroup of double or triple heterozygous patients revealed variable GGT levels and severity of pruritus, with liver biopsies showing stage 2–3 fibrosis. Conclusion Children with intrahepatic idiopathic cholestasis have a higher frequency of double or triple NSVs in SERPINA1, JAG1, ATPB1, ABCB11, or ABCB4. These findings raise the potential role for gene-gene relationships in determining the phenotype of cholestatic liver disease in children. PMID:26126923

  12. Analysis of ERCC1 and ERCC2 gene variants in osteosarcoma, colorectal and breast cancer

    PubMed Central

    GÓMEZ-DÍAZ, BENJAMÍN; DE LA LUZ AYALA-MADRIGAL, MARÍA; GUTIÉRREZ-ANGULO, MELVA; VALLE-SOLIS, AURA ERAZO; LINARES-GONZÁLEZ, LUIS MIGUEL; GONZÁLEZ-GUZMÁN, ROBERTO; CRUZ-GUILLÉN, DAVID; CEDEÑO-GARCIDUEÑAS, ANA LILIA; CANTO, PATRICIA; LÓPEZ-HERNÁNDEZ, LUZ BERENICE

    2015-01-01

    The Asn118Asn (rs11615) variant in the ERCC1 gene, and the Lys751Gln (rs13181) and Asp312Asn (rs1799793) variants in the ERCC2 gene have been associated with the development of varied types of cancer. The aim of the present study was to test for any association between the ERCC1 and ERCC2 gene variants and three different types of cancer in Mexican-mestizo patients. Patients and their respective controls were formed into three groups: The osteosarcoma group, with 28 patients and 97 controls; the colorectal group, with 108 patients and 119 controls; and the breast cancer group, with 71 patients and 74 controls. Genotyping was performed using TaqMan probes and quantitative polymerase chain reaction. Allele and genotype frequencies were compared using a χ2 test. Only one SNP (rs1799793) was found to be associated with breast cancer. This is the first study analyzing the SNPs in ERCC1 and ERCC2 genes and the susceptibility to cancer in Mexican-mestizo patients with osteosarcoma, and colorectal and breast cancer. PMID:25789018

  13. Mucosal Expression of T Cell Gene Variants Is Associated with Differential Resistance to Teladorsagia circumcincta

    PubMed Central

    Wilkie, Hazel; Nicol, Louise; Gossner, Anton

    2016-01-01

    Resistance of sheep to the gastrointestinal nematode Teladorsagia circumcincta is a heritable characteristic. Control of parasite colonization and egg production is strongly linked to IgA antibody levels regulated by Th2 T cell activation within lymphoid tissue; and persistently-infected susceptible animals develop an inflammatory Th1/Th17 response within the abomasum that fails to control infection. Differential T cell polarization therefore is associated with parasite resistance and/or susceptibility and is controlled by a specific set of transcription factors and cytokine receptors. Transcript variants of these genes have been characterized in sheep, while in humans and mice different variants of the genes are associated with inflammatory diseases. RT-qPCR was used to quantify mucosal expression of the transcript variants of the sheep genes in trickle-infected animals with defined phenotypic traits. Genes that encode full-length GATA3 and IL17RB were shown to be significantly increased in resistant sheep that had controlled parasite infection. Expression levels of both were significantly negatively correlated with abomasal worm count (a parameter of susceptibility) and positively correlated with body weight (a parameter of resistance). These data show that polarized Th2 T cells within the abomasal mucosa play an important role in the maintenance of resistance. PMID:27973603

  14. Analysis of ERCC1 and ERCC2 gene variants in osteosarcoma, colorectal and breast cancer.

    PubMed

    Gómez-Díaz, Benjamín; DE LA Luz Ayala-Madrigal, María; Gutiérrez-Angulo, Melva; Valle-Solis, Aura Erazo; Linares-González, Luis Miguel; González-Guzmán, Roberto; Cruz-Guillén, David; Cedeño-Garcidueñas, Ana Lilia; Canto, Patricia; López-Hernández, Luz Berenice

    2015-04-01

    The Asn118Asn (rs11615) variant in the ERCC1 gene, and the Lys751Gln (rs13181) and Asp312Asn (rs1799793) variants in the ERCC2 gene have been associated with the development of varied types of cancer. The aim of the present study was to test for any association between the ERCC1 and ERCC2 gene variants and three different types of cancer in Mexican-mestizo patients. Patients and their respective controls were formed into three groups: The osteosarcoma group, with 28 patients and 97 controls; the colorectal group, with 108 patients and 119 controls; and the breast cancer group, with 71 patients and 74 controls. Genotyping was performed using TaqMan probes and quantitative polymerase chain reaction. Allele and genotype frequencies were compared using a χ(2) test. Only one SNP (rs1799793) was found to be associated with breast cancer. This is the first study analyzing the SNPs in ERCC1 and ERCC2 genes and the susceptibility to cancer in Mexican-mestizo patients with osteosarcoma, and colorectal and breast cancer.

  15. Common variant of FTO gene, rs9939609, and obesity in Pakistani females.

    PubMed

    Shahid, Adeela; Rana, Sobia; Saeed, Shahid; Imran, Muhammad; Afzal, Nasir; Mahmood, Saqib

    2013-01-01

    Numerous studies confirmed the association of FTO (fat mass and obesity associated gene) common variant, rs9939609, with obesity in European populations. However, studies in Asian populations revealed conflicting results. We examined the association of rs9939609 variant of FTO gene with obesity and obesity-related anthropometric and metabolic parameters in Pakistani population. Body weight, height, waist circumference, hip circumference, and blood pressure (BP) were measured. BMI and waist-to-hip ratio (WHR) were calculated. Levels of fasting blood glucose (FBG), insulin, leptin, and leptin receptors were measured by enzyme linked immunosorbent assay (ELISA), and homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. The results showed association of FTO gene, rs9939609, with obesity in females (>18 years of age). FTO minor allele increased the risk of obesity by 2.8 times (95% CI = 1.3-6.0) in females. This allele showed association with body weight, BMI, waist circumference, hip circumference, WHR, BP, plasma FBG levels, HOMA-IR, plasma insulin levels, and plasma leptin levels. In conclusion, FTO gene, rs9939609, is associated with BMI and risk of obesity in adult Pakistani females. Association of rs9939609 variant with higher FBG, plasma insulin, and leptin levels indicates that this polymorphism may disturb the metabolism in adult females and predispose them to obesity and type 2 diabetes. However, the above-mentioned findings were not seen in children or males.

  16. Common Variant of FTO Gene, rs9939609, and Obesity in Pakistani Females

    PubMed Central

    Shahid, Adeela; Rana, Sobia; Saeed, Shahid; Imran, Muhammad; Afzal, Nasir; Mahmood, Saqib

    2013-01-01

    Numerous studies confirmed the association of FTO (fat mass and obesity associated gene) common variant, rs9939609, with obesity in European populations. However, studies in Asian populations revealed conflicting results. We examined the association of rs9939609 variant of FTO gene with obesity and obesity-related anthropometric and metabolic parameters in Pakistani population. Body weight, height, waist circumference, hip circumference, and blood pressure (BP) were measured. BMI and waist-to-hip ratio (WHR) were calculated. Levels of fasting blood glucose (FBG), insulin, leptin, and leptin receptors were measured by enzyme linked immunosorbent assay (ELISA), and homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. The results showed association of FTO gene, rs9939609, with obesity in females (>18 years of age). FTO minor allele increased the risk of obesity by 2.8 times (95% CI = 1.3–6.0) in females. This allele showed association with body weight, BMI, waist circumference, hip circumference, WHR, BP, plasma FBG levels, HOMA-IR, plasma insulin levels, and plasma leptin levels. In conclusion, FTO gene, rs9939609, is associated with BMI and risk of obesity in adult Pakistani females. Association of rs9939609 variant with higher FBG, plasma insulin, and leptin levels indicates that this polymorphism may disturb the metabolism in adult females and predispose them to obesity and type 2 diabetes. However, the above-mentioned findings were not seen in children or males. PMID:24102053

  17. Efficient expression of gene variants that harbour AGA codons next to the initiation codon

    PubMed Central

    Zamora-Romo, Efraín; Cruz-Vera, Luis Rogelio; Vivanco-Domínguez, Serafín; Magos-Castro, Marco Antonio; Guarneros, Gabriel

    2007-01-01

    In an effort to improve the knowledge about the rules which direct the effect of the early ORF sequences on translation efficiency, we have analyzed the effect of pairs of the six arginine codons at the second and third positions on the expression of lacZ variants. Whereas the pairs of identical AGA or AGG codons were favorable for the gene expression, identical pairs of each of the four CGN codons were very inefficient. This result was unexpected because tandems of AGA or AGG codons located in more internal gene positions provoke deficient expression whilst internally located CGU and CGC are the most abundant and efficiently translated arginine codons. The mixed combinations of AGA and each of the CGN codons usually resulted in efficient rates of lacZ expression independently of the peptidyl-tRNA propensity to dissociate from the ribosome. Thus, the variant harboring the pair of AGA codons was expressed as efficiently as the variant carrying a pair of AAA codons in the same positions, a configuration reported as one of the most common and efficient for gene expression. We explain these results assuming that the presence of adenines in these early positions enhance gene expression. As expected, specific mRNA levels correlated with the intensity of lacZ expression for each variant. However, the induction of lacZ AGA AGA gene in pth cells accumulated peptidyl-tRNAArg4 as well as a short 5′-proximal lacZ mRNA fragment suggesting ribosome stalling due to depletion of aminoacylated-tRNAArg4. PMID:17726048

  18. Distribution of allelic variants of the chromosomal gene bla OXA-114-like in Achromobacter xylosoxidans clinical isolates.

    PubMed

    Traglia, German Matías; Almuzara, Marisa; Merkier, Andrea Karina; Papalia, Mariana; Galanternik, Laura; Radice, Marcela; Vay, Carlos; Centrón, Daniela; Ramírez, María Soledad

    2013-11-01

    Achromobacter xylosoxidans is increasingly being documented in cystic fibrosis patients. The bla(OXA-114) gene has been recognized as a naturally occurring chromosomal gene, exhibiting different allelic variants. In the population under study, the bla(OXA-114)-like gene was found in 19/19 non-epidemiological-related clinical isolates of A. xylosoxidans with ten different alleles including 1 novel OXA-114 variant.

  19. An investigation of mammographic density and gene variants in healthy women.

    PubMed

    Maskarinec, Gertraud; Lurie, Galina; Williams, Andrew E; Le Marchand, Loic

    2004-11-20

    This cross-sectional study examined if polymorphisms in genes that code for enzymes involved in the production and metabolism of estrogens are associated with mammographic density, a strong predictor of breast cancer risk. The study included 328 healthy women of different ethnicities who underwent mammographic screening and donated a blood or mouthwash sample for DNA analysis. After digitizing cranio-caudal views of the mammograms, we performed computer-assisted mammographic density assessment. Following DNA extraction, samples were analyzed for polymorphisms in the COMT (Val158Met), CYP1A1 (Ile462Val), CYP1B1 (Val432Leu), CYP1A2 (*1F) and CYP17 (T27C) genes using PCR-RFLP. Breast density was lower in Caucasians than in Asians. Caucasian women were less likely to carry the CYP1A1 variant allele and more likely to carry the variant alleles for CYP1B1 and COMT than women with Asian or Hawaiian ancestry. The low-activity COMT and CYP1A2 variant alleles were weakly related to lower percent mammographic density after adjustment for age, ethnicity, body mass index and reproductive variables (p for gene-dosage =0.08 and 0.05, respectively). These relations were observed in premenopausal women only and were similar in direction and magnitude after stratification by ethnicity. We found no significant associations between breast density and the variant alleles for CYP1A1, CYP1B1 and CYP17. Our data suggest lower mammographic density for women carrying the COMT and CYP1A2 variant alleles than for women carrying the common alleles, though this is the opposite of what is commonly hypothesized from the enzyme function.

  20. A de novo variant in the ASPRV1 gene in a dog with ichthyosis

    PubMed Central

    Bauer, Anina; Galichet, Arnaud; Jagannathan, Vidhya; Sayar, Beyza S.; Wiener, Dominique J.; Müller, Eliane J.; Roosje, Petra; Welle, Monika M.

    2017-01-01

    Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding “aspartic peptidase, retroviral-like 1”, which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses. PMID:28249031

  1. Role of inosine triphosphate pyrophosphatase gene variant on fever incidence during zidovudine antiretroviral therapy.

    PubMed

    Coelho, A V C; Silva, S P S; Zandonà, L; Stocco, G; Decorti, G; Crovella, S

    2017-01-23

    Zidovudine, the antiretroviral drug used to treat HIV infection, commonly causes adverse effects, such as systemic fever and gastrointestinal alterations. In the present study, the potential role of inosine triphosphate pyrophosphatase (ITPA) gene variant on the incidence of adverse events during antiretroviral therapy (ART) of HIV with zidovudine was discussed. Individuals from Northeastern Brazil (N = 204) receiving treatment for HIV-1 infection were recruited. Zidovudine-related adverse effects developed during the treatment were registered. The rs1127354 polymorphism in the ITPA gene was genotyped using real-time PCR to assess whether this single nucleotide polymorphism was associated with the occurrence of zidovudine-related adverse effects. We observed a significant association between the ITPA variant genotype and the reported systemic fever (odds ratio = 7.17, 95% confidence interval = 1.19-43.15; P = 0.032). Zidovudine use could indirectly lead to an increase in the levels of inosine monophosphate in an antimetabolite-like manner, which is converted to inosine triphosphate (ITP). The rs1127354 variant caused a decrease in ITPA activity, thereby leading to ITP accumulation. This in turn resulted in cytotoxicity, which was manifested by neutropenia and fever. Therefore, we hypothesized a pharmacogenetic model involving the ITPA variant genotype in multifactorial components that act together to determine the onset of zidovudine-related adverse effects.

  2. Unique surface gene variants of hepatitis B virus isolated from patients in the Philippines.

    PubMed

    Baclig, Michael O; Alvarez, May R; Gopez-Cervantes, Juliet; Natividad, Filipinas F

    2014-02-01

    Point mutations and multiple variants across the "a" determinant can destroy the antigenicity and immunogenicity of hepatitis B virus (HBV) leading to false negative assay and vaccine escape. In this study, the presence of surface gene variants of HBV was investigated among patients clinically diagnosed with chronic hepatitis B and positive for HBV DNA from 2002 to 2009. Sequence analysis of the surface gene of HBV showed that 23 (43%) of the 53 isolates had variations. Out of the 23 isolates, 15 (65%) exhibited single or multiple substitutions, which resulted to specific amino acid changes. The remaining 8 (35%) isolates had silent mutations. The amino acid substitution M133T which was associated with failure of HBsAg detection was found in one isolate (7%, 1/15), while the amino acid substitution D144A which was associated with vaccine escape was observed in one isolate (7%, 1/15). No G145R mutation was observed. Of the 15 isolates with identified single or multiple substitutions, 6 (40%) were found to have unique sequences which caused changes in the hydrophobicity profile in the protein. Unique sequence variants at amino acid positions M103I, L109P, S117R, F134I, and S136L found in this study have not yet been reported. These data should be taken into account when developing next generation HBV assays to detect both common and unique variants, and when new HBV vaccines will be designed.

  3. Association of Variants in Estrogen-Related Pathway Genes with Prostate Cancer Risk

    PubMed Central

    Holt, Sarah K.; Kwon, Erika M.; Fu, Rong; Kolb, Suzanne; Feng, Ziding; Ostrander, Elaine A.; Stanford, Janet L.

    2012-01-01

    Background Through mediation of estrogen receptors, estradiol has been shown to have both carcinogenic and anti-carcinogenic effects on the prostate. We performed a population-based case-control study to investigate variants in estrogen-related genes ESR1, ESR2, CYP19A1, CYP1A1, and CYP1B1 and the potential association with risk of prostate cancer. Materials and Methods We evaluated prostate cancer risk conferred by 73 single nucleotide polymorphisms in 1,304 incident prostate cancer cases and 1,266 age-matched controls. Analysis included stratification by clinical features and assessment of environmental modifiers. Results There was evidence of altered risk of developing prostate cancer for variants in ESR1, CYP1A1, and CYP1B1, however, only CYP1B1 rs1056836 retained significance after adjustment for multiple comparisons. An association with risk for more aggressive prostate cancer was observed for variants in ESR1, ESR2, and CYP19A1, but none was significant after adjustment for multiple comparisons. There was no effect modification by obesity. Conclusions Germline genetic variation of these estrogen pathway genes may contribute to risk of prostate cancer. Additional studies to validate these results and examine the functional consequence of validated variants are warranted. PMID:22549291

  4. Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population.

    PubMed

    Mandal, Raju K; Kapoor, Rakesh; Mittal, Rama Devi

    2010-11-01

    DNA repair gene alterations may cause a reduction in DNA repair capacity and influence an individual's susceptibility to carcinogenesis. We hypothesized that single nucleotide polymorphisms of DNA repair genes may be a risk factor for prostate cancer (PCa) susceptibility, influencing expression of homologous recombination (XRCC3) and nonhomologous end-joining (XRCC7) genes and conferring predisposition to PCa. In a case-control study, genotyping was done in 192 patients with PCa and 224 age matched unrelated healthy controls of similar ethnicity to determine variants in XRCC3 Exon 7 (C18067T, rs861539), IVS5-14 (A17893G, rs1799796), and XRCC7 Intron 8 (G6721T, rs7003908) by polymerase chain reaction-restriction fragment-length polymorphism methods. Variant genotype GG (odds ratio [OR], 2.23; p=0.003) and combined genotype TG+GG (OR, 1.541; p=0.049), G allele of XRCC7 Intron 8 (G>T), demonstrated significant risk for PCa (OR, 1.529; p=0.002). Stratification on bases of Gleason grade and bone metastasis, significant risk with high Gleason grade for CT genotype of XRCC3 Exon 7, and variant genotype GG of XRCC7 Intron 8 were observed. Our results strongly support that common sequence variants (GG) genotype of XRCC7 may increase risk of PCa. G allele being a risk allele in our study also suggests that this polymorphism be used as a marker for the PCa susceptibility.

  5. Molecular characterization of novel variants of interferon-tau (IFNT) gene in Garole breed of sheep (Ovis aries).

    PubMed

    Rajaravindra, Konadaka S; Das, Pranab Jyoti; Sukumar, Kandasamy; Ghosh, Sankar Kumar; Mitra, Abhijit

    2008-03-03

    The survivability of embryo, especially during the early embryonic life is dependent on the effective maternal recognition of pregnancy. Interferon-tau (IFNT), secreted from the elongating blastocyst, acts as the primary signal for maternal recognition of pregnancy in ruminant ungulates. IFNT has been studied extensively in many domesticated and wild ruminant species. In the present study, we have cloned and characterized the IFNT gene of Garole sheep, a popular Indian micro-sheep breed, which is known across the world for its high prolificacy and fecundity. The 588 bp sequences of two variants of IFNT gene described in this study are novel variants, compared to the variants reported previously in sheep. It exhibited more than 96% identity with other ovine IFNT variants and phylogenetically placed in a single clad containing the ovine, caprine and musk ox IFNT variants. The IFNT of Garole sheep demonstrated the highest identity with the genomic derived and highly expressed ovine IFNT variants.

  6. How might ZNF804A variants influence risk for schizophrenia and bipolar disorder? A literature review, synthesis, and bioinformatic analysis.

    PubMed

    Hess, Jonathan L; Glatt, Stephen J

    2014-01-01

    The gene that encodes zinc finger protein 804A (ZNF804A) became a candidate risk gene for schizophrenia (SZ) after surpassing genome-wide significance thresholds in replicated genome-wide association scans and meta-analyses. Much remains unknown about this reported gene expression regulator; however, preliminary work has yielded insights into functional and biological effects of ZNF804A by targeting its regulatory activities in vitro and by characterizing allele-specific interactions with its risk-conferring single nucleotide polymorphisms (SNPs). There is now strong epidemiologic evidence for a role of ZNF804A polymorphisms in both SZ and bipolar disorder (BD); however, functional links between implicated variants and susceptible biological states have not been solidified. Here we briefly review the genetic evidence implicating ZNF804A polymorphisms as genetic risk factors for both SZ and BD, and discuss the potential functional consequences of these variants on the regulation of ZNF804A and its downstream targets. Empirical work and predictive bioinformatic analyses of the alternate alleles of the two most strongly implicated ZNF804A polymorphisms suggest they might alter the affinity of the gene sequence for DNA- and/or RNA-binding proteins, which might in turn alter expression levels of the gene or particular ZNF804A isoforms. Future work should focus on clarifying the critical periods and cofactors regulating these genetic influences on ZNF804A expression, as well as the downstream biological consequences of an imbalance in the expression of ZNF804A and its various mRNA isoforms.

  7. Genetic Variants in Nicotine Addiction and Alcohol Metabolism Genes, Oral Cancer Risk and the Propensity to Smoke and Drink Alcohol: A Replication Study in India

    PubMed Central

    Anantharaman, Devasena; Chabrier, Amélie; Gaborieau, Valérie; Franceschi, Silvia; Herrero, Rolando; Rajkumar, Thangarajan; Samant, Tanuja; Mahimkar, Manoj B.; Brennan, Paul; McKay, James D.

    2014-01-01

    Background Genetic variants in nicotinic acetylcholine receptor and alcohol metabolism genes have been associated with propensity to smoke tobacco and drink alcohol, respectively, and also implicated in genetic susceptibility to head and neck cancer. In addition to smoking and alcohol, tobacco chewing is an important oral cancer risk factor in India. It is not known if these genetic variants influence propensity or oral cancer susceptibility in the context of this distinct etiology. Methods We examined 639 oral and pharyngeal cancer cases and 791 controls from two case-control studies conducted in India. We investigated six variants known to influence nicotine addiction or alcohol metabolism, including rs16969968 (CHRNA5), rs578776 (CHRNA3), rs1229984 (ADH1B), rs698 (ADH1C), rs1573496 (ADH7), and rs4767364 (ALDH2). Results The CHRN variants were associated with the number of chewing events per day, including in those who chewed tobacco but never smoked (P =  0.003, P =  0.01 for rs16969968 and rs578776 respectively). Presence of the variant allele contributed to approximately 13% difference in chewing frequency compared to non-carriers. While no association was observed between rs16969968 and oral cancer risk (OR =  1.01, 95% CI =  0.83– 1.22), rs578776 was modestly associated with a 16% decreased risk of oral cancer (OR =  0.84, 95% CI =  0.72– 0.98). There was little evidence for association between polymorphisms in genes encoding alcohol metabolism and oral cancer in this population. Conclusion The association between rs16969968 and number of chewing events implies that the effect on smoking propensity conferred by this gene variant extends to the use of smokeless tobacco. PMID:24505444

  8. A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels

    PubMed Central

    Richards, J. Brent; Waterworth, Dawn; O'Rahilly, Stephen; Hivert, Marie-France; Loos, Ruth J. F.; Perry, John R. B.; Tanaka, Toshiko; Timpson, Nicholas John; Semple, Robert K.; Soranzo, Nicole; Song, Kijoung; Rocha, Nuno; Grundberg, Elin; Dupuis, Josée; Florez, Jose C.; Langenberg, Claudia; Prokopenko, Inga; Saxena, Richa; Sladek, Robert; Aulchenko, Yurii; Evans, David; Waeber, Gerard; Erdmann, Jeanette; Burnett, Mary-Susan; Sattar, Naveed; Devaney, Joseph; Willenborg, Christina; Hingorani, Aroon; Witteman, Jaquelin C. M.; Vollenweider, Peter; Glaser, Beate; Hengstenberg, Christian; Ferrucci, Luigi; Melzer, David; Stark, Klaus; Deanfield, John; Winogradow, Janina; Grassl, Martina; Hall, Alistair S.; Egan, Josephine M.; Thompson, John R.; Ricketts, Sally L.; König, Inke R.; Reinhard, Wibke; Grundy, Scott; Wichmann, H-Erich; Barter, Phil; Mahley, Robert; Kesaniemi, Y. Antero; Rader, Daniel J.; Reilly, Muredach P.; Epstein, Stephen E.; Stewart, Alexandre F. R.; Van Duijn, Cornelia M.; Schunkert, Heribert; Burling, Keith; Deloukas, Panos; Pastinen, Tomi; Samani, Nilesh J.; McPherson, Ruth; Davey Smith, George; Frayling, Timothy M.; Wareham, Nicholas J.; Meigs, James B.

    2009-01-01

    The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk. PMID:20011104

  9. Variants of the IL-10 gene associate with muscle strength in elderly from rural Africa: a candidate gene study

    PubMed Central

    Beenakker, Karel G M; Koopman, Jacob J E; van Bodegom, David; Kuningas, Maris; Slagboom, Pieternella E; Meij, Johannes J; Maier, Andrea B; Westendorp, Rudi G J

    2014-01-01

    Recently, it has been shown that the capacity of the innate immune system to produce cytokines relates to skeletal muscle mass and strength in older persons. The interleukin-10 (IL-10) gene regulates the production capacities of IL-10 and tumour necrosis factor-α (TNF-α). In rural Ghana, IL-10 gene variants associated with different production capacities of IL-10 and TNF-α are enriched compared with Caucasian populations. In this setting, we explored the association between these gene variants and muscle strength. Among 554 Ghanaians aged 50 years and older, we determined 20 single nucleotide polymorphisms in the IL-10 gene, production capacities of IL-10 and TNF-α in whole blood upon stimulation with lipopolysaccharide (LPS) and handgrip strength as a proxy for skeletal muscle strength. We distinguished pro-inflammatory haplotypes associated with low IL-10 production capacity and anti-inflammatory haplotypes with high IL-10 production capacity. We found that distinct haplotypes of the IL-10 gene associated with handgrip strength. A pro-inflammatory haplotype with a population frequency of 43.2% was associated with higher handgrip strength (P = 0.015). An anti-inflammatory haplotype with a population frequency of 7.9% was associated with lower handgrip strength (P = 0.006). In conclusion, variants of the IL-10 gene contributing to a pro-inflammatory cytokine response associate with higher muscle strength, whereas those with anti-inflammatory response associate with lower muscle strength. Future research needs to elucidate whether these effects of variation in the IL-10 gene are exerted directly through its role in the repair of muscle tissue or indirectly through its role in the defence against infectious diseases. PMID:25040424

  10. Loss-of-Function Variants in Schizophrenia Risk and SETD1A as a Candidate Susceptibility Gene

    PubMed Central

    Takata, Atsushi; Xu, Bin; Ionita-Laza, Iuliana; Roos, J. Louw; Gogos, Joseph A.; Karayiorgou, Maria

    2015-01-01

    SUMMARY Loss-of-function (LOF) (i.e., nonsense, splice site, and frameshift) variants that lead to disruption of gene function are likely to contribute to the etiology of neuropsychiatric disorders. Here, we perform a systematic investigation of the role of both de novo and inherited LOF variants in schizophrenia using exome sequencing data from 231 case and 34 control trios. We identify two de novo LOF variants in the SETD1A gene, which encodes a subunit of his-tone methyltransferase, a finding unlikely to have occurred by chance, and provide evidence for a more general role of chromatin regulators in schizophrenia risk. Transmission pattern analyses reveal that LOF variants are more likely to be transmitted to affected individuals than controls. This is especially true for private LOF variants in genes intolerant to functional genetic variation. These findings highlight the contribution of LOF mutations to the genetic architecture of schizophrenia and provide important insights into disease pathogenesis. PMID:24853937

  11. Genetic and Functional Sequence Variants of the SIRT3 Gene Promoter in Myocardial Infarction

    PubMed Central

    Yin, Xiaoyun; Pang, Shuchao; Huang, Jian; Cui, Yinghua; Yan, Bo

    2016-01-01

    Coronary artery disease (CAD), including myocardial infarction (MI), is a common complex disease that is caused by atherosclerosis. Although a large number of genetic variants have been associated with CAD, only 10% of CAD cases could be explained. It has been proposed that low frequent and rare genetic variants may be main causes for CAD. SIRT3, a mitochondrial deacetylase, plays important roles in mitochondrial function and metabolism. Lack of SIRT3 in experimental animal leads to several age-related diseases, including cardiovascular diseases. Therefore, SIRT3 gene variants may contribute to the MI development. In this study, SIRT3 gene promoter was genetically and functionally analyzed in large cohorts of MI patients (n = 319) and ethnic-matched controls (n = 322). Total twenty-three DNA sequence variants (DSVs) were identified, including 10 single-nucleotide polymorphisms (SNPs). Six novel heterozygous DSVs, g.237307A>G, g.237270G>A, g.237023_25del, g.236653C>A, g.236628G>C, g.236557T>C, and two SNPs g.237030C>T (rs12293349) and g.237022C>G (rs369344513), were identified in nine MI patients, but in none of controls. Three SNPs, g.236473C>T (rs11246029), g.236380_81ins (rs71019893) and g.236370C>G (rs185277566), were more significantly frequent in MI patients than controls (P<0.05). These DSVs and SNPs, except g.236557T>C, significantly decreased the transcriptional activity of the SIRT3 gene promoter in cultured HEK-293 cells and H9c2 cells. Therefore, these DSVs identified in MI patients may change SIRT3 level by affecting the transcriptional activity of SIRT3 gene promoter, contributing to the MI development as a risk factor. PMID:27078640

  12. Type II Transmembrane Serine Protease Gene Variants Associate with Breast Cancer

    PubMed Central

    Luostari, Kaisa; Hartikainen, Jaana M.; Tengström, Maria; Palvimo, Jorma J.; Kataja, Vesa

    2014-01-01

    Type II transmembrane serine proteases (TTSPs) are related to tumor growth, invasion, and metastasis in cancer. Genetic variants in these genes may alter their function, leading to cancer onset and progression, and affect patient outcome. Here, 464 breast cancer cases and 370 controls were genotyped for 82 single-nucleotide polymorphisms covering eight genes. Association of the genotypes was estimated against breast cancer risk, breast cancer–specific survival, and survival in different treatment groups, and clinicopathological variables. SNPs in TMPRSS3 (rs3814903 and rs11203200), TMPRSS7 (rs1844925), and HGF (rs5745752) associated significantly with breast cancer risk (Ptrend = 0.008–0.042). SNPs in TMPRSS1 (rs12151195 and rs12461158), TMPRSS2 (rs2276205), TMPRSS3 (rs3814903), and TMPRSS7 (rs2399403) associated with prognosis (P = 0.004–0.046). When estimating the combined effect of the variants, the risk of breast cancer was higher with 4–5 alleles present compared to 0–2 alleles (P = 0.0001; OR, 2.34; 95% CI, 1.39–3.94). Women with 6–8 survival-associating alleles had a 3.3 times higher risk of dying of breast cancer compared to women with 1–3 alleles (P = 0.001; HR, 3.30; 95% CI, 1.58–6.88). The results demonstrate the combined effect of variants in TTSPs and their related genes in breast cancer risk and patient outcome. Functional analysis of these variants will lead to further understanding of this gene family, which may improve individualized risk estimation and development of new strategies for treatment of breast cancer. PMID:25029565

  13. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    PubMed

    Lee, Seungbok; Paik, Seung Hwan; Kim, Hyun-Jin; Ryu, Hyeong Ho; Cha, Soeun; Jo, Seong Jin; Eun, Hee Chul; Seo, Jeong-Sun; Kim, Jong-Il; Kwon, Oh Sang

    2013-01-01

    Alopecia areata (AA) is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU) based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3)). Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57) and rs28362679 of BTNL2 (p<0.001, OR 30.21). While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2) and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  14. A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR.

    PubMed

    Wolf, Siegmund S; Patchev, Vladimir K; Obendorf, Maik

    2007-04-01

    Evidence is accumulating in support of the view that tissue-specific effects of steroid hormones depend on the recruitment of nuclear receptor comodulator proteins. The latter interact directly with the hormone receptors and modify their transcriptional effects on specific target genes. The mechanisms of comodulator influence on nuclear receptor-controlled gene transcription is only partially understood. Here, we describe the discovery of a new AR coactivator which belongs to the JmjC containing enzyme family as a novel variant of JMJD1C (jumonji domain-containing 1C). By using a fragment of the human AR (aa 325-919) as bait in a yeast two-hybrid screen, a region of the human JMJD1C gene was identified as interacting with AR. A novel splice variant s-JMJD1C was amplified by RACE, and the binding to AR was analysed by GST-pull-down and mammalian one-hybrid experiments. As a nuclear-localized protein, the s-JMJD1C gene is expressed in a variety of human tissues. In the brain, this protein is present in several, but not confined to, AR-expressing neuronal populations and its abundance varies with the hormonal status in a region-specific fashion. Interestingly, the expression of s-JMJD1C is reduced in breast cancer tumors and significantly higher in normal breast tissues indicating a putative role in tumor suppression. As s-JMJD1C has putative demethylase activity, removal of methylation seems to be important for nuclear receptor-based gene regulation.

  15. Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair.

    PubMed

    Bastiaens, M T; ter Huurne, J A; Kielich, C; Gruis, N A; Westendorp, R G; Vermeer, B J; Bavinck, J N

    2001-04-01

    Melanocortin-1 receptor (MC1R) gene variants are associated with fair skin and red hair and, independently of these, with cutaneous malignant melanoma. The association of MC1R gene variants with nonmelanoma skin cancer is largely unknown. A total of 838 subjects were included in the present study: 453 patients with nonmelanoma skin cancer and 385 subjects with no skin cancer. The coding sequence of the human MC1R gene was tested using single-stranded conformation polymorphism analysis followed by sequencing of unknown variants. Risk of skin cancer dependent on the various MC1R gene variants was estimated using the exposure odds ratio. We investigated whether subjects with MC1R variant alleles were at increased risk of developing nonmelanoma skin cancer and, if so, whether this increased risk was mediated by fair skin and red hair. A total of 27 MC1R gene variants were found. The number of carriers of one, two, or three MC1R gene variants was 379 (45.2%), 208 (24.8%), and 7 (0.9%), respectively. A strong association between MC1R gene variants and fair skin and red hair was established, especially the variants Arg151Cys and Arg160Trp (P < .0001). Carriers of two variant alleles were at increased risk for developing cutaneous squamous cell carcinoma (odds ratio 3.77; 95% confidence interval [CI] 2.11-6.78), nodular basal cell carcinoma (odds ratio 2.26; 95% CI 1.45-3.52), and superficial multifocal basal cell carcinoma (odds ratio 3.43; 95% CI 1.92-6.15), compared with carriers of two wild-type alleles. Carriers of one variant allele had half the risk. The highest relative risks of nonmelanoma skin cancer were found in carriers of the Asp84Glu, His260Pro, and Asp294His variant alleles, and the risk was only slightly lower for carriers of the Val60Leu, Val92Met, Arg142His, Arg151Cys, and Arg160Trp variant alleles. When subjects