Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.
2016-01-01
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089
Actinomycetal complex of light sierozem on the Kopet-Dag piedmont plain
NASA Astrophysics Data System (ADS)
Zenova, G. M.; Zvyagintsev, D. G.; Manucharova, N. A.; Stepanova, O. A.; Chernov, I. Yu.
2016-10-01
The population density of actinomycetes in the samples of light sierozem from the Kopet Dag piedmont plain (75 km from Ashkhabad, Turkmenistan) reaches hundreds of thousand CFU/g soil. The actinomycetal complex is represented by two genera: Streptomyces and Micromonospora. Representatives of the Streptomyces genus predominate and comprise 73 to 87% of the actinomycetal complex. In one sample, representatives of the Micromonospora genus predominated in the complex (75%). The Streptomyces genus in the studied soil samples is represented by the species from several sections and series: the species of section Helvolo-Flavus series Helvolus represent the dominant component of the streptomycetal complex; their portion is up to 77% of all isolated actinomycetes. The species of other sections and series are much less abundant. Thus, the percentage of the Cinereus Achromogenes section in the actinomycetal complex does not exceed 28%; representatives of the Albus section Albus series, Roseus section Lavendulae-Roseus series, and Imperfectus section belong to rare species; they have been isolated not from all the studied samples of light sierozem, and their portion does not exceed 10% of the actinomycetal complex.
Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials
Mahmoud, Huda M.; Kalendar, Aisha A.
2016-01-01
Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601
Ecological and Taxonomic Features of Actinomycetal Complexes in Soils of the Lake Elton Basin
NASA Astrophysics Data System (ADS)
Zenova, G. M.; Dubrova, M. S.; Kuznetsova, A. I.; Gracheva, T. A.; Manucharova, N. A.; Zvyagintsev, D. G.
2016-02-01
In the sor (playa) solonchaks of chloride and sulfate-chloride salinity (the content of readily soluble salts is 0.9-1.0%) in the delta of the Khara River discharging into Lake Elton, the number of mycelial actinobacteria (actinomycetes) is low ((2-3) × 103 CFU/g of soil). At a distance from the water's edge, these soils are substituted for the light chestnut ones, for which an elevated number of actinomycetes (an order of magnitude higher than in the sor solonchaks) and a wider generic spectrum are characteristic. The actinomycetal complex is included the Streptomyces and Micromonospora genera, whereas in the sor solonchaks around the lake, representatives of Micromonospora were not found.
Production of β-Lactamase by Non-Streptomyces Actinomycetales
Schwartz, Jeffrey L.; Schwartz, Surya P.
1979-01-01
Supernatants and whole cells from fermentation broths of Micromonospora, Nocardia, Oerskovia, and other genera of the Actinomycetales were examined for the presence of β-lactamase activity by using the chromogenic cephalosporin 87/312. Nearly 60% of the 250 isolates examined produced detectable levels of β-lactamase. All enzyme preparations were active over a range of pH values from 6.5 to 8.2, with maximum activity occurring between 7.0 and 7.8. The preparations varied in their stability at 60°C. An examination of selected enzyme preparations revealed a similarity between substrate specificities of the non-Streptomyces Actinomycetales and gram-negative-bacterial β-lactamases. PMID:311614
Extremophilic and extremotolerant actinomycetes in different soil types
NASA Astrophysics Data System (ADS)
Zenova, G. M.; Manucharova, N. A.; Zvyagintsev, D. G.
2011-04-01
Problems on the resistance of soil actinomycetes to various environmental factors (pH, salinity, temperature, and moisture) are discussed. Actinomycetes as a special group of prokaryotes were revealed to have a greater range of tolerance to these factors than was thought earlier. The regularities of the distribution of extremophilic and extremotolerant actinomycetes developing in unusual for mycelial bacteria conditions, their structural-functional characteristics, and their taxonomic composition were determined. The predominance of acidophilic representatives of the Micromonospora genus in acid soils (typical peat, soddy-podzolic, and taiga podzol) and the haloalkaliphilic Streptomyces pluricilirescens and S. prunicolor species in desert saline soils are shown. The specific features of the actinomycete complexes on thermal fields of the weakly developed stratified volcanic soils are described. In these complexes, the thermophilic forms were represented only by species of the Micromonospora genus; and the mesophilic forms, by Microbispora species. In the periodically heated desert soils, among the thermophilic actinomycetes, representatives of rare Actinomadura, Saccharopolyspora and Streptosporangium genera along with Streptomyces species were indicated. The mechanisms of the resistance of the actinomycetes to the extreme environmental conditions are discussed.
Quorum quenching properties of Actinobacteria isolated from Malaysian tropical soils.
Devaraj, Kavimalar; Tan, Geok Yuan Annie; Chan, Kok-Gan
2017-08-01
In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.
Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes.
Sujada, Nikhom; Sungthong, Rungroch; Lumyong, Saisamorn
2014-01-01
A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detected in mound and carton nests, while Pseudonocardia was the dominant genus in subterranean nests. A discovery trend of novel species (<99% similarity in the 16S rRNA gene sequence) was also observed in the termite nests examined. Each type of termite nest housed >20% of bioactive actinobacteria that could inhibit the growth of at least one test organism, while 12 isolates, belonging to the genera Streptomyces, Amycolatopsis, Pseudonocardia, Micromonospora and Nocardia, exhibited distinct antimicrobial activities. Streptomyces sp. CMU-NKS-3 was the most distinct bioactive isolate. It was closely related to S. padanus MITKK-103T, which was confirmed by 99% similarities in their 16S rRNA gene sequences. The highest level of extracellular antimicrobial substances was produced by the isolate CMU-NKS-3, which was grown in potato dextrose broth and exhibited a wide range (6.10×10(-4)-1.25 mg mL(-1)) of minimum inhibitory concentrations against diverse pathogens. We concluded that termite nests are an abundant source of bioactive strains of cultivable actinobacteria for future biotechnological needs.
NASA Astrophysics Data System (ADS)
Zenova, G. M.; Kurapova, A. I.; Lysenko, A. M.; Zvyagintsev, D. G.
2009-05-01
It has been found that the number of thermotolerant actinomycetes in strongly heated soils of deserts and volcanic regions is comparable to or exceeds the number of mesophilic actinomycetes. Among the latter group, streptomyces usually predominate; among thermotolerant actinomycetes, representatives of the Micromonospora, Streptosporangium, Actinomadura, Saccharopolyspora, Microtetraspora, and Microbispora genera are identified. Thermotolerant actinomycetes display the full cycle of their development in these soils. The method of fluorescent in situ hybridization has made it possible to determine that mycelial forms predominate among the metabolically active representatives of Actinobacteria; their portion increases with the rise in the temperature of soil incubation.
Termite Nests as an Abundant Source of Cultivable Actinobacteria for Biotechnological Purposes
Sujada, Nikhom; Sungthong, Rungroch; Lumyong, Saisamorn
2014-01-01
A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detected in mound and carton nests, while Pseudonocardia was the dominant genus in subterranean nests. A discovery trend of novel species (<99% similarity in the 16S rRNA gene sequence) was also observed in the termite nests examined. Each type of termite nest housed >20% of bioactive actinobacteria that could inhibit the growth of at least one test organism, while 12 isolates, belonging to the genera Streptomyces, Amycolatopsis, Pseudonocardia, Micromonospora and Nocardia, exhibited distinct antimicrobial activities. Streptomyces sp. CMU-NKS-3 was the most distinct bioactive isolate. It was closely related to S. padanus MITKK-103T, which was confirmed by 99% similarities in their 16S rRNA gene sequences. The highest level of extracellular antimicrobial substances was produced by the isolate CMU-NKS-3, which was grown in potato dextrose broth and exhibited a wide range (6.10×10−4–1.25 mg mL−1) of minimum inhibitory concentrations against diverse pathogens. We concluded that termite nests are an abundant source of bioactive strains of cultivable actinobacteria for future biotechnological needs. PMID:24909709
Ian, Elena; Malko, Dmitry B.; Sekurova, Olga N.; Bredholt, Harald; Rückert, Christian; Borisova, Marina E.; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S.; Zotchev, Sergey B.
2014-01-01
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts. PMID:24819608
Ian, Elena; Malko, Dmitry B; Sekurova, Olga N; Bredholt, Harald; Rückert, Christian; Borisova, Marina E; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S; Zotchev, Sergey B
2014-01-01
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts.
Fang, Bao-Zhu; Salam, Nimaichand; Han, Ming-Xian; Jiao, Jian-Yu; Cheng, Juan; Wei, Da-Qiao; Xiao, Min; Li, Wen-Jun
2017-01-01
The phylum Actinobacteria is one of the most ubiquitously present bacterial lineages on Earth. In the present study, we try to explore the diversity of cultivable rare Actinobacteria in Sigangli Cave, Yunnan, China by utilizing a combination of different sample pretreatments and under different culture conditions. Pretreating the samples under different conditions of heat, setting the isolation condition at different pHs, and supplementation of media with different calcium salts were found to be effective for isolation of diverse rare Actinobacteria. During our study, a total of 204 isolates affiliated to 30 genera of phylum Actinobacteria were cultured. Besides the dominant Streptomyces, rare Actinobacteria of the genera Actinocorallia, Actinomadura, Agromyces, Alloactinosynnema, Amycolatopsis, Beutenbergia, Cellulosimicrobium, Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, Krasilnikoviella, Kribbella, Microbacterium, Micromonospora, Mumia, Mycobacterium, Nocardia, Nocardioides, Nocardiopsis, Nonomuraea, Oerskovia, Pseudokineococcus, Pseudonocardia, Rhodococcus, Saccharothrix, Streptosporangium, and Tsukamurella were isolated from these cave samples. PMID:28848538
Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong
2013-07-01
Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.
Moderately haloalkaliphilic actinomycetes in salt-affected soils
NASA Astrophysics Data System (ADS)
Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.
2009-12-01
It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1-3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8-9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.
Marine actinobacteria: an important source of bioactive natural products.
Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon
2014-07-01
Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Xiao-Yong; He, Fei; Wang, Guang-Hua; Bao, Jie; Xu, Xin-Ya; Qi, Shu-Hua
2013-06-01
This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.
Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy
2015-03-01
Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Tangerina, Marcelo M P; Correa, Hebelin; Haltli, Brad; Vilegas, Wagner; Kerr, Russell G
2017-01-01
Shrimp fisheries along the Brazilian coast have significant environmental impact due to high by-catch rates (21 kg per kilogram of shrimp). Typically discarded, by-catch contains many invertebrates that may host a great variety of bacterial genera, some of which may produce bioactive natural products with biotechnological applications. Therefore, to utilize by-catch that is usually discarded we explored the biotechnological potential of culturable bacteria of two abundant by-catch invertebrate species, the snail Olivancillaria urceus and the sea star Luidia senegalensis. Sediment from the collection area was also investigated. Utilizing multiple isolation approaches, 134 isolates were obtained from the invertebrates and sediment. Small-subunit rRNA (16S) gene sequencing revealed that the isolates belonged to Proteobacteria, Firmicutes and Actinobacteria phyla and were distributed among 28 genera. Several genera known for their capacity to produce bioactive natural products (Micromonospora, Streptomyces, Serinicoccus and Verrucosispora) were retrieved from the invertebrate samples. To query the bacterial isolates for their ability to produce bioactive metabolites, all strains were fermented and fermentation extracts profiled by UP LC-HRMS and tested for antimicrobial activity. Four strains exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus warneri.
Jiang, Zhong-Ke; Tuo, Li; Huang, Da-Lin; Osterman, Ilya A; Tyurin, Anton P; Liu, Shao-Wei; Lukyanov, Dmitry A; Sergiev, Petr V; Dontsova, Olga A; Korshun, Vladimir A; Li, Fei-Na; Sun, Cheng-Hang
2018-01-01
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza , and Thespesia populnea , were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter , and Verrucosispora . Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola , and Mycobacterium . Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola . A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one "ESKAPE" resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds.
Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang
2018-01-01
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds. PMID:29780376
Micromonospora is a normal occupant of actinorhizal nodules.
Carro, Lorena; Pujic, Petar; Trujillo, Martha E; Normand, Philippe
2013-11-01
Actinorhizal plants have been found in eight genera belonging to three orders (Fagales, Rosales and Cucurbitales). These all bear root nodules inhabited by bacteria identified as the nitrogen-fixing actinobacterium Frankia. These nodules all have a peripheral cortex with enlarged cells filled with Frankia hyphae and vesicles. Isolation in pure culture has been notoriously difficult, due in a large part to the growth of fast-growing contaminants where, it was later found, Frankia was slow-growing. Many of these contaminants, which were later found to be Micromonospora, were obtained from Casuarina and Coriaria. Our study was aimed at determining if Micromonospora were also present in other actinorhizal plants. Nodules from Alnus glutinosa, Alnus viridis, Coriaria myrtifolia, Elaeagnus x ebbingei, Hippophae rhamnoides, Myrica gale and Morella pensylvanica were tested and were all found to contain Micromonospora isolates. These were found to belong to mainly three species: Micromonospora lupini, Micromonospora coriariae and Micromonospora saelicesensis. Micromonospora isolates were found to inhibit some Frankia strains and to be innocuous to other strains.
Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia
NASA Astrophysics Data System (ADS)
Grishko, V. N.; Syshchikova, O. V.; Zenova, G. M.; Kozhevin, P. A.; Dubrova, M. S.; Lubsanova, D. A.; Chernov, I. Yu.
2015-01-01
A high population density (up to hundreds of thousands or millions CFU/g soil) of mycelial bacteria (actinomycetes) is determined in salt-affected soils of arid territories of Ukraine, Russia, and Turkmenistan. Of all the studied soils, the lowest amounts of actinomycetes (thousands and tens of thousands CFU/g soil) are isolated from sor (playa) and soda solonchaks developed on the bottoms of drying salt lakes in Buryatia and in the Amu Darya Delta. Actinomycetes of the Streptomyces, Micromonospora, and Nocardiopsis genera were recorded in the studied soils. It is found that conditions of preincubation greatly affect the activity of substrate consumption by the cultures of actinomycetes. This could be attributed to changes in the metabolism of actinomycetes as a mechanism of their adaptation to the increased osmotic pressure of the medium. The alkali tolerance of halotolerant actinomycetes isolated from the salt-affected soils is experimentally proved.
Adam, Delphine; Maciejewska, Marta; Naômé, Aymeric; Martinet, Loïc; Coppieters, Wouter; Karim, Latifa; Baurain, Denis; Rigali, Sébastien
2018-03-22
Cave moonmilk deposits host an abundant and diverse actinobacterial population that has a great potential for producing novel natural bioactive compounds. In our previous attempt to isolate culturable moonmilk-dwelling Actinobacteria, only Streptomyces species were recovered, whereas a metagenetic study of the same deposits revealed a complex actinobacterial community including 46 actinobacterial genera in addition to streptomycetes. In this work, we applied the rehydration-centrifugation method to lessen the occurrence of filamentous species and tested a series of strategies to achieve the isolation of hard-to-culture and rare Actinobacteria from the moonmilk deposits of the cave "Grotte des Collemboles". From the "tips and tricks" that were tested, separate autoclaving of the components of the International Streptomyces Project (ISP) medium number 5 (ISP5) medium, prolonged incubation time, and dilution of the moonmilk suspension were found to most effectively improve colony forming units. Taxonomic analyses of the 40 isolates revealed new representatives of the Agromyces , Amycolatopsis , Kocuria , Micrococcus , Micromonospora , Nocardia , and Rhodococcus species, as well as additional new streptomycetes. The applied methodologies allowed the isolation of strains associated with both the least and most abundant moonmilk-dwelling actinobacterial operational taxonomic units. Finally, bioactivity screenings revealed that some isolates displayed high antibacterial activities, and genome mining uncovered a strong potential for the production of natural compounds.
Soil actinomycetes in the National Forest Park in northeastern China
NASA Astrophysics Data System (ADS)
Shirokikh, I. G.; Shirokikh, A. A.
2017-01-01
The taxonomic and functional structure of actinomycete complexes in the litters and upper horizons of the soils under an artificial coniferous-broad-leaved forest located around the town of Chanchun (Tszilin province, PRC). The complex of actinomycetes included representatives of the Streptomyces, Micromonospora, Streptosporangium, and Streptoverticillium genera and oligosporous forms. In the actinomycete complexes, streptomycetes prevailed in the abundance (61-95%) and frequency of occurrence (100%). In the parcels of Korean pine ( Pinus koraiensis) and Mongolian oak ( Quercus mongolica), streptomycetes of 19 species from 8 series and 4 sections were isolated. The most representative, as in European forest biomes, was the Cinereus Achromogenes series. A distinguishing feature of the streptomycete complex in the biomes studied was the high participation of species from the Imperfectus series. The verification of the functional activity of natural isolates made it possible to reveal strains with high antagonistic and cellulolytic abilities. A high similarity of actinomycete complexes was found in Eurasian forest ecosystems remote from each other, probably due to the similarity of plant polymers decomposable by actinomycetes.
Axenov-Gribanov, Denis; Rebets, Yuriy; Tokovenko, Bogdan; Voytsekhovskaya, Irina; Timofeyev, Maxim; Luzhetskyy, Andriy
2016-03-01
The high demand for new antibacterials fosters the isolation of new biologically active compounds producing actinobacteria. Here, we report the isolation and initial characterization of cultured actinobacteria from dominant benthic organisms' communities of Lake Baikal. Twenty-five distinct strains were obtained from 5 species of Baikal endemic macroinvertebrates of amphipods, freshwater sponges, turbellaria worms, and insects (caddisfly larvae). The 16S ribosomal RNA (rRNA)-based phylogenic analysis of obtained strains showed their affiliation to Streptomyces, Nocardia, Pseudonocardia, Micromonospora, Aeromicrobium, and Agromyces genera, revealing the diversity of actinobacteria associated with the benthic organisms of Lake Baikal. The biological activity assays showed that 24 out of 25 strains are producing compounds active against at least one of the test cultures used, including Gram-negative bacteria and Candida albicans. Complete dereplication of secondary metabolite profiles of two isolated strains led to identification of only few known compounds, while the majority of detected metabolites are not listed in existing antibiotic databases.
Biosynthetic potential of actinomycetes in brown forest soil on the eastern coast of the aegean sea
NASA Astrophysics Data System (ADS)
Shirokikh, I. G.; Shirokikh, A. A.
2017-11-01
The taxonomic and functional structures of the actinomycetal complex in the litter and upper horizon of the brown forest soil was studied in a Pinus brutia var. pendulifolia forest on the eastern coast of the Aegean Sea. The complex of actinomycetes included representatives of the Streptomyces and Micromonospora genera and oligosporus forms. Streptomycetes predominated (73.8%) in the soil, and micromonospores (66.7%) were dominants in the litter. Thirty isolates of ten Streptomyces species from five series and three sections prevailed. In the upper soil horizon, species of the Helvolo-Flavus Helvolus section predominated (48%); the S. felleus species occurred most frequently. Among the isolated cultures, the S. globisporus and S. sindenensis species capable to produce antitumor antibiotics were found. The testing of the antimicrobial activity of the natural isolates showed that five strains inhibit the growth of pathogenic Fusarium sp., Alternaria sp., Acremonium sp., and Bipolaris sorokiniana fungi. When testing the effect of streptomycetes on the production of cellulases, a high-efficient strain belonging to the S. noboritoensis species was revealed. All the streptomycetes isolated from the brown forest soil produced auxins at the rate of 7.8 to 19.7 μg of indole acetic acid/mL of the liquid medium in the presence of 200 mg/L of tryptophan. Twelve isolates of streptomycetes were transferred to the collection of biotechnologically promising cultures for studying their properties.
Zhao, Ke; Penttinen, Petri; Chen, Qiang; Guan, Tongwei; Lindström, Kristina; Ao, Xiaoling; Zhang, Lili; Zhang, Xiaoping
2012-06-01
Actinobacteria are a prolific source of antibiotics. Since the rate of discovery of novel antibiotics is decreasing, actinobacteria from unique environments need to be explored. In particular, actinobacterial biocontrol strains from medicinal plants need to be studied as they can be a source of potent antibiotics. We combined culture-dependent and culture-independent methods in analyzing the actinobacterial diversity in the rhizosphere of seven traditional medicinal plant species from Panxi, China, and assessed the antimicrobial activity of the isolates. Each of the plant species hosted a unique set of actinobacterial strains. Out of the 64 morphologically distinct isolates, half were Streptomyces sp., eight were Micromonospora sp., and the rest were members of 18 actinobacterial genera. In particular, Ainsliaea henryi Diels. hosted a diverse selection of actinobacteria, although the 16S ribosomal RNA (rRNA) sequence identity ranges of the isolates and of the 16S rRNA gene clone library were not congruent. In the clone library, 40% of the sequences were related to uncultured actinobacteria, emphasizing the need to develop isolation methods to assess the full potential of the actinobacteria. All Streptomyces isolates showed antimicrobial activity. While the antimicrobial activities of the rare actinobacteria were limited, the growth of Escherichia coli, Verticillium dahliae, and Fusarium oxysporum were inhibited only by rare actinobacteria, and strains related to Saccharopolyspora shandongensis and Streptosporangium roseum showed broad antimicrobial activity.
Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena
2017-05-01
Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.
Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.
2017-01-01
Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766
Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A
2016-10-01
Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.
ANTIGENIC STRUCTURE OF THE ACTINOMYCETALES VII.
Kwapinski, J. B.
1964-01-01
Kwapinski, J. B. (The University of New England, Armidale, Australia). Antigenic structure of the Actinomycetales. VII. Chemical and serological similarities of cell walls from 100 Actinomycetales strains. J. Bacteriol. 88:1211–1219. 1964.—Cell walls prepared mechanically from 100 strains of Actinomycetales were studied by chromatographic and serological methods. The cell walls of Actinomyces were found to be serologically related to those of the corynebacteria and to some strains of mycobacteria and nocardiae. The cell walls of nocardiae appeared to be more closely related to those of the mycobacteria, Streptomyces, Micromonospora, and Waksmania. The cell walls of Micromonospora and Waksmania showed certain serological similarities to those of Thermoactinomyces and nocardiae. Micropolyspora was antigenically different from other species of the Actinomycetales. Three serological groups of mycobacteria and four groups of nocardiae were distinguished. PMID:14234773
Rose, Karsten; Steinbüchel, Alexander
2002-06-04
A non-rubber degrading mutant of the polyisoprene rubber degrading bacterium Micromonospora aurantiaca W2b lacking the capability to form halos on latex overlay agar plates was isolated after N-methyl-N-nitro-N-nitrosoguanidine mutagenesis. A 10.3-kb shuttle cosmid vector pGM446 was constructed from the Streptomyces cloning vectors pGM160 and pOJ446. This vector was transferred by conjugation from Escherichia coli to M. aurantiaca W2b. The frequency of formation of exconjugants with pGM446 was 3.6 x 10(-3). This vector could be useful for shotgun cloning of genes into the non-rubber degrading mutant L1 from M. aurantiaca W2b.
Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong
2015-07-01
Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria.
[Diversity of cultivable actinobacteria in Xinghu wetland sediments].
Xue, Dong; Zhao, Guozhen; Yao, Qing; Zhao, Haiquan; Zhu, Honghui
2015-11-04
To study the diversity of cultivable actinobacteria in Xinghu wetland and screen actinobacteria with a pharmaceutical potential for producing biologically active secondary metabolites. We studied the diversity of actinobacteria isolated from Xinghu wetland by using different selective isolation media and methods. The high bioactive actinobacteria were identified and further investigated for the presence of polyketide synthases (PKS-I, PKS-II), nonribosomal peptide synthetases (NRPS), 3-amino-5-hydroxybenzoic acid synthases (AHBA) and 3-hydroxy-3-methylglutaryl Coenzyme A (HMG CoA) sequences by specific amplification. More than 300 actinobacteria were isolated, and 135 isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The isolates belonged to 7 orders, 10 families, 13 genera, Streptomyces was the most frequently isolated genus, followed by the genera Micromonospora and Nocardia. Twenty-four isolates showed high activity against Staphylococcus aureus and Escherichia coli, but there no strain displaying antagonistic activity against Salmonella sp. High frequencies of positive PCR amplification were obtained for PKS-I (16.7%, 4/24), PKS-II (62.5%,15/24), NRPS (16.7%, 4/24), HMG CoA (29.2%, 7/24) and AHBA (12.5%, 3/24) biosynthetic systems. High Performance Liquid Chromatography showed that strain XD7, XD114, XD128 produce lots of secondary metabolites. This study indicated that actinobacteria isolated from Xinghu wetland are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise.
Deep Sea Actinomycetes and Their Secondary Metabolites
Kamjam, Manita; Sivalingam, Periyasamy; Deng, Zinxin; Hong, Kui
2017-01-01
Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces. PMID:28507537
NASA Astrophysics Data System (ADS)
Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.
2009-09-01
Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.
Xiong, Zhi-Qiang; Liu, Qiao-Xia; Pan, Zhao-Long; Zhao, Na; Feng, Zhi-Xiang; Wang, Yong
2015-03-01
Marine actinomycetes are a potential source of a wide variety of bioactive natural products. In this work, seven pretreatments, three selective isolation media, and five artificial seawater concentrations were used to isolate actinomycetes from the sediments collected from Yellow Sea, China. Statistical analysis showed that only the isolation medium strongly affected the total and bioactive numbers of actinomycete isolates. A total of 613 actinobacterial strains were isolated and screened for antimicrobial activities; 154 isolates showed activity against at least one of nine test drug-resistant microorganisms. Eighty-nine representatives with strong antimicrobial activity were identified phylogenetically based on 16S rRNA gene sequencing, which were assigned to five different actinomycete genera Streptomyces, Kocuria, Saccharomonospora, Micromonospora, and Nocardiopsis. Using PCR-based screening for six biosynthetic genes of secondary metabolites, all 45 isolates with acute activity have at least one biosynthetic gene, 28.8 % of which possess more than three biosynthetic genes. As a case, strain SMA-1 was selected for antimicrobial natural product discovery. Three diketopiperazine dimers including a new compound iso-naseseazine B (1) and two known compounds naseseazine B (2) and aspergilazine A (3) were isolated by bioassay-guided separation. These results suggested that actinomycetes from marine sediments are a potential resource of novel secondary metabolites and drugs.
Protasov, Eugenii S; Axenov-Gribanov, Denis V; Rebets, Yuriy V; Voytsekhovskaya, Irina V; Tokovenko, Bogdan T; Shatilina, Zhanna M; Luzhetskyy, Andriy N; Timofeyev, Maxim A
2017-12-01
The emergence of pathogenic bacteria resistant to antibiotics increases the need for discovery of new effective antimicrobials. Unique habitats such as marine deposits, wetlands and caves or unexplored biological communities are promising sources for the isolation of actinobacteria, which are among the major antibiotic producers. The present study aimed at examining cultivated actinobacteria strains associated with endemic Lake Baikal deepwater amphipods and estimating their antibiotic activity. We isolated 42 actinobacterial strains from crustaceans belonging to Ommatogammarus albinus and Ommatogammarus flavus. To our knowledge, this is the first report describing the isolation and initial characterization of representatives of Micromonospora and Pseudonocardia genera from Baikal deepwater invertebrates. Also, as expected, representatives of the genus Streptomyces were the dominant group among the isolated species. Some correlations could be observed between the number of actinobacterial isolates, the depth of sampling and the source of the strains. Nevertheless, >70% of isolated strains demonstrated antifungal activity. The dereplication analysis of extract of one of the isolated strains resulted in annotation of several known compounds that can help to explain the observed biological activities. The characteristics of ecological niche and lifestyle of deepwater amphipods suggests that the observed associations between crustaceans and isolated actinobacteria are not random and might represent long-term symbiotic interactions.
Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan
2014-01-01
The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135T that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites. PMID:25162061
Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan
2014-01-01
The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.
Yildirim, Erol; Gürbüz, M. Faruk; Herzner, Gudrun; Strohm, Erhard
2012-01-01
Insects engage in symbiotic associations with a large diversity of beneficial microorganisms. While the majority of well-studied symbioses have a nutritional basis, several cases are known in which bacteria protect their host from pathogen infestation. Solitary wasps of the genera Philanthus and Trachypus (beewolves; Hymenoptera, Crabronidae) cultivate the actinomycete “Candidatus Streptomyces philanthi” in specialized antennal gland reservoirs. The symbionts are transferred to the larval cocoon, where they provide protection against pathogenic fungi by producing at least nine different antibiotics. Here we investigated the closest relatives of Philanthus and Trachypus, the rare genus Philanthinus, for the presence of antennal gland reservoirs and symbiotic streptomycetes. Molecular analyses identified “Ca. Streptomyces philanthi” in reservoirs of Philanthinus quattuordecimpunctatus. Phylogenies based on the 16S rRNA gene suggest that P. quattuordecimpunctatus may have acquired “Ca. Streptomyces philanthi” by horizontal transfer from other beewolf species. In histological sections and three-dimensional reconstructions, the antennal gland reservoirs were found to occupy six antennal segments (as opposed to only five in Philanthus and Trachypus) and to be structurally less complex than those of the evolutionarily more derived genera of beewolves. The presence of “Ca. Streptomyces philanthi” in antennal glands of Philanthinus indicates that the symbiosis between beewolves and Streptomyces bacteria is much older than previously thought. It probably evolved along the branch leading to the monophyletic tribe Philanthini, as it seems to be confined to the genera Philanthus, Trachypus, and Philanthinus, which together comprise 172 described species of solitary wasps. PMID:22113914
Kirby, Ralph; Herron, Paul; Hoskisson, Paul
2011-02-01
Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.
[New isolation methods and phylogenetic diversity of actinobacteria from hypersaline beach in Aksu].
Zhang, Yao; Xia, Zhanfeng; Cao, Xinbo; Li, Jun; Zhang, Lili
2013-08-04
We explored 4 new methods to improve the isolation of actinobacterial resources from high salt areas. Optimized media based on 4 new strategies were used for isolating actinobacteria from hypersaline beaches. Glycerin-arginine, trehalose-creatine, glycerol-asparticacid, mannitol-casein, casein-mannitol, mannitol-alanine, chitosan-asparagineand GAUZE' No. 1 were used as basic media. New isolation strategy includes 4 methods: ten-fold dilution culture, simulation of the original environment, actinobacterial culture guided by uncultured molecular technology detected, and reference of actinobacterial media for brackish marine environment. The 16S rRNA genes of the isolates were amplified with bacterial universal primers. The results of 16S rRNA gene sequences were compared with sequences obtained from GenBank databases. We constructed phylogenetic tree with the neighbor-joining method. No actinobacterial strains were isolated by 8 media of control group, while 403 strains were isolated by new strategies. The isolates by new methods were members of 14 genera (Streptomyces, Streptomonospora, Saccharomonospora, Plantactinospora, Nocardia, Amycolatopsis, Glycomyces, Micromonospora, Nocardiopsis, Isoptericola, Nonomuraea, Thermobifida, Actinopolyspora, Actinomadura) of 10 families in 8 suborders. The most abundant and diverse isolates were the two suborders of Streptomycineae (69.96%) and Streptosporangineaesuborder (9.68%) within the phylum Actinobacteria, including 9 potential novel species. New isolation methods significantly improved the actinobacterial culturability of hypersaline areas, and obtained many potential novel species, which provided a new and more effective way to isolate actinobacteria resources in hypersaline environments.
Himaman, Winanda; Thamchaipenet, Arinthip; Pathom-Aree, Wasu; Duangmal, Kannika
2016-01-01
In Thailand, Eucalyptus plantations rapidly expand across the country. Leaf and shoot blight caused by Cryptosporiopsis eucalypti, Cylindrocladium sp. and Teratosphaeria destructans is a serious disease in Eucalyptus plantations. In this study, a total of 477 actinomycete strains were successfully isolated from roots and rhizosphere soil of Eucalyptus. Four hundred and thirty nine isolates were classified as streptomycetes and 38 isolates were non-streptomycetes. Among these isolates, 272 (57.0%), 118 (24.7%) and 241 (50.5%) isolates were antagonistic to Cryptosporiopsis eucalypti, Cylindrocladium sp. and Teratosphaeria destructans, respectively. All isolates were tested for their abilities to produce siderophores, indole acetic acid (IAA) and solubilise phosphate. Most isolates (464, 97.3%) produced siderophores. The majority of isolates (345, 72.3%) solubilised phosphate. In addition, almost half of these isolates (237, 49.7%) produced indole acetic acid. Strain EUSKR2S82 which showed the strongest inhibitory effect against all tested fungi with plant growth promoting ability was selected to test with Eucalyptus. This strain could colonize plant roots and increase Eucalyptus roots length. In a detached leaves bioassay, the disease severity of EUSKR2S82-inoculated Eucalyptus leaves was only 30% compared to 95% in the control treatment. The 16S rRNA gene sequence analysis revealed that the strain EUSKR2S82 was related to Streptomyces ramulosus NRRL-B 2714(T) (99.44% similarity). Identification of non-streptomycete isolates using 16S rRNA gene sequences classified them into 9 genera: Actinoallomurus, Actinomadura, Amycolatopsis, Cryptosporangium, Microbispora, Micromonospora, Nocardia, Nonomuraea and Pseudonocardia. It is evident that Eucalyptus tree harbored several genera of actinomycetes. The selected isolate, EUSKR2S82 showed potential as a candidate for biocontrol agent of leaf and shoot blight of Eucalyptus and to promote growth. Copyright © 2016 Elsevier GmbH. All rights reserved.
Jami, Mansooreh; Ghanbari, Mahdi; Kneifel, Wolfgang; Domig, Konrad J
2015-06-01
The diversity of Actinobacteria isolated from the gut microbiota of two freshwater fish species namely Schizothorax zarudnyi and Schizocypris altidorsalis was investigated employing classical cultivation techniques, repetitive sequence-based PCR (rep-PCR), partial and full 16S rDNA sequencing followed by phylogenetic analysis. A total of 277 isolates were cultured by applying three different agar media. Based on rep-PCR profile analysis a subset of 33 strains was selected for further phylogenetic investigations, antimicrobial activity testing and diversity analysis of secondary-metabolite biosynthetic genes. The identification based on 16S rRNA gene sequencing revealed that the isolates belong to eight genera distributed among six families. At the family level, 72% of the 277 isolates belong to the family Streptomycetaceae. Among the non-streptomycetes group, the most dominant group could be allocated to the family of Pseudonocardiaceae followed by the members of Micromonosporaceae. Phylogenetic analysis clearly showed that many of the isolates in the genera Streptomyces, Saccharomonospora, Micromonospora, Nocardiopsis, Arthrobacter, Kocuria, Microbacterium and Agromyces formed a single and distinct cluster with the type strains. Notably, there is no report so far about the occurrence of these Actinobacteria in the microbiota of freshwater fish. Of the 33 isolates, all the strains exhibited antibacterial activity against a set of tested human and fish pathogenic bacteria. Then, to study their associated potential capacity to synthesize diverse bioactive natural products, diversity of genes associated with secondary-metabolite biosynthesis including PKS I, PKS II, NRPS, the enzyme PhzE of the phenazine pathways, the enzyme dTGD of 6-deoxyhexoses glycosylation pathway, the enzyme Halo of halogenation pathway and the enzyme CYP in polyene polyketide biosynthesis were investigated among the isolates. All the strains possess at least two types of the investigated biosynthetic genes, one-fourth of them harbours more than four. This study demonstrates the significant diversity of Actinobacteria in the fish gut microbiota and it's potential to produce biologically active compounds. Copyright © 2015 Elsevier GmbH. All rights reserved.
Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces
Jones, George H.
2018-01-01
Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichia coli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally. PMID:29562650
Studies on the Thermophilic Actinomycetes1
Tendler, M. D.; Burkholder, P. R.
1961-01-01
A total of 1,000 isolates of thermophilic actinomycetes representing two genera, Streptomyces and Thermoactinomyces, were studied. Media for cultivation and for physiological studies were designed. Differences between the two genera are noted and taxonomic criteria for the genus Thermoactinomyces are suggested. The importance of the nutritional environment to the thermophilic habit is noted. PMID:13775873
Heavy metal resistant strains are widespread along Streptomyces phylogeny.
Alvarez, Analía; Catalano, Santiago A; Amoroso, María Julia
2013-03-01
The genus Streptomyces comprises a group of bacteria species with high economic importance. Several of these species are employed at industrial scale for the production of useful compounds. Other characteristic found in different strains within this genus is their capability to tolerate high level of substances toxic for humans, heavy metals among them. Although several studies have been conducted in different species of the genus in order to disentangle the mechanisms associated to heavy metal resistance, little is known about how they have evolved along Streptomyces phylogeny. In this study we built the largest Streptomyces phylogeny generated up to date comprising six genes, 113 species of Streptomyces and 27 outgroups. The parsimony-based phylogenetic analysis indicated that (i) Streptomyces is monophyletic and (ii) it appears as sister clade of a group formed by Kitasatospora and Streptacidiphilus species, both genera also monophyletic. Streptomyces strains resistant to heavy metals are not confined to a single lineage but widespread along Streptomyces phylogeny. Our result in combination with genomic, physiological and biochemical data suggest that the resistance to heavy metals originated several times and by different mechanisms in Streptomyces history. Copyright © 2012 Elsevier Inc. All rights reserved.
Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E
2016-09-01
A diversity study on the presence of strains representing the genus Micromonospora in Pisum sativum nodules collected from Cañizal (Spain) has provided evidence of the high number of isolates that might represent novel species. In the present work, we have characterized three of these isolates: GUI23T, GUI43T and GUI63T. Phenotypic and genotypic analyses confirmed that all strains represent novel species of the genus Micromonospora with the following proposed names: Micromonospora ureilytica sp. nov., type strain GUI23T (=CECT 9022T=DSM 101692T), Micromonospora noduli sp. nov., type strain GUI43T (=CECT 9020T=DSM 101694T), and Micromonospora vinacea sp. nov., type strain GUI63T (=CECT 9019T=DSM 101695T).
Survey of Some Actinomycetales for α-Galactosidase Activity1
Lyons, A. J.; Pridham, T. G.; Hesseltine, C. W.
1969-01-01
The enzyme α-galactosidase offers potential to (i) eliminate possibly the flatus-inducing factor(s) in edible beans, (ii) eliminate raffinose during beet-sugar processing, and (iii) determine raffinose analytically. Accordingly, 20 genera of the order Actinomycetales Buchanan 1917 were tested for evidence of α-galactosidase activity. Test filtrates were prepared with a medium containing D-galactose and soybean meal. Enzyme activity was demonstrated through cellulose thin-layer chromatography. Of 123 strains tested, 28 produced extracellular α-galactosidase. Almost all were streptomycetes. Members of the genera Actinoplanes Couch 1950, Micromonospora ϕOrskov 1923, and Promicromonospora Krasil'nikov et al. 1961 also exhibited α-galactosidase activity. Additional tests led to the selection of five strains whose filtrates degraded melibiose, raffinose, and stachyose but not lactose and sucrose. Tests also were made with several soybean preparations. PMID:5392462
Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.).
Shen, Yue; Zhang, Yuejing; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Jia, Feiyu; Yang, Lingyu; Yang, Deguang; Xiang, Wensheng
2014-11-01
A novel actinomycete, designated strain NEAU-gq9(T), was isolated from corn root (Zea mays L.) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. On the basis of 16S rRNA gene sequence similarity studies, strain NEAU-gq9(T) was most closely related to Micromonospora zamorensis CR38(T) (99.3%), Micromonospora jinlongensis NEAU-GRX11(T) (99.2%), Micromonospora saelicesensis Lupac 09(T) (99.2%), Micromonospora chokoriensis 2-19(6)(T) (98.9%), Micromonospora coxensis 2-30-b(28)(T) (98.6%) and Micromonospora lupini Lupac 14N(T) (98.5%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-gq9(T) is a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38(T), M. jinlongensis NEAU-GRX11(T), M. saelicesensis Lupac 09(T), M. chokoriensis 2-19(6)(T) and M. lupini Lupac 14N(T). A combination of DNA-DNA hybridization, morphological and physiological characteristics indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-gq9(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora zeae sp. nov. is proposed. The type strain is NEAU-gq9(T) (=CGMCC 4.7092(T)=DSM 45882(T)).
Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun
2016-07-01
The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited antimicrobial activities against at least one of the five test organisms. Among the remaining 36 actinobacteria that are negative for PCR amplification of the domains for the biosynthetic genes, 33 strains showed antimicrobial activities against at least one of the five test pathogens. In summary, the findings presented in this study emphasized the importance of underexplored habitats such as Tengchong hot springs as potential sources for search of bioactive molecules.
Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi
2010-04-01
Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.
Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster.
García Bernal, M; Trabal Fernández, N; Saucedo Lastra, P E; Medina Marrero, R; Mazón-Suástegui, J M
2017-03-01
To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81·4-95·1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio. This is the first culture-independent study showing the effect of Streptomyces over the oyster microbiota. It also sheds light about the potential use of Streptomyces to improve mollusc health and safety for consumers after the depuration process. © 2016 The Society for Applied Microbiology.
Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum.
Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E
2016-06-01
Three novel actinobacterial strains, GUI2(T), GUI42 and CR21 isolated from nodular tissues and the rhizosphere of a sweet pea plant collected in Cañizal, Spain were identified according to their 16S rRNA gene sequences as new members of the genus Micromonospora. The closest phylogenetic members were found to be Micromonospora saelicesensis (99.2%) "Micromonospora zeae" (99.1%), "Micromonospora jinlongensis" (99%), Micromonospora lupini (98.9%) and Micromonospora zamorensis (98.8%). To resolve their full taxonomic position, four additional genes (atpD, gyrB, recA, rpoB) were partially sequenced and compared to available Micromonospora type strain sequences. DNA-DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent a novel genomic species. All strains contained meso-diaminopimelic and hydroxy-diaminopimelic acids in their cell wall. Their fatty acid profiles comprised iso-C15:0, iso-C16:0 and anteiso-C15:0 as major components. The polar lipids diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol were found in the type strain GUI2(T) which also contained MK-10(H4) as the major menaquinone. Physiological and biochemical characteristics also differentiated the new isolates. Based on the integration of the above studies, strains GUI2(T), GUI42 and CR21 represent a novel Micromonospora species and we propose the name Micromonospora luteifusca sp. nov. The type strain is GUI2(T) (=CECT 8846(T); =DSM 100204(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.
[Detection of linear chromosomes and plasmids among 15 genera in the Actinomycetales].
Ma, Ning; Ma, Wei; Jiang, Chenglin; Fang, Ping; Qin, Zhongjun
2003-10-01
Bacterial chromosomes and plasmids are commonly circular, however, linear chromosomes and plasmids were discovered among 5 genera of the Actinomycetales. Here, we use pulsed field gel electrophoresis to study the genomes of 19 species which belong to 15 genera in the Actinomycetales. All chromosomes of 19 species are linear DNA, and linear plasmids with different sizes and copy numbers are detected among 5 species. This work provide basis for investigating the possible novel functions of linear replicons beyond Streptomyces and also helps to develop Actinomycetales artificial linear chromosome.
D’haeseleer, Patrik; Khudyakov, Jane; Burd, Helcio; Hadi, Masood; Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.
2013-01-01
High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production. PMID:24205054
Micromonospora nickelidurans sp. nov., isolated from soil from a nickel-mining site.
Lin, Yan Bing; Fan, Miao Chun; Guo, Yan Qing; Di, Xiao Hui; Dong, Dan Hong; Zhang, Xing; Wei, Ge Hong
2015-12-01
An actinomycete, strain K55T, was isolated from a composite soil sample from a nickel mine,collected from Yueyang, Shaanxi Province, PR China. Strain K55T showed 16S rRNA gene sequence similarities of 98.73 %–98.51 % to species of the genus Micromonospora, including Micromonospora haikouensis 232617T, Micromonospora coxensis 2-30-b(28)T, Micromonospora wenchangensis 2602GPT1-05T, Micromonospora matsumotoense IMSNU22003T, Micromonospora maoerensis NEAU-MES19T, and Micromonospora humi P0402T. This strain harboured meso-diaminopimelic acid, alanine and glycine as the major cell-wall amino acids, xylose and glucose as the characteristic whole-cell sugars, and iso-C15 : 0(20.53 %),iso-C17 : 0 (12.74 %), iso-C16 : 0 (12.15 %), anteiso-C17 : 0 (7.97 %), C17 : 1ω8c(7.49 %) and C17 : 0 (6.63 %) as the dominant fatty acids. The major menaquinones were MK-10(H4) and MK-10(H6). The phospholipid profile comprised phosphatidylethanolamine,diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol and unknown phosphoglycolipids. The DNA G+C content was 71.4 mol%. A comprehensive analysis ofseveral physiological and biochemical traits and DNA–DNA relatedness indicated that strainK55T was different from closely related species. These phenotypic, genotypic and chemotaxonomic data suggest that strain K55T represents a novel species of the genus Micromonospora, for which the name Micromonospora nickelidurans sp. nov., is proposed. The type strain is K55T (5JCM 30559T5ACCC19713T).
Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida
2014-04-01
Endophytic actinomycetes from five Asteraceae plants were isolated and evaluated for their bioactivities. From Parthenium hysterophorus, Ageratum conyzoides, Sonchus oleraceus, Sonchus asper and Hieracium canadense, 42, 45, 90, 3, and 2 isolates, respectively, were obtained. Of the isolates, 86 (47.2 %) showed antimicrobial activity. Majority of the isolates were recovered from the roots (n = 127, 69.7 %). The dominant genus was Streptomyces (n = 96, 52.7 %), while Amycolatopsis, Pseudonocardia, Nocardia and Micromonospora were also recovered. Overall, 36 of the 86 isolates were significantly bioactivity while 18 (20.9 %) showed strong bioactivity. In total, 52.1 and 66.6 % showed potent cytotoxicity and antioxidant activities. The LC50 for 15 strains was <20 μg/ml. Compared to the ascorbate standard (EC50 0.34 μg/ml), all isolates gave impressive results with notable EC50 values of 0.65, 0.67, 0.74 and 0.79 μg/ml.
FORMATION OF NITRITE AND NITRATE BY ACTINOMYCETES AND FUNGI
Hirsch, P.; Overrein, L.; Alexander, M.
1961-01-01
Hirsch, P. (Cornell University, Ithaca, New York), L. Overrein, and M. Alexander. Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82:442–448. 1961.—Nitrite was produced by strains of Mycobacterium, Nocardia, Streptomyces, Micromonospora, and Streptosporangium in media containing ammonium phosphate as the sole nitrogen source. The quantity of nitrite formed was small, and the concentration was affected by pH and by the relative levels of carbon and nitrogen. Aspergillus flavus produced little nitrite from ammonium but formed in excess of 100 parts per million of nitrate-nitrogen. Peroxidase activity and heterotrophic nitrification were reduced in acid conditions, but mycelial development of the fungus was not markedly affected. The inability of A. flavus to form nitrate and nitrite at low pH appears to result from a selective effect of pH upon nitrification rather than being a consequence of the decomposition of nitrogenous intermediates. PMID:13714587
Martínez-Hidalgo, Pilar; Galindo-Villardón, Purificación; Igual, José M.; Martínez-Molina, Eustoquio
2014-01-01
Biotic interactions can improve agricultural productivity without costly and environmentally challenging inputs. Micromonospora strains have recently been reported as natural endophytes of legume nodules but their significance for plant development and productivity has not yet been established. The aim of this study was to determine the diversity and function of Micromonospora isolated from Medicago sativa root nodules. Micromonospora-like strains from field alfalfa nodules were characterized by BOX-PCR fingerprinting and 16S rRNA gene sequencing. The ecological role of the interaction of the 15 selected representative Micromonospora strains was tested in M. sativa. Nodulation, plant growth and nutrition parameters were analyzed. Alfalfa nodules naturally contain abundant and highly diverse populations of Micromonospora, both at the intra- and at interspecific level. Selected Micromonospora isolates significantly increase the nodulation of alfalfa by Ensifer meliloti 1021 and also the efficiency of the plant for nitrogen nutrition. Moreover, they promote aerial growth, the shoot-to-root ratio, and raise the level of essential nutrients. Our results indicate that Micromonospora acts as a Rhizobia Helper Bacteria (RHB) agent and has probiotic effects, promoting plant growth and increasing nutrition efficiency. Its ecological role, biotechnological potential and advantages as a plant probiotic bacterium (PPB) are also discussed. PMID:25227415
Martínez-Hidalgo, Pilar; Galindo-Villardón, Purificación; Trujillo, Martha E; Igual, José M; Martínez-Molina, Eustoquio
2014-09-17
Biotic interactions can improve agricultural productivity without costly and environmentally challenging inputs. Micromonospora strains have recently been reported as natural endophytes of legume nodules but their significance for plant development and productivity has not yet been established. The aim of this study was to determine the diversity and function of Micromonospora isolated from Medicago sativa root nodules. Micromonospora-like strains from field alfalfa nodules were characterized by BOX-PCR fingerprinting and 16S rRNA gene sequencing. The ecological role of the interaction of the 15 selected representative Micromonospora strains was tested in M. sativa. Nodulation, plant growth and nutrition parameters were analyzed. Alfalfa nodules naturally contain abundant and highly diverse populations of Micromonospora, both at the intra- and at interspecific level. Selected Micromonospora isolates significantly increase the nodulation of alfalfa by Ensifer meliloti 1021 and also the efficiency of the plant for nitrogen nutrition. Moreover, they promote aerial growth, the shoot-to-root ratio, and raise the level of essential nutrients. Our results indicate that Micromonospora acts as a Rhizobia Helper Bacteria (RHB) agent and has probiotic effects, promoting plant growth and increasing nutrition efficiency. Its ecological role, biotechnological potential and advantages as a plant probiotic bacterium (PPB) are also discussed.
Carro, Lorena; Veyisoglu, Aysel; Riesco, Raúl; Spröer, Cathrin; Klenk, Hans-Peter; Sahin, Nevzat; Trujillo, Martha E
2018-01-01
Two actinobacterial isolates, strains SG15 T and SGB14 T , were recovered through a microbial diversity study of nitrogen fixing nodules from Pisum sativum plants collected in Salamanca (Spain). The taxonomic status of these isolates was determined using a polyphasic approach and both presented chemotaxonomic and morphological properties consistent with their classification in the genus Micromonospora. For strains SG15 T and SGB14 T , the highest 16S rRNA gene sequence similarities were observed with Micromonospora coxensis JCM 13248 T (99.2 %) and Micromonospora purpureochromogenes DSM 43821 T (99.4 %), respectively. However, strains SG15 T and SGB14 T were readily distinguished from their phylogenetic neighbours both genetically and phenotypically indicating that they represent two new Micromonospora species. The following names are proposed for these species: Micromonosporaphytophila sp. nov. type strain SG15 T (=CECT 9369 T ; =DSM 105363 T ), and Micromonosporaluteiviridis sp. nov. type strain SGB14 T (=CECT 9370 T ; =DSM 105362 T ).
Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E
2012-12-01
Three actinobacterial strains, CR30(T), CR36 and CR38(T), were isolated from rhizosphere soil of Pisum sativum plants collected in Spain. The strains were filamentous, Gram-stain-positive and produced single spores. Phylogenetic, chemotaxonomic and morphological analyses confirmed that the three strains belonged to the genus Micromonospora. 16S rRNA gene sequence analysis of strains CR30(T) and CR36 showed a close relationship to Micromonospora coriariae NAR01(T) (99.3% similarity) while strain CR38(T) had a similarity of 99.0% with Micromonospora saelicesensis Lupac 09(T). In addition, gyrB gene phylogeny clearly differentiated the novel isolates from recognized Micromonospora species. DNA-DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent novel genomic species. The cell-wall peptidoglycan of strains CR30(T) and CR38(T) contained meso-diaminopimelic acid. Both strains had MK-10(H(4)) as the main menaquinone and a phospholipid type II pattern. An array of physiological tests also differentiated the isolates from their closest neighbours. Considering all the data obtained, it is proposed that strains CR30(T) and CR36 represent a novel species under the name Micromonospora cremea sp. nov. (type strain CR30(T) = CECT 7891(T) = DSM 45599(T)), whereas CR38(T) represents a second novel species, for which the name Micromonospora zamorensis sp. nov. is proposed, with CR38(T) ( = CECT 7892(T) = DSM 45600(T)) as the type strain.
Micromonospora schwarzwaldensis sp. nov., a producer of telomycin, isolated from soil.
Vela Gurovic, Maria Soledad; Müller, Sebastian; Domin, Nicole; Seccareccia, Ivana; Nietzsche, Sandor; Martin, Karin; Nett, Markus
2013-10-01
A Gram-stain-positive, spore-forming actinomycete strain (HKI0641(T)) was isolated from a soil sample collected in the Black Forest, Germany. During screening for antimicrobial natural products this bacterium was identified as a producer of the antibiotic telomycin. Morphological characteristics and chemotaxonomic data indicated that the strain belonged to the genus Micromonospora. The peptidoglycan of strain HKI0641(T) contained meso-diaminopimelic acid, and the fatty acid profile consisted predominantly of anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. MK-10(H4), MK-10(H2) and MK-10 were identified as the major menaquinones. To determine the taxonomic positioning of strain HKI0641(T), we computed a binary tanglegram of two rooted phylogenetic trees that were based upon 16S rRNA and gyrB gene sequences. The comparative analysis of the two common classification methods strongly supported the phylogenetic affiliation with the genus Micromonospora, but it also revealed discrepancies in the assignment at the level of the genomic species. 16S rRNA gene sequence analysis identified Micromonospora coxensis DSM 45161(T) (99.1 % sequence similarity) and Micromonospora marina DSM 45555(T) (99.0 %) as the nearest taxonomic neighbours, whereas the gyrB sequence of strain HKI0641(T) indicated a closer relationship to Micromonospora aurantiaca DSM 43813(T) (95.1 %). By means of DNA-DNA hybridization experiments, it was possible to resolve this issue and to clearly differentiate strain HKI0641(T) from other species of the genus Micromonospora. The type strains of the aforementioned species of the genus Micromonospora could be further distinguished from strain HKI0641(T) by several phenotypic properties, such as colony colour, NaCl tolerance and the utilization of carbon sources. The isolate was therefore assigned to a novel species of the genus Micromonospora, for which the name Micromonospora schwarzwaldensis sp. nov. is proposed. The type strain is HKI0641(T) ( = DSM 45708(T) = CIP 110415(T)).
[Actinomycetes of the genus Micromonospora in meadow ecosystems].
Zenova, G M; Zviagintsev, D G
2002-01-01
Investigations showed that micromonosporas, along with streptomycetes, are the major inhabitants of floodplain meadow ecosystems, where their population varies from tens of thousands to hundreds of thousands of CFU per g substrate. In spring, the population of micromonosporas in soil and on the plant roots was found to be denser than that of streptomycetes.
Alonso-Vega, Pablo; Normand, Philippe; Bacigalupe, Rodrigo; Pujic, Petar; Lajus, Aurelie; Vallenet, David; Carro, Lorena; Coll, Pedro
2012-01-01
Micromonospora strains have been isolated from diverse niches, including soil, water, and marine sediments and root nodules of diverse symbiotic plants. In this work, we report the genome sequence of Micromonospora lupini Lupac 08 isolated from root nodules of the wild legume Lupinus angustifolious. PMID:22815450
Taxonomy, Physiology, and Natural Products of Actinobacteria.
Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Meier-Kolthoff, Jan P; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P
2016-03-01
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Taxonomy, Physiology, and Natural Products of Actinobacteria
Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder
2015-01-01
SUMMARY Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. PMID:26609051
Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin
2016-11-01
In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants.
Trujillo, Martha E; Riesco, Raúl; Benito, Patricia; Carro, Lorena
2015-01-01
For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and as an endophytic bacterium with the capacity to colonize the internal plant tissues which are protected from the invasion of other soil microbes were identified. The genome data also revealed the potential of M. lupini Lupac 08 as a plant growth promoting bacterium. Several loci involved in plant growth promotion features such as the production of siderophores, phytohormones, and the degradation of chitin (biocontrol) were also located on the genome and the functionality of these genes was confirmed in the laboratory. In addition, when several host plants species were inoculated with Micromonospora strains, the plant growth enhancing effect was evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall degrading enzymes were also detected, a trait usually found only in pathogenic bacteria. Thus, Micromonospora can be added to the list of new plant-microbe interactions. The current data indicate that this microorganism may have an important application in agriculture and other biotechnological processes. The available information is promising but limited, much research is still needed to determine which is the ecological function of Micromonospora in interaction with nitrogen fixing plants.
Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants
Trujillo, Martha E.; Riesco, Raúl; Benito, Patricia; Carro, Lorena
2015-01-01
For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and as an endophytic bacterium with the capacity to colonize the internal plant tissues which are protected from the invasion of other soil microbes were identified. The genome data also revealed the potential of M. lupini Lupac 08 as a plant growth promoting bacterium. Several loci involved in plant growth promotion features such as the production of siderophores, phytohormones, and the degradation of chitin (biocontrol) were also located on the genome and the functionality of these genes was confirmed in the laboratory. In addition, when several host plants species were inoculated with Micromonospora strains, the plant growth enhancing effect was evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall degrading enzymes were also detected, a trait usually found only in pathogenic bacteria. Thus, Micromonospora can be added to the list of new plant-microbe interactions. The current data indicate that this microorganism may have an important application in agriculture and other biotechnological processes. The available information is promising but limited, much research is still needed to determine which is the ecological function of Micromonospora in interaction with nitrogen fixing plants. PMID:26648923
Khan, Shams Tabrez; Komaki, Hisayuki; Motohashi, Keiichiro; Kozone, Ikuko; Mukai, Akira; Takagi, Motoki; Shin-ya, Kazuo
2011-02-01
Terrestrial actinobacteria have served as a primary source of bioactive compounds; however, a rapid decrease in the discovery of new compounds strongly necessitates new investigational approaches. One approach is the screening of actinobacteria from marine habitats, especially the members of the genus Streptomyces. Presence of this genus in a marine sponge, Haliclona sp., was investigated using culture-dependent and -independent techniques. 16S rRNA gene clone library analysis showed the presence of diverse Streptomyces in the sponge sample. In addition to the dominant genus Streptomyces, members of six different genera were isolated using four different media. Five phylogenetically new strains, each representing a novel species in the genus Streptomyces were also isolated. Polyphasic study suggesting the classification of two of these strains as novel species is presented. Searching the strains for the production of novel compounds and the presence of biosynthetic genes for secondary metabolites revealed seven novel compounds and biosynthetic genes with unique sequences. In these compounds, JBIR-43 exhibited cytotoxic activity against cancer cell lines. JBIR-34 and -35 were particularly interesting because of their unique chemical skeleton. To our knowledge, this is the first comprehensive study detailing the isolation of actinobacteria from a marine sponge and novel secondary metabolites from these strains.
Carro, Lorena; Nouioui, Imen; Sangal, Vartul; Meier-Kolthoff, Jan P; Trujillo, Martha E; Montero-Calasanz, Maria Del Carmen; Sahin, Nevzat; Smith, Darren Lee; Kim, Kristi E; Peluso, Paul; Deshpande, Shweta; Woyke, Tanja; Shapiro, Nicole; Kyrpides, Nikos C; Klenk, Hans-Peter; Göker, Markus; Goodfellow, Michael
2018-01-11
There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables. Genes associated with plant interactions highlight the potential use of micromonosporae in agriculture and biotechnology.
Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant.
Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E
2013-06-01
A filamentous actinomycete strain designated CR18(T) was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA-DNA hybridization studies further supported the taxonomic position of strain CR18(T) as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18(T) (= CECT 7890(T) = DSM 45598(T)) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.
Seipke, Ryan F.; Barke, Jörg; Brearley, Charles; Hill, Lionel; Yu, Douglas W.; Goss, Rebecca J. M.; Hutchings, Matthew I.
2011-01-01
Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds. PMID:21857911
Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E
2012-03-01
It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.
Hunting for cultivable Micromonospora strains in soils of the Atacama Desert.
Carro, Lorena; Razmilic, Valeria; Nouioui, Imen; Richardson, Lee; Pan, Che; Golinska, Patrycja; Asenjo, Juan A; Bull, Alan T; Klenk, Hans-Peter; Goodfellow, Michael
2018-02-26
Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation.
Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.
Reyes, Ruth D Hernández; Cafaro, Matías J
2015-01-01
The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bibikova, M V; Ivanitskaia, L P; Tikhonova, A S
1980-01-01
Thirty six cultures of Micromonospora freshly isolated from soil samples were studied with respect to their sensitivity to a number of antibiotics of various structures and modes of action. It was found that all of them were highly sensitive to penicillin, ristomycin, tetracycline, rifampicin, streptomycin, olivomycin, carminomycin and dactinomycin. Significant differences in sensitivity of the Micromonospora cultures were revealed only with respect to gentamicin, tobramicin, erythromycin and lincomycin. Seven cultures were resistant to gentamicin and tobramicin and sensitive to all of the other antibiotics. Broad spectrum antibiotics were isolated from these cultures. The study of the antibiotic chemistry showed that they were 2-desoxystreptamine-containing aminoglycosides. Two cultures proved to be resistant to erythromycin and lincomycin. When identified with the use of antibiotic resistant staphylococcal strains, the crude antibiotic substances isolated from these cultures appeared to be not active against staphylococci resistant to erythromycin and lincomycin. By their chromatograpi- behaviour the antibiotics were close to macrolides. Therefore, it was found that production of aminoglycoside and macrolide antibiotics was most characteristic of Micromonospora. A certain correlation between resistance of Micromonospora to these 2 antibiotic groups and capacity for their production was shown.
Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander
2016-05-10
As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.
Western bats as a reservoir of novel Streptomyces species with antifungal activity
Hamm, Paris S.; Caimi, Nicole A.; Northup, Diana E.; Valdez, Ernest W.; Buecher, Debbie C.; Dunlap, Christopher A.; Labeda, David P.; Lueschow, Shiloh; Porras-Alfaro, Andrea
2017-01-01
At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans.
Luo, Hong-li; Sun, Man-hong; Xie, Jian-ping; Liu, Zhi-heng; Huang, Ying
2006-08-01
Twenty actinomycetes were isolated from root-knot nematode eggs and females collected from 11 plant root samples infested by Meloidogyne spp.. The isolates were assigned to the genera Streptomyces, Nocardia and Pseudonocardia respectively, based on analysis of morphological characteristics, cell-wall DAPs and 16S rRNA gene sequences. 80% of them were streptomycetes. Biocontrol potential of the isolates against Meloidogyne hapla was evaluated in liquid culture in vitro. The average percentages of egg parasitism, egg hatching, and juvenile mortality were 54.1, 40.4 and 26.2, respectively. Three Streptomyces strains and one Nocardia strain with high pathogenicity in vitro were selected to determine their ability to reduce tomato root galls in greenhouse. The results demonstrated good biocontrol efficacy (31.4%-56.4%) of the strains.
Kettleson, E; Kumar, S; Reponen, T; Vesper, S; Méheust, D; Grinshpun, S A; Adhikari, A
2013-10-01
Respiratory illnesses have been linked to children's exposures to water-damaged homes. Therefore, understanding the microbiome in water-damaged homes is critical to preventing these illnesses. Few studies have quantified bacterial contamination, especially specific species, in water-damaged homes. We collected air and dust samples in twenty-one low-mold homes and twenty-one high-mold homes. The concentrations of three bacteria/genera, Stenotrophomonas maltophilia, Streptomyces sp., and Mycobacterium sp., were measured in air and dust samples using quantitative PCR (QPCR). The concentrations of the bacteria measured in the air samples were not associated with any specific home characteristic based on multiple regression models. However, higher concentrations of S. maltophilia in the dust samples were associated with water damage, that is, with higher floor surface moisture and higher concentrations of moisture-related mold species. The concentrations of Streptomyces and Mycobacterium sp. had similar patterns and may be partially determined by human and animal occupants and outdoor sources of these bacteria. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul
2015-10-01
Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang
2010-06-01
In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.
Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.
Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam
2016-12-01
To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju, Gyeonggi, Jeonnam, Daejeon, and Chungnam. A large number of novel actinobacterial species continue to be discovered since the Korean government is encouraging the search for new bacterial species and researchers are endeavoring to find out novel strains from extreme or untapped environments.
Wu, Xingwen; Chen, Jiazhen; Xu, Meng; Zhu, Danting; Wang, Xuyang; Chen, Yulin; Wu, Jing; Cui, Chenghao; Zhang, Wenhong; Yu, Liying
2017-01-01
This study investigated if chronic obstructive pulmonary disease (COPD) is correlated with periodontitis via periodontal microbiota and if certain bacteria affect periodontitis as well as COPD. Moreover, the study investigated whether suffering from COPD is associated with a decrease in the richness and diversity of periodontal microbiota. Subgingival plaque was obtained from 105 patients. Bacterial DNA was isolated from 55 COPD and 50 non-COPD participants (either with or without periodontitis). 16S rRNA gene metagenomic sequencing was used to characterize the microbiota and to determine taxonomic classification. In the non-periodontitis patients, suffering from COPD resulted in a decrease in bacteria richness and diversity in the periodontal microenvironment. An increase in the genera Dysgonomonas , Desulfobulbus , and Catonella and in four species ( Porphyromonas endodontalis , Dysgonomonas wimpennyi , Catonella morbi , and Prevotella intermedia ) in both COPD and periodontitis patients suggests that an increase in these periodontitis-associated microbiota may be related to COPD. Three genera ( Johnsonella , Campylobacter , and Oribacterium ) were associated with COPD but not with periodontitis. The decrease in the genera Arcanobacterium , Oribacterium , and Streptomyces in COPD patients implies that these genera may be health-associated genera, and the decrease in these genera may be related to disease. These data support the hypothesis that COPD is correlated with periodontitis via these significantly changed specific bacteria.
Nie, Zhiqiang; Zheng, Yu; Du, Hongfu; Xie, Sankuan; Wang, Min
2015-05-01
The traditional fermentation of Shanxi aged vinegar (SAV), a well-known traditional Chinese vinegar, generally involves the preparation of starter daqu, starch saccharification, alcoholic fermentation (AF) and acetic acid fermentation (AAF). Dynamics and diversity of microbial community succession in daqu and other fermentation stages were investigated by denaturing gradient gel electrophoresis (DGGE). Results showed that eight bacterial genera and four fungal genera were found in daqu. However, Staphylococcus, Saccharopolyspora, Bacillus, Oceanobacillus, Enterobacter, Streptomyces, Eurotium, Monascus and Pichia in daqu were eradicated during AF. Four bacterial genera and three fungal genera were found in this stage. Weissella, Lactobacillus, Streptococcus, Saccharomyces, and Saccharomycopsis were the dominant microorganisms in the late stage of AF. During AAF, four bacterial genera and four fungal genera were found. Weissella, Streptococcus, Klebsiella, Escherichia, and Cladosporium gradually disappeared; the dominant microorganisms were Acetobacter, Lactobacillus, Saccharomycopsis, and Alternaria in the late stage of AAF. Alpha diversity metrics showed that fungal diversity in daqu was greater than that in AF and AAF. By contrast, bacterial diversity decreased from daqu to AF and increased in the first three days of AAF and then decreased. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nimaichand, Salam; Devi, Asem Mipeshwaree; Tamreihao, K.; Ningthoujam, Debananda S.; Li, Wen-Jun
2015-01-01
Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3), Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) and Rhodococcus (1). Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites. PMID:25999937
Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng
2014-10-01
A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)).
Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.
Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea
2017-03-01
At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.
Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity
Caimi, Nicole A.; Northup, Diana E.; Valdez, Ernest W.; Buecher, Debbie C.; Dunlap, Christopher A.; Labeda, David P.; Lueschow, Shiloh
2016-01-01
ABSTRACT At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans. IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans, the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. PMID:27986729
Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp.
Grund, E; Knorr, C; Eichenlaub, R
1990-01-01
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains. PMID:2339895
Wu, Xingwen; Chen, Jiazhen; Xu, Meng; Zhu, Danting; Wang, Xuyang; Chen, Yulin; Wu, Jing; Cui, Chenghao; Zhang, Wenhong; Yu, Liying
2017-01-01
ABSTRACT This study investigated if chronic obstructive pulmonary disease (COPD) is correlated with periodontitis via periodontal microbiota and if certain bacteria affect periodontitis as well as COPD. Moreover, the study investigated whether suffering from COPD is associated with a decrease in the richness and diversity of periodontal microbiota. Subgingival plaque was obtained from 105 patients. Bacterial DNA was isolated from 55 COPD and 50 non-COPD participants (either with or without periodontitis). 16S rRNA gene metagenomic sequencing was used to characterize the microbiota and to determine taxonomic classification. In the non-periodontitis patients, suffering from COPD resulted in a decrease in bacteria richness and diversity in the periodontal microenvironment. An increase in the genera Dysgonomonas, Desulfobulbus, and Catonella and in four species (Porphyromonas endodontalis, Dysgonomonas wimpennyi, Catonella morbi, and Prevotella intermedia) in both COPD and periodontitis patients suggests that an increase in these periodontitis-associated microbiota may be related to COPD. Three genera (Johnsonella, Campylobacter, and Oribacterium) were associated with COPD but not with periodontitis. The decrease in the genera Arcanobacterium, Oribacterium, and Streptomyces in COPD patients implies that these genera may be health-associated genera, and the decrease in these genera may be related to disease. These data support the hypothesis that COPD is correlated with periodontitis via these significantly changed specific bacteria. PMID:28748030
Analysis of Actinobacteria from mould-colonized water damaged building material.
Schäfer, Jenny; Jäckel, Udo; Kämpfer, Peter
2010-08-01
Mould-colonized water damaged building materials are frequently co-colonized by actinomycetes. Here, we report the results of the analyses of Actinobacteria on different wall materials from water damaged buildings obtained by both cultivation-dependent and cultivation-independent methods. Actinobacteria were detected in all but one of the investigated materials by both methods. The detected concentrations of Actinobacteria ranged between 1.8 x 10(4) and 7.6 x 10(7) CFUg(-1) of investigated material. A total of 265 isolates from 17 materials could be assigned to 31 different genera of the class Actinobacteria on the basis of 16S rRNA gene sequence analyses. On the basis of the cultivation-independent approach, 16S rRNA gene inserts of 800 clones (50%) were assigned to 47 different genera. Representatives of the genera Streptomyces, Amycolatopsis, Nocardiopsis, Saccharopolyspora, Promicromonospora, and Pseudonocardia were found most frequently. The results derived from both methods indicated a high abundance and variety of Actinobacteria in water damaged buildings. Four bioaerosol samples were investigated by the cultivation-based approach in order to compare the communities of Actinobacteria in building material and associated air samples. A comparison of the detected genera of bioaerosol samples with those directly obtained from material samples resulted in a congruent finding of 9 of the overall 35 detected genera (25%), whereas four genera were only detected in bioaerosol samples. Copyright 2010 Elsevier GmbH. All rights reserved.
Hirsch, Ann M.; Alvarado, Johana; Bruce, David; ...
2013-09-26
Micromonospora species live in diverse environments and exhibit a broad range of functions, including antibiotic production, biocontrol, and degradation of complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.
Antascomicins A, B, C, D and E. Novel FKBP12 binding compounds from a Micromonospora strain.
Fehr, T; Sanglier, J J; Schuler, W; Gschwind, L; Ponelle, M; Schilling, W; Wioland, C
1996-03-01
5 novel ascomycin-like compounds, antascomicins A, B, C, D and E were isolated from a strain of Micromonospora. The antascomicins bind strongly to the FK506-binding protein FKBP12 and antagonize the immunosuppressive activity of FK506 and rapamycin. The strain description, fermentation, structure elucidation and biological activity of these compounds are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, A. M.; Alvarado, J.; Bruce, D.
2013-08-29
Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.
Chromosome diversity and similarity within the Actinomycetales.
Kirby, Ralph
2011-06-01
Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Sutto-Ortiz, Priscila; Camacho-Ruiz, María de Los Angeles; Kirchmayr, Manuel R; Camacho-Ruiz, Rosa María; Mateos-Díaz, Juan Carlos; Noiriel, Alexandre; Carrière, Frédéric; Abousalham, Abdelkarim; Rodríguez, Jorge A
2017-01-01
Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl- sn -glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel PLAs with potential applications in biotechnology.
Sutto-Ortiz, Priscila; Camacho-Ruiz, María de los Angeles; Kirchmayr, Manuel R.; Camacho-Ruiz, Rosa María; Mateos-Díaz, Juan Carlos; Noiriel, Alexandre; Carrière, Frédéric; Abousalham, Abdelkarim
2017-01-01
Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel PLAs with potential applications in biotechnology. PMID:28695068
Thakur, Vikas; Kumar, Vijay; Kumar, Sanjay; Singh, Dharam
2018-05-28
Pangi-Chamba Himalaya (PCH) region is very pristine, unique and virgin niche for bioresource exploration. In the current study, for the first time, the bacterial diversity of this region for potential cellulose degrader was investigated. A total of 454 pure bacterial isolates were obtained from diverse sites in PCH region and 111 isolates were further selected for 16S rDNA characterization based on ARDRA grouping. Identified bacteria belongs to twenty-eight genera representing four phyla namely Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Pseudomonas was most abundant genera followed by Bacillus, Geobacillus, Arthrobacter, Paenibacillus, and Flavobacterium. In addition, 6 putative novel bacteria (based on 16S rDNA sequence similarity) and thermophiles from non-thermogenic sites were also reported for the first time. Screening for cellulose degradation ability on carboxymethyl cellulose (CMC) plates had revealed 70.92% of cellulolytic bacteria. Current study reports diverse genera (Arthrobacter, Paenibacillus, Chryseobacterium, Pedobacter, Streptomyces, Agromyces, Flavobacterium, and Pseudomonas), high cellulose hydrolysis zone, and wide pH and temperature functional cellulolytic bacteria hitherto reported in the literature. Diverse bacterial genera with high cellulolytic activity in broad pH and temperature range provide opportunity to develop a bioprocess for efficient pretreatment of lignocellulosic biomass, which is currently being investigated.
The evolution of an osmotically inducible dps in the genus Streptomyces.
Facey, Paul D; Hitchings, Matthew D; Williams, Jason S; Skibinski, David O F; Dyson, Paul J; Del Sol, Ricardo
2013-01-01
Dps proteins are found almost ubiquitously in bacterial genomes and there is now an appreciation of their multifaceted roles in various stress responses. Previous studies have shown that this family of proteins assemble into dodecamers and their quaternary structure is entirely critical to their function. Moreover, the numbers of dps genes per bacterial genome is variable; even amongst closely related species - however, for many genera this enigma is yet to be satisfactorily explained. We reconstruct the most probable evolutionary history of Dps in Streptomyces genomes. Typically, these bacteria encode for more than one Dps protein. We offer the explanation that variation in the number of dps per genome among closely related Streptomyces can be explained by gene duplication or lateral acquisition, and the former preceded a subsequent shift in expression patterns for one of the resultant paralogs. We show that the genome of S. coelicolor encodes for three Dps proteins including a tailless Dps. Our in vivo observations show that the tailless protein, unlike the other two Dps in S. coelicolor, does not readily oligomerise. Phylogenetic and bioinformatic analyses combined with expression studies indicate that in several Streptomyces species at least one Dps is significantly over-expressed during osmotic shock, but the identity of the ortholog varies. In silico analysis of dps promoter regions coupled with gene expression studies of duplicated dps genes shows that paralogous gene pairs are expressed differentially and this correlates with the presence of a sigB promoter. Lastly, we identify a rare novel clade of Dps and show that a representative of these proteins in S. coelicolor possesses a dodecameric quaternary structure of high stability.
Dalitz, Camila de Araújo; Porsani, Mariana Vieira; Figel, Izabel Cristina; Pimentel, Ida C; Dalzoto, Patrícia R
Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Antibiotics production by an actinomycete isolated from the termite gut.
Matsui, Toru; Tanaka, Junichi; Namihira, Tomoyuki; Shinzato, Naoya
2012-12-01
As well as the search for new antibiotics, a new resource or strains for the known antibiotics is also important. Microbial symbionts in the gut of termites could be regarded as one of the feasible resource for such purpose. In this study, antibiotic-producing actinomycetes were screened from symbionts of the termite gut. 16SrRNA sequence analysis for the 10 isolates revealed that they belong to actinomycetes such as Streptomyces sp., Kitasatospora sp., and Mycobacterium sp. A culture broth from one of the isolate, namely strain CA1, belonging to the genera Streptomyces exhibited antagonistic activity against actinomycetes (Micrococcus spp.), gram-positive bacteria (Bacillus spp.), and yeast (Candida spp.). The structures of 2 compounds isolated from the culture broth of the strain CA1 were identified as those of actinomycin X2 and its analog, D. This study is the first to report that some symbionts of the termite gut are antibiotic-producing actinomycetes, and suggest that the termite gut is a feasible resource for bioprospecting. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Xiaoxuan; Liu, Ning; Li, Xiaomin; Ding, Yun; Shang, Fei; Gao, Yongsheng; Ruan, Jisheng
2015-01-01
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds. PMID:25724963
Lyu, Ang; Liu, Hao; Che, Hongjie; Yang, Long; Zhang, Jing; Wu, Mingde; Chen, Weidong; Li, Guoqing
2017-01-01
This study was conducted to determine the antifungal activity of the metabolites from Streptomyces sp. 3–10, and to purify and identify the metabolites. Meanwhile, the taxonomic status of strain 3–10 was re-evaluated. The cultural filtrates of strain 3–10 in potato dextrose broth were extracted with ethyl acetate. The resulting crude extract at 1 and 5 μg/ml inhibited growth of 22 species in 18 genera of plant pathogenic fungi and Oomycetes, accounting for 92% of the total 24 tested species, suggesting that it has a wide antifungal spectrum. Two compounds were purified from the crude extract and were identified as reveromycins A and B, which demonstrated high antifungal activity against Botrytis cinerea, Mucor hiemails, Rhizopus stolonifer, and Sclerotinia sclerotiorum under acidic pH conditions. Both the crude extract and reveromycin A from strain 3–10 at 10, 50, and 100 μg/ml showed high efficacy in suppression of strawberry fruit rot caused by the above-mentioned four pathogens. The efficacy was comparable to that of corresponding commercial fungicides (pyrimethanil, captan, dimetachlone) used in management of these pathogens. Morphological, physiological, and phylogenetic characterization showed that strain 3–10 is closely related to Streptomyces yanglinensis 1307T, representing a novel phylotype in that species. This study reported a new strain with reveromycins-producing capability. The finding is important for further exploitation of reveromycins for agricultural use. PMID:28421050
Sarmiento-Ramírez, Jullie M; van der Voort, Menno; Raaijmakers, Jos M; Diéguez-Uribeondo, Javier
2014-01-01
Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.
Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo).
Groth, I; Vettermann, R; Schuetze, B; Schumann, P; Saiz-Jimenez, C
1999-05-01
A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.
Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S
2016-12-01
Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.
Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine
2016-01-01
Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408
[Actinobacteria and their odor-producing capacities in a surface water in Shanghai].
Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi
2014-10-01
The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment.
Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria
2017-02-01
Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.
Rajkowska, Katarzyna; Otlewska, Anna; Koziróg, Anna; Piotrowska, Małgorzata; Nowicka-Krawczyk, Paulina; Hachułka, Mariusz; Wolski, Grzegorz J; Kunicka-Styczyńska, Alina; Gutarowska, Beata; Zydzik-Białek, Agnieszka
2014-01-01
The objective of this study was to assess biological colonization of wooden and brick buildings in the former Auschwitz II-Birkenau concentration camp, and to identify the organisms colonizing the examined buildings. Microbiological analysis did not reveal increased microbial activity, and the total microbial count of the barrack surfaces did not exceed 10 3 CFU/100 cm 2 . However, certain symptoms of biodegradation of the buildings were observed. The predominant microflora consisted of bacteria of the genera Bacillus , Sporosarcina , Pseudomonas , Micrococcus , Streptomyces , and Staphylococcus , as well as fungi of the genera Acremonium , Cladosporium , Alternaria , Humicola , Penicillium , and Chaetomium . The microflora patterns varied both in wooden and brick buildings. The structural elements of wooden and brick barracks, and especially of the floors and lower parts of bathroom walls, were infected by cyanobacteria and algae, with the most numerous being cyanobacteria of the genera Scytonema , Chroococcus , Gloeothece , Leptolyngbya , diatoms of the genus Diadesmis , and chlorophytes of the genera Chlorella and Apatococcus . The outer surfaces of the examined buildings were primarily colonized by lichens and bryophytes, with nearly 30 species identified. The dominant species of lichens belonged to the genera Candelariella , Caloplaca , Lecanora , Lecidea , Lepraria , Physcia , and Protoparmeliopsis , and those of bryophytes to the genera Bryum , Ceratodon , Marchantia , and Tortula . The quantity and species diversity of lichens and mosses were much lower in wooden barracks than in brick ones. The external surfaces of those barracks were only affected by Lecanora conizaeoides , Lecanora symmicta , Lepraria cf. incana , and Strangospora pinicola . The study results revealed vast biodiversity among the species colonizing historic buildings. The presence of these groups of organisms, resulting from their natural expansion in the environment, is undesirable, as their excessive growth and spread may lead to progressive biodegradation of buildings. Our assessment of biological contamination will enable the development of a disinfection and conservation plan for the examined buildings.
Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.
2016-01-01
Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168
Managing microbial communities for sequentially reconstruct genomes from complex metagenomes
NASA Astrophysics Data System (ADS)
Delmont, Tom O.; Vogel, Timothy M.; Simonet, Pascal
2013-04-01
Global understanding on environmental microbial communities is currently limited by the bottleneck of genome reconstruction. Soil is a typical example where individual cells are currently mostly uncultured and metagenomic datasets unassembled. In this study, the microbial community composition of a natural grassland soil was managed under several controlled selective pressures to experiment a "multi-evenness" stratagem for sequentially attempt to reconstruct genomes from a complex metagenome. While lowly represented in the natural community, several newly dominant genomes (an enrichment attaining 105 in some cases) were successfully reconstructed under various "harsh" tested conditions. These genomes belong to several genera including (but not restricted to) Leifsonia, Rhodanobacter, Bacillus, Ktedonobacter, Xanthomonas, Streptomyces and Burkholderia. So far, from 10 to 78% of generated metagenomic datasets were reconstructed, so providing access to more than 88 000 genes of known or unknown functions and to their genetic environment. Adaptative genes directly related to selective pressures were found, mostly in large plasmids. Functions of potential industrial interest (e.g., novel polyketide synthase modules in Streptomyces) were also discovered. Furthermore, an important phage infection snapshot (>1500X of coverage for the most represented phage) was observed among the Streptomyces population (three distinct genomes reconstructed) of a particular enrichment (mercury, 0.02g/kg) during the fourth month of incubation. This "divide and conquer" strategy could be applied to other environments and using auxiliary sequencing approaches like single cell to detect, connect and mine taxa and functions of interest while creating an extensive set of reference genomes from across the planet. Next limit could turn out to become our imagination defining novel selective pressures to sequentially make dominant the 1030 cells of the biosphere.
Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E.; Souza, Valeria
2017-01-01
The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies. PMID:28480140
Vera-Cabrera, L; Johnson, W M; Welsh, O; Resendiz-Uresti, F L; Salinas-Carmona, M C
1999-06-01
An immunodominant protein from Nocardia brasiliensis, P61, was subjected to amino-terminal and internal sequence analysis. Three sequences of 22, 17, and 38 residues, respectively, were obtained and compared with the protein database from GenBank by using the BLAST system. The sequences showed homology to some eukaryotic catalases and to a bromoperoxidase-catalase from Streptomyces violaceus. Its identity as a catalase was confirmed by analysis of its enzymatic activity on H2O2 and by a double-staining method on a nondenaturing polyacrylamide gel with 3,3'-diaminobenzidine and ferricyanide; the result showed only catalase activity, but no peroxidase. By using one of the internal amino acid sequences and a consensus catalase motif (VGNNTP), we were able to design a PCR assay that generated a 500-bp PCR product. The amplicon was analyzed, and the nucleotide sequence was compared to the GenBank database with the observation of high homology to other bacterial and eukaryotic catalases. A PCR assay based on this target sequence was performed with primers NB10 and NB11 to confirm the presence of the NB10-NB11 gene fragment in several N. brasiliensis strains isolated from mycetoma. The same assay was used to determine whether there were homologous sequences in several type strains from the genera Nocardia, Rhodococcus, Gordona, and Streptomyces. All of the N. brasiliensis strains presented a positive result but only some of the actinomycetes species tested were positive in the PCR assay. In order to confirm these findings, genomic DNA was subjected to Southern blot analysis. A 1.7-kbp band was observed in the N. brasiliensis strains, and bands of different molecular weight were observed in cross-reacting actinomycetes. Sequence analysis of the amplicons of selected actinomycetes showed high homology in this catalase fragment, thus demonstrating that this protein is highly conserved in this group of bacteria.
Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿
Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik
2009-01-01
Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568
Yang, Na; Song, Fuhang
2018-02-01
Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.
Genomic basis for natural product biosynthetic diversity in the actinomycetes†
Nett, Markus; Ikeda, Haruo; Moore, Bradley S.
2010-01-01
The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora. These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references. PMID:19844637
[Microbiological analysis of terrestrial biotopes of the Antarctic region].
Tashirev, A B; Romanovskaia, V A; Rokitko, P V; Shilin, S O; Chernaia, N A; Tashireva, A A
2010-01-01
Microbiological analysis has been made of 120 samples from biotopes of the western coast of the Antarctic peninsula (Rasmussen cope, Tuxen cope, Waugh mountain), Argentine archipelago islands (Galindez, Skua, Corner, Barchans, Irizar, Uruguay, Cluls, Three Little Pigs, King-George), as well as neighbouring islands (Petermann--on the north, a group of Jalour islands--on the east, Berthelot--on the south-east); and more remote islands (Darboux, Lippmann, Booth). It was found out that the total number of chemoorganotrophic aerobic microorganisms was 10(6) - 10(8) cells/g of soil, that was by 2-3 orders lower than in the regions with temperate climate. One can observe a tendency of decreasing the quantity of chemoorganotrophic microorganisms in the Antartic biotopes (cells/g of a sample) in the following order: soil (1 x 10(7) - 8 x 10(8)), underground part of moss (1 x 10(6) - 5 x 10(7)), grass Deschampsia antarctica (10(6) - 10(8), slit of fresh-water reservoir (10(5) - 10(7)), ground part of moss (10(3) - 10(6)), lichens (10(3) - 10(6)). Representatives of several phylogenetic lines: Proteobacteria (genera Pseudomonas, Methylobacterium, Enterobacter), Firmicutes (genera Bacillus, Staphylococcus), Actinobacteria (genera Brevibacterium, Actinomyces, Streptomyces) have been found in the Antarctic samples. As a rule, genera of bacteria found in the Antarctic Region are widely distributed in different regions of the Earth with temperate climate. Microorganisms similar to the species Exophiala nigra (Issatsch.) Haats et de Hoog 1999, which was first detected 100 years ago by Academician B.L. Isachenko in the Arctic region water, were also isolated from biofilms on vertical rocks of the Galindez Island as well as from the soil of the Irizar Island.
Nelson, R A; Pope, J A; Luedemann, G M; McDaniel, L E; Schaffner, C P
1986-03-01
A microorganism, designated as RV-79-9-101 and now identified as Micromonospora purpureochromogenes subsp. halotolerans, isolated from a mud sample in the Philippines, has been shown to produce a complex of antibiotics called crisamicins. Thin-layer chromatography and bioautography, employing solvent extracts of whole fermentation broths, revealed a minimum of five antimicrobial components. The major biologically-active component of the antibiotic complex, crisamicin A, was obtained in pure form after preparative silica gel column chromatography followed by crystallization. Based on physico-chemical data crisamicin A has been identified as a novel member of the isochromanequinone group of antibiotics. It exhibits excellent in vitro activity against Gram-positive bacteria but little or no activity towards Gram-negative bacteria or fungi.
Borrego, Sofía; Perdomo, Ivette
2016-02-01
The quality of the indoor air can provide very useful information for the artwork conservation. The aim of the study was to evaluate the microbial concentration inside six document repositories of the National Archive of the Republic of Cuba in two months of 1 year. The repositories are large, high, and have a natural cross-ventilation system. The microbial sampling was done in July 2010 (summer or rainy month) and February 2011 (winter or dry month) using the SAS Super 100 biocollector at 100 L/min. An appropriate selective culture media were used to isolate fungi and bacteria. A high total microbial concentration on the north side of the building in two studied months was observed. The fungal concentrations were significantly higher in July 2010 in all repositories, while the bacterial concentrations were significantly higher mostly in February 2011 only in repositories located on the first and second floor of the building. Eight fungal genera in the indoor air of all environments were isolated. Regardless of the side of the analyzed building, Penicillium, Aspergillus, and Cladosporium were the predominant genera. Aspergillus flavus and Aspergillus niger were the species isolated in almost all of the analyzed repositories in the studied months. Gram-positive bacteria prevailed among bacterial groups isolated from indoor air repositories, and some percentages corresponded to the genera Bacillus and Streptomyces. In Cuba, the temperature and relative humidity are high during the whole year but the natural ventilation plays an important role in retarding microbial growth on materials.
NASA Astrophysics Data System (ADS)
Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying
2017-04-01
The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon (Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.
Brazilian Cerrado soil Actinobacteria ecology.
Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas
2013-01-01
A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.
NASA Astrophysics Data System (ADS)
Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying
2018-03-01
The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon ( Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.
Brazilian Cerrado Soil Actinobacteria Ecology
Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas
2013-01-01
A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production. PMID:23555089
Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya
2017-10-01
Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.
Zothanpuia; Passari, Ajit Kumar; Leo, Vincent Vineeth; Chandra, Preeti; Kumar, Brijesh; Nayak, Chandra; Hashem, Abeer; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Singh, Bhim Pratap
2018-05-05
Actinobacteria from freshwater habitats have been explored less than from other habitats in the search for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive compounds. 16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a common genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amycolatopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography (UPLC-ESI-MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and determined from the methanolic crude extract of six selected Streptomyces strains. Infectious diseases still remain one of the leading causes of death globally and bacterial infections caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has the prospects for the production of bioactive secondary metabolites.
El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa
2015-01-01
Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383
Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L
2017-07-01
Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be critical to mediating the coevolutionary dynamics and selective trajectories for inhibitory and nutrient use phenotypes among Streptomyces and Fusarium populations in soil, with significant implications for microbial community functional characteristics.
L-Phenylalanine and L-tyrosine catabolism by selected Streptomyces species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pometto, A.L. III; Crawford, D.L.
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by the thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts.
L-Phenylalanine and L-tyrosine catabolism by selected Streptomyces species.
Pometto, A L; Crawford, D L
1985-01-01
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts. PMID:3994376
USDA-ARS?s Scientific Manuscript database
Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...
Uhong Lü, Yuhong; Liu, Xiaoli; Wang, Miao; Li, Yuanyuan; Liu, Ning; Bao, Yuxin; Liu, Minghao; Li, Xiaoqian; Wang, Yinyin; Qian, Shenyan; Yue, Changwu; Huang, Ying
2016-09-01
In order to obtain the natural products synthesized by the three putative xiamycin biosynthesis gene clusters which were predicted via antiSMASH during the genome mining of marine Streptomyces sp. FXJ 7.388, Streptomyces sp. FXJ 8.012, and Streptomyces olivaceus FXJ 7.023. Sixteen genes involved in xiamycin assembly, modification, and regulation with higher identity than the newest reported xiamycin biosynthetic gene cluster from marine Streptomyces sp. SCSIO 02999, Streptomyces sp. HKI0576, and Streptomyces sp. FXJ 7.388 were discovered via gene cluster comparative analysis. A ribosome engineering strategy was adopted to activate such cryptic gene clusters with different final concentrations antibiotics that act on the ribosome, and two indolosesquiterpenes were isolated from idlethaldose streptomycin-resistant Streptomyces sp. FXJ 7.388 strains. However, no such product was detected in Streptomyces sp. FXJ 8.012 and Streptomyces olivaceus FXJ 7.023 under the same treatment. This result suggested that these genes might hold the least gene content for xiamycin biosynthesis.
Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity
Mohammadipanah, Fatemeh; Wink, Joachim
2016-01-01
The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems, along with the recent work trend on Iranian arid soils, are reported. PMID:26858692
Lee, Hyo-Jin; Whang, Kyung-Sook
2016-09-01
Three novel isolates belonging to the genus Streptomyces, designated JR-35T, JR-46 and WH-9T, were isolated from bamboo forest soil in Damyang, Korea. The 16S rRNA gene sequences of strains JR-35T and JR-46 showed highest similarities with Streptomyces olivochromogenes NBRC 3178T (99.1 %), Streptomyces siamensis KC-038T (98.9 %), Streptomyces chartreusis NBRC 12753T (98.9 %), Streptomyces resistomycificus NRRL ISP-5133T (98.9 %) and Streptomyces bobili JCM 4627T (98.8 %), and strain WH-9Tshowed highest sequence similarities with Streptomyces. bobili JCM 4627T (99.2 %), Streptomyces phaeoluteigriseus NRRL ISP-5182T (99.2 %), Streptomyces alboniger NBRC 12738T (99.2 %), Streptomyces galilaeus JCM 4757T (99.1 %) and Streptomyces pseudovenezuelae NBRC 12904T (99.1 %). The predominant menaquinones were MK-9 (H6) and MK-9 (H8). The major fatty acids were anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0 for strains JR-35T and JR-46 and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 for strain WH-9T. The G+C content of the genomic DNA of strains JR-35T, JR-46 and WH-9T were 69.4, 74.4 and 74.1 mol%, respectively. Based on the phenotypic and genotypic data, the three strains are assigned to two novel species of the genus Streptomyces, for which the names Streptomyces rhizosphaerihabitans sp. nov. (type stain JR-35T=KACC 17181T=NBRC 109807T) and Streptomyces adustus sp. nov. (type strain WH-9T=KACC 17197T=NBRC 109810T) are proposed.
Nguyen, Thao Bich; Kitani, Shigeru; Shimma, Shuichi; Nihira, Takuya
2018-05-01
In streptomycetes, autoregulators are important signaling compounds that trigger secondary metabolism, and they are regarded as Streptomyces hormones based on their extremely low effective concentrations (nM) and the involvement of specific receptor proteins. Our previous distribution study revealed that butenolide-type Streptomyces hormones, including avenolide, are a general class of signaling molecules in streptomycetes and that Streptomyces albus strain J1074 may produce butenolide-type Streptomyces hormones. Here, we describe metabolite profiling of a disruptant of the S. albus aco gene, which encodes a key biosynthetic enzyme for butenolide-type Streptomyces hormones, and identify four butenolide compounds from S. albus J1074 that show avenolide activity. The compounds structurally resemble avenolide and show different levels of avenolide activity. A dual-culture assay with imaging mass spectrometry (IMS) analysis for in vivo metabolic profiling demonstrated that the butenolide compounds of S. albus J1074 stimulate avermectin production in another Streptomyces species, Streptomyces avermitilis , illustrating the complex chemical interactions through interspecies signals in streptomycetes. IMPORTANCE Microorganisms produce external and internal signaling molecules to control their complex physiological traits. In actinomycetes, Streptomyces hormones are low-molecular-weight signals that are key to our understanding of the regulatory mechanisms of Streptomyces secondary metabolism. This study reveals that acyl coenzyme A (acyl-CoA) oxidase is a common and essential biosynthetic enzyme for butenolide-type Streptomyces hormones. Moreover, the diffusible butenolide compounds from a donor Streptomyces strain were recognized by the recipient Streptomyces strain of a different species, resulting in the initiation of secondary metabolism in the recipient. This is an interesting report on the chemical interaction between two different streptomycetes via Streptomyces hormones. Information on the metabolite network may provide useful hints not only to clarification of the regulatory mechanism of secondary metabolism, but also to understanding of the chemical communication among streptomycetes to control their physiological traits. Copyright © 2018 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Schuerger, Andrew C.; Nicholson, Wayne L.
2016-12-01
Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km.
Mishra, Vartika; Gupta, Antriksh; Kaur, Parvinder; Singh, Simranjeet; Singh, Nasib; Gehlot, Praveen; Singh, Joginder
2016-01-01
Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils.
Streptomyces exploration is triggered by fungal interactions and volatile signals.
Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A
2017-01-03
It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.
2011-01-01
Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628
Streptomyces exploration is triggered by fungal interactions and volatile signals
Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A
2017-01-01
It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells ‘explorers’, for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches. DOI: http://dx.doi.org/10.7554/eLife.21738.001 PMID:28044982
Mazza, Paola; Noens, Elke E; Schirner, Kathrin; Grantcharova, Nina; Mommaas, A Mieke; Koerten, Henk K; Muth, Günther; Flärdh, Klas; van Wezel, Gilles P; Wohlleben, Wolfgang
2006-05-01
MreB forms a cytoskeleton in many rod-shaped bacteria which is involved in cell shape determination and chromosome segregation. PCR-based and Southern analysis of various actinomycetes, supported by analysis of genome sequences, revealed mreB homologues only in genera that form an aerial mycelium and sporulate. We analysed MreB in one such organism, Streptomyces coelicolor. Ectopic overexpression of mreB impaired growth, and caused swellings and lysis of hyphae. A null mutant with apparently normal vegetative growth was generated. However, aerial hyphae of this mutant were swelling and lysing; spores doubled their volume and lost their characteristic resistance to stress conditions. Loss of cell wall consistency was observed in MreB-depleted spores by transmission electron microscopy. An MreB-EGFP fusion was constructed to localize MreB in the mycelium. No clearly localized signal was seen in vegetative mycelium. However, strong fluorescence was observed at the septa of sporulating aerial hyphae, then as bipolar foci in young spores, and finally in a ring- or shell-like pattern inside the spores. Immunogold electron microscopy using MreB-specific antibodies revealed that MreB is located immediately underneath the internal spore wall. Thus, MreB is not essential for vegetative growth of S. coelicolor, but exerts its function in the formation of environmentally stable spores, and appears to primarily influence the assembly of the spore cell wall.
Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.
Zhang, Yucheng; Bignell, Dawn R D; Zuo, Ran; Fan, Qiurong; Huguet-Tapia, Jose C; Ding, Yousong; Loria, Rosemary
2016-08-01
Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.
Connecting Metabolic Pathways: Sigma Factors in Streptomyces spp.
Sun, Di; Liu, Cong; Zhu, Jingrong; Liu, Weijie
2017-01-01
The gram-positive filamentous bacterium Streptomyces is one of the largest resources for bioactive metabolites, particularly antibiotics. Antibiotic production and other metabolic processes are tightly regulated at the transcriptional level. Sigma (σ) factors are components of bacterial RNA polymerases that determine promoter specificity. In Streptomyces, σ factors also play essential roles in signal transduction and in regulatory networks, thereby assisting in their survival in complex environments. However, our current understanding of σ factors in Streptomyces is still limited. In this mini-review, we demonstrate the roles of Streptomyces σ factors, illustrating that these serve as linkers of different metabolic pathways. Further investigations on σ factors may improve our knowledge of Streptomyces physiology and benefit exploitation of Streptomyces resources. PMID:29312231
Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism
ERIC Educational Resources Information Center
Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko
2016-01-01
The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…
USDA-ARS?s Scientific Manuscript database
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...
Wink, Joachim; Schumann, Peter; Atasayar, Ewelina; Klenk, Hans-Peter; Zaburannyi, Nestor; Westermann, Martin; Martin, Karin; Glaeser, Stefanie P; Kämpfer, Peter
2017-04-01
'Streptomyces caelicus' DSM 40835 was first reported as the producer of the antibiotic griselimycin by some coworkers of Rhone Poulenc in 1971. The project on isolation of the antibiotic compound was stopped because of the bad solubility and selectivity of the compound towards Mycobacteria. At Sanofi-Aventis, Germany, the project was re-evaluated in 2007 and the gene cluster of griselimycin could be identified, characterized and was patented in 2013. At this time, 'S. caelicus' was an invalid name. During the strain characterization work, it was found that 'S. caelicus' belongs to the group of species of the genus Streptomyces which show an unusual heterogeneity of the 16S rRNA gene sequences. However, high 16S rRNA gene sequence similarities to Streptomyces muensis JCM 17576T and Streptomyces canchipurensis JCM 17575T were obvious. Here, we present a comparative description of 'Streptomyces caelicus' DS 9461 (=DSM 40835=NCCB 100592) with S. muensis and S. canchipurensis by use of a polyphasic taxonomy approach and additional comparison of some housekeeping genes by multilocus sequence analysis (MLSA). An emended description of Streptomyces muensis is provided as a result of this work.
Anzai, Yojiro; Iizaka, Yohei; Li, Wei; Idemoto, Naoki; Tsukada, Shu-ichi; Koike, Kazuo; Kinoshita, Kenji; Kato, Fumio
2009-08-01
Some of the polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often impart specific biological activity to the molecule or enhance this activity. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, D-desosamine and D-mycinose, at the C-5 and C-21 positions, respectively. The D-mycinose biosynthesis genes, mycCI, mycCII, mycD, mycE, mycF, mydH, and mydI, present in the M. griseorubida A11725 chromosome were introduced into pSET152 under the regulation of the promoter of the apramycin-resistance gene aac(3)IV. The resulting plasmid pSETmycinose was introduced into Micromonospora rosaria IFO13697 cells, which produce the 16-membered macrolide antibiotic rosamicin containing a branched lactone and D-desosamine at the C-5 position. Although the M. rosaria TPMA0001 transconjugant exhibited low rosamicin productivity, two new compounds, IZI and IZII, were detected in the ethylacetate extract from the culture broth. IZI was identified as a mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (MW 741), which has previously been synthesized by a bioconversion technique. This is the first report on production of mycinosyl rosamicin-derivatives by a engineered biosynthesis approach. The integration site PhiC31attB was identified on M. rosaria IFO13697 chromosome, and the site lay within an ORF coding a pirin homolog protein. The pSETmycinose could be useful for stimulating the production of "unnatural" natural mycinosyl compounds by various actinomycete strains using the bacteriophage PhiC31 att/int system.
Idris, Hamidah; Labeda, David P; Nouioui, Imen; Castro, Jean Franco; Del Carmen Montero-Calasanz, Maria; Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael
2017-05-01
A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9 T , was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9 T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448 T . The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9 T (=NCIMB 14965 T =NRRL B65268 T ). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.
Lu, Lunhui; Zhang, Jiachao; Chen, Anwei; Chen, Ming; Jiang, Min; Yuan, Yujie; Wu, Haipeng; Lai, Mingyong; He, Yibin
2014-01-01
Traditional three-domain fungal and bacterial laccases have been extensively studied for their significance in various biotechnological applications. Growing molecular evidence points to a wide occurrence of more recently recognized two-domain laccase-like multicopper oxidase (LMCO) genes in Streptomyces spp. However, the current knowledge about their ecological role and distribution in natural or artificial ecosystems is insufficient. The aim of this study was to investigate the diversity and composition of Streptomyces two-domain LMCO genes in agricultural waste composting, which will contribute to the understanding of the ecological function of Streptomyces two-domain LMCOs with potential extracellular activity and ligninolytic capacity. A new specific PCR primer pair was designed to target the two conserved copper binding regions of Streptomyces two-domain LMCO genes. The obtained sequences mainly clustered with Streptomyces coelicolor, Streptomyces violaceusniger, and Streptomyces griseus. Gene libraries retrieved from six composting samples revealed high diversity and a rapid succession of Streptomyces two-domain LMCO genes during composting. The obtained sequence types cluster in 8 distinct clades, most of which are homologous with Streptomyces two-domain LMCO genes, but the sequences of clades III and VIII do not match with any reference sequence of known streptomycetes. Both lignocellulose degradation rates and phenol oxidase activity at pH 8.0 in the composting process were found to be positively associated with the abundance of Streptomyces two-domain LMCO genes. These observations provide important clues that Streptomyces two-domain LMCOs are potentially involved in bacterial extracellular phenol oxidase activities and lignocellulose breakdown during agricultural waste composting. PMID:24657870
Mo, SangJoon; Lee, Sung-Kwon; Jin, Ying-Yu; Suh, Joo-Won
2016-02-01
FK506, a widely used immunosuppressant, is a 23-membered polyketide macrolide that is produced by several Streptomyces species. FK506 high-yielding strain Streptomyces sp. RM7011 was developed from the discovered Streptomyces sp. KCCM 11116P by random mutagenesis in our previous study. The results of transcript expression analysis showed that the transcription levels of tcsA, B, C, and D were increased in Streptomyces sp. RM7011 by 2.1-, 3.1-, 3.3-, and 4.1- fold, respectively, compared with Streptomyces sp. KCCM 11116P. The overexpression of tcsABCD genes in Streptomyces sp. RM7011 gave rise to approximately 2.5-fold (238.1 μg/ml) increase in the level of FK506 production compared with that of Streptomyces sp. RM7011. When vinyl pentanoate was added into the culture broth of Streptomyces sp. RM7011, the level of FK506 production was approximately 2.2-fold (207.7 μg/ml) higher than that of the unsupplemented fermentation. Furthermore, supplementing the culture broth of Streptomyces sp. RM7011 expressing tcsABCD genes with vinyl pentanoate resulted in an additional 1.7-fold improvement in the FK506 titer (498.1 μg/ml) compared with that observed under nonsupplemented condition. Overall, the level of FK506 production was increased approximately 5.2-fold by engineering the supply of allylmalonyl-CoA in the high-yielding strain Streptomyces sp. RM7011, using a combination of overexpressing tcsABCD genes and adding vinyl pentanoate, as compared with Streptomyces sp. RM7011 (95.3 μg/ml). Moreover, among the three precursors analyzed, pentanoate was the most effective precursor, supporting the highest titer of FK506 in the FK506 high-yielding strain Streptomyces sp. RM7011.
Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; Pérez-Victoria, Ignacio; Martín, Jesús; de Pedro, Nuria; Cruz, Mercedes de la; Díaz, Caridad; Vicente, Francisca; Acuña, José L; Reyes, Fernando; García, Luis A; Blanco, Gloria
2017-08-28
The present article describes a structurally novel natural product of the paulomycin family, designated as paulomycin G ( 1 ), obtained from the marine strain Micromonospora matsumotoense M-412, isolated from Cantabrian Sea sediments collected at 2000 m depth during an oceanographic expedition to the submarine Avilés Canyon. Paulomycin G is structurally unique since-to our knowledge-it is the first member of the paulomycin family of antibiotics lacking the paulomycose moiety. It is also the smallest bioactive paulomycin reported. Its structure was determined using HRMS and 1D and 2D NMR spectroscopy. This novel natural product displays strong cytotoxic activities against different human tumour cell lines, such as pancreatic adenocarcinoma (MiaPaca_2), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (HepG2). The compound did not show any significant bioactivity when tested against a panel of bacterial and fungal pathogens.
Sarmiento-Vizcaíno, Aida; Braña, Alfredo F.; Pérez-Victoria, Ignacio; Martín, Jesús; de Pedro, Nuria; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Acuña, José L.; García, Luis A.; Blanco, Gloria
2017-01-01
The present article describes a structurally novel natural product of the paulomycin family, designated as paulomycin G (1), obtained from the marine strain Micromonospora matsumotoense M-412, isolated from Cantabrian Sea sediments collected at 2000 m depth during an oceanographic expedition to the submarine Avilés Canyon. Paulomycin G is structurally unique since—to our knowledge—it is the first member of the paulomycin family of antibiotics lacking the paulomycose moiety. It is also the smallest bioactive paulomycin reported. Its structure was determined using HRMS and 1D and 2D NMR spectroscopy. This novel natural product displays strong cytotoxic activities against different human tumour cell lines, such as pancreatic adenocarcinoma (MiaPaca_2), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (HepG2). The compound did not show any significant bioactivity when tested against a panel of bacterial and fungal pathogens. PMID:28846627
Montes Vidal, Diogo; von Rymon-Lipinski, Anna-Lena; Ravella, Srinivasa; Groenhagen, Ulrike; Herrmann, Jennifer; Zaburannyi, Nestor; Zarbin, Paulo H G; Varadarajan, Adithi R; Ahrens, Christian H; Weisskopf, Laure; Müller, Rolf; Schulz, Stefan
2017-04-03
The analysis of volatiles from bacterial cultures revealed long-chain aliphatic nitriles, a new class of natural products. Such nitriles are produced by both Gram-positive Micromonospora echinospora and Gram-negative Pseudomonas veronii bacteria, although the structures differ. A variable sequence of chain elongation and dehydration in the fatty acid biosynthesis leads to either unbranched saturated or unsaturated nitriles with an ω-7 double bond, such as (Z)-11-octadecenenitrile, or methyl-branched unsaturated nitriles with the double bond located at C-3, such as (Z)-13-methyltetradec-3-enenitrile. The nitrile biosynthesis starts from fatty acids, which are converted into their amides and finally dehydrated. The structures and biosyntheses of the 19 naturally occurring compounds were elucidated by mass spectrometry, synthesis, and feeding experiments with deuterium-labeled precursors. Some of the nitriles showed antimicrobial activity, for example, against multiresistant Staphylococcus aureus strains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Streptomyces ziwulingensis sp. nov., isolated from grassland soil.
Lin, Yan Bing; Wang, Xin Ye; Wang, Ting Ting; An, Shao Shan; Shi, Peng; Wei, Ge Hong
2013-04-01
A novel actinobacterium, designated strain F22(T), was isolated from grassland soil collected from the Ziwuling area on the Loess Plateau, China. The novel strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F22(T) belonged to the genus Streptomyces, being most closely related to Streptomyces resistomycificus NBRC 12814(T) (98.28 % sequence similarity), Streptomyces ciscaucasicus NBRC 12872(T) (98.14 %), Streptomyces chartreusis NBRC 12753(T) (98.14 %) and Streptomyces canus NRRL B-1989(T) (98.14 %). In DNA-DNA hybridizations and comparisons of morphological and phenotypic data, strain F22(T) could be distinguished from all of its closest phylogenetic relatives. Strain F22(T) exhibited antibacterial and antifungal activity, especially against Staphylococcus aureus, Bacillus subtilis and Cylindrocarpon destructans. Based on the DNA-DNA hybridization data and morphological, phenotypic and phylogenetic evidence, strain F22(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces ziwulingensis sp. nov. is proposed. The type strain is F22(T) ( = CCNWFX 0001(T) = JCM 18081(T) = ACCC41875(T)).
Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia
2016-01-15
Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to improve the fitness of agricultural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Debode, Jane; De Tender, Caroline; Soltaninejad, Saman; Van Malderghem, Cinzia; Haegeman, Annelies; Van der Linden, Inge; Cottyn, Bart; Heyndrickx, Marc; Maes, Martine
2016-01-01
Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves. PMID:27148242
USDA-ARS?s Scientific Manuscript database
Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included ...
Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J
1983-11-30
The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.
High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.
Wang, Y; Cobb, R E; Zhao, H
2016-01-01
Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces. © 2016 Elsevier Inc. All rights reserved.
40 CFR 180.1253 - Streptomyces lydicus WYEC 108; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomyces lydicus WYEC 108... RESIDUES IN FOOD Exemptions From Tolerances § 180.1253 Streptomyces lydicus WYEC 108; exemption from the... the microbial pesticide Streptomyces lydicus WYEC 108 when used in or on all agricultural commodities...
Du, Hai; Lu, Hu; Xu, Yan
2015-01-14
Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.
Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P
2017-08-01
On the basis of whole genome comparisons of Streptomyces griseorubiginosus and Streptomyces phaeopurpureus it could by shown that these two species are subjective synonyms. The names of both species have been published in the Approved Lists of Bacterial Names and, in such a case, normally Rule 24b (1) of the Prokaryotic Code applies, which reads: 'If two names compete for priority and if both names date from 1 January 1980 on an Approved List, the priority shall be determined by the date of the original publication of the name before 1 January 1980'. Streptomyces griseorubiginosus and Streptomyces phaeopurpureus were both effectively published in 1957, and for both publications, the exact date cannot be obtained. In this case a further statement of Rule 24 applies, which reads: 'If the names or epithets are of the same date, the author who first unites the taxa has the right to choose one of them, and his choice must be followed.' Hence we propose that Streptomyces phaeopurpureus is a later heterotypic subjective synonym of Streptomyces griseorubiginosus.
Hendrix, Roger W.; Dedrick, Rebekah; Mitchell, Kaitlin; Ko, Ching-Chung; Russell, Daniel; Bell, Emma; Gregory, Matthew; Bibb, Maureen J.; Pethick, Florence; Jacobs-Sera, Deborah; Herron, Paul; Buttner, Mark J.; Hatfull, Graham F.
2013-01-01
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. PMID:23995638
Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng
2016-02-01
During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)).
Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil.
Sujarit, Kanaporn; Kudo, Takuji; Ohkuma, Moriya; Pathom-Aree, Wasu; Lumyong, Saisamorn
2016-10-01
Actinomycete strain CMU-AB204T was isolated from oil palm rhizosphere soil collected in Chiang Mai University (Chiang Mai, Thailand). Based on morphological and chemotaxonomic characteristics, the organism was considered to belong to the genus Streptomyces. Whole cell-wall hydrolysates consisted of ll-diaminopimelic acid, glucose, ribose and galactose. The predominant menaquinones were MK-9(H4), MK-9(H6), MK-9(H2) and MK-8(H4). The fatty acid profile contained iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0 as major components. The principal phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content of strain CMU-AB204T was 70.9 mol%. Based on 16S rRNA gene sequence similarity, strain CMU-AB204T was closely related to Streptomyces orinoci JCM 4546T (98.7 %), Streptomyces lilacinus NBRC 12884T (98.5 %), Streptomyces abikoensis CGMCC 4.1662T (98.5 %), Streptomyces griseocarneus JCM 4905T (98.4 %) and Streptomyces xinghaiensis JCM 16958T (98.3 %). Phylogenetic trees revealed that the new strain had a distinct taxonomic position from closely related type strains of the genus Streptomyces. Spiny to hairy spores clearly differentiated strain CMU-AB204T from the five most closely related Streptomyces species, which produced smooth spores. On the basis of evidence from this polyphasic study, it is proposed that strain CMU-AB204T represents a novel species of the genus Streptomyces, namely Streptomyces palmae sp. nov. The type strain is CMU-AB204T (=JCM 31289T=TBRC 1999T).
2013-01-01
Background Andaman and Nicobar Islands situated in the eastern part of Bay of Bengal are one of the distinguished biodiversity hotspot. Even though number of studies carried out on the marine flora and fauna, the studies on actinobacteria from Andaman and Nicobar Islands are meager. The aim of the present study was to screen the actinobacteria for their characterization and identify the potential sources for industrial and pharmaceutical byproducts. Results A total of 26 actinobacterial strains were isolated from the marine sediments collected from various sites of Port Blair Bay where no collection has been characterized previously. Isolates were categorized under the genera: Saccharopolyspora, Streptomyces, Nocardiopsis, Streptoverticillium, Microtetraspora, Actinopolyspora, Actinokineospora and Dactylosporangium. Majority of the isolates were found to produce industrially important enzymes such as amylase, protease, gelatinase, lipase, DNase, cellulase, urease and phosphatase, and also exhibited substantial antibacterial activity against human pathogens. 77% of isolates exhibited significant hemolytic activity. Among 26 isolates, three strains (NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26) were found to generate appreciable extent of surfactant, amylase, cellulase and protease enzyme. NIOT-VKKMA02 produced surfactant using kerosene as carbon source and emulsified upto E24–63.6%. Moreover, NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26 synthesized 13.27 U/ml, 9.85 U/ml and 8.03 U/ml amylase; 7.75 U/ml, 5.01 U/ml and 2.08 U/ml of cellulase and 11.34 U/ml, 6.89 U/ml and 3.51 U/ml of protease enzyme, respectively. Conclusions High diversity of marine actinobacteria was isolated and characterized in this work including undescribed species and species not previously reported from emerald Andaman and Nicobar Islands, including Streptomyces griseus, Streptomyces venezuelae and Saccharopolyspora salina. The enhanced salt, pH and temperature tolerance of the actinobacterial isolates along with their capacity to secrete commercially valuable primary and secondary metabolites emerges as an attractive feature of these organisms. These results are reported for the first time from these emerald Islands and expand the scope to functionally characterize novel marine actinobacteria and their metabolites for the potential novel molecules of commercial interest. PMID:23800234
Meena, Balakrishnan; Rajan, Lawrance Anbu; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam
2013-06-22
Andaman and Nicobar Islands situated in the eastern part of Bay of Bengal are one of the distinguished biodiversity hotspot. Even though number of studies carried out on the marine flora and fauna, the studies on actinobacteria from Andaman and Nicobar Islands are meager. The aim of the present study was to screen the actinobacteria for their characterization and identify the potential sources for industrial and pharmaceutical byproducts. A total of 26 actinobacterial strains were isolated from the marine sediments collected from various sites of Port Blair Bay where no collection has been characterized previously. Isolates were categorized under the genera: Saccharopolyspora, Streptomyces, Nocardiopsis, Streptoverticillium, Microtetraspora, Actinopolyspora, Actinokineospora and Dactylosporangium. Majority of the isolates were found to produce industrially important enzymes such as amylase, protease, gelatinase, lipase, DNase, cellulase, urease and phosphatase, and also exhibited substantial antibacterial activity against human pathogens. 77% of isolates exhibited significant hemolytic activity. Among 26 isolates, three strains (NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26) were found to generate appreciable extent of surfactant, amylase, cellulase and protease enzyme. NIOT-VKKMA02 produced surfactant using kerosene as carbon source and emulsified upto E(24)-63.6%. Moreover, NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26 synthesized 13.27 U/ml, 9.85 U/ml and 8.03 U/ml amylase; 7.75 U/ml, 5.01 U/ml and 2.08 U/ml of cellulase and 11.34 U/ml, 6.89 U/ml and 3.51 U/ml of protease enzyme, respectively. High diversity of marine actinobacteria was isolated and characterized in this work including undescribed species and species not previously reported from emerald Andaman and Nicobar Islands, including Streptomyces griseus, Streptomyces venezuelae and Saccharopolyspora salina. The enhanced salt, pH and temperature tolerance of the actinobacterial isolates along with their capacity to secrete commercially valuable primary and secondary metabolites emerges as an attractive feature of these organisms. These results are reported for the first time from these emerald Islands and expand the scope to functionally characterize novel marine actinobacteria and their metabolites for the potential novel molecules of commercial interest.
Piao, Chenyu; Zheng, Weiwei; Li, Yao; Liu, Chongxi; Jin, Liying; Song, Wei; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng
2017-09-01
Two novel actinomycetes, designated strains 2C-SSA16(2) T and 1C-GS8 T , were isolated from the cuticle of Camponotus japonicus Mayr, collected from Northeast Agricultural University, Heilongjiang Province, north China. Both of them contained genes (involved in antibiotics biosynthesis) of the ketosynthase (KS) and methyl malonyl transferase domains (PKS-I) and the adenylation domain (NRPS). A polyphasic study was carried out to establish the taxonomic positions of these strains. The 16S rRNA gene sequence analysis showed that the two novel isolates 2C-SSA16(2) T and 1C-GS8 T exhibited 98.8% similarity with each other and that they are most closely related to Streptomyces umbrinus JCM 4521 T (99.0, 98.6%), Streptomyces ederensis JCM 4958 T (98.9, 98.7%), Streptomyces aurantiacus JCM 4453 T (98.6, 98.2%), Streptomyces glomeroaurantiacus JCM 4677 T (98.6, 98.1%), Streptomyces tauricus JCM4837 T (98.2, 98.0%) and Streptomyces phaeochromogenes JCM 4070 T (98.2, 99.2%). The corresponding phylogenetic analysis based on partial gyrB gene sequences showed that strains 2C-SSA16(2) T and 1C-GS8 T formed a cluster with the above-mentioned strains. The DNA-DNA hybridization data and phenotypic characteristics indicated that strains 2C-SSA16(2) T and 1C-GS8 T could be readily distinguished from each other and their closest phylogenetic relatives. Therefore, these two strains are suggested to represent two novel species of the genus Streptomyces, for which the names Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. are proposed. The type strains are 2C-SSA16(2) T (=CGMCC 4.7276 T = DSM 100522 T ) and 1C-GS8 T (=CGMCC 4.7348 = DSM 103127 T ), respectively.
Doroghazi, J. R.; Ju, K.-S.; Metcalf, W. W.
2014-01-01
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T. PMID:24277863
Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia
2016-01-01
Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and xylanase preparations from Genencore (Accellerase BG and Accellerase XY). Cellulose and xylan conversion, when conducted using commercial (hemi)cellulases, gave glucose and xylose yields of 30.17 and 68.9%, respectively. The replacement of the cellulolytic preparation from Genencor (Accellerase 1500), with the endo-cellulase from S. argenteolus AE58P resulted in almost 76% of the glucose yield obtained in the presence of the commercial counterpart. Due to the promising results obtained by using the enzymatic crude extracts from S. argenteolus AE58P in the pretreated A. donax saccharification experiments, the proteins putatively responsible for endo-cellulase activity in this strain were identified by proteomics. Several proteins were confidently identified in different Streptomyces spp., eight of which belong to the class of Carbohydrate active enzymes. Overall results highlighted the biotechnological potential of S. argenteolus AE58P being an interesting candidate biocatalyst-producing bacterium for lignocellulose conversion and production of biochemicals and bioenergy.
Plenty Is No Plague: Streptomyces Symbiosis with Crops.
Rey, Thomas; Dumas, Bernard
2017-01-01
Streptomyces spp. constitute a major clade of the phylum Actinobacteria. These Gram-positive, filamentous prokaryotes are ubiquitous in soils and marine sediments, and are commonly found in the rhizosphere or inside plant roots. Plant-interacting Streptomyces have received limited attention, in contrast to Streptomyces spp. extensively investigated for decades in medicine given their rich potential for secondary metabolite biosynthesis. Recent genomic, metabolomic, and biotechnological advances have produced key insights into Streptomyces spp., paving the way to the use of their metabolites in agriculture. In this Opinion article we propose how Streptomyces spp. could dominate future aspects of crop nutrition and protection. Risks and benefits of the use of these microorganisms in agriculture are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P
2018-01-01
Streptomyces canuswas described in 1953 and the name was listed in the Approved List of Bacterial Names in 1980. Three years later, Streptomyces ciscaucasicus was published and the name was subsequently validated in Validation List no. 22 in 1986. On the basis of genome comparison and multilocus sequence analysis of the type strains of Streptomyces canus and Streptomyces ciscaucasicus it can now be shown that these two species despite some phenotypic differences are subjective synonyms. In such a case Rule 24 of the Bacteriological Code applies, in which priority of names is determined by the date of the original publication. Hence, we propose that S. ciscaucasicus is a later subjective synonym of S. canus.
Jeszeová, Lenka; Puškárová, Andrea; Bučková, Mária; Kraková, Lucia; Grivalský, Tomáš; Danko, Martin; Mosnáčková, Katarína; Chmela, Štefan; Pangallo, Domenico
2018-06-22
The microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) blend foils were investigated in 1 year long laboratory soil burial experiments. Different PLA/PHB foils were tested: (a) PLA/PHB original transparent foil, (b) PLA/PHB carbon black filled foil and (c) PLA/PHB black foil previously exposed for 90 days to sun light. The microbiome diversity of these three types of foil was compared with that identified from soil/perlite sample at the beginning of experiment and that developed on a cellulose mat. Culture-dependent and culture-independent (DGGE-cloning) approaches together with PLA, PHB and PLA/PHB degradation plate assays were employed. The cultivation strategy combined with degradation tests permitted the isolation and evaluation of several PLA/PHB blend degrading microorganisms such as members of the genera Bacillus, Paenibacillus, Streptomyces, Rhodococcus, Saccharothrix, Arthrobacter, Aureobasidium, Mortierella, Absidia, Actinomucor, Bjerkandera, Fusarium, Trichoderma and Penicillium. The DGGE-cloning investigation increased the information about the microbial communities occurring during bioplastic degradation detecting several bacterial and fungal taxa and some of them (members of the orders Anaerolineales, Selenomonadales, Thelephorales and of the genera Pseudogymnoascus and Pseudeurotium) were revealed here for the first time. This survey showed the microbiome colonizing PLA/PHB blend foils and permitted the isolation of several microorganisms able to degrade the tested polymeric blends.
Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio; Leiva, Sergio
2018-02-19
Marine macroalgae are emerging as an untapped source of novel microbial diversity and, therefore, of new bioactive secondary metabolites. This study was aimed at assessing the diversity and antimicrobial activity of the culturable Gram-positive bacteria associated with the surface of three co-occurring Antarctic macroalgae. Specimens of Adenocystis utricularis (brown alga), Iridaea cordata (red alga) and Monostroma hariotii (green alga) were collected from the intertidal zone of King George Island, Antarctica. Gram-positive bacteria were investigated by cultivation-based methods and 16S rRNA gene sequencing, and screened for antimicrobial activity against a panel of pathogenic microorganisms. Isolates were found to belong to 12 families, with a dominance of Microbacteriaceae and Micrococcaceae. Seventeen genera of Actinobacteria and 2 of Firmicutes were cultured from the three macroalgae, containing 29 phylotypes. Three phylotypes within Actinobacteria were regarded as potentially novel species. Sixteen isolates belonging to the genera Agrococcus, Arthrobacter, Micrococcus, Pseudarthrobacter, Pseudonocardia, Sanguibacter, Staphylococcus, Streptomyces and Tessaracoccus exhibited antibiotic activity against at least one of the indicator strains. The bacterial phylotype composition was distinct among the three macroalgae species, suggesting that these macroalgae host species-specific Gram-positive associates. The results highlight the importance of Antarctic macroalgae as a rich source of Gram-positive bacterial diversity and potentially novel species, and a reservoir of bacteria producing biologically active compounds with pharmacological potential.
Landwehr, Wiebke; Kämpfer, Peter; Glaeser, Stefanie P; Rückert, Christian; Kalinowski, Jörn; Blom, Jochen; Goesmann, Alexander; Mack, Matthias; Schumann, Peter; Atasayar, Ewelina; Hahnke, Richard L; Rohde, Manfred; Martin, Karin; Stadler, Marc; Wink, Joachim
2018-01-01
Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named 'Streptomyces davawensis' JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that 'S. davawensis' JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate 'S. davawensis' as Streptomyces davaonensis sp. nov. with the type strain JCM 4913 T (=DSM 101723 T ). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360 T (=NCCB 100590 T =DSM 101724 T ) as the type strain.
Streptomyces solisilvae sp. nov., isolated from tropical forest soil.
Zhou, Shuangqing; Yang, Xiaobo; Huang, Dongyi; Huang, Xiaolong
2017-09-01
A novel streptomycete (strain HNM0141T) was isolated from tropical forest soil collected from Bawangling mountain of Hainan island, PR China and its taxonomic position was established in a polyphasic study. The organism had chemical and morphological properties consistent with its classification as a member of the Streptomyces violaceusnigerclade. On the basis of the results of 16S rRNA gene sequence analysis, HNM0141T showed highest similarity to Streptomyces malaysiensisCGMCC4.1900T (99.4 %), Streptomyces samsunensis DSM 42010T (98.9 %), Streptomyces yatensis NBRC 101000T (98.3 %), Streptomyces rhizosphaericus NBRC 100778T (98.0 %) and Streptomyces sporoclivatus NBRC 100767T (97.9 %). The strain formed a well-delineated subclade with S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T. The levels of DNA-DNA relatedness between HNM0141T and S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T were 62 and 44 %, respectively. On the basis of phenotypic and genotypic characteristics, HNM0141T represents a novel species in the S. violaceusnigerclade for which the name Streptomyces solisilvae sp. nov. is proposed. The type strain is HNM0141 T (=CCTCC AA 2016045T=KCTC 39905T).
Occurrence and characterization of hitherto unknown Streptomyces species in semi-arid soils.
Kumar, Surendra; Priya, E; Singh Solanki, Dilip; Sharma, Ruchika; Gehlot, Praveen; Pathak, Rakesh; Singh, S K
2016-09-01
Streptomyces the predominant genus of Actinobacteria and plays an important role in the recycling of soil organic matter and production of important secondary metabolites. The occurrence and diversity assessment of Streptomyces species revealed alkaline and poor nutrient status of soils of semi-arid region of Jodhpur, Rajasthan. The morphological and biochemical characterization of 21 Streptomyces isolates facilitated Genus level identification but were insufficient to designate species. Species designation based on 16S rRNA gene delineated 21 isolates into 14 Streptomyces species. Upon BLAST search, the test isolates exhibited 98 to 100% identities with that of the best aligned sequences of the NCBI database. The GC content of 16S rRNA gene sequences of all the Streptomyces isolates tested ranged from 59.03% to 60.94%. The multiple sequence alignment of all the 21 Streptomyces isolates generated a phylogram with high bootstrap values indicating reliable grouping of isolates based on nucleotide sequence variations by way of insertion, deletion and substitutions and 16S rRNA length polymorphism. Some of the Streptomyces species molecularly identified under present study are reported for the first time from semi-arid region of Jodhpur.
Schmidt, Kathrin; Spiteller, Dieter
2017-08-01
Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.
Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing
2017-04-01
During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11 T , was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098 T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098 T . Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11 T (=CGMCC 4.7304 T =DSM 101531 T ).
Characterisation of Streptomyces spp. isolated from water-damaged buildings.
Suutari, Merja; Rönkä, Elina; Lignell, Ulla; Rintala, Helena; Nevalainen, Aino
2002-01-01
Abstract Saprophytic Streptomyces spp. common in soil and producing biologically active compounds have been related to abnormal microbial growth in buildings where occupants may have health problems. We characterised 11 randomly selected water-damaged building isolates. The 16S rDNA sequence similarity was over 95.4% between strains so that seven, three, and one sequences had greater than 99.8, 99.7 and 99.7% similarity with those of Streptomyces griseus ATCC 10137 (Y15501), Streptomyces albidoflavus DSM 40455(T) (Z76676), and Streptomyces coelicolor A3(2) (Y00411), respectively. Although differences in morphology, pigmentation, fatty acids, biological activity and pH tolerance indicated that strains did not necessarily match with three single phenotypes, they all appeared to belong to two or three branches of Streptomyces spp. most common environmental isolates.
Streptomyces tremellae sp. nov., isolated from a culture of the mushroom Tremella fuciformis.
Wen, Zhi-Qiang; Chen, Bingzhi; Li, Xiao; Li, Bing-Bing; Li, Cheng-Huan; Huang, Qing-Hua; Zhang, Qi-Hui; Dai, Wei-Hao; Jiang, Yu-Ji
2016-12-01
A novel actinomycete strain, designated Js-1T, was isolated from Tremella fuciformis collected from Gutian, Fujian Province, in southeastern China. The taxonomic status of this strain was determined by a polyphasic approach, which demonstrated that the novel strain was a member of the genus Streptomyces. The cell walls of this strain were found to contain ll-diaminopimelic acid, muramic acid and glycine. An analysis of whole-cell hydrolysates revealed that no characteristic sugar was present. The key identified menaquinones were MK-9 (H6) and MK-9 (H8), while the diagnostic polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmethylethanolamine and phosphatidylglycerol. The main cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. An analysis of an almost complete 16S rRNA gene sequence showed that the strain shared the highest levels of sequence similarity with Streptomyces sannanensisKC-7038T (97.87 %), Streptomyces hebeiensis YIM 001T (97.84 %), Streptomyces pathocidini NBRC 13812T (97.80 %), Streptomyces cocklensis BK168T (97.25 %), Streptomyces coerulescens NBRC 12758T (97.12 %), Streptomyces aurantiogriseus NBRC 12842T (97.06 %) and Streptomyces rimosussubsp. rimosus ATCC 10970T (97.04 %). The DNA G+C content of the genomic DNA of strain Js-1T was 70.1 mol%. Furthermore, DNA-DNA hybridization tests revealed that the relatedness values between strain Js-1T and the most closely related species ranged from 15.10 to 47.20 %. Based on its phenotypic and genotypic characteristics, strain Js-1T (=CCTCC M 2011365T=JCM 30846T) is considered to represent a novel species within the genus Streptomyces, which we classified as Streptomycestremellae sp. nov.
Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.
Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun
2016-10-01
A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)).
Jiang, Shanwen; Piao, Chenyu; Yu, Yang; Cao, Peng; Li, Chenxu; Yang, Fan; Li, Mutong; Xiang, Wensheng; Liu, Chongxi
2018-01-01
A novel actinomycete, designated strain 1H-SSA4 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce angucyclinone antibiotics. A polyphasic approach was used to determine the taxonomic status of strain 1H-SSA4 T . The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.0 mol%. 16S rRNA gene sequence similarity studies showed that strain 1H-SSA4 T belongs to the genus Streptomyces with the highest sequence similarity to Streptomyces hygroscopicus subsp. ossamyceticus NBRC 13983 T (98.9 %), and phylogenetically clustered with this species, Streptomyces torulosus LMG 20305 T (98.8 %), Streptomyces ipomoeae NBRC 13050 T (98.5 %) and Streptomyces decoyicus NRRL 2666 T (98.4 %). The morphological and chemotaxonomic properties of the strain were also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-SSA4 T and the above-mentioned strains, which further clarified their relatedness and demonstrated that strain 1H-SSA4 T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces capitiformicae sp. nov. is proposed. The type strain is 1H-SSA4 T (=CGMCC 4.7403 T =DSM 104537 T ).
Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.
Ogawara, Hiroshi
2016-05-10
Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.
Pathogenic Streptomyces spp. abundance affected by potato cultivars.
Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean
2018-04-16
Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest. .
Latitude delineates patterns of biogeography in terrestrial Streptomyces.
Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H
2016-12-01
The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mullowney, Michael W; Ó hAinmhire, Eoghainín; Tanouye, Urszula; Burdette, Joanna E; Pham, Van Cuong; Murphy, Brian T
2015-09-15
A screening of our actinomycete fraction library against the NCI-60 SKOV3 human tumor cell line led to the isolation of isopimara-2-one-3-ol-8,15-diene (1), lagumycin B (2), dehydrorabelomycin (3), phenanthroviridone (4), and WS-5995 A (5). These secondary metabolites were produced by a Micromonospora sp. isolated from sediment collected off the Cát Bà peninsula in the East Sea of Vietnam. Compound 1 is a novel Δ(8,9)-pimarane diterpene, representing one of approximately 20 actinomycete-produced diterpenes reported to date, while compound 2 is an angucycline antibiotic that has yet to receive formal characterization. The structures of 1 and 2 were elucidated by combined NMR and MS analysis and the absolute configuration of 1 was assigned by analysis of NOESY NMR and CD spectroscopic data. Compounds 2-5 exhibited varying degrees of cytotoxicity against a panel of cancerous and non-cancerous cell lines. Overall, this study highlights our collaborative efforts to discover novel biologically active molecules from the large, underexplored, and biodiversity-rich waters of Vietnam's East Sea.
Sajid, Imran; Shaaban, Khaled A; Hasnain, Shahida
2013-01-01
A newly isolated strain Streptomyces sp. BG5 was investigated for the production of bioactive compounds. The strain exhibited broad-spectrum activity against an array of nine test organisms including gram-positive bacteria, gram-negative bacteria, and fungal and microalgal pathogens, along with a moderate cytotoxic response (28.9% mortality) in a microwell cytotoxicity assay against the brine shrimp Artimia salina. The morphological, physiological, and biochemical characterization of the Streptomyces sp. BG5 strongly suggested it to be a member of the genus Streptomyces. The nucleotide sequence of 16S rRNA gene (1433 pb) of the Streptomyces sp. BG5 (Gene bank accession number EU301836) exhibited high similarity (98%) with Streptomyces matensis. The large-scale fermentation of Streptomyces sp. BG5 and subsequent extraction, isolation, and purification of the crude extract afforded three pure compounds. The structures of these compounds were identified as ochromycinone (1a), emycin D (2), and 1-acetyl-β-carbolin (3), based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and by comparison with reference data from the literature.
Labeda, David P
2016-03-01
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 strains identified as Streptomyces scabiei deposited at various times since the 1950s and these were subjected to multi-locus sequence analysis utilising partial sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB. Phylogenetic analyses confirmed the identity of 17 of these strains as Streptomyces scabiei, 9 of the strains as the potato-pathogenic species Streptomyces europaeiscabiei and 6 strains as potentially new phytopathogenic species. Of the 16 other strains, 12 were identified as members of previously described non-pathogenic Streptomyces species while the remaining 4 strains may represent heretofore unrecognised non-pathogenic species. This study demonstrated the value of this technique for the relatively rapid, simple and sensitive molecular identification of Streptomyces strains held in culture collections.
Zhou, Shuyu; Li, Zhilei; Bai, Lu; Yan, Kai; Zhao, Junwei; Lu, Chang; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng
2017-01-01
During an investigation of microbial diversity in medicinal herbs, a novel actinomycete, strain NEAU-QHHV11 T was isolated from the rhizosphere of Peucedanum praeruptorum Dunn collected from Xianglu Mountain in Heilongjiang Province, northeast China and characterized using a polyphasic approach. The organism was found to have typical characteristics of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequence also indicated that strain NEAU-QHHV11 T belongs to the genus Streptomyces and was most closely related to Streptomyces graminilatus NBRC 108882 T (98.7 % sequence similarity) and Streptomyces turgidiscabies NBRC 16080 T (98.7 % sequence similarity). The results of DNA-DNA hybridization and some phenotypic characteristics indicated that strain NEAU-QHHV11 T could be distinguished from its close phylogenetic relatives. Thus, strain NEAU-QHHV11 T represents a novel species of the genus Streptomyces, for which the name Streptomyces castaneus sp. nov. is proposed. The type strain is NEAU-QHHV11 T (=CGMCC 4.7235 T = DSM 100520 T ).
Penicillin-binding proteins in Actinobacteria.
Ogawara, Hiroshi
2015-04-01
Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.
Undabarrena, Agustina; Ugalde, Juan A.; Seeger, Michael
2017-01-01
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment. PMID:28229018
Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M
2015-01-01
In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.
Streptomyces fuscichromogenes sp. nov., an actinomycete from soil.
Zhang, Hao; Zheng, Jimei; Zhuang, Junli; Xin, Yuhua; Zheng, Xiaowei; Zhang, Jianli
2017-01-01
A novel actinomycete, designated strain m16T, was isolated from a soil sample collected from the tropical rain forest of Xishuangbanna, a prefecture in Yunnan Province, south-west China, and characterized by using polyphasic taxomomy. Cells were aerobic and Gram-reaction-positive, and spore chains were observed to be of the helical type, with elliptical spores and smooth spore surfaces. The novel strain grew over a temperature range of 15-35 °C, at pH 5.0-11.0 and in the presence of 0-3 % (w/v) NaCl. The DNA G+C content of strain m16T was 70.0 mol%. The main fatty acids were iso-C16 : 0 (29.3 %), iso-C15: 0 (15.4 %) and anteiso-C15:0 (14.6 %), and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Comparative 16S rRNA gene sequence analysis showed that strain m16T was most closely related to Streptomyces jiujiangensis KCTC 29262T (98.7 %), Streptomyces panaciradicis KACC 17632T (98.7 %), Streptomyces rhizophilus NBRC 108885T (98.5 %), Streptomyces shenzhenensis DSM 42034T (98.4 %), Streptomyces graminisoli JR-19T (98.4 %) and Streptomyces gramineus JR-43T (98.3 %). Phylogenetic, chemotaxonomic and phenotypic analyses indicated that strain m16T represents a novel species within the genus Streptomyces, for which the name Streptomyces fuscichromogenes is proposed. The type strain is m16T (=CGMCC 4.7110T=KCTC 29195T).
Complete Genome Sequence of the Streptomyces Phage Nanodon.
Erill, Ivan; Caruso, Steven M
2016-10-06
Streptomyces phage Nanodon is a temperate double-stranded DNA Siphoviridae belonging to cluster BD1. It was isolated from soil collected in Kilauea, HI, using Streptomyces griseus subsp. griseus as a host. Copyright © 2016 Erill et al.
New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae.
Pullen, Christian; Schmitz, Petra; Meurer, Kristina; Bamberg, Daniel D v; Lohmann, Stephanie; De Castro França, Suzelei; Groth, Ingrid; Schlegel, Brigitte; Möllmann, Ute; Gollmick, Friedrich; Gräfe, Udo; Leistner, Eckhard
2002-11-01
Wood from three different plants of the Celastraceae growing in their natural habitats in Brazil (Maytenus aquifolia Mart.) and South Africa [Putterlickia retrospinosa van Wyk and Mostert, P. verrucosa (E. Meyer ex Sonder) Szyszyl.] was established as a source of endophytic bacteria using a medium selective for actinomycetes. Two isolates were identified as Streptomyces setonii and S. sampsonii whereas two others were not assignable to any of the known Streptomyces species. They were preliminarily named Streptomyces Q21 and Streptomyces MaB-QuH-8. The latter strain produces a new chloropyrrol and chlorinated anthracyclinone. The chloropyrrol showed high activity against a series of multiresistent bacteria and mycobacteria.
Challis, Gregory L; Hopwood, David A
2003-11-25
In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of beta-lactam antibiotics and beta-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes.
Challis, Gregory L.; Hopwood, David A.
2003-01-01
In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of β-lactam antibiotics and β-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes. PMID:12970466
Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe
Haley, Joshua A.; Stark, W. Marshall
2016-01-01
ABSTRACT Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor, by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo. Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo. The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae, an emerging model bacterium in Streptomyces research. PMID:28003200
Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Saravanan, Venkatakrishnan Sivaraj; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah; Pragatheswari, Dhandapani; Santhanakrishnan, Palani; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo
2016-10-01
A novel siderophore-producing actinomycete, designated PL19T, was isolated from the Scots-pine needle-like leaves collected from TNAU campus, Coimbatore, India. The isolate was chemoorganotrophic in nutrition and able to grow at 30 °C, and the optimum pH and NaCl facilitated the growth pH 6-11 and 0-8 % (w/v), respectively. The cells are filamentous and the mycelia formed are basically of wide and intricately branched substrate mycelium from which aerial mycelia arises, later gets differentiated into spores that are warty and arranged spirally. The 16S rRNA gene of strain PL19T was sequenced and was highly similar to the type strains of species of the genus Streptomyces, including Streptomyces barkulensis RC1831T (98.8 % pairwise similarity), Streptomyces fenghuangensis GIMN4.003T (98.2 %), Streptomyces nanhaiensis SCSIO 01248T (98.0 %), Streptomyces radiopugnans R97T (97.9 %), Streptomyces atacamensis C60T (97.8 %) and Streptomyces macrosporus NBRC 14749T (97.2 %), all of which were subjected to taxonomical characterization using a polyphasic approach. The strains showed unique carbon utilization patterns, and it possesses iso-C16 : 0 anteiso-C15 : 0 and anteiso-C17 : 0 as a major cellular fatty acids. The cell-wall was dominated with ll-type diaminopimelic acid, and the menaquinone type was MK-9(H6, H8). These chemotaxonomic evidences placed strain PL19T within the genus Streptomyces. The determination of G+C ratio (69.5 mol%) and DNA-DNA hybridization values (13.4-31.8 % with the phylogenetically related species) helped in further hierarchical classification of strain PL19T. Based on morphological, physiological and chemotaxonomic data as well as DNA-DNA hybridization values, strain PL19T could be distinguished from the evolutionarily closest species currently available. All these collective data show that strain PL19T represents a novel species of the genus Streptomyces, for which the name Streptomyces pini sp. nov. is proposed. The type strain is PL19T (=NRRL B-24728T=ICMP 17783T).
Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares
2016-11-01
The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183 T (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475 T (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103 T (=NRRL B-65309 T = CMAA 1378 T ) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.
Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces.
Lu, Fengjuan; Hou, Yanyan; Zhang, Heming; Chu, Yiwen; Xia, Haiyang; Tian, Yongqiang
2017-08-01
The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.
The -omics Era- Toward a Systems-Level Understanding of Streptomyces
Zhou, Zhan; Gu, Jianying; Du, Yi-Ling; Li, Yong-Quan; Wang, Yufeng
2011-01-01
Streptomyces is a group of soil bacteria of medicinal, economic, ecological, and industrial importance. It is renowned for its complex biology in gene regulation, antibiotic production, morphological differentiation, and stress response. In this review, we provide an overview of the recent advances in Streptomyces biology inspired by -omics based high throughput technologies. In this post-genomic era, vast amounts of data have been integrated to provide significant new insights into the fundamental mechanisms of system control and regulation dynamics of Streptomyces. PMID:22379394
Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives
Yagüe, Paula; López-García, Maria T.; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Ángel
2013-01-01
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. PMID:23496097
Zhang, Binglin; Tang, Shukun; Chen, Ximing; Zhang, Ling; Zhang, Gaoseng; Zhang, Wei; Liu, Guangxiu; Chen, Tuo; Li, Shiweng; Dyson, Paul
2016-12-01
A novel actinobacterial strain, designated Z1027T, was isolated from a soil sample collected near the Tuotuo River, Qinghai-Tibet Plateau (China). The strain exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. The taxonomic position of strain Z1027T was determined using a polyphasic approach. The organism had chemotaxonomic and morphological properties consistent with its classification in the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree, together with Streptomyces turgidiscabies ATCC 700248T (99.19 % similarity), Streptomyces graminilatus JL-6T (98.84 %) and Streptomyces reticuliscabiei CFBP 4531T (98.36 %). The genomic DNA G+C content of strain Z1027T was 74±1 mol%. The DNA-DNA relatedness values between strain Z1027T and Streptomyces turgidiscabies ATCC 700248T and Streptomyces reticuliscabiei CFBP 4531T were 38.5±0.4 and 26.2±1.2 %, respectively, both of them significantly lower than 70 %. Chemotaxonomic data revealed that strain Z1027T possessed MK-9(H6) and MK-9(H8) as the major menaquinones, ll-diaminopimelic acid as the diagnostic diamino acid and galactose as a whole-cell sugar. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatydilinositol and seven other unknown polar lipids were detected; iso-C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 were the major fatty acids. On the basis of these genotypic and phenotypic data, it is proposed that isolate Z1027T (=CGMCC 4.7272T=JCM 31054T) should be classified as the type strain of a novel species of the genus Streptomyces,Streptomyces lacrimifluminis sp. nov.
Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C
2016-08-01
Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Streptomyces xylanilyticus sp. nov., isolated from soil.
Moonmangmee, Duangtip; Kanchanasin, Pawina; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn
2017-10-01
A novel actinomycete, strain SR2-123 T , belonging to the genus Streptomyces, was isolated from a soil sample collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic study. Strain SR2-123 T contained ll-diaminopimelic acid, glucose, mannose and ribose in whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. Menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, unknown glycolipids, an unknown aminophospholipid, unknown lipids and an unknown aminolipid. The DNA G+C content was 74.8 mol%. The strain was closely related to Streptomyces coeruleorubidus JCM 4359 T (98.5 %), Streptomyces flavofungini JCM 4753 T (98.5 %), Streptomyces coerulescens NBRC 12758 T (98. 5 %) and Streptomyces alboflavus JCM 4615 T (98.4 %), based on 16S rRNA gene sequence similarities. The novel strain exhibited low DNA-DNA relatedness values with the type strains (11.4-25.0 %) of closely related species. On the basis of phenotypic and genotypic characteristics, strain SR2-123 T could be distinguished from closely related species of the genus Streptomyces and represents a novel species of the genus Streptomyces for which the name Streptomyces xylanilyticus sp. nov. is proposed. The type strain is SR2-123 T (=TISTR 2493 T =KCTC 39909 T ).
Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).
Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng
2016-09-01
A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)).
Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces
USDA-ARS?s Scientific Manuscript database
The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...
Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig
2017-07-01
Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.
Schuerger, Andrew C; Nicholson, Wayne L
2016-12-01
Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 10 4 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km. Key Words: Barophile-Extremophilic microorganisms-Habitability-Mars-Special Region. Astrobiology 16, 964-976.
Plant growth-promoting activities of Streptomyces spp. in sorghum and rice.
Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Sree Vidya, Meesala; Rathore, Abhishek
2013-01-01
Five strains of Streptomyces (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were earlier reported by us as biological control agents against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri (FOC). In the present study, the Streptomyces were characterized for enzymatic activities, physiological traits and further evaluated in greenhouse and field for their plant growth promotion (PGP) of sorghum and rice. All the Streptomyces produced lipase, β-1-3-glucanase and chitinase (except CAI-121 and CAI-127), grew in NaCl concentrations of up to 6%, at pH values between 5 and 13 and temperatures between 20 and 40°C and were highly sensitive to Thiram, Benlate, Captan, Benomyl and Radonil at field application level. When the Streptomyces were evaluated in the greenhouse on sorghum all the isolates significantly enhanced all the agronomic traits over the control. In the field, on rice, the Streptomyces significantly enhanced stover yield (up to 25%; except CAI-24), grain yield (up to 10%), total dry matter (up to 18%; except CAI-24) and root length, volume and dry weight (up to 15%, 36% and 55%, respectively, except CAI-24) over the control. In the rhizosphere soil, the Streptomyces significantly enhanced microbial biomass carbon (except CAI-24), nitrogen, dehydrogenase (except CAI-24), total N, available P and organic carbon (up to 41%, 52%, 75%, 122%, 53% and 13%, respectively) over the control. This study demonstrates that the selected Streptomyces which were antagonistic to FOC also have PGP properties.
Ye, Lan; Zhao, Shanshan; Li, Yao; Jiang, Shanwen; Zhao, Yue; Li, Jinmeng; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng; Liu, Chongxi
2017-05-01
During a screening for novel and biotechnologically useful actinobacteria in insects, a kanchanamycin-producing actinomycete with antifungal activity, designated strain 3H-HV17(2)T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-HV17(2)T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces spectabilis NBRC 13424T (98.90 %, with which it phylogenetically clustered, Streptomyces alboflavus NRRL B-2373T (98.65 %) and Streptomyces flavofungini NBRC 13371T (98.36 %). Phylogenetic analysis based on the gyrB gene also supported the close relationship of these strains. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-HV17(2)T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that strain 3H-HV17(2)T could be distinguished from these strains. Therefore, strain 3H-HV17(2)T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasiicapitis sp. nov. is proposed. The type strain is 3H-HV17(2)T (=CGMCC 4.7349T=DSM 103124T).
Streptomyces verrucosisporus sp. nov., isolated from marine sediments.
Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon
2016-09-01
Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).
Dornelas, J C M; Figueiredo, J E F; de Abreu, C S; Lana, U G P; Oliveira, C A; Marriel, I E
2017-08-31
Secondary metabolites produced by Actinobacteria of tropical soils represent a largely understudied source of novel molecules with relevant application in medicine, pharmaceutical and food industries, agriculture, and environmental bioremediation. The present study aimed to characterize sixty-nine Actinobacteria isolated from compost and tropical soils using morphological, biochemical, and molecular methods. All the isolates showed high variation for morphological traits considering the color of pigments of the aerial and vegetative mycelium and spore chain morphology. The enzymatic activity of amylase, cellulase, and lipase was highly variable. The amylase activity was detected in 53 (76.81%) isolates. Eighteen isolates showed enzymatic index (EI) > 4.0, and the isolates ACJ 45 (Streptomyces curacoi) and ACSL 6 (S. hygroscopicus) showed the highest EI values (6.44 and 6.42, respectively). The cellulase activity varied significantly (P ≤ 0.05) among the isolates. Twenty-nine isolates (42.02%) showed high cellulase activity, and the isolates ACJ 48 (S. chiangmaiensis) and ACJ 53 (S. cyslabdanicus) showed the highest EI values (6.56 for both isolates). The lipase activity varied statistically (P ≤ 0.05) with fourteen isolates (20.29%) considered good lipase producers (EI > 2.0). The isolate ACSL 6 (S. hygroscopicus) showed the highest EI value of 2.60. Molecular analysis of partial 16S rRNA gene sequencing revealed the existence of 49 species, being 38 species with only one representative member and 11 species represented by one or more strains. All species belonged to three genera, namely Streptomyces (82.61%), Amycolatopsis (7.25%), and Kitasatospora (10.14%). The present results showed the high biotechnological potential of different Actinobacteria from tropical soils.
Opazo, Rafael; Ortúzar, Felipe; Navarrete, Paola; Espejo, Romilio; Romero, Jaime
2012-01-01
Soybean meal (SBM) is an important protein source in animal feed. However, the levels of SBM inclusion are restricted in some animal species by the presence of antinutritional factors (ANFs), including non-starch polysaccharides (NSPs) and α-galactosides (GOSs). The aim of this study was to reduce the soybean meal NSPs and GOSs by solid-state fermentation (SSF) using a combination of cellulolytic bacteria isolated from different environments (termites, earthworms, corn silage and bovine ruminal content). To analyse the key enzymatic activities, the isolates were grown in minimal media containing NSPs extracted from SBM. The selected bacterial strains belonged to the genera Streptomyces, Cohnella and Cellulosimicrobium. SSF resulted in a reduction of nearly 24% in the total NSPs, 83% of stachyose and 69% of raffinose and an increase in the protein content. These results suggest that cellulolytic bacteria-based SSF processing facilitates SBM nutritional improvement. In addition, the use of fermented SBM in animal diets can be recommended.
Research on marine actinobacteria in India.
Sivakumar, K; Sahu, Maloy Kumar; Thangaradjou, T; Kannan, L
2007-09-01
Marine actinobacteriology is one of the major emerging areas of research in tropics. Marine actinobacteria occur on the sediments and in water and also other biomass (mangrove) and substrates (animal). These organisms are gaining importance not only for their taxonomic and ecological perspectives, but also for their unique metabolites and enzymes. Many earlier studies on these organisms were confined only to the temperate regions. In tropical environment, investigations on them have gained importance only in the last two decades. So far, from the Indian peninsula, 41 species of actinobacteria belonging to 8 genera have been recorded. The genus, Streptomyces of marine origin has been more frequently recorded. Of 9 maritime states of India, only 4 have been extensively covered for the study of marine actinobacteria. Most of the studies conducted pertain to isolation, identification and maintenance of these organisms in different culture media. Further, attention has been focused on studying their antagonistic properties against different pathogens. Their biotechnological potentials are yet to be fully explored.
USDA-ARS?s Scientific Manuscript database
Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this w...
USDA-ARS?s Scientific Manuscript database
Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...
Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.
El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A
2008-07-01
In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.
Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.
Jones, Stephanie E; Elliot, Marie A
2017-07-01
Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strain-Level Diversity of Secondary Metabolism in Streptomyces albus
Seipke, Ryan F.
2015-01-01
Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820
Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe.
Fogg, Paul C M; Haley, Joshua A; Stark, W Marshall; Smith, Margaret C M
2017-03-01
Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces , most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor , by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae , an emerging model bacterium in Streptomyces research. Copyright © 2017 Fogg et al.
Xu, R; Falardeau, J; Avis, T J; Tambong, J T
2016-02-01
The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.
Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani
2013-10-01
Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.
Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben
2016-03-01
The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.
Phocoenamicins B and C, New Antibacterial Spirotetronates Isolated from a Marine Micromonospora sp.
Pérez-Bonilla, Mercedes; Oves-Costales, Daniel; Kokkini, Maria; Martín, Jesús; Vicente, Francisca; Genilloud, Olga
2018-01-01
Phocoenamicins B and C (1 and 2), together with the known spirotetronate phocoenamicin (3), were isolated from cultures of Micromonospora sp. The acetone extract from a culture of this strain, isolated from marine sediments collected in the Canary Islands, displayed activity against methicillin-resistant Staphylococcus aureus (MRSA), Mycobacterium tuberculosis H37Ra and Mycobacterium bovis. Bioassay-guided fractionation of this extract using SP207ss column chromatography and preparative reversed-phased HPLC led to the isolation of the new compounds 1 and 2 belonging to the spirotetronate class of polyketides. Their structures were determined using a combination of HRMS, 1D and 2D NMR experiments and comparison with the spectra reported for phocoenamicin. Antibacterial activity tests of the pure compounds against these pathogens revealed minimal inhibitory concentration (MIC) values ranging from 4 to 64 µg/mL for MRSA, and 16 to 32 µg/mL for M. tuberculosis H37Ra, with no significant activity found against M. bovis and vancomycin-resistant Enterococcus faecium (VRE) at concentrations below 128 µg/mL, and weak activity detected against Bacillus subtilis grown on agar plates. PMID:29547589
Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse -Yuan S.; ...
2015-11-12
Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere.
Genome Sequences of Streptomyces Phages Amela and Verse
Layton, Sonya R.; Hemenway, Ryan M.; Munyoki, Christine M.; Barnes, Emory B.; Barnett, Sierra E.; Bond, Alec M.; Narvaez, Jessi M.; Sirisakd, Christie D.; Smith, Brandt R.; Swain, Justin; Syed, Orooj; Bowman, Charles A.; Russell, Daniel A.; Bhuiyan, Swapan; Donegan-Quick, Richard; Benjamin, Robert C.
2016-01-01
Amela and Verse are two Streptomyces phages isolated by enrichment on Streptomyces venezuelae (ATCC 10712) from two different soil samples. Amela has a genome length of 49,452, with 75 genes. Verse has a genome length of 49,483, with 75 genes. Both belong to the BD3 subcluster of Actinobacteriophage. PMID:26893416
USDA-ARS?s Scientific Manuscript database
Streptomyces spp. cause scab disease in plants like potato and radish. To seek effective control methods of this disease, biologically based materials were examined on their efficacies for disease control. In greenhouse or growth chamber tests, potting soil was infested with Streptomyces scabies (10...
Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis
USDA-ARS?s Scientific Manuscript database
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...
USDA-ARS?s Scientific Manuscript database
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34T, which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural, and morphological properties consistent with it...
USDA-ARS?s Scientific Manuscript database
Isolates of Nocardia cummidelens, Nocardia fluminea, Streptomyces albidoflavus, and Streptomyces luridiscabiei attributing to geosmin-related off-flavor in rainbow trout (Oncorhynchus mykiss) raised in recirculating aquaculture systems (RAS) were evaluated for the effect of temperature (10-30 degree...
Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.
2005-01-01
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733
Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.
2016-01-01
Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232
The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.
Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.
2016-01-01
Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423
Pettis, Gregg S.; Prakash, Shubha
1999-01-01
A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24.2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems. PMID:10419972
Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil.
Röttig, Annika; Atasayar, Ewelina; Meier-Kolthoff, Jan Philipp; Spröer, Cathrin; Schumann, Peter; Schauer, Jennifer; Steinbüchel, Alexander
2017-06-01
A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).
Streptomyces metabolites in divergent microbial interactions.
Takano, Hideaki; Nishiyama, Tatsuya; Amano, Sho-ichi; Beppu, Teruhiko; Kobayashi, Michihiko; Ueda, Kenji
2016-03-01
Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.
Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives.
Yagüe, Paula; López-García, Maria T; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Angel
2013-05-01
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Streptomyces communities in soils polluted with heavy metals
NASA Astrophysics Data System (ADS)
Grishko, V. N.; Syshchikova, O. V.
2009-02-01
The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.
Wang, Haiyong; Yang, Liu; Wu, Kuo; Li, Guanghui
2014-01-16
Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. It was illuminated that the σ(HrdB) molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σ(HrdB) molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.
Streptomyces pharmamarensis sp. nov. isolated from a marine sediment.
Carro, Lorena; Zúñiga, Paz; de la Calle, Fernando; Trujillo, Martha E
2012-05-01
A Gram-stain-positive actinobacterium, strain PM267(T), was isolated from a marine sediment sample in the Mediterranean Sea. The novel strain produced extensively branched substrate and aerial hyphae that carried spiral spore chains. Substrate and aerial mycelia were cream-white and white, respectively. Diffusible pigments were not observed. 16S rRNA gene sequence analysis revealed that strain PM267(T) belonged to the genus Streptomyces and shared a gene sequence similarity of 97.1 % with Streptomyces artemisiae YIM 63135(T) and Streptomyces armeniacus JCM 3070(T). Values <97 % were obtained with other sequences representing members of the genus Streptomyces. The cell wall peptidoglycan contained ll-diaminopimelic acid. MK-9(H(8)) was the major menaquinone. The phospholipid pattern included phosphatidylethanolamine as diagnostic lipid (type II). Major fatty acids found were iso- and anteiso- fatty acids. The G+C content of the DNA was 71.2 mol%. The strain was halotolerant and was able to grow in the presence of 9 % (w/v) NaCl (with an optimum of 2 %). On the basis of these results and additional physiological data obtained in the present study, strain PM267(T) represents a novel species within the genus Streptomyces for which the name Streptomyces pharmamarensis sp. nov. is proposed (type strain PM267(T) = CECT 7841(T) = DSM 42032(T)).
Maleki, Hadi; Dehnad, Alireza; Hanifian, Shahram; Khani, Sajjad
2013-01-01
Introduction: Streptomyces are a group of prokaryotes that are usually found in all types of ecosystems including water and soil. This group of bacteria is noteworthy as antibiotic producers; so the isolation and characterization of new species seemed to be crucial in introduction of markedly favorable antibiotics. Therefore, in this study we aim to isolate and characterize novel strains of Streptomyces with high antibiotic production capability. Methods: To achieve this goal, from 140 isolates collected throughout northwest of Iran, 12 selected Streptomyces isolates which exhibited high antibacterial activity against pathogenic bacteria were subjected to PCR reaction for identification via 16S rDNA gene and random amplified polymorphic DNA (RAPD) pattern analysis. Results: Analysis of morphological and biochemical characteristics and the 16S rDNA gene sequence indicated that all 12 selected isolates belonged to the genus Streptomyces. Moreover, screening of the isolates with regard to their antimicrobial activity against indicator bacteria as well as their classification using RAPD analysis revealed that G614C1 and K36C5 isolates have considerable antimicrobial activity and high similarity to Streptomyces coelicolor and Sreptomyces albogriseolus, respectively. Conclusion: Since many isolates in this study showed inhibitory effects against pathogenic bacteria, soil of northwest of Iran could be used as a rich source to be explored for novel Streptomyces strains with high potency of antibiotic production. PMID:24163805
Maleki, Hadi; Dehnad, Alireza; Hanifian, Shahram; Khani, Sajjad
2013-01-01
Streptomyces are a group of prokaryotes that are usually found in all types of ecosystems including water and soil. This group of bacteria is noteworthy as antibiotic producers; so the isolation and characterization of new species seemed to be crucial in introduction of markedly favorable antibiotics. Therefore, in this study we aim to isolate and characterize novel strains of Streptomyces with high antibiotic production capability. To achieve this goal, from 140 isolates collected throughout northwest of Iran, 12 selected Streptomyces isolates which exhibited high antibacterial activity against pathogenic bacteria were subjected to PCR reaction for identification via 16S rDNA gene and random amplified polymorphic DNA (RAPD) pattern analysis. Analysis of morphological and biochemical characteristics and the 16S rDNA gene sequence indicated that all 12 selected isolates belonged to the genus Streptomyces. Moreover, screening of the isolates with regard to their antimicrobial activity against indicator bacteria as well as their classification using RAPD analysis revealed that G614C1 and K36C5 isolates have considerable antimicrobial activity and high similarity to Streptomyces coelicolor and Sreptomyces albogriseolus, respectively. Since many isolates in this study showed inhibitory effects against pathogenic bacteria, soil of northwest of Iran could be used as a rich source to be explored for novel Streptomyces strains with high potency of antibiotic production.
2013-01-01
Background Ribosome assembly cofactor RimP is one of the auxiliary proteins required for maturation of the 30S subunit in Escherichia coli. Although RimP in protein synthesis is important, its role in secondary metabolites biosynthesis has not been reported so far. Considering the close relationship between protein synthesis and the production of secondary metabolites, the function of ribosome assembly cofactor RimP on antibiotics production was studied in Streptomyces coelicolor and Streptomyces venezuelae. Results In this study, the rimP homologue rimP-SC was identified and cloned from Streptomyces coelicolor. Disruption of rimP-SC led to enhanced production of actinorhodin and calcium-dependent antibiotics by promoting the transcription of actII-ORF4 and cdaR. Further experiments demonstrated that MetK was one of the reasons for the increment of antibiotics production. In addition, rimP-SC disruption mutant could be used as a host to produce more peptidyl nucleoside antibiotics (polyoxin or nikkomycin) than the wild-type strain. Likewise, disruption of rimP-SV of Streptomyces venezuelae also significantly stimulated jadomycin production, suggesting that enhanced antibiotics production might be widespread in many other Streptomyces species. Conclusion These results established an important relationship between ribosome assembly cofactor and secondary metabolites biosynthesis and provided an approach for yield improvement of secondary metabolites in Streptomyces. PMID:23815792
Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity
Shetty, Prakasham Reddy; Buddana, Sudheer Kumar; Tatipamula, Vinay Bharadwaj; Naga, Yaswanth Varanasi Venkata; Ahmad, Jamal
2014-01-01
A highly potent secondary metabolite producing actinomycetes strain is isolated from marine soil sediments of Visakhapatnam sea coast, Bay of Bengal. Over all ten strains are isolated from the collected soil sediments. Among the ten actinomycetes strains the broad spectrum strain RSPSN2 was selected for molecular characterization, antibiotic production and its purification. The nucleotide sequence of the 1 rRNA gene (1261 base pairs) of the most potent strain evidenced a 96% similarity with Streptomyces parvulus 1044 strain, Streptomyces parvulus NBRC 13193 and Streptomyces parvulus BY-F. From the taxonomic features, the actinomycetes isolate RSPSN2 matches with Streptomyces parvulus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces parvulus RSPSN2. The active metabolite was extracted using ethyl acetate (1:3, v/v) at pH 7.0. The separation of active ingredient and its purification was performed by using both thin layer chromatography (TLC) and column chromatography (CC) techniques. Spectrometric studies such as UV-visible, FTIR, and NMR and mass were performed. The antibacterial activity of pure compound was performed by cup plate method against some pathogenic bacteria including of streptomycin resistant bacteria like (Pseudomonas mirabilis, Pseudomonas putida and Bacillus cereus). In conclusion, the collected data emphasized the fact that a polypeptide antibiotic (Actinomycin D) was produced by Streptomyces parvulus RSPSN2. PMID:24948949
Streptomyces krungchingensis sp. nov., isolated from soil.
Sripreechasak, Paranee; Phongsopitanun, Wongsakorn; Tamura, Tomohiko; Tanasupawat, Somboon
2017-01-01
A novel actinomycete, designated strain KC-035T, was isolated from soil collected from Krung Ching Waterfall National Park, Nakhon Si Thammarat Province, Thailand. Its taxonomic position was determined using a polyphasic approach. The strain had morphological and chemotaxonomic properties typical of members of the genus Streptomyces: flexuous spore chain; ll-diaminopimelic acid in the cell-wall peptidoglycan; MK-9(H8), MK-9(H6) and MK-9(H4) as menaquinones; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside as phospholipids; anteiso-C15 : 0, C16 : 0, iso-C16 : 0, iso-C15 : 0 and iso-C14 : 0 as major cellular fatty acids; and DNA G+C content of 72 mol%. 16S rRNA gene sequence analysis revealed that strain KC-035T showed high similarity to Streptomyces albiflavescens n20T (99.16 %) and Streptomyces siamensis KC-038T (98.43 %) as well as formed a monophyletic clade with them in the phylogenetic tree. On the basis of comparison of phenotypic properties and the low level of DNA-DNA relatedness, strain KC-035T could be distinguished from its closely related Streptomyces species and is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces krungchingensis sp. nov. is proposed. The type strain is KC-035T (=NBRC 110087T=KCTC 29503T=TISTR 2402T).
Wang, Lifei; Xie, Yunying; Li, Qinglian; He, Ning; Yao, Entai; Xu, Hongzhang; Yu, Ying; Chen, Ruxian; Hong, Bin
2012-12-01
Streptomyces sp. SS produces a series of uridyl peptide antibiotic sansanmycins. Here, we present a draft genome sequence of Streptomyces sp. SS containing the biosynthetic gene cluster for the antibiotics. The identification of the biosynthetic gene cluster of sansanmycins may provide further insight into biosynthetic mechanisms for uridyl peptide antibiotics.
Draft Genome Sequence of Thiostrepton-Producing Streptomyces azureus ATCC 14921
Sakihara, Kengo; Maeda, Jumpei; Tashiro, Kosuke; Fujino, Yasuhiro; Kuhara, Satoru; Ohshima, Toshihisa; Ogata, Seiya
2015-01-01
Streptomyces azureus ATCC 14921 belongs to the Streptomyces cyaneus cluster and is known to be a thiostrepton producer. Here, we report a draft genome sequence for this strain, consisting of 350 contigs containing a total of 8,790,525 bp, 8,164 predicted coding sequences, and a G+C content of 70.9%. PMID:26494661
USDA-ARS?s Scientific Manuscript database
The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...
Wang, Ling-Yan; Li, Shi-Tao; Guo, Lian-Hong; Jiang, Rong; Li, Yuan
2003-08-01
Recently in our laboratory, Streptomyces sp. 139 has been identified to produce a new exopolysaccharide designated EPS 139A that shows anti-rheumatic arthritis activity. The strategy of studying EPS 139A biosynthesis is to clone the key gene in the EPS biosynthesis pathway, i.e. the priming glycosyltransferase gene catalyzing the first step of nucleotide sugar transfer. Degenerate primers-based PCR approach was adopted to isolate the putative priming glycosyltransferase gene in Streptomyces sp. 139. According to the genes encoding the priming glycosyltransferases that have been identified in several microorganisms, a multiple alignment of the amino acid sequences of these genes was used to identify regions conserved between all genes. To clone the priming glycosyltransferase gene in Streptomyces sp. 139, degenerate primers were designed from these conserved regions taking into account information on Streptomyces codon usage to amplify an internal DNA fragment of this gene. A distinctive PCR product with the expected size of 0.3 kb was amplified from Streptomyces sp. 139 total genomic DNA. Sequence analysis showed that it is part of a putative priming glycosyltransferase gene and contains the predicted conserved domain B. To isolate the complete priming glycosyltransferase gene, a Streptomyces sp. 139 genomic library was constructed in the E. coli--Streptomyces shuttle vector pOJ446. Using the 0.3 kb PCR product of priming glycosyltransferase gene as a probe, 17 positive colonies were isolated by colony hybridization. A 4.0 kb BamHI fragment from all positive cosmids that hybridized to this probe was sequenced, which revealed the complete priming glycosyltransferase gene. The priming glycosyltransferase gene ste5 (GenBank under accession number AY131229) most likely begins with GTG, preceded by a probable ribosome binding site (RBS), GGGGA. It encodes a 492-amino-acid protein with molecular weight of 54 kDa and isoelectric point of 10.6. The G + C content of ste5 is 73%, close to the average of G + C content (74%) for Streptomyces. Moreover, the preference usage of G or C as third base of codons are found in the ste5, which is in accordance with the Streptomyces codon usage. A BlastP search showed that the C-terminal region of Ste5 shows highly homology with a number of priming glycosyltransferases from many different organisms. Ste5 contains two putative catalytic residues, Glu and Asp (residues 423 and 474) with a spacing of approximately 50 amino acids that conserved in various beta-glycosyltransferases. Moreover, the C-terminal one third of Ste5 contains three domains, A, B and C that is reported to be common to glycosyltransferases. By hydrophilicity plot prediction, the N-terminal two thirds of Ste5 exhibits 5 putative transmembrane domains. To investigate the involvement of the identified polysaccharide gene cluster in EPS 139A biosynthesis, the gene ste5 encoding priming glycosyltransferase was insertionally disrupted by a single-crossover homologous recombination event. A 0.85 kb internal fragment of ste5 was cloned into vector pKC1139 to yield pLY5015 that was transduced into Streptomyces sp. 139. Correct integration in Streptomyces LY1001 ste5- mutant strain was confirmed by Southern hybridization. After fermentation, no EPS 139A could be detected in the cultures of ste5- mutant strain Streptomyces LY1001. Therefore, the gene ste5 identified in this work is involved in the synthesis of the Streptomyces sp. 139 EPS.
Siti Junaidah, Ahmad; Suhaini, Sudi; Mohd Sidek, Hasidah; Basri, Dayang Fredalina; Zin, Noraziah Mohamad
2015-01-01
Background: The potential of secondary metabolites extracted from Streptomyces sp. to treat bacterial infections including infections with Staphylococcus aureus is previously documented. The current study showed significant antimicrobial activities associated with endophytic Streptomyces sp. isolated from medicinal plants in Peninsular Malaysia. Objectives: The current study aimed to determine anti-methicillin-resistant-Staphylococcus aureus (MRSA) activities of Streptomyces sp. isolates. Materials and Methods: Disc diffusion and Minimum Inhibitory Concentration (MIC) assay were used to determine the antibacterial activity of Streptomyces sp. isolates. Optimization of fermentation parameters for the most potent anti-MRSA extract in terms of medium type, pH, aeration rate, and culture period was also carried out. Lastly, toxicity of the extract against Chang liver cells was determined employing the MTT, 2- (3, 5- diphenyltetrazol-2-ium-2-yl) -4, 5-dimethyl -1, 3 - thiazole; bromide assay. Results: The results indicated Streptomyces sp. SUK 25 isolates showed the most potent anti-MRSA activity. Disc diffusion assay revealed that spread plate technique was more efficient in screening anti-MRSA activity compared to pour plate (P < 0.05). To determine anti–MRSA MIC of Streptomyces sp. SUK 25, Thronton media was used. Therefore, MIC was determined as 2.44 ± 0.01 µg/mL, and accordingly, the lowest MIC was 1.95 µg/mL based on a seven-day culture, pH7, and aeration rate of 140 rpm. The crude extract was not toxic against Chang liver cells (IC50 = 43.31 ± 1.24 µg/mL). Conclusions: The Streptomyces sp. SUK 25 culturing was optimized using Thronton media, at pH 7 and aeration of 140 rpm. Further isolation and identification of bioactive compounds will develop anti-MRSA therapeutics. PMID:26060562
Pasti-Grigsby, M B; Paszczynski, A; Goszczynski, S; Crawford, D L; Crawford, R L
1992-01-01
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1482183
Shariffah-Muzaimah, S A; Idris, A S; Madihah, A Z; Dzolkhifli, O; Kamaruzzaman, S; Maizatul-Suriza, M
2017-12-18
Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.
Streptomyces salilacus sp. nov., an actinomycete isolated from a salt lake.
Luo, Xiao-Xia; Gao, Guang-Bin; Xia, Zhan-Feng; Chen, Zheng-Jun; Wan, Chuan-Xing; Zhang, Li-Li
2018-05-01
The taxonomic position of a novel actinomycete, strain TRM 41337 T , isolated from sediment of a salt lake, Xiaoerkule Lake, Xinjiang, China, was determined by a polyphasic approach. Strain TRM 41337 T grew optimally at 28 °C and in the presence of 1 % (w/v) NaCl. It grew at up to pH 12. The whole-cell sugars of strain TRM 41337 T were ribose and xylose. The diagnostic diamino acid contained ll-diaminopimelic acid. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside and two other unidentified phospholipids. The predominant menaquinones were MK-9(H8), MK-9, MK-9(H4) and MK-9(H6). The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 1 H. Based on morphological and chemotaxonomic characteristics, the isolate was determined to belong to the genus Streptomyces. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1498 nt) with representative strains showed that the strain consistently falls into a distinct phyletic lineage together with Streptomyces barkulensis DSM 42082 T (97.48 % similarity) and a subclade consisting of Streptomyces fenghuangensis GIMN 4.003 T (97.20 %), Streptomyces macrosporus NBRC 14748 T (97.14 %) and Streptomyces radiopugnans R97 T (97.01 %). On the basis of these data, strain TRM 41337 T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces salilacus sp. nov. is proposed. The type strain is TRM 41337 T (=CCTCC AA 2015030 T =KCTC 39726 T ).
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236
Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest.
Biswas, Kaushik; Choudhury, Jayanta D; Mahansaria, Riddhi; Saha, Malay; Mukherjee, Joydeep
2017-06-01
A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20 T ) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H 8 ) and MK-9(H 6 ). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C 15:0 (17.53%), iso-C 16:0 (23.89%) and anteiso-C 17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825 T , Streptomyces erythrogriseus LMG 19406 T , Streptomyces griseoincarnatus LMG 19316 T and Streptomyces labedae NBRC 15864 T . However, strain MS 3/20 T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20 T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20 T from other phylogenetic relatives. Strain MS 3/20 T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20 T (=CICC 11032 T =DSM 103378 T ).
Wei, Junhong; Tian, Jinjin; Pan, Guoqing; Xie, Jie; Bao, Jialing; Zhou, Zeyang
2017-06-01
To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces. A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h. The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.
Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina
2017-09-01
Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9T, was found to have chemotaxonomic, cultural, and morphological properties that...
A recombinant actinomycete, Streptomyces lividans TK23.1, expressing a pIJ702-encoded extracellular lignin peroxidase gene cloned from the chromosome of Streptomyces virodosporus T7A, was released into soil in flask- and microcosm-scale studies to determine its effects on humific...
USDA-ARS?s Scientific Manuscript database
A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Str...
Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji
2013-07-01
To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.
NASA Astrophysics Data System (ADS)
Sahin, Nurettin
2004-10-01
The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.
Tsai, Hsiu-Hui; Huang, Chih-Hung; Tessmer, Ingrid; Erie, Dorothy A.; Chen, Carton W.
2011-01-01
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA. PMID:21109537
[Progress in developing and applying Streptomyces chassis - A review].
Xiao, Liping; Deng, Zixin; Liu, Tiangang
2016-03-04
Natural products and their derivatives play an important role in modern healthcare. Their diversity in bioactivity and chemical structure inspires scientists to discover new drug entities for clinical use. However, chemical synthesis of natural compounds has insurmountable difficulties in technology and cost. Also, many original-producing bacteria have disadvantages of needing harsh cultivation conditions, having low productivity and other shortcomings. In addition, some gene clusters responsible for secondary metabolite biosynthesis are silence in the original strains. Therefore, it is of great significance to exploit strategy for the heterologous expression of natural products guided by synthetic biology. Recently, researchers pay more attention on using actinomycetes that are the main source of many secondary metabolites, such as antibiotics, anticancer agents, and immunosuppressive drugs. Especially, with huge development of genome sequencing, abundant resources of natural product biosynthesis in Streptomyces have been discovered, which highlight the special advantages on developing Streptomyces as the heterologous expression chassis cells. This review begins with the significance of the development of Streptomyces chassis, focusing on the strategies and the status in developing Streptomyces chassis cells, followed by examples to illustrate the practical applications of a variety of Streptomyces chassis.
Sultan, Suandi Pratama; Kitani, Shigeru; Miyamoto, Kiyoko T; Iguchi, Hiroyuki; Atago, Tokitaka; Ikeda, Haruo; Nihira, Takuya
2016-11-01
Streptomyces hormones, sometimes called as autoregulators, are important signaling molecules to trigger secondary metabolism across many Streptomyces species. We recently identified a butenolide-type autoregulator (termed avenolide) as a new class of Streptomyces hormone from Streptomyces avermitilis that produces important anthelmintic agent avermectin. Avenolide triggers the production of avermectin with minimum effective concentration of nanomolar. Here, we describe the characterization of avaR1 encoding an avenolide receptor in the regulation of avermectin production and avenolide biosynthesis. The disruption of avaR1 resulted in transcriptional derepression of avenolide biosynthetic gene with an increase in avenolide production, with no change in the avermectin production profile. Moreover, the avaR1 mutant showed increased transcription of avaR1. Together with clear DNA-binding capacity of AvaR1 toward avaR1 upstream region, it suggests that AvaR1 negatively controls the expression of avaR1 through the direct binding to the promoter region of avaR1. These findings revealed that the avenolide receptor AvaR1 functions as a transcriptional repressor for avenolide biosynthesis and its own synthesis.
The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces
Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire
2014-01-01
Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284
A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; ...
2016-04-12
We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less
A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.
2016-01-01
ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097
Qin, Song; Zhang, Hongyu; Li, Fuchao; Zhu, Benwei; Zheng, Huajun
2012-03-01
A series of angucyclinone antibiotics have been isolated from marine Streptomyces sp. strain W007 and identified. Here, a draft genome sequence of Streptomyces sp. W007 is presented. The genome contains an intact biosynthetic gene cluster for angucyclinone antibiotics, which provides insight into the combinatorial biosynthesis of angucyclinone antibiotics produced by marine streptomycetes.
Biochemistry and genetics of actinomycete cellulases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D.B.
1992-01-01
The order Actinomycetales includes a number of genera that contain species that actively degrade cellulose and these include both mesophilic and facultative thermophilic species. Cellulases produced by strains from two of the genera containing thermophilic organisms have been studied extensively: Microbispora bispora and Thermomonospora fusca. Fractionation of M. bispora cellulases has identified six different enzymes, all of which were purified to near homogeneity and partially characterized. Two of these enzymes appear to be exocellulases and gave synergism with each other and with the endocellulases. The structural genes of five M. bispora cellulases have been cloned and one was sequenced. Fractionationmore » of T. fusca cellulases has identified five different enzymes, all of which were purified to near homogeneity and partially characterized. One of the T. fusca enzymes gives synergism in the hydrolysis of crystalline cellulose with several T. fusca endocellulases and with Trichoderma reesei CBHI but not with T. reesei CBHII. Each T. fusca cellulase contains distinct catalytic and cellulose binding domains. The structural genes of four of the T. fusca endoglucanases have been cloned and sequenced, while three cellulase genes have been cloned from T. curvata. The T. fusca cellulase genes are expressed at a low level in Escherichia coli, but at a high level in Streptomyces lividans. Sequence comparisons have shown that there are no significant amino acid homologies between any of the catalytic domains of the four T. fusca cellulases, but each of them shows extensive homology to several other cellulases and fits in one of the five existing cellulase gene families. 73 refs., 8 figs., 4 tabs.« less
Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz
2016-01-01
Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455
Chen, Yufeng; Zhou, Dengbo; Qi, Dengfeng; Gao, Zhufen; Xie, Jianghui; Luo, Yanping
2018-01-01
An actinomycete strain, CB-75, was isolated from the soil of a diseased banana plantation in Hainan, China. Based on phenotypic and molecular characteristics, and 99.93% sequence similarity with Streptomyces spectabilis NBRC 13424 (AB184393), the strain was identified as Streptomyces sp. This strain exhibited broad-spectrum antifungal activity against 11 plant pathogenic fungi. Type I polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) were detected, which were indicative of the antifungal compounds that Streptomyces sp. CB-75 could produce. An ethyl acetate extract from the strain exhibited the lowest minimum inhibitory concentration (MIC) against Colletotrichum musae (ATCC 96167) (0.78 μg/ml) and yielded the highest antifungal activity against Colletotrichum gloeosporioides (ATCC 16330) (50.0 μg/ml). Also, spore germination was significantly inhibited by the crude extract. After treatment with the crude extract of Streptomyces sp. CB-75 at the concentration 2 × MIC, the pathogenic fungi showed deformation, shrinkage, collapse, and tortuosity when observed by scanning electron microscopy (SEM). By gas chromatography-mass spectrometry (GC-MS) of the crude extract, 18 chemical constituents were identified; (Z)-13-docosenamide was the major constituent. Pot experiments showed that the incidence of banana seedlings was reduced after using Streptomyces sp. CB-75 treatment. The disease index was 10.23, and the prevention and control effect was 83.12%. Furthermore, Streptomyces sp. CB-75 had a growth-promoting effect on banana plants. The chlorophyll content showed 88.24% improvement, the leaf area, root length, root diameter, plant height, and stem showed 88.24, 90.49, 136.17, 61.78, and 50.98% improvement, respectively, and the shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight showed 82.38, 72.01, 195.33, and 113.33% improvement, respectively, compared with treatment of fermentation broth without Streptomyces sp. CB-75. Thus, Streptomyces sp. CB-75 is an important microbial resource as a biological control against plant pathogenic fungi and for promoting banana growth. PMID:29387049
Laboratory course on Streptomyces genetics and secondary metabolism.
Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko
2016-09-10
The "Streptomyces genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria Streptomyces and their secondary metabolism. The course combines genetic modification of Streptomyces; growing of the strain and protoplast preparation, plasmid isolation by alkaline lysis and phenol precipitation, digestions, and ligations prior to protoplast transformation, as well as investigating the secondary metabolites produced by the strains. Thus, the course is a combination of microbiology, molecular biology, and chemistry. After the course the students should understand the relationship between genes, proteins, and the produced metabolites. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):492-499, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Wehmeier, U F
1995-11-07
Four new shuttle vectors for Escherichia coli (Ec) and Streptomyces, pUWL218, pUWL219, pUWL-SK and pUWL-KS, which permit recognition of recombinant (re-) plasmids on XGal plates in Ec, were constructed. These vectors contain the replication functions of the Streptomyces wide-host-range multicopy plasmid pIJ101, the tsr gene conferring resistance to thiostrepton in Streptomyces, the ColEI origin of replication from the pUC plasmids for replication in Ec and the bla gene conferring resistance to ampicillin in Ec. They possess multiple cloning sites with a number of unique restriction sites and allow direct sequencing of re-derivatives using the pUC sequencing primers.
Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces
Ser, Hooi-Leng; Tan, Loh Teng-Hern; Law, Jodi Woan-Fei; Chan, Kok-Gan; Duangjai, Acharaporn; Saokaew, Surasak; Pusparajah, Priyia; Ab Mutalib, Nurul-Syakima; Khan, Tahir Mehmood; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal. PMID:29163380
Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence
Clark, Laura C.; Seipke, Ryan F.; Prieto, Pilar; Willemse, Joost; van Wezel, Gilles P.; Hutchings, Matthew I.; Hoskisson, Paul A.
2013-01-01
Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms. PMID:23346366
Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains.
Zucchi, T D; de Moraes, L A B; de Melo, I S
2008-12-01
To evaluate the ability of Streptomyces sp. (strain ASBV-1) to restrict aflatoxin accumulation in peanut grains. In the control of many phytopathogenic fungi the Streptomyces sp. ASBV-1 strain showed promise. An inhibitory test using this strain and A. parasiticus was conducted in peanut grains to evaluate the effects of this interaction on spore viability and aflatoxin accumulation. In some treatments the Streptomyces sp ASBV-1 strain reduced the viability of A. parasiticus spores by c. 85%, and inhibited aflatoxin accumulation in peanut grains. The values of these reductions ranged from 63 to 98% and from 67% to 96% for aflatoxins B(1) and G(1), respectively. It was demonstrated that Streptomyces sp. ASBV-1 is able to colonize peanut grains and thus inhibit the spore viability of A. parasiticus, as well as reducing aflatoxin production. The positive finding for aflatoxin accumulation reduction in peanut grains seems promising and suggests a wider use of this actinobacteria in biological control programmes.
Fuentes, María S; Briceño, Gabriela E; Saez, Juliana M; Benimeli, Claudia S; Diez, María C; Amoroso, María J
2013-01-01
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques.
Fuentes, María S.; Briceño, Gabriela E.; Saez, Juliana M.; Benimeli, Claudia S.; Diez, María C.; Amoroso, María J.
2013-01-01
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques. PMID:23865051
Komaki, Hisayuki; Sakurai, Kenta; Hosoyama, Akira; Kimura, Akane; Igarashi, Yasuhiro; Tamura, Tomohiko
2018-05-02
To identify the species of butyrolactol-producing Streptomyces strain TP-A0882, whole genome-sequencing of three type strains in a close taxonomic relationship was performed. In silico DNA-DNA hybridization using the genome sequences suggested that Streptomyces sp. TP-A0882 is classified as Streptomyces diastaticus subsp. ardesiacus. Strain TP-A0882, S. diastaticus subsp. ardesiacus NBRC 15402 T , Streptomyces coelicoflavus NBRC 15399 T , and Streptomyces rubrogriseus NBRC 15455 T harbor at least 14, 14, 10, and 12 biosynthetic gene clusters (BGCs), respectively, coding for nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). All 14 gene clusters were shared by S. diastaticus subsp. ardesiacus strains TP-A0882 and NBRC 15402 T , while only four gene clusters were shared by the three distinct species. Although BGCs for bacteriocin, ectoine, indole, melanine, siderophores such as deferrioxamine, terpenes such as albaflavenone, hopene, carotenoid and geosmin are shared by the three species, many BGCs for secondary metabolites such as butyrolactone, lantipeptides, oligosaccharide, some terpenes are species-specific. These results indicate the possibility that strains belonging to the same species possess the same set of secondary metabolite-biosynthetic pathways, whereas strains belonging to distinct species have species-specific pathways, in addition to some common pathways, even if the strains are taxonomically close.
Zhao, Chen; Huang, Ying; Guo, Chao; Yang, Bolei; Zhang, Yan; Lan, Zhou; Guan, Xiong; Song, Yuan; Zhang, Xiaolin
2017-01-01
Spinosyns are a group of macrolide insecticides produced by Saccharopolyspora spinosa. Although S. spinosa can be used for industrial-scale production of spinosyns, this might suffer from several limitations, mainly related to its long growth cycle, low fermentation biomass, and inefficient utilization of starch. It is crucial to generate a robust strain for further spinosyn production and the development of spinosyn derivatives. A BAC vector, containing the whole biosynthetic gene cluster for spinosyn (74 kb) and the elements required for conjugal transfer and site-specific integration, was introduced into different Streptomyces hosts in order to obtain heterologous spinosyn-producing strains. The exconjugants of different Streptomyces strains did not show spinosyn production unless the rhamnose biosynthesis genes from S. spinosa genomic DNA were present and expressed under the control of a strong constitutive ermE*p promoter. Using this heterologous expression system resulted in yields of 1 μg/mL and 1.5 μg/mL spinosyns in Streptomyces coelicolor and Streptomyces lividans, respectively. This report demonstrates spinosyn production in 2 Streptomyces strains and stresses the essential role of rhamnose in this process. This work also provides a potential alternative route for producing spinosyn analogs by means of genetic manipulation in the heterologous hosts. © 2017 S. Karger AG, Basel.
Liu, Chongxi; Ye, Lan; Li, Yao; Jiang, Shanwen; Liu, Hui; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing
2016-12-01
A phoslactomycin-producing actinomycete, designated strain NEAU-ML8T, was isolated from a millipede (Kronopolites svenhedind Verhoeff) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ML8T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces lydicus NBRC 13058T (99.39 %) and Streptomyces chattanoogensis DSM 40002T (99.25 %). The maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with NBRC 13058T and S. chattanoogensis DSM 40002T. This branching pattern was also supported by the tree rconstructed with the neighbour-joining method. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-ML8T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that NEAU-ML8T could be distinguished from NBRC 13058T and S. chattanoogensis DSM 40002T. Therefore, it is concluded that strain NEAU-ML8T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces kronopolitis sp. nov. is proposed. The type strain is NEAU-ML8T (=DSM 101986T=CGMCC 4.7323T).
Latha, Selvanathan; Sivaranjani, Govindhan; Dhanasekaran, Dharumadurai
2017-09-01
Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.
Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China.
Guan, Xuejiao; Li, Wenchao; Liu, Chongxi; Jin, Pinjiao; Guo, Siyu; Wang, Xiangjing; Xiang, Wensheng
2016-12-01
During a screening for novel and biotechnologically useful actinobacteria, a novel actinobacteria with weak antifungal activity, designated strain NEAU-Spg19 T , was isolated from a soil sample collected from pine forest in Songpinggou, Sichuan, southwest China. The strain was characterized using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth occurred at a temperature range of 10-30 °C, pH 5.0-11.0 and NaCl concentrations of 0-5 %. The cell wall peptidoglycan consisted of LL-diaminopimelic acid and glycine. The major menaquinones were MK-9(H 6 ), MK-9(H 8 ) and MK-9(H 4 ). The phospholipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C 15:0 , iso-C 16:0 , and C 16:0 . 16S rRNA gene sequence similarity studies showed that strain NEAU-Spg19 T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces tauricus JCM 4837 T (98.6 %) and Streptomyces rectiviolaceus JCM 9092 T (98.3 %). Some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. tauricus JCM 4837 T and S. rectiviolaceus JCM 9092 T . Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NEAU-Spg19 T represents a novel species of the genus Streptomyces, for which the name Streptomyces songpinggouensis sp. nov. is proposed. The type strain is NEAU-Spg19 T (=CGMCC 4.7140 T =DSM 42141 T ).
Li, Yao; Ye, Lan; Wang, Xiangjing; Zhao, Junwei; Ma, Zhaoxu; Yan, Kai; Xiang, Wensheng; Liu, Chongxi
2016-10-01
A novel single-spore-producing actinomycete, designated strain 2H-TWYE14T, was isolated from the head of an ant (Camponotus japonicus Mayr) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 2H-TWYE14T belongs to the genus Streptomyces, with highest sequence similarity to Streptomyces niveus NRRL 2466T (98.84 %). Analysis based on the gyrB gene also indicated that strain 2H-TWYE14T should be assigned to the genus Streptomyces. The chemotaxonomic properties of strain 2H-TWYE14T were consistent with those of members of the genus Streptomyces. The cell wall contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0 and iso-C15 : 0. DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 2H-TWYE14T and its phylogenetically closely related strain S. niveus JCM 4251T, which further clarified their relatedness and demonstrated that 2H-TWYE14T could be distinguished from S. niveus. Therefore, it is concluded that strain 2H-TWYE14T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces camponoticapitis sp. nov. is proposed. The type strain is 2H-TWYE14T (=DSM 100523T=CGMCC 4.7275T).
Establishing a high yielding streptomyces-based cell-free protein synthesis system.
Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C
2017-06-01
Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2013-01-01
hydrolase activity . These strains are Ammoniphilus oxalaticus, Haloarcula sp., and Micromonospora aurantiaca. Lysates from A. oxalaticus had...warfare agents [1–3]. OP nerve agents readily bind covalently to the active site serine in acetylcho- linesterase (AChE), thereby inhibiting the ability...muscarinic receptors, whereas 2-pralidoxime chloride, an oxime nucleophile, reactivates AChE by displacing the phospho- nyl group left on the active site
Degradation of latex and of natural rubber by Streptomyces strain La 7.
Gallert, C
2000-10-01
Streptomyces strain La 7 was isolated from the banquete of a city high way in Karlsruhe. According to partial 16S rRNA gene sequencing it was identical with Streptomyces albogriseolus and Streptomyces viridodiastaticus. DNA-DNA-similarity studies revealed 80.3-82.4% similarity between each of two of the three strains. Although phylogenetically closely related, Streptomyces strain La 7 differed from the two reference strains by morphological as well as physiological features and might represent a new species aside of S. albogriseolus and S. viridodiastaticus. The new Streptomyces strain La 7 was grown in a medium containing a latex emulsion or squares of natural rubber gloves as the only carbon source. On agar plates with a latex overlay agar, translucent halo formation around the colonies was observed. The unvulcanized latex was metabolized and the carbon from the isoprene units was apparently used for cell growth. In shake cultures with unlimited oxygen supply, during 60 days of incubation, 140 mg of the 175 mg totally emulgated latex were degraded exponentially. In sterile control flasks about 3% of the initial amount of latex could not be recovered after incubation on a shaker, presumably due to photochemical transformation. During static incubation of sterile medium, the latex formed a sticky layer at the surface of the medium and on the glass walls and recovery of the material was more difficult. Estimation of the protein content of cells from total nitrogen resulted in about 50% of the degraded latex being incorporated into cells, if a standard cell composition was assumed. Direct protein analysis according to Bradford (1976) gave much lower estimates, presumably due to a low content of aromatic amino acids. Stripes of natural rubber were degraded by Streptomyces strain La 7 during 70 days to an extent of about 30%. Scanning electron microscopy demonstrated, that hyphes of Streptomyces strain La 7 colonized and penetrated the latex surface with a concomitant deterioration of the latex material.
Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F; Reyes, Fernando; García, Luis A; Blanco, Gloria
2018-01-01
A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyc es species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products.
Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria
2018-01-01
A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products. PMID:29740412
Tn5099, a xylE promoter probe transposon for Streptomyces spp.
Hahn, D R; Solenberg, P J; Baltz, R H
1991-01-01
Tn5099, a promoter probe transposon for Streptomyces spp., was constructed by inserting a promoterless xylE gene and a hygromycin resistance gene into IS493. Tn5099 transposed into different sites in the Streptomyces griseofuscus genome, and the xylE reporter gene was expressed in some of the transposition mutants. Strains containing Tn5099 insertions that gave regulated expression of the xylE gene were identified. Images PMID:1653213
Determination of ionophore antibiotics nactins produced by fecal Streptomyces from sheep.
Wang, Jun; Tan, Hongming; Lu, Yu; Cao, Lixiang
2014-04-01
To investigate the correlation between fecal actinobacteria and host animals, Streptomyces was isolated from fresh faeces of healthy sheep and secondary metabolites were analyzed. The most frequently isolated strain S161 with antibiotic activity against bacteria and fungi were analyzed. The S161 showed the highest 99 % similarity to Streptomyces canus DSB17 based on the 16S rRNA gene sequence analysis. Metabolite analysis based on MS and NMR spectra showed that S161 produces nactins, cyclotetralactones derived from nonactic acid and homononactic acid as building units of ionophoretic character. Due to ionophores are antimicrobial compounds that are commonly fed to ruminant animals to improve feed efficiency, stable beneficial interactions between Streptomyces bacteria and vertebrates have been demonstrated.
Volova, Tatiana; Zhila, Natalia; Vinogradova, Olga; Shumilova, Anna; Prudnikova, Svetlana; Shishatskaya, Ekaterina
2016-03-01
Biodegradable polymer poly(3-hydroxybutyrate) (P3HB) has been used as a matrix to construct slow-release formulations of the fungicide tebuconazole (TEB). P3HB/TEB systems constructed as films and pellets have been studied using differential scanning calorimetry, X-ray structure analysis, and Fourier transform infrared spectroscopy. TEB release from the experimental formulations has been studied in aqueous and soil laboratory systems. In the soil with known composition of microbial community, polymer was degraded, and TEB release after 35 days reached 60 and 36 % from films and pellets, respectively. That was 1.23 and 1.8 times more than the amount released to the water after 60 days in a sterile aqueous system. Incubation of P3HB/TEB films and pellets in the soil stimulated development of P3HB-degrading microorganisms of the genera Pseudomonas, Stenotrophomonas, Variovorax, and Streptomyces. Experiments with phytopathogenic fungi F. moniliforme and F. solani showed that the experimental P3HB/TEB formulations had antifungal activity comparable with that of free TEB.
Isolation and characterization of oxalotrophic bacteria from tropical soils.
Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar
2015-01-01
The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.
Microbial communities affecting albumen photography heritage: a methodological survey
NASA Astrophysics Data System (ADS)
Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico
2016-02-01
This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19th and early 20th centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum.
Microbial communities affecting albumen photography heritage: a methodological survey.
Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico
2016-02-11
This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19(th) and early 20(th) centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum.
Zhang, Yongguang; Liu, Qing; Wang, Hongfei; Zhang, Daofeng; Chen, Jiyue; Zhang, Yuanming; Li, Wenjun
2014-02-04
In order to analyze the biodiversity of cultivable facultative-alkaliphilic actinobacteria and the enzymes they produced. Total 10 soil samples were collected from saline-alkaline environments of Fukang, Xinjiang province. Facultative-alkaliphilic actinobacteria strains were isolated and identified by 16S rRNA gene sequence analysis. Enzymes including amylase, proteinase, xylanase, and cellulase were detected. Total 116 facultative-alkaliphilic actinobacterial strains and 4 alkali-tolerant actinobacterial strains were isolated from the samples, and those strains were distributed within 22 genera in 13 families and 8 orders of actinobacteria based on their 16S rRNA gene sequence analysis. The ratio of non-predominant Streptomyces and Nocardiopsis strains were 53.3%. The positive rates of amylase, proteinase, xylanase and cellulase were 35.8, 37.6, 28.3 and 17.5%, respectively. Diverse facultative-alkaliphilic actinobacteria were discovered from saline-alkaline environments of Fukang. Facultative-alkaliphilic actinobacteria are a potential source for enzymes. The study would facilitate the knowledge of the diversity of facultative-alkaliphilic actinobacteria, and provide the technical basis for exploration of facultative-alkaliphilic actinobacteria resources.
Microbial solubilization of coal
Strandberg, Gerald W.; Lewis, Susan N.
1990-01-01
This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.
Dalisay, Doralyn S; Williams, David E; Wang, Xiao Ling; Centko, Ryan; Chen, Jessie; Andersen, Raymond J
2013-01-01
Representatives of the genus Streptomyces from terrestrial sources have been the focus of intensive research for the last four decades because of their prolific production of chemically diverse and biologically important compounds. However, metabolite research from this ecological niche had declined significantly in the past years because of the rediscovery of the same bioactive compounds and redundancy of the sample strains. More recently, a new picture has begun to emerge in which marine-derived Streptomyces bacteria have become the latest hot spot as new source for unique and biologically active compounds. Here, we investigated the marine sediments collected in the temperate cold waters from British Columbia, Canada as a valuable source for new groups of marine-derived Streptomyces with antimicrobial activities. We performed culture dependent isolation from 49 marine sediments samples and obtained 186 Streptomyces isolates, 47 of which exhibited antimicrobial activities. Phylogenetic analyses of the active isolates resulted in the identification of four different clusters of bioactive Streptomyces including a cluster with isolates that appear to represent novel species. Moreover, we explored whether these marine-derived Streptomyces produce new secondary metabolites with antimicrobial properties. Chemical analyses revealed structurally diverse secondary metabolites, including four new antibacterial novobiocin analogues. We conducted structure-activity relationships (SAR) studies of these novobiocin analogues against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we revealed the importance of carbamoyl and OMe moieties at positions 3" and 4" of novobiose as well as the hydrogen substituent at position 5 of hydroxybenzoate ring for the anti-MRSA activity. Changes in the substituents at these positions dramatically impede or completely eliminate the inhibitory activity of novobiocins against MRSA.
Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp
Viegelmann, Christina; Margassery, Lekha Menon; Kennedy, Jonathan; Zhang, Tong; O’Brien, Ciarán; O’Gara, Fergal; Morrissey, John P.; Dobson, Alan D. W.; Edrada-Ebel, RuAngelie
2014-01-01
Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont. PMID:24893324
Promnuan, Yaowanoot; Kudo, Takuji; Ohkuma, Moriya; Chantawannakul, Panuwan
2013-05-01
Two novel actinomycetes, strains TA4-1(T) and TA4-8(T,) were isolated from the South-East Asian stingless bee (Tetragonilla collina Smith 1857), collected from Chiang Mai Province, Thailand. The morphological and chemotaxonomic properties of strains TA4-1(T) and TA4-8(T) were consistent with the genus Streptomyces, i.e. the formation of aerial mycelia bearing spiral spore chains, the presence of the ll-isomer of diaminopimelic acid in cell walls, iso- and anteiso-branched fatty acids with carbon chain lengths 14-17 atoms as the major fatty acids and MK-9(H8) as the predominant menaquinone plus minor amounts of MK-9(H6) and MK-9(H10). Analysis of 16S rRNA gene sequences showed that strains TA4-1(T) and TA4-8(T) exhibited 98.8 and 98.1% sequence similarity, respectively, with Streptomyces chromofuscus NRRL B-12175(T) and 98.9% sequence similarity with each other. This study suggested that strains TA4-1(T) and TA4-8(T) were distinct from previously described species of the genus Streptomyces. In addition, the low degrees of DNA-DNA relatedness between the isolates and S. chromofuscus JCM 4354(T) warranted assigning strains TA4-1(T) and TA4-8(T) to two novel species. The names Streptomyces chiangmaiensis sp. nov. (type strain TA4-1(T) = JCM 16577(T) = TISTR 1981(T)) and Streptomyces lannensis sp. nov. (type strain TA4-8(T) = JCM 16578(T) = TISTR 1982(T)) are proposed. The species names indicate the geographical locations where the stingless bees reside.
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae ). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyce s bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae . The ability of various S treptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae . In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.
Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.
Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F
2015-01-01
The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro.
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Duangjai, Acharaporn; Saokaew, Surasak; Bukhari, Sarah I.; Khan, Tahir M.; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%). The DNA–DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T). PMID:28559892
Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.
Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat
2016-11-01
The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).
Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota.
Dahal, Bibha; NandaKafle, Gitanjali; Perkins, Lora; Brözel, Volker S
2017-01-01
Biological Nitrogen Fixation is critical for ecosystem productivity. Select members of Bacteria and Archaea express a nitrogenase enzyme complex that reduces atmospheric nitrogen to ammonia. Several nitrogen fixing bacteria form symbiotic associations with plants, but free-living diazotrophs also contribute a substantial amount of nitrogen to ecosystems. The aim of this study was to isolate and characterize free-living diazotrophs in arid lands of South Dakota Badlands. Samples were obtained from sod tables and the surrounding base in spring and fall. Diazotrophs were isolated on solid nitrogen free medium (NFM) under hypoxic conditions, and their16S rRNA and nifH genes sequenced. nifH was also amplified directly from soil DNA extracts. The 16S rRNA gene data indicated a diversity of putative free-living diazotrophs across 4 phyla (Actinomycetes, Proteobacteria, Bacteroidetes, and Firmicutes), but ∼50% of these clustered with Streptomyces. These Streptomyces isolates grew in liquid NFM in an ammonia-depleted environment. Only 5 of these yielded a nifH gene product using the PolF/PolR primer set. Four of these aligned with nifH of the cyanobacteria Scytonema and Nostoc, and the other one aligned with nifH of Bradyrhizobium. Six selected Streptomyces isolates, three of which were nifH positive by PCR, all indicated 15 N 2 incorporation, providing strong support of nitrogen fixation. All nifH amplicons from soil DNA extract resembled Cyanobacteria. This is the first known report of diazotrophic Streptomyces, other than the thermophilic, autotrophic S. thermoautotrophicus. nifH genes of these Streptomyces were related to those from Cyanobacteria. It is possible that the cyanobacteria-like nifH amplicons obtained from soil DNA were associated with Streptomyces. Copyright © 2016 Elsevier GmbH. All rights reserved.
Naine, S Jemimah; Devi, C Subathra; Mohanasrinivasan, V; Doss, C George Priya; Kumar, D Thirumal
2016-03-01
The main aim of the current study is to explore the bioactive potential of Streptomyces sp. VITJS8 isolated from the marine saltern. The cultural, biochemical, and morphological studies were performed to acquire the characteristic features of the potent isolate VITJS8. The 16Sr DNA sequencing was performed to investigate the phylogenetic relationship between the Streptomyces genera. The structure of the compound was elucidated by gas chromatography-mass spectrometry (GC-MS), infra-red (IR), and ultra-violet (UV) spectroscopic data analysis. The GC-MS showed the retention time at 22.39 with a single peak indicating the purity of the active compound, and the molecular formula was established as C14H9ONCl2 based on the peak at m/z 277 [M](+). Furthermore, separated by high-performance liquid chromatography (HPLC), their retention time (t r) 2.761 was observed with the absorption maxima at 310 nm. The active compound showed effective inhibitory potential against four clinical pathogens at 500 μg/mL. The antioxidant activity was found effective at the IC50 value of 500 μg/mL with 90 % inhibition. The 3-(4,5-dimethylthiazol-2-yl)-2,5-ditetrazolium bromide (MTT) assay revealed the cytotoxicity against HepG2 cells at IC50 of 250 μg/mL. The progression of apoptosis was evidenced by morphological changes by nuclear staining. The DNA fragmentation pattern was observed at 250 μg/mL concentration. Based on flow cytometric analysis, it was evident that the compound was effective in inhibiting the sub-G0/G1 phase of cell cycle. The in vitro findings were also supported by the binding mode molecular docking studies. The active compound revealed minimum binding energy of -7.84 and showed good affinity towards the active region of topoisomerase-2α that could be considered as a suitable inhibitor. Lastly, we performed 30 ns molecular dynamic simulation analysis using GROMACS to aid in better designing of anticancer drugs. Simulation result of root mean square deviation (RMSD) analysis showed that protein-ligand complex reaches equilibration state around 10 ns that illustrates the docked complex is stable. We propose the possible mechanism of sesquiterpenes to play a significant role in antitumor cascade. Hence, our studies open up a new facet for a potent drug as an anticancer agent.
STREPTOMYCES NODOSUS SP. N., THE AMPHOTERICIN-PRODUCING ORGANISM
Trejo, William H.; Bennett, R. E.
1963-01-01
Trejo, William (Squibb Institute for Medical Research, New Brunswick, N.J.) and Ralph E. Bennett. Streptomyces nodosus sp. n., the amphotericin-producing organism. J. Bacteriol. 85:436–439. 1963.—Streptomyces nodosus, the amphotericin-producing organism, is described as a new species in conformity with the rules of nomenclature as applied to streptomycetes. The relationship between S. nodosus and S. rutgersensis is discussed, and the basis for separation of the species is presented. Images PMID:13994057
Singh, S P; Gaur, R
2016-08-01
To evaluate the potential of chitinolytic endophytic Actinomycetes isolated from medicinal plants in order to diminish the collar rot infestation induced by Sclerotium rolfsii in chickpea. Sixty-eight chitinolytic endophytic Actinomycetes were recovered from various medicinal plants and evaluated for their chitinase activity. Among these isolates, 12 were screened for their plant growth promoting abilities and antagonistic potential against Sc. rolfsii. Further, these isolates were validated in vivo for their ability to protect chickpea against Sc. rolfsii infestation under greenhouse conditions. The isolates significantly (P < 0·05) increased the biomass (1·2-2·0 fold) and reduced plant mortality (42-75%) of chickpea. On the basis of 16S rDNA profiling, the selected antagonistic strains were identified as Streptomyces diastaticus, Streptomyces fradiae, Streptomyces olivochromogenes, Streptomyces collinus, Streptomyces ossamyceticus and Streptomyces griseus. This study is the first report of the isolation of endophytic Actinomycetes from various medicinal plants having antagonistic and plant growth promoting abilities. The isolated species showed potential for controlling collar rot disease on chickpea and could be useful in integrated control against diverse soil borne plant pathogens. Our investigation suggests that endophytic Actinomycetes associated with medicinal plants can be used as bioinoculants for developing safe, efficacious and environment-friendly biocontrol strategies in the near future. © 2016 The Society for Applied Microbiology.
Antibiotics produced by Streptomyces.
Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de
2012-01-01
Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.
Potato suberin induces differentiation and secondary metabolism in the genus Streptomyces.
Lerat, Sylvain; Forest, Martin; Lauzier, Annie; Grondin, Gilles; Lacelle, Serge; Beaulieu, Carole
2012-01-01
Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces.
Jankowitsch, Frank; Schwarz, Julia; Rückert, Christian; Gust, Bertolt; Szczepanowski, Rafael; Blom, Jochen; Pelzer, Stefan; Kalinowski, Jörn
2012-01-01
Streptomyces davawensis JCM 4913 synthesizes the antibiotic roseoflavin, a structural riboflavin (vitamin B2) analog. Here, we report the 9,466,619-bp linear chromosome of S. davawensis JCM 4913 and a 89,331-bp linear plasmid. The sequence has an average G+C content of 70.58% and contains six rRNA operons (16S-23S-5S) and 69 tRNA genes. The 8,616 predicted protein-coding sequences include 32 clusters coding for secondary metabolites, several of which are unique to S. davawensis. The chromosome contains long terminal inverted repeats of 33,255 bp each and atypical telomeres. Sequence analysis with regard to riboflavin biosynthesis revealed three different patterns of gene organization in Streptomyces species. Heterologous expression of a set of genes present on a subgenomic fragment of S. davawensis resulted in the production of roseoflavin by the host Streptomyces coelicolor M1152. Phylogenetic analysis revealed that S. davawensis is a close relative of Streptomyces cinnabarinus, and much to our surprise, we found that the latter bacterium is a roseoflavin producer as well. PMID:23043000
Carbon catabolite regulation in Streptomyces: new insights and lessons learned.
Romero-Rodríguez, Alba; Rocha, Diana; Ruiz-Villafán, Beatriz; Guzmán-Trampe, Silvia; Maldonado-Carmona, Nidia; Vázquez-Hernández, Melissa; Zelarayán, Augusto; Rodríguez-Sanoja, Romina; Sánchez, Sergio
2017-09-01
One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.
Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying
2011-01-01
Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes. PMID:21421776
Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying
2011-05-01
Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes.
2014-01-01
Background Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. Results It was illuminated that the σHrdB molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σHrdB molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Conclusions Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy. PMID:24428890
Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep; Palsson, Bernhard Ø; Lee, Sang Yup
2014-01-01
Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters have been more systematized with high-throughput techniques through inspections of correlations among components of the primary and secondary metabolisms at the genome scale. Moreover, up-to-date information on the genome of Streptomyces species with emphasis on their secondary metabolism has been collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species. © 2013.
Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants
Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu
2004-01-01
Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216
Bhattacharjee, Kaushik; Banerjee, Subhro; Joshi, Santa Ram
2012-01-01
Isolation and characterization of actinomycetes from soil samples from altitudinal gradient of North-East India were investigated for computational RNomics based phylogeny. A total of 52 diverse isolates of Streptomyces from the soil samples were isolated on four different media and from these 6 isolates were selected on the basis of cultural characteristics, microscopic and biochemical studies. Sequencing of 16S rDNA of the selected isolates identified them to belong to six different species of Streptomyces. The molecular morphometric and physico-kinetic analysis of 16S rRNA sequences were performed to predict the diversity of the genus. The computational RNomics study revealed the significance of the structural RNA based phylogenetic analysis in a relatively diverse group of Streptomyces. PMID:22829729
Li, Fuchao; Jiang, Peng; Zheng, Huajun; Wang, Shengyue; Zhao, Guoping; Qin, Song; Liu, Zhaopu
2011-07-01
Streptomyces griseoaurantiacus M045, isolated from marine sediment, produces manumycin and chinikomycin antibiotics. Here we present a high-quality draft genome sequence of S. griseoaurantiacus M045, the first marine Streptomyces species to be sequenced and annotated. The genome encodes several gene clusters for biosynthesis of secondary metabolites and has provided insight into genomic islands linking secondary metabolism to functional adaptation in marine S. griseoaurantiacus M045.
USDA-ARS?s Scientific Manuscript database
The 16S rRNA and gyrB genes of 22 Streptomyces species belonging to the Streptomyces griseus cluster were sequenced, and their taxonomic positions were re-evaluated. For correct analysis, all of the publicly available sequences of the species were collected and compared with those obtained in this s...
Inhibition of Aspergillus parasiticus and cancer cells by marine actinomycete strains
NASA Astrophysics Data System (ADS)
Li, Ping; Yan, Peisheng
2014-12-01
Ten actinomycete strains isolated from the Yellow Sea off China's coasts were identified as belonging to two genera by 16S rDNA phylogenetic analysis: Streptomyces and Nocardiopsis. Six Streptomyces strains (MA10, 2SHXF01-3, MA35, MA05-2, MA05-2-1 and MA08-1) and one Nocardiopsis strain (MA03) were predicted to have the potential to produce aromatic polyketides based on the analysis of the KSα (ketoacyl-synthase) gene in the type II PKS (polyketides synthase) gene cluster. Four strains (MA03, MA01, MA10 and MA05-2) exhibited significant inhibitory effects on mycelia growth (inhibition rate >50%) and subsequent aflatoxin production (inhibition rate >75%) of the mutant aflatoxigenic Aspergillus parasiticus NFRI-95. The ethyl acetate extracts of the broth of these four strains displayed significant inhibitory effects on mycelia growth, and the IC50 values were calculated (MA03: 0.275 mg mL-1, MA01: 0.106 mg mL-1, MA10: 1.345 mg mL-1 and MA05-2: 1.362 mg mL-1). Five strains (2SHXF01-3, MA03, MA05-2, MA01 and MA08-1) were selected based on their high cytotoxic activities. The ethyl acetate extract of the Nocardiopsis strain MA03 was particularly noted for its high antitumor activity against human carcinomas of the cervix (HeLa), lung (A549), kidney (Caki-1) and liver (HepG2) (IC50: 2.890, 1.981, 3.032 and 2.603 μg mL-1, respectively). The extract also remarkably inhibited colony formation of HeLa cells at an extremely low concentration (0.5 μg mL-1). This study highlights that marine-derived actinomycetes are a huge resource of compounds for the biological control of aflatoxin contamination and the development of novel drugs for human carcinomas.
Improved Enumeration of Streptomyces spp. on a Starch Casein Salt Medium
Mackay, Shirley J.
1977-01-01
Well-formed Streptomyces colonies were counted more rapidly when a starch casein medium containing antibiotics was supplemented with either magnesium chloride or additional sodium chloride. Images PMID:848946
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes. PMID:26483760
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
... is chemically synthesized from nemadectin, a fermentation product of Streptomyces cyaneogriseus subsp... antibiotic nemadectin, which is produced during the fermentation of Streptomyces cyaneogriseus sp...
Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.
Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei
2017-09-01
In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong
2015-01-01
Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803
Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.
Aparicio, JuanDaniel; Solá, María Zoleica Simón; Benimeli, Claudia Susana; Amoroso, María Julia; Polti, Marta Alejandra
2015-06-01
The aim of this work was to study the impact of environmental factors on the bioremediation of Cr(VI) and lindane contaminated soil, by an actinobacterium, Streptomyces sp. M7, in order to optimize the process. Soil samples were contaminated with 25 µg kg(-1) of lindane and 50 mg kg(-1) of Cr(VI) and inoculated with Streptomyces sp. M7. The lowest inoculum concentration which simultaneously produced highest removal of Cr(VI) and lindane was 1 g kg(-1). The influence of physical and chemical parameters was assessed using a full factorial design. The factors and levels tested were: Temperature: 25, 30, 35°C; Humidity: 10%, 20%, 30%; Initial Cr(VI) concentration: 20, 50, 80 mg kg(-1); Initial lindane concentration: 10, 25, 40 µg kg(-1). Streptomyces sp. M7 exhibited strong versatility, showing the ability to bioremediate co-contaminated soil samples at several physicochemical conditions. Streptomyces sp. M7 inoculum size was optimized. Also, it was fitted a model to study this process, and it was possible to predict the system performance, knowing the initial conditions. Moreover, optimum temperature and humidity conditions for the bioremediation of soil with different concentrations of Cr(VI) and lindane were determined. Lettuce seedlings were a suitable biomarker to evaluate the contaminants mixture toxicity. Streptomyces sp. M7 carried out a successful bioremediation, which was demonstrated through ecotoxicity test with Lactuca sativa. Copyright © 2015 Elsevier Inc. All rights reserved.
Arul Jose, Polpass; Sivakala, Kunjukrishnan Kamalakshi; Jebakumar, Solomon Robinson David
2013-01-01
Streptomyces sp. JAJ06 is a seawater-dependent antibiotic producer, previously isolated and characterised from an Indian coastal solar saltern. This paper reports replacement of seawater with a defined salt formulation in production medium and subsequent statistical media optimization to ensure consistent as well as improved antibiotic production by Streptomyces sp. JAJ06. This strain was observed to be proficient to produce antibiotic compound with incorporation of chemically defined sodium-chloride-based salt formulation instead of seawater into the production medium. Plackett-Burman design experiment was applied, and three media constituents, starch, KBr, and CaCO3, were recognised to have significant effect on the antibiotic production of Streptomyces JAJ06 at their individual levels. Subsequently, Response surface methodology with Box-Behnken design was employed to optimize these influencing medium constituents for the improved antibiotic production of Streptomyces sp. JAJ06. A total of 17 experiments were conducted towards the construction of a quadratic model and a second-order polynomial equation. Optimum levels of medium constituents were obtained by analysis of the model and numerical optimization method. When the strain JAJ06 was cultivated in the optimized medium, the antibiotic activity was increased to 173.3 U/mL, 26.8% increase as compared to the original (136.7 U/mL). This study found a useful way to cultivate Streptomyces sp. JAJ06 for enhanced production of antibiotic compound. PMID:24454383
Briceño, Gabriela; Vergara, Karen; Schalchli, Heidi; Palma, Graciela; Tortella, Gonzalo; Fuentes, María Soledad; Diez, María Cristina
2017-07-26
The current study aimed to evaluate the removal of a pesticide mixture composed of the insecticides chlorpyrifos (CP) and diazinon (DZ) from liquid medium, soil and a biobed biomixture by a Streptomyces mixed culture. Liquid medium contaminated with 100 mg L -1 CP plus DZ was inoculated with the Streptomyces mixed culture. Results indicated that microorganisms increased their biomass and that the inoculum was viable. The inoculum was able to remove the pesticide mixture with a removal rate of 0.036 and 0.015 h -1 and a half-life of 19 and 46 h -1 for CP and DZ, respectively. The sterilized soil and biobed biomixture inoculated with the mixed culture showed that Streptomyces was able to colonize the substrates, exhibiting an increase in population determined by quantitative polymerase chain reaction (q-PCR), enzymatic activity dehydrogenase (DHA) and acid phosphatase (APP). In both the soil and biomixture, limited CP removal was observed (6-14%), while DZ exhibited a removal rate of 0.024 and 0.060 day -1 and a half-life of 29 and 11 days, respectively. Removal of the organophosphorus pesticide (OP) mixture composed of CP and DZ from different environmental matrices by Streptomyces spp. is reported here for the first time. The decontamination strategy using a Streptomyces mixed culture could represent a promising alternative to eliminate CP and DZ residues from liquids as well as to eliminate DZ from soil and biobed biomixtures.
Passari, Ajit K; Mishra, Vineet K; Gupta, Vijai K; Saikia, Ratul; Singh, Bhim P
2016-08-26
The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.
Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F
2015-05-01
The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression. © 2015 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.
We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less
Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie
2017-07-28
In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.
Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.
Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato
2014-12-01
The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.
Tomihama, Tsuyoshi; Nishi, Yatsuka; Mori, Kiyofumi; Shirao, Tsukasa; Iida, Toshiya; Uzuhashi, Shihomi; Ohkuma, Moriya; Ikeda, Seishi
2016-07-01
Potato common scab (PCS), caused by pathogenic Streptomyces spp., is a serious disease in potato production worldwide. Cultural practices, such as optimizing the soil pH and irrigation, are recommended but it is often difficult to establish stable disease reductions using these methods. Traditionally, local farmers in southwest Japan have amended soils with rice bran (RB) to suppress PCS. However, the scientific mechanism underlying disease suppression by RB has not been elucidated. The present study showed that RB amendment reduced PCS by repressing the pathogenic Streptomyces population in young tubers. Amplicon sequencing analyses of 16S ribosomal RNA genes from the rhizosphere microbiome revealed that RB amendment dramatically changed bacterial composition and led to an increase in the relative abundance of gram-positive bacteria such as Streptomyces spp., and this was negatively correlated with PCS disease severity. Most actinomycete isolates derived from the RB-amended soil showed antagonistic activity against pathogenic Streptomyces scabiei and S. turgidiscabies on R2A medium. Some of the Streptomyces isolates suppressed PCS when they were inoculated onto potato plants in a field experiment. These results suggest that RB amendment increases the levels of antagonistic bacteria against PCS pathogens in the potato rhizosphere.
Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil
Chan, Chim Kei
2018-01-01
Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries. PMID:29805975
Kaewkla, Onuma; Franco, Christopher Milton Mathew
2017-11-01
An endophytic actinobacterium, strain WES2 T , was isolated from the stem of a jasmine rice plant collected from a paddy field in Thung Gura Rong Hai, Roi Et province, Thailand. As a result of a polyphasic study, this strain was identified as representing a novel member of the genus Streptomyces. This strain was a Gram-stain-positive, aerobic actinobacterium with well-developed substrate mycelia and forming chains of looped spores. The closest phylogenetic relations, which shared the highest 16S rRNA gene sequence similarity, were Streptomyces nogalater JCM 4799 T and Streptomyces lavenduligriseus NRRL-ISP 5487 T at 99.1 and 99.0 %, respectively. Chemotaxonomic data, including major fatty acids, cell wall components and major menaquinones, confirmed the affiliation of WES2 T to the genus Streptomyces. The data from the phylogenetic analysis, including physiological and biochemical studies and DNA-DNA hybridization, revealed the genotypic and phenotypic differentiation of WES2 T from the most closely related species with validly published names. The name proposed for the novel species is Streptomycesroietensis sp. nov. The type strain is WES2 T (=DSM 101729=NRRL B-65344).
Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine.
Siñeriz, Manuel Louis; Kothe, Erika; Abate, Carlos Mauricio
2009-09-01
46 actinomycetes were isolated from two polluted sites and one unpolluted site. One strain, F4, was selected through primary qualitative screening assays because of its cadmium resistance, and physiologically and taxonomically characterized. F4 was able to grow at 7.5% NaCl and 100 microg/ml lysozyme and at a pH between 6 and 10. 16S rDNA sequence analysis showed that F4 was closely related to Streptomyces tendae. Growth of Streptomyces sp. F4 on culture medium with 8 mg/l Cd(2+) for 8 days showed 80% inhibition. Maximum specific biosorption was 41.7 mg Cd(2+)/g dry weight after 7 days of growth and highest Cd(2+ )concentration was found in the cell wall (41.2%). The exopolysaccharide layer only contained 7.4%, whereas 39.4% of Cd(2+) was found in the cytosolic fraction. Twelve % was found in the ribosomes and membrane fraction. This was verified with TEM, showing Streptomyces sp. F4 cytoplasm with dark granulate appearance. This study could present the potential capacity of Streptomyces sp. F4 for Cd(2+) bioremediation. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hong, S T; Carney, J R; Gould, S J
1997-01-01
The genes for the complete pathways for two polycyclic aromatic polyketides of the angucyclinone class have been cloned and heterologously expressed. Genomic DNAs of Streptomyces rimosus NRRL 3016 and Streptomyces strain WP 4669 were partially digested with MboI, and libraries (ca. 40-kb fragments) in Escherichia coli XL1-Blue MR were prepared with the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes from each organism. After transfer of the four clusters to Streptomyces lividans TK24, expression of one cluster from each organism was established through the identification of pathway-specific products by high-performance liquid chromatography with photodiode array detection. Peaks were identified from the S. rimosus cluster (pksRIM-1) for tetrangulol, tetrangomycin, and fridamycin E. Peaks were identified from the WP 4669 cluster (pksWP-2) for tetrangulol, 19-hydroxytetrangulol, 8-O-methyltetrangulol, 19-hydroxy-8-O-methyltetrangulol, and PD 116740. Structures were confirmed by 1H nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. PMID:8990300
Hong, S T; Carney, J R; Gould, S J
1997-01-01
The genes for the complete pathways for two polycyclic aromatic polyketides of the angucyclinone class have been cloned and heterologously expressed. Genomic DNAs of Streptomyces rimosus NRRL 3016 and Streptomyces strain WP 4669 were partially digested with MboI, and libraries (ca. 40-kb fragments) in Escherichia coli XL1-Blue MR were prepared with the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes from each organism. After transfer of the four clusters to Streptomyces lividans TK24, expression of one cluster from each organism was established through the identification of pathway-specific products by high-performance liquid chromatography with photodiode array detection. Peaks were identified from the S. rimosus cluster (pksRIM-1) for tetrangulol, tetrangomycin, and fridamycin E. Peaks were identified from the WP 4669 cluster (pksWP-2) for tetrangulol, 19-hydroxytetrangulol, 8-O-methyltetrangulol, 19-hydroxy-8-O-methyltetrangulol, and PD 116740. Structures were confirmed by 1H nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry.
NASA Astrophysics Data System (ADS)
Poon, Thomas; Mundy, Bradford P.; Shattuck, Thomas W.
2002-02-01
A brief account of the Michael reaction is provided, illustrating its versatility as a topic in undergraduate chemistry courses. Included is a short biography of the reaction's namesake, examples of its use in organic synthesis, and its unique role in the defense mechanism of the bacterium Micromonospora echinospora. A computational rationale for the selectivity of 1,4 versus 1,2 addition of nucleophiles to a,b-unsaturated carbonyls is discussed and links to animations suitable for an introductory organic chemistry course are provided.
Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).
Kim, Yul-Min; Kim, Jae-heon
2004-03-01
The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Duangjai, Acharaporn; Saokaew, Surasak; Bukhari, Sarah I; Khan, Tahir M; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Streptomyces colonosanans MUSC 93J T , a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93J T and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces . Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059 T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063 T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799 T (99.1%). The DNA-DNA relatedness values between MUSC 93J T and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93J T exhibits a unique DNA profile. The genome of MUSC 93J T consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93J T was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93J T , it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93J T (= DSM 102042 T = MCCC 1K02298 T ).
Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili
2017-02-01
A novel actinomycete strain, designated TRM 49605 T , was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605 T to the genus Streptomyces. Strain TRM 49605 T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815 T (98.62 %), Streptomyces flavovariabilis NRRL B-16367 T (98.45 %) and Streptomyces variegatus NRRL B-16380 T (98.45 %). Whole cell hydrolysates of strain TRM 49605 T were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605 T were identified as iso C 16:0 , anteiso C 15:0 , C 16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H 4 ), MK-9(H 6 ), MK-9(H 8 ) and MK-10(H 6 ). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605 T and the phylogenetically related strain S. roseolilacinus NBRC 12815 T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605 T (=CCTCC AA2015026 T = KCTC 39666 T ) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.
Cao, Tingting; Mu, Shan; Lu, Chang; Zhao, Shanshan; Li, Dongmei; Yan, Kai; Xiang, Wensheng; Liu, Chongxi
2017-12-01
A novel actinomycete, designated strain 1H-SSA8 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce amphotericin. A polyphasic approach was employed to determine the status of strain 1H-SSA8 T . Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces. The menaquinones detected were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylinositol mannoside. The major fatty acids were identified as iso-C16 : 0, C16 : 0, C15 : 0 and anteiso-C15 : 0. Analysis of the 16S rRNA gene sequence showed that strain 1H-SSA8 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces ramulosus NRRL B-2714 T (99.2 %). Two tree-making algorithms based on 16S rRNA gene sequences showed that the isolate formed a phyletic line with Streptomyces himastatinicus ATCC 53653 T (98.7 %). The MLSA utilizing partial sequences of the housekeeping genes (atpD, gyrB, recA, rpoB and trpB) also supported the position. However, evolutionary distances were higher than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. Moreover, the low level of DNA-DNA relatedness and phenotypic differences allowed the novel isolate to be differentiated from its most closely related strain S. ramulosus NRRL B-2714 T and strain S. himastatinicus ATCC 53653 T . It is concluded that the organism can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces amphotericinicus sp. nov. is proposed. The type strain is 1H-SSA8 T (=CGMCC 4.7350 T =DSM 103128 T ).
A novel gene: sawD related to the differentiation of streptomyces ansochromogenes.
Gang, L; Wei, C; Yuqing, T; Huarong, T; Chater, K F; Buttner, M J
1999-01-01
A 1.3 kb DNA fragment was cloned from a total DNA library of Streptomyces ansochromogenes using Southern hybridization. Nucleotide sequencing analysis indicated that the 1320 bp DNA fragment contained a complete open reading frame (ORF). In search of databases, the deduced product of ORF containing 213 amino acids is homologous to the serine protease of Caulobacter cresceatus, and a conserved serine-catalytic active site (GPSAG) exists. The gene was designated as sawD. The function of this gene was studied with the strategy of gene disruption, and the result showed that the sawD may be related to sporulation and especially to the spore septation in Streptomyces ansochromogenes. The preliminary result indicated that sawD mutant could produce abundant pigment in contrast with the wild type, it seems that sawD gene may be involved in pigment biosynthesis, and this gene is also dispensable for biosynthesis of nikkomycin in Streptomyces ansochromogenes.
Streptomyces Bacteria as Potential Probiotics in Aquaculture
Tan, Loh Teng-Hern; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing
2016-01-01
In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations. PMID:26903962
Streptomyces species: Ideal chassis for natural product discovery and overproduction.
Liu, Ran; Deng, Zixin; Liu, Tiangang
2018-05-28
There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organisms, genome mining and overproduction of NPs can be dramatically accelerated. In particular, Streptomyces species have been proposed as suitable chassis organisms for NP discovery and overproduction because of their many unique characteristics not shared with yeast, Escherichia coli, or other microorganisms. In this review, we summarize the methods for genome sequencing, gene cluster prediction, and gene editing in Streptomyces, as well as metabolic engineering strategies for NP overproduction and approaches for generating new products. Finally, two strategies for utilizing Streptomyces as the chassis for NP discovery and overproduction are emphasized. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Streptomyces phyllanthi sp. nov., isolated from the stem of Phyllanthus amarus.
Klykleung, Nattaporn; Phongsopitanun, Wongsakorn; Pittayakhajonwut, Pattama; Ohkuma, Moriya; Kudo, Takuji; Tanasupawat, Somboon
2016-10-01
The novel endophytic actinomycete strain PA1-07T was isolated from the stem of Phyllanthus amarus. The strain displayed the consistent characteristics of members of the genus Streptomyces. The strain produced short spiral spore chains on aerial mycelia. It grew at pH 5-9, at 40 °C and with a maximum of 5 % (w/v) NaCl. It contained ll-diaminopimelic acid, glucose and ribose in the whole-cell hydrolysate. The major cellular menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8), while the major cellular fatty acids were C16 : 0, iso-C14 : 0, iso-C16 : 0 and anteiso-C15 : 0. The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and four unknown lipids. The DNA G+C content of the strain was 71 mol%. The strain showed the highest 16S rRNA gene sequence similarity with Streptomyces curacoi JCM 4219T (98.77 %). The DNA-DNA relatedness values between strain PA1-07T and S. curacoi JCM 4219T were lower than 70 %, the cut-off level for assigning strains to the same species. On the basis of these phenotypic and genotypic characteristics, the strain could be distinguished from closely related species of the genus Streptomyces and thus represents a novel species of the genus Streptomyces, for which the name Streptomyces phyllanthi sp. nov. is proposed. The type strain is PA1-07T (=JCM 30865T=KCTC 39785T=TISTR 2346T).
Cheng, Kun; Rong, Xiaoying; Huang, Ying
2016-09-01
Homologous recombination is increasingly being recognized as a driving force in microbial evolution. However, recombination in streptomycetes, a rich source of diverse secondary metabolites, particularly among different species, remains minimally investigated. In this study, the largest sample of Streptomyces species to date, consisting of 142 type strains spanning the genus, with available sequences of 16S rRNA, atpD, gyrB, recA, rpoB and trpB genes, were collected and subjected to a comprehensive population genetic analysis to generate an overall estimate of the level of Streptomyces interspecies genetic exchange and its effect on the evolution of this genus. The results indicate frequent homologous recombination among Streptomyces species, which occurred three times more frequently and was nearly 14 times more important than point mutation in nucleotide sequence divergence (ρ/θw=3.10, r/m=13.74). As a result, a facilitating effect on the evolutionary process and confusion in phylogenetic relationships were observed, as well as a number of specific transfer events of the six gene fragments. A resultant phylogenetic network depicted extensive horizontal genetic exchange which decays clonality in streptomycetes. Moreover, seven evolutionary lineage groups were identified in the present sample in the Structure analysis, generally consistent with morphological and physiological data, and the contribution of recombination was detected to be varied among them. Our analyses demonstrated a reticulate evolution within Streptomyces due to the high level of interspecies gene exchange, which greatly challenges the traditional tree-shaped phylogeny in this genus and may advance our evolutionary understanding of a genuine Streptomyces species. Copyright © 2016 Elsevier Inc. All rights reserved.
McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.
2016-01-01
The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034
Classification of Streptomyces Spore Surfaces into Five Groups
Dietz, Alma; Mathews, John
1971-01-01
Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607
Biosynthesis of Rishirilide B.
Schwarzer, Philipp; Wunsch-Palasis, Julia; Bechthold, Andreas; Paululat, Thomas
2018-03-07
Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13 C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.
Palaniyandi, S A; Yang, S H; Cheng, J H; Meng, L; Suh, J-W
2011-08-01
To find a suitable biocontrol agent for yam anthracnose caused by Colletotrichum gloeosporioides. An actinobacterial strain, MJM5763, showing strong antifungal activity, multiple biocontrol and plant growth-promoting traits was isolated from a yam cultivation field in Yeoju, South Korea. Based on morphological and physiological characteristics and analysis of the 16S rDNA sequence, strain MJM5763 was identified as a novel strain of Streptomyces and was designated as Streptomyces sp. MJM5763. Treatment with MJM5763 and the crude culture filtrate extract (CCFE) was effective in suppressing anthracnose in detached yam leaves in vitro and reduced incidence and severity of anthracnose in yam plants under greenhouse conditions. The CCFE treatment was the most effective of all the treatments and reduced the anthracnose severity by 85-88% and the incidence by 79-81%, 90 days after inoculation with the pathogen. CCFE treatment was also effective under field conditions and showed a reduction of 86 and 75% of anthracnose severity and incidence, respectively. Streptomyces sp. strain MJM5763 was effective in biocontrolling anthracnose in yam caused by C. gloeosporioides. Streptomyces sp. MJM5763 is a potential alternative to chemical fungicides for reducing yield losses to anthracnose in yam. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Sineli, P E; Tortella, G; Dávila Costa, J S; Benimeli, C S; Cuozzo, S A
2016-05-01
The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers.
Ningthoujam, Debananda S; Nimaichand, Salam; Ningombam, Dollyca; Tamreihao, K; Li, Li; Zhang, Yong-Guang; Cheng, Juan; Liu, Min-Jiao; Li, Wen-Jun
2013-12-01
A strain of Streptomyces, MBRL 179(T), isolated from a sample from a Limestone quarry located at Hundung, Manipur, India, was characterized by polyphasic taxonomy. The strain formed a monophyletic clade with Streptomyces spinoverrucosus NBRC 14228(T) (16S rRNA gene sequence similarity of 99.3 %) in the Neighbour-joining tree. DNA-DNA hybridization experiment gave a DNA-DNA relatedness value of 34.7 % between MBRL 179(T) and S. spinoverrucosus NBRC 14228(T). Strain MBRL 179(T) contained LL-diaminopimelic acid, xylose, glucose, and mannose in the whole cell-wall hydrolysates along with small amount of ribose. The major polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside, with other unknown phospholipids and aminophospholipid. MK-9(H6), MK-9(H8) and MK-9(H4) were the predominant menaquinones detected. The major fatty acids were anteiso-C16:0 (28.1 %), iso-C16:0 (20.3 %), C16:0 (9.4 %) and anteiso-C17:0 (8.3 %). The G+C content of the genomic DNA was 71.1 %. Based on the polyphasic experiment results, the strain MBRL 179(T) merits recognition as a representative of a novel species of the genus Streptomyces for which the name Streptomyces muensis sp. nov. is proposed; the type strain is MBRL 179(T) (=JCM 17576(T) = KCTC 29124(T)).
Streptomyces spp. in the biocatalysis toolbox.
Spasic, Jelena; Mandic, Mina; Djokic, Lidija; Nikodinovic-Runic, Jasmina
2018-04-01
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Elnahas, Marwa O; Amin, Magdy A; Hussein, Mohamed M D; Shanbhag, Vinit C; Ali, Amal E; Wall, Judy D
2017-08-24
A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS) composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR), HPLC and ¹H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH) radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe 2+ ) chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays that were colorimetric assays for NAD(P)H-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231). The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1). This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.
Masand, Meeta; Sivakala, Kunjukrishnan Kamalakshi; Menghani, Ekta; Thinesh, Thangathurai; Anandham, Rangasamy; Sharma, Gaurav; Sivakumar, Natesan; Jebakumar, Solomon R. D.; Jose, Polpass Arul
2018-01-01
Acquisition of Actinobacteria, especially Streptomyces from previously underexplored habitats and the exploration of their biosynthetic potential have gained much attention in the rejuvenated antibiotics search programs. Herein, we isolated some Streptomyces strains, from an arid region of the Great Indian Thar Desert, which possess an ability to produce novel bioactive compounds. Twenty-one morphologically distinctive strains differing in their aerial and substrate mycelium were isolated by employing a stamping method. Among them, 12 strains were identified by a two-level antimicrobial screening method, exerting antimicrobial effects against a panel of indicator strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus species. Based on their potent antimicrobial activity, four isolates were further explored by 16S rRNA gene-based identification, genetic screening, and metabolomic analysis; and it was found that these strains belong to the genus Streptomyces. The selected strains were found to have polyketide synthase and non-ribosomal peptide synthetase systems. In addition, extracellular metabolomic screening revealed that the isolates produced analogs of doxorubicinol, pyrromycin, erythromycin, and 6-13 other putative novel metabolites. These results demonstrate the significance of Streptomyces inhabiting the arid region of Thar Desert, suggesting that similar arid environments can be considered as the reservoirs of novel Streptomyces strains that could have biotechnological significance. PMID:29720968
Evaluation of the toxicity of Streptomyces aburaviensis (R9) towards various agricultural pests
USDA-ARS?s Scientific Manuscript database
The culture filtrate fraction extracted with dichloromethane from Streptomyces aburaviensis -R9 strain grown on glucose-peptone-molasses (GPM) broth was bioassayed for its effect on phytopathogenic fungi (Colletotrichum acutatum, C. fragariae, C. gloeosoprioids, Botrytis cinerea, Fusarium oxysporum,...
40 CFR 180.1120 - Streptomyces sp. strain K61; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FOOD Exemptions From Tolerances § 180.1120 Streptomyces sp. strain K61; exemption from the requirement... of a tolerance in or on all raw agricultural commodities when used as a fungicide for the treatment...
40 CFR 180.1120 - Streptomyces sp. strain K61; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FOOD Exemptions From Tolerances § 180.1120 Streptomyces sp. strain K61; exemption from the requirement... of a tolerance in or on all raw agricultural commodities when used as a fungicide for the treatment...
Abstract Aims: (1) To investigate the dustborne and airborne bacterial concentrations of three emerging moisture-related bacteria: Stenotrophomonas maltophilia, Streptomyces, and Mycobacterium. (2) To study the association between these bacteria concentrations and Environmenta...
Nguyen, uan Manh; Kim, Jaisoo
2015-10-01
This study describes a novel actinomycete, designated T113T, which was isolated from forest soil in Pyeongchang-gun, Republic of Korea, and is an aerobic, Gram-stain-positive actinobacterium that forms flexibilis chains of smooth, elliptical or short rod-shaped spores. The results of 16S rRNA sequence analysis indicated that strain T113T exhibited high levels of similarity to previously characterized species of the genus Streptomyces (98.19–98.89 %, respectively). However, the results of phylogenetic and DNA–DNA hybridization analyses confirmed that the organism represented a novel member of the genus Streptomyces. Furthermore, using chemotaxonomic and phenotypic analyses it was demonstrated that the strain exhibited characteristics similar to those of other members of the genus Streptomyces. The primary cellular fatty acids expressed by this strain included anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0. While diphosphatidylglycerol and phosphatidylethanolamine were the predominant lipids expressed by strain T113T, moderate amounts of phosphatidylinositol and phosphatidylinositol mannoside were also detected. Whole-cell hydrolysates contained glucose and ribose, and the predominant menaquinone detected was MK-9 (H6); however, moderate amounts of MK-9 (H8) and trace amounts of MK-10 (H2) and MK-10 (H4) were also detected. We therefore propose that strain T113T be considered as representing a novel species of the genus Streptomyces and propose the name Streptomyces gilvifuscus sp. nov. for this species, with strain T113T ( = KEMB 9005-213T = KACC 18248T = NBRC 110904T) being the type strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Book, Adam J.; Lewin, Gina R.; McDonald, Bradon R.
In this study, the evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil andmore » symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.« less
Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W
2018-02-20
The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.
Book, Adam J.; Lewin, Gina R.; McDonald, Bradon R.; ...
2016-06-08
In this study, the evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil andmore » symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.« less
Pinheiro, Guilherme L; de Azevedo-Martins, Allan C; Albano, Rodolpho M; de Souza, Wanderley; Frases, Susana
2017-01-01
The giant snail Achatina fulica is considered an invasive species in most territories in which it was introduced, due to its ability to process a large amount of lignocellulose as a consequence of the presence of a cellulolytic-associated microflora. Streptomyces are well known as crucial agents in the decomposition of complex polymers in soil environments and also as cellulolytic symbionts commonly associated with herbivore insects. Here, we employed a combination of genomic and biochemical tools for a detailed evaluation of the cellulolytic potential of Streptomyces sp. I1.2, an aerobic bacterium isolated from the intestinal lumen of A. fulica in a screening for cellulolytic bacteria. Genomic analysis revealed that the ratio and diversity of CAZy domains and GH families coded by Streptomyces sp. I1.2 are comparable to those present in other highly cellulolytic bacteria. After growth on crystalline cellulose or sugarcane bagasse as sole carbon sources, the functionality of several genes encoding endoglucanases, cellobiohydrolases, xylanases, CBMs, and one β-glucosidase were confirmed by the combination of enzymatic activity measurements, zymography, TLC, and cellulose-binding assays. The endoglucanases secreted by this isolate were stable at 50 °C and exhibited activity over a broad pH range between 4.0 and 8.0. The endoglucanases and cellobiohydrolases secreted by Streptomyces sp. I1.2 exhibited specific activities that were similar to the levels present in a commercial cellulase preparation from Trichoderma reesei, while I1.2 xylanase levels were even 350 % higher. The results presented here show that Streptomyces sp. I1.2 is promising for future biotechnological applications, since it is able to produce endoglucanases, cellobiohydrolases, and xylanases in appreciable amounts when grown on a low-cost residue such as sugarcane bagasse.
Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest.
Zainal, Nurullhudda; Ser, Hooi-Leng; Yin, Wai-Fong; Tee, Kok-Keng; Lee, Learn-Han; Chan, Kok-Gan
2016-03-01
A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)).
Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor.
Zhi, Yan; Wu, Qun; Du, Hai; Xu, Yan
2016-08-16
Streptomyces spp. producing geosmin have been regarded as the most frequent and serious microbial contamination causing earthy off-flavor in Chinese liquor. It is therefore necessary to control the Streptomyces community during liquor fermentation. Biological control, using the native microbiota present in liquor making, appears to be a better solution than chemical methods. The objective of this study was to isolate native microbiota antagonistic toward Streptomyces spp. and then to evaluate the possible action mode of the antagonists. Fourteen Bacillus strains isolated from different Daqu (the fermentation starter) showed antagonistic activity against Streptomyces sampsonii, which is one of the dominant geosmin producers. Bacillus subtilis 2-16 and Bacillus amyloliquefaciens 1-45 from Maotai Daqu significantly inhibited the growth of S. sampsonii by 57.8% and 84.3% respectively, and effectively prevented the geosmin production in the simulated fermentation experiments (inoculation ratio 1:1). To probe the biocontrol mode, the ability of strain 2-16 and 1-45 to produce antimicrobial metabolites and to reduce geosmin in the fermentation system was investigated. Antimicrobial substances were identified as lipopeptides by ultra-performance liquid chromatography tandem electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI/Q-TOF MS) and in vitro antibiotic assay. In addition, strains 2-16 and 1-45 were able to remove 45% and 15% of the geosmin respectively in the simulated solid-state fermentation. This study highlighted the potential of biocontrol, and how the use of native Bacillus species in Daqu could provide an eco-friendly method to prevent growth of Streptomyces spp. and geosmin contamination in Chinese liquor fermentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Hong-Fei; Li, Qiu-Li; Xiao, Min; Zhang, Yong-Guang; Zhou, Xing-Kui; Narsing Rao, Manik Prabhu; Duan, Yan-Qing; Li, Wen-Jun
2017-01-01
A novel endophytic actinobacterial strain, designated EGI 6500195T, was isolated from fruits of Capparis spinosa. Growth occurred at 10-45 °C (optimum 30 °C), at pH 6-8 (optimum pH 7) and in the presence of 0-1 % (w/v) NaCl. Strain EGI 6500195T shared highest 16S rRNA gene sequence similarity (97.74 %) with Streptomyces vitaminophilus DSM 41686T and less than 97 % sequence similarity with other members of the genus Streptomyces. The diagnostic amino acid in the peptidoglycan was ll-diaminopimelic acid. Whole-cell hydrolysates contained glucose, ribose, fructose and mannose. The predominant menaquinones were MK-9(H6) and MK-9(H8). The polar lipid profile of strain EGI 6500195T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol, phosphatidylcholine, three unknown phospholipids, an unknown aminophospholipid and an unknown aminolipid. The cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 1ω9c, summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B) and iso-C17 : 1ω9c. The DNA G+C content of strain EGI 6500195T was 74.1 mol%. The level of DNA-DNA relatedness between strain EGI 6500195T and Streptomyces. vitaminophilus DSM 41686T was 14.1±3.5 %. On the basis of the phenotypic, phylogenetic, chemotaxonomic and DNA-DNA hybridization data, strain EGI 6500195T represents a novel species of the genus Streptomyces, for which the name Streptomyces capparidis sp. nov. is proposed. The type strain is EGI 6500195T (=DSM 42145T=JCM 30089T).
Streptomyces cerasinus sp. nov., isolated from soil in Thailand.
Kanchanasin, Pawina; Moonmangmee, Duangtip; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn
2017-10-01
A novel actinomycete, strain SR3-134 T , belonging to the genus Streptomyces, was isolated from soil collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized by using a polyphasic approach. ll-Diaminopimelic acid, glucose, mannose and ribose were detected in its whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. The menaquinones were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2). The predominant cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0, C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C14 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. blast analysis of the almost-complete 16S rRNA gene showed 98.7 % sequence similarities to Streptomyces lanatus JCM 4588 T and Streptomyces psammoticus JCM 4434 T . The DNA G+C content was 71.4 mol%. Strain SR3-134 T showed low DNA-DNA relatedness (12.9±4.0-44.1±1.0 %) to S. lanatus JCM 4588 T and S. psammoticus JCM 4434 T . The new strain could also be distinguished from its closely related strains by differences in their phenotypic characteristics. The results of taxonomic analysis suggested that strain SR3-134 T represented a novel species of the genus Streptomyces for which the name Streptomyces cerasinus sp. nov. is proposed. The type strain is SR3-134 T (=TISTR 2494 T =KCTC 39910 T ).
Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan.
Amin, Arshia; Ahmed, Iftikhar; Khalid, Nauman; Osman, Ghenijan; Khan, Inam Ullah; Xiao, Min; Li, Wen-Jun
2017-01-01
A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331 T , was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331 T belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160 T with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297 T with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331 T with S. brevispora KACC 21093 T and S. drosdowiczii CBMAI 0498 T were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H 8 ) as the predominant menaquinone. Major polar lipids detected in NCCP-1331 T were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C 16: 0 , summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C 15:0 and C 16:0 . The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331 T represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331 T (=KCTC 39537 T = CPCC 204147 T ).
Salla, Tamiris D; Astarita, Leandro V; Santarém, Eliane R
2016-04-01
Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.
Genetic Approach for the Fast Discovery of Phenazine Producing Bacteria
Schneemann, Imke; Wiese, Jutta; Kunz, Anna Lena; Imhoff, Johannes F.
2011-01-01
A fast and efficient approach was established to identify bacteria possessing the potential to biosynthesize phenazines, which are of special interest regarding their antimicrobial activities. Sequences of phzE genes, which are part of the phenazine biosynthetic pathway, were used to design one universal primer system and to analyze the ability of bacteria to produce phenazine. Diverse bacteria from different marine habitats and belonging to six major phylogenetic lines were investigated. Bacteria exhibiting phzE gene fragments affiliated to Firmicutes, Alpha- and Gammaproteobacteria, and Actinobacteria. Thus, these are the first primers for amplifying gene fragments from Firmicutes and Alphaproteobacteria. The genetic potential for phenazine production was shown for four type strains belonging to the genera Streptomyces and Pseudomonas as well as for 13 environmental isolates from marine habitats. For the first time, the genetic ability of phenazine biosynthesis was verified by analyzing the metabolite pattern of all PCR-positive strains via HPLC-UV/MS. Phenazine production was demonstrated for the type strains known to produce endophenazines, 2-hydroxy-phenazine, phenazine-1-carboxylic acid, phenazine-1,6-dicarboxylic acid, and chlororaphin as well as for members of marine Actinobacteria. Interestingly, a number of unidentified phenazines possibly represent new phenazine structures. PMID:21673888
21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.
Code of Federal Regulations, 2014 CFR
2014-04-01
... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations. Administer...
21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.
Code of Federal Regulations, 2013 CFR
2013-04-01
... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations. Administer...
21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.
Code of Federal Regulations, 2012 CFR
2012-04-01
... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations. Administer...
L-Asparaginase Production by Streptomyces griseus
DeJong, Peter J.
1972-01-01
Streptomyces griseus ATCC 10137 synthesizes about 1 IU of L-asparaginase/100 ml of a 4% peptone medium. The enzyme has a pH optimum of 8.5 which is comparable to that of the L-asparaginase derived from Escherichia coli which has antitumor properties. PMID:4626231
Field efficacy of nonpathogenic Streptomyces species against potato common scab
USDA-ARS?s Scientific Manuscript database
Reports of potato fields suppressive to common scab (CS) and of association of non-pathogenic streptomycetes with CS resistance suggest that non-pathogenic strains have potential to control or modulate CS disease. Biocontrol potential of non-pathogenic Streptomyces was examined in field experiments ...
Chen, Shawn; Kinney, William A; Van Lanen, Steven
2017-04-01
Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.
Tran, Alan; Tang, Angelina; O'Loughlin, Colleen T; Jimenez, Vanessa; Pyle, Jacqueline; Tsujimoto, Bryan; Wellbrook, Christopher; Vargas, Christopher; Duong, Alex; Ali, Nebat; Matthews, Sarah Y; Levinson, Samantha; Woldemariam, Sarah; Khuri, Sami; Bremer, Martina; Eggers, Daryl K; L'Etoile, Noelle
2017-01-01
Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey. PMID:28873053
Stuttard, C
1983-01-01
A lysate of the generalized transducing phage SV1, grown on the prototrophic type strain 10712 of Streptomyces venezuelae, was mutagenized with hydroxylamine and used to transduce a lysineless auxotroph to lysine independence on supplemented minimal agar. A complex threonine mutant, strain VS95, was isolated from among the transductants and was shown to be carrying at least two different thr mutations. These were about 50% cotransducible with alleles of four independently isolated lysA mutations, as were two other independently isolated threonine mutations, thr-1 and hom-5. The location of thr genes close to lysA occurs in at least three other streptomycetes, but apparently not in Streptomyces coelicolor A3(2), in which the lysA and thr loci are at diametrically opposite locations on the linkage map. This first observation of cotransduction between loci governing the biosynthesis of different amino acids in the genus Streptomyces demonstrates the feasibility of fine-structure genetic analysis by transduction in these antibiotic-producing bacteria. PMID:6411685
Niu, Siwen; Li, Sumei; Tian, Xinpeng; Hu, Tao; Ju, Jianhua; Ynag, Xiaohong; Zhang, Si; Zhang, Changsheng
2011-07-01
Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-O-demethylgeldanamycin (1), lebstatin (2), 17-O-demethyllebstatin (3), nigericin (4), nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data (1H, 13C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.
Laser Capture Microdissection of Feline Streptomyces spp Pyogranulomatous Dermatitis and Cellulitis.
Traslavina, R P; Reilly, C M; Vasireddy, R; Samitz, E M; Stepnik, C T; Outerbridge, C; Affolter, V K; Byrne, B A; Lowenstine, L J; White, S D; Murphy, B
2015-11-01
Suspected Streptomyces spp infections were identified in 4 cats at UC Davis Veterinary Medical Teaching Hospital between 1982 and 2011. Three had ulcerated, dark red mycetomas involving the dermis, subcutis, and fascia with fistulous tracts and/or regional lymphadenopathy. One cat had pyogranulomatous mesenteric lymphadenitis. Granulomatous inflammation in all cats contained colonies of Gram-positive, non-acid-fast organisms. All 4 cats failed to respond to aggressive medical and surgical treatment and were euthanized. Laser capture microdissection (LCM) was used to selectively harvest DNA from the affected formalin-fixed, paraffin-embedded (FFPE) tissues. Cloned amplicons from LCM-derived tissue confirmed the presence of Streptomyces spp in the dermatitis cases. Amplicons from the remaining cat with peritoneal involvement aligned with the 16S ribosomal RNA gene for Actinomycetales. Usually considered a contaminant, Streptomyces spp can be associated with refractory pyogranulomatous dermatitis and cellulitis in cats with outdoor access. LCM is useful in the diagnosis of bacterial diseases where contamination may be an issue. © The Author(s) 2014.
Growth-rate periodicity of Streptomyces levoris during space flight
NASA Technical Reports Server (NTRS)
Rogers, T. D.; Brower, M. E.; Taylor, G. R.
1977-01-01
Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.
Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces
McDonald, Bradon R.
2017-01-01
ABSTRACT Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces. Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. PMID:28588130
Recent advances in understanding Streptomyces
Chater, Keith F.
2016-01-01
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms. PMID:27990276
Gongerowska, Martyna; Gutkowski, Paweł; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara
2016-01-01
ABSTRACT Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA. We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer. IMPORTANCE We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites. PMID:27551021
A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1.
Fayed, Bahgat; Younger, Ellen; Taylor, Gabrielle; Smith, Margaret C M
2014-05-30
Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp. We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1. pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics.
Ju, Kou-San; Zhang, Xiafei; Elliot, Marie A
2018-01-15
Streptomyces has an extensive natural product repertoire, including most of the naturally derived antibiotics. Understanding the control of natural product biosynthesis is central to antibiotic discovery and production optimization. Here, Hou et al. (J. Bacteriol. 200:00447-17, 2018, https://doi.org/10.1128/JB.00447-17) report the identification and characterization of a novel regulator-LmbU-that functions primarily as an activator of lincomycin production in Streptomyces lincolnensis Importantly, members of this new regulator family are associated with natural product biosynthetic clusters throughout the streptomycetes and their actinomycete relatives. Copyright © 2017 American Society for Microbiology.
Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca
Bruns, Hilke; Riclea, Ramona
2011-01-01
Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549
Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255
Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya
2016-01-01
Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%. PMID:27257211
Colonization of wild potato plants by Streptomyces scabies
USDA-ARS?s Scientific Manuscript database
The bacterial pathogen Streptomyces scabies produces lesions on potato tubers, reducing their marketability and profitability. M6 and 524-8 are two closely related inbred diploid lines of the wild potato species Solanum chacoense. After testing in both field and greenhouse assays, it was found that ...
Book, Adam J.; Lewin, Gina R.; McDonald, Bradon R.; Takasuka, Taichi E.; Doering, Drew T.; Adams, Aaron S.; Blodgett, Joshua A. V.; Clardy, Jon; Raffa, Kenneth F.; Fox, Brian G.
2014-01-01
Actinobacteria in the genus Streptomyces are critical players in microbial communities that decompose complex carbohydrates in the soil, and these bacteria have recently been implicated in the deconstruction of plant polysaccharides for some herbivorous insects. Despite the importance of Streptomyces to carbon cycling, the extent of their plant biomass-degrading ability remains largely unknown. In this study, we compared four strains of Streptomyces isolated from insect herbivores that attack pine trees: DpondAA-B6 (SDPB6) from the mountain pine beetle, SPB74 from the southern pine beetle, and SirexAA-E (SACTE) and SirexAA-G from the woodwasp, Sirex noctilio. Biochemical analysis of secreted enzymes demonstrated that only two of these strains, SACTE and SDPB6, were efficient at degrading plant biomass. Genomic analyses indicated that SACTE and SDPB6 are closely related and that they share similar compositions of carbohydrate-active enzymes. Genome-wide proteomic and transcriptomic analyses revealed that the major exocellulases (GH6 and GH48), lytic polysaccharide monooxygenases (AA10), and mannanases (GH5) were conserved and secreted by both organisms, while the secreted endocellulases (GH5 and GH9 versus GH9 and GH12) were from diverged enzyme families. Together, these data identify two phylogenetically related insect-associated Streptomyces strains with high biomass-degrading activity and characterize key enzymatic similarities and differences used by these organisms to deconstruct plant biomass. PMID:24837391
Palaniyandi, S A; Yang, S H; Suh, J-W
2013-07-01
To study the antifungal mechanism of proteases from Streptomyces phaeopurpureus strain ExPro138 towards Colletotrichum coccodes and to evaluate its utilization as biofungicide. We screened proteolytic Streptomyces strains from the yam rhizosphere with antifungal activity. Forty proteolytic Streptomyces were isolated, among which eleven isolates showed gelatinolytic activity and antagonistic activity on C. coccodes. Of the 11 isolates, protease preparation from an isolate designated ExPro138 showed antifungal activity. 16S rDNA sequence analysis of the strain showed 99% similarity with Streptomyces phaeopurepureus (EU841588.1). Zymography analysis of the ExPro138 culture filtrate revealed that the strain produced several extracellular proteases. The protease preparation inhibited spore germination, spore adhesion to polystyrene surface and appressorium formation. Microscopic study of the interaction between ExPro138 and C. coccodes revealed that ExPro138 was mycoparasitic on C. coccodes. The protease preparation also reduced anthracnose incidence on tomato fruits compared with untreated control. This study demonstrates possibility of utilizing antifungal proteases derived from antagonistic microbes as biofungicide. Microbial proteases having the ability to inhibit spore adhesion and appressorium formation could be used to suppress infection establishment by foliar fungal pathogens at the initial stages of the infection process. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
Naine, S Jemimah; Devi, C Subathra
2014-01-01
The aim of the present study was to assess the larvicidal and repellent properties of marine Streptomyces sp. VITJS4 crude extracts. The marine soil samples were collected from the Puducherry coast, Tamil Nadu, India. The isolate Streptomyces sp. VITJS4 was taxonomically characterized and identified. The ethyl acetate crude extract tested for larvicidal property showed 100% mortality for all the 3 species after 24 h exposure against the early fourth instar larvae of malarial vector--Anopheles stephensi at 50% and 90% lethal concentration (LC50 = 132.86, LC90 396.14 ppm); dengue vector--Aedes aegypti (LC50 = 112.78, LC90 336.42 ppm) and filariasis vector--Culex quinquefasciatus (LC50 = 156.53, LC90 468.37 ppm). The Streptomyces sp. VITJS4 solvent extracts of hexane, ethyl acetate, benzene, chloroform and methanol were tested for repellent activity against A. stephensi, A. aegypti and C. quinquefasciatus. The ethyl acetate extract showed complete protection for 210 min at 6 mg/cm2 against these mosquito bites. The crude extract was analyzed further for Fourier Transform-infrared spectroscopy (FT-IR) analysis. In addition to the importance of bioactive compounds, the utilization of Streptomyces sp. VITJS4 crude extracts revealed effective larvicidal and repellent activity against the vectors, which perhaps represents a promising tool in the management of mosquito control.
2012-01-01
Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578
Lamp, Jessica; Weber, Maren; Cingöz, Gökhan; Ortiz de Orué Lucana, Darío; Schrempf, Hildgund
2013-05-01
We have identified, cloned and characterized a formerly unknown protein from Streptomyces lividans spores. The deduced protein belongs to a novel member of the metallophosphatase superfamily and contains a phosphatase domain and predicted binding sites for divalent ions. Very close relatives are encoded in the genomic DNA of many different Streptomyces species. As the deduced related homologues diverge from other known phosphatase types, we named the protein MptS (metallophosphatase type from Streptomyces). Comparative physiological and biochemical investigations and analyses by fluorescence microscopy of the progenitor strain, designed mutants carrying either a disruption of the mptS gene or the reintroduced gene as fusion with histidine codons or the egfp gene led to the following results: (i) the mptS gene is transcribed in the course of aerial mycelia formation. (ii) The MptS protein is produced during the late stages of growth, (iii) accumulates within spores, (iv) functions as an active enzyme that releases inorganic phosphate from an artificial model substrate, (v) is required for spore dormancy and (vi) MptS supports the interaction amongst Streptomyces lividans spores with conidia of the fungus Aspergillus proliferans. We discuss the possible role(s) of MptS-dependent enzymatic activity and the implications for spore biology. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Biosynthetic Genes for the Tetrodecamycin Antibiotics
Gverzdys, Tomas
2016-01-01
ABSTRACT We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s). IMPORTANCE The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules. PMID:27137499
Martín, Juan F; Rodríguez-García, Antonio; Liras, Paloma
2017-05-01
Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.
Gacesa, Ranko; Taketani, Rodrigo Gouvêa; Long, Paul F.; Melo, Itamar Soares
2015-01-01
The genome sequence of the first Streptomyces species isolated from the Brazilian Caatinga is reported here. Genes related to environmental stress tolerance were prevalent and included many secondary metabolic gene clusters. PMID:26358601
A collagenolytic streptomycete.
Mukhopadhyay, R P; Chandra, A L
1996-11-01
A soil streptomycete (Streptomyces sp. A11) degraded collagen isolated from bovine Achilles tendon, calf skin, human placenta, carp swim bladder and rat tail tendon and released appreciable quantities of hydroxyproline. It also degraded hide powder and vegetable tanned leather. The organism was taxonomically characterized, compared with allied species, identified and designated as Streptomyces wartii.
Cell division is dispensable but not irrelevant in Streptomyces.
McCormick, Joseph R
2009-12-01
In part, members of the genus Streptomyces have been studied because they produce many important secondary metabolites with antibiotic activity and for the interest in their relatively elaborate life cycle. These sporulating filamentous bacteria are remarkably synchronous for division and genome segregation in specialized aerial hyphae. Streptomycetes share some, but not all, of the division genes identified in the historic model rod-shaped organisms. Curiously, normally essential cell division genes are dispensable for growth and viability of Streptomyces coelicolor. Mainly, cell division plays a more important role in the developmental phase of life than during vegetative growth. Dispensability provides an advantageous genetic system to probe the mechanisms of division proteins, especially those with functions that are poorly understood.
Uraji, Misugi; Kimura, Masayo; Inoue, Yosikazu; Kawakami, Kayoko; Kumagai, Yuya; Harazono, Koichi; Hatanaka, Tadashi
2013-11-01
Ferulic acid (FA), which is present in the cell walls of some plants, is best known for its antioxidant property. By combining a commercial enzyme that shows FA esterase activity with several Streptomyces carbohydrate-hydrolyzing enzymes, we succeeded in enhancing the enzymatic production of FA from defatted rice bran. In particular, the combination of three xylanases, an α-L-arabinofuranosidase, and an acetyl xylan esterase from Streptomyces spp. produced the highest increase in the amount of released FAs among all the enzymes in the Streptomyces enzymes library. This enzyme combination also had an effect on FA production from other biomasses, such as raw rice bran, wheat bran, and corncob.
Becerril, Adriana; Álvarez, Susana; Braña, Alfredo F; Rico, Sergio; Díaz, Margarita; Santamaría, Ramón I; Salas, José A; Méndez, Carmen
2018-01-01
Sequencing of Streptomyces genomes has revealed they harbor a high number of biosynthesis gene cluster (BGC), which uncovered their enormous potentiality to encode specialized metabolites. However, these metabolites are not usually produced under standard laboratory conditions. In this manuscript we report the activation of BGCs for antimycins, carotenoids, germicidins and desferrioxamine compounds in Streptomyces argillaceus, and the identification of the encoded compounds. This was achieved by following different strategies, including changing the growth conditions, heterologous expression of the cluster and inactivating the adpAa or overexpressing the abrC3 global regulatory genes. In addition, three new carotenoid compounds have been identified.
Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism.
Horn, Hannes; Hentschel, Ute; Abdelmohsen, Usama Ramadan
2015-10-01
Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes. Copyright © 2015 Horn et al.
Draft Genome Sequence of Streptomyces specialis Type Strain GW41-1564 (DSM 41924).
Loucif, Lotfi; Michelle, Caroline; Terras, Jérôme; Rolain, Jean-Marc; Raoult, Didier; Fournier, Pierre-Edouard
2017-03-30
Here, we report the draft genome sequence of Streptomyces specialis type strain GW41-1564, which was isolated from soil. This 5.87-Mb genome exhibits a high G+C content of 72.72% and contains 5,486 protein-coding genes. Copyright © 2017 Loucif et al.
Santos, Suikinai Nobre; Gacesa, Ranko; Taketani, Rodrigo Gouvêa; Long, Paul F; Melo, Itamar Soares
2015-09-10
The genome sequence of the first Streptomyces species isolated from the Brazilian Caatinga is reported here. Genes related to environmental stress tolerance were prevalent and included many secondary metabolic gene clusters. Copyright © 2015 Santos et al.
Stawamycin analog, JBIR-11 from Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830.
Izumikawa, Miho; Komaki, Hisayuki; Hashimoto, Junko; Takagi, Motoki; Shin-ya, Kazuo
2008-05-01
A stawamycin analog, JBIR-11 (1) was isolated from mycelium of Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830. The structure was determined on the basis of the spectroscopic data. Compound 1 exhibited growth inhibitory effect against human fibrosarcoma HT1080 cells with an IC50 value of 25 microM.
First report of Streptomyces stelliscabiei causing potato common scab in Michigan
USDA-ARS?s Scientific Manuscript database
Streptomyces scabies has been reported as the predominant cause of potato scab in Michigan. In a 2007 survey of common scab in Michigan, however, isolates were collected from a field that did not fit the description for S. scabies. Tests using species-specific PCR primers indicated isolates were S. ...
USDA-ARS?s Scientific Manuscript database
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...
Lee, Keyong Ho; Kim, Kye-Woong; Rhee, Ki-Hyeong
2010-12-01
The Actinomycete strain KH29 is antagonistic to the multidrug-resistant Acinetobacter baumannii. Based on the diaminopimelic acid (DAP) type, and the morphological and physiological characteristics observed through the use of scanning electron microscopy (SEM), KH29 was confirmed as belonging to the genus Streptomyces. By way of its noted 16S rDNA nucleotide sequences, KH29 was found to have a relationship with Streptomyces cinnamonensis. The production of an antibiotic from this strain was found to be most favorable when cultured with glucose, polypeptone, and yeast extract (PY) medium for 6 days at 27 degrees C. The antibiotic produced was identified, through comparisons with reported spectral data including MS and NMR as a cyclo(L-tryptophanyl-L-tryptophanyl). Cyclo(L-Trp-L-Trp), from the PY cultures of KH29, was seen to be highly effective against 41 of 49 multidrugresistant Acinetobacter baumannii. Furthermore, cyclo(LTrp- L-Trp) had antimicrobial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Saccharomyces cerevisiae, Aspergillus niger, and Candida albicans, However, it was ineffective against Streptomyces murinus.
Discovery of Alternative Producers of the Enediyne Antitumor Antibiotic C-1027 with High Titers.
Yan, Xiaohui; Hindra; Ge, Huiming; Yang, Dong; Huang, Tingting; Crnovcic, Ivana; Chang, Chin-Yuan; Fang, Shi-Ming; Annaval, Thibault; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Duan, Yanwen; Shen, Ben
2018-03-23
The potent cytotoxicity and unique mode of action make the enediyne antitumor antibiotic C-1027 an exquisite drug candidate for anticancer chemotherapy. However, clinical development of C-1027 has been hampered by its low titer from the original producer Streptomyces globisporus C-1027. Here we report three new C-1027 alternative producers, Streptomyces sp. CB00657, CB02329, and CB03608, from The Scripps Research Institute actinomycetes strain collection. Together with the previously disclosed Streptomyces sp. CB02366 strain, four C-1027 alternative producers with C-1027 titers of up to 11-fold higher than the original producer have been discovered. The five C-1027 producers, isolated from distant geographic locations, are distinct Streptomyces strains based on morphology and taxonomy. Pulsed-field gel electrophoresis and Southern analysis of the five C-1027 producers reveal that their C-1027 biosynthetic gene clusters (BGCs) are all located on giant plasmids of varying sizes. The high nucleotide sequence similarity among the five C-1027 BGCs implies that they most likely have evolved from a common ancestor.
Arias, Anthony Argüelles; Lambert, Stéphany; Martinet, Loïc; Adam, Delphine; Tenconi, Elodie; Hayette, Marie-Pierre; Ongena, Marc; Rigali, Sébastien
2015-07-01
Due to the necessity of iron for housekeeping functions, nutrition, morphogenesis and secondary metabolite production, siderophore piracy could be a key strategy in soil and substrate colonization by microorganisms. Here we report that mutants of bacterium Streptomyces coelicolor unable to produce desferrioxamine siderophores could recover growth when the plates were contaminated by indoor air spores of a Penicillium species and Engyodontium album. UPLC-ESI-MS analysis revealed that the HPLC fractions with the extracellular 'resuscitation' factors of the Penicillium isolate were only those that contained siderophores, i.e. Fe-dimerum acid, ferrichrome, fusarinine C and coprogen. The restored growth of the Streptomyces mutants devoid of desferrioxamine is most likely mediated through xenosiderophore uptake as the cultivability depends on the gene encoding the ABC-transporter-associated DesE siderophore-binding protein. That a filamentous fungus allows the growth of desferrioxamine non-producing Streptomyces in cocultures confirms that xenosiderophore piracy plays a vital role in nutritional interactions between these taxonomically unrelated filamentous microorganisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rekik, Hatem; Nadia, Zaraî Jaouadi; Bejar, Wacim; Kourdali, Sidali; Belhoul, Mouna; Hmidi, Maher; Benkiar, Amina; Badis, Abdelmalek; Sallem, Naim; Bejar, Samir; Jaouadi, Bassem
2015-02-01
A novel extracellular lignin peroxidase (called LiP-SN) was produced and purified from a newly isolated Streptomyces griseosporeus strain SN9. The findings revealed that the pure enzyme was a monomeric protein with an estimated molecular mass of 43 kDa and a Reinheitzahl value of 1.63. The 19 N-terminal residue sequence of LiP-SN showed high homology with those of Streptomyces peroxidases. Its optimum pH and temperature were pH 8.5 and 65 °C, respectively. The enzyme was inhibited by sodium azide and potassium cyanide, suggesting the presence of heme components in its tertiary structure. Its catalytic efficiency was higher than that of the peroxidase from Streptomyces albidoflavus strain TN644. Interestingly, LiP-SN showed marked dye-decolorization efficiency and stability toward denaturing, oxidizing, and bleaching agents, and compatibility with EcoVax and Dipex as laundry detergents for 48 h at 40 °C. These properties make LiP-SN a potential candidate for future applications in distaining synthetic dyes and detergent formulations. Copyright © 2014 Elsevier B.V. All rights reserved.
Endophytic Streptomyces sp. AC35, a producer of bioactive isoflavone aglycones and antimycins.
Ondrejíčková, P; Šturdíková, M; Hushegyi, A; Švajdlenka, E; Markošová, K; Čertík, M
2016-09-01
In this research, a microbial endophytic strain obtained from the rhizosphere of the conifer Taxus baccata and designated as Streptomyces sp. AC35 (FJ001754.1 Streptomyces, GenBank) was investigated. High 16S rDNA gene sequence similarity suggests that this strain is closely related to S. odorifer. The major fatty acid profile of intracellular lipids was also carried out to further identify this strain. Atomic force microscopy and scanning acoustic microscopy were used to image our strain. Its major excreted substances were extracted, evaluated for antimicrobial activity, purified, and identified by ultraviolet-visible spectroscopy (UV-vis), liquid chromatography-mass spectrometry (LC-MS/MS) and nuclear magnetic resonance as the bioactive isoflavone aglycones-daidzein, glycitein and genistein. Batch cultivation, performed under different pH conditions, revealed enhanced production of antimycin components when the pH was stable at 7.0. Antimycins were detected by HPLC and identified by UV-vis and LC-MS/MS combined with the multiple reaction monitoring. Our results demonstrate that Streptomyces sp. AC35 might be used as a potential source of effective, pharmaceutically active compounds.
Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4
Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan
2013-01-01
Objective To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions The study revealed that the maximum amount of pigment could be produced to treat cancer. PMID:23905024
Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan
2013-08-01
To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7 cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. The study revealed that the maximum amount of pigment could be produced to treat cancer.
Greule, Anja; Marolt, Marija; Deubel, Denise; Peintner, Iris; Zhang, Songya; Jessen-Trefzer, Claudia; De Ford, Christian; Burschel, Sabrina; Li, Shu-Ming; Friedrich, Thorsten; Merfort, Irmgard; Lüdeke, Steffen; Bisel, Philippe; Müller, Michael; Paululat, Thomas; Bechthold, Andreas
2017-01-01
Streptomyces diastatochromogenes Tü6028 is known to produce the polyketide antibiotic polyketomycin. The deletion of the pokOIV oxygenase gene led to a non-polyketomycin-producing mutant. Instead, novel compounds were produced by the mutant, which have not been detected before in the wild type strain. Four different compounds were identified and named foxicins A–D. Foxicin A was isolated and its structure was elucidated as an unusual nitrogen-containing quinone derivative using various spectroscopic methods. Through genome mining, the foxicin biosynthetic gene cluster was identified in the draft genome sequence of S. diastatochromogenes. The cluster spans 57 kb and encodes three PKS type I modules, one NRPS module and 41 additional enzymes. A foxBII gene-inactivated mutant of S. diastatochromogenes Tü6028 ΔpokOIV is unable to produce foxicins. Homologous fox biosynthetic gene clusters were found in more than 20 additional Streptomyces strains, overall in about 2.6% of all sequenced Streptomyces genomes. However, the production of foxicin-like compounds in these strains has never been described indicating that the clusters are expressed at a very low level or are silent under fermentation conditions. Foxicin A acts as a siderophore through interacting with ferric ions. Furthermore, it is a weak inhibitor of the Escherichia coli aerobic respiratory chain and shows moderate antibiotic activity. The wide distribution of the cluster and the various properties of the compound indicate a major role of foxicins in Streptomyces strains. PMID:28270798
Biosynthetic Genes for the Tetrodecamycin Antibiotics.
Gverzdys, Tomas; Nodwell, Justin R
2016-07-15
We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s). The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ren, Xi-Dong; Chen, Xu-Sheng; Zeng, Xin; Wang, Liang; Tang, Lei; Mao, Zhong-Gui
2015-06-01
ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces.
Becklund, Kristen; Powers, Jennifer; Kinkel, Linda
2016-11-01
Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.
Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit
2014-01-01
Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study we used a culture-independent method, PCR denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold based on mold specific quantitative PCR-analysis were used in the study. Taxonomic identification of prominent bands was performed by cloning and sequencing. Associations between DGGE amplicon band intensities and home mold status were assessed using univariate analyses, as well as multivariate recursive partitioning (decision trees) to test the predictive value of combinations of bands intensities. In the final classification tree, a combination of two bands was significantly associated with mold status of the home (p = 0.001). The sequence corresponding to one of the bands in the final decision tree matched a group of Streptomyces species that included S. coelicolor and S. sampsonii, both of which have been isolated from moisture-damaged buildings previously. The closest match for the majority of sequences corresponding to a second band consisted of a group of Streptomyces species that included S. hygroscopicus, an important producer of antibiotics and immunosuppressors. Taken together, the study showed that DGGE can be a useful tool for identifying bacterial species that may be more prevalent in mold-damaged buildings. PMID:25331035
El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A.M.; Saber, Wesam I.A.; Mohamed, Asem A.
2014-01-01
The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application. PMID:25242966
Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil.
Ser, Hooi-Leng; Zainal, Nurullhudda; Palanisamy, Uma Devi; Goh, Bey-Hing; Yin, Wai-Fong; Chan, Kok-Gan; Lee, Learn-Han
2015-06-01
A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)).
Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.
McDonald, Bradon R; Currie, Cameron R
2017-06-06
Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces , with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new insight into the evolutionary history of life on Earth, as the vast majority of this history is microbial. Copyright © 2017 McDonald and Currie.
Liu, Song; Wang, Miao; Du, Guocheng; Chen, Jian
2016-10-28
Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from -693 to -48. We also identified a negative element (-198 to -148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.
2012-01-01
Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins. PMID:23134842
Cell-Biological Studies of Osmotic Shock Response in Streptomyces spp.
Fuchino, Katsuya; Flärdh, Klas; Dyson, Paul; Ausmees, Nora
2017-01-01
Most bacteria are likely to face osmotic challenges, but there is yet much to learn about how such environmental changes affect the architecture of bacterial cells. Here, we report a cell-biological study in model organisms of the genus Streptomyces, which are actinobacteria that grow in a highly polarized fashion to form branching hyphae. The characteristic apical growth of Streptomyces hyphae is orchestrated by protein assemblies, called polarisomes, which contain coiled-coil proteins DivIVA and Scy, and recruit cell wall synthesis complexes and the stress-bearing cytoskeleton of FilP to the tip regions of the hyphae. We monitored cell growth and cell-architectural changes by time-lapse microscopy in osmotic upshift experiments. Hyperosmotic shock caused arrest of growth, loss of turgor, and hypercondensation of chromosomes. The recovery period was protracted, presumably due to the dehydrated state of the cytoplasm, before hyphae could restore their turgor and start to grow again. In most hyphae, this regrowth did not take place at the original hyphal tips. Instead, cell polarity was reprogrammed, and polarisomes were redistributed to new sites, leading to the emergence of multiple lateral branches from which growth occurred. Factors known to regulate the branching pattern of Streptomyces hyphae, such as the serine/threonine kinase AfsK and Scy, were not involved in reprogramming of cell polarity, indicating that different mechanisms may act under different environmental conditions to control hyphal branching. Our observations of hyphal morphology during the stress response indicate that turgor and sufficient hydration of cytoplasm are required for Streptomyces tip growth. Polar growth is an intricate manner of growth for accomplishing a complicated morphology, employed by a wide range of organisms across the kingdoms of life. The tip extension of Streptomyces hyphae is one of the most pronounced examples of polar growth among bacteria. The expansion of the cell wall by tip extension is thought to be facilitated by the turgor pressure, but it was unknown how external osmotic change influences Streptomyces tip growth. We report here that severe hyperosmotic stress causes cessation of growth, followed by reprogramming of cell polarity and rearrangement of growth zones to promote lateral hyphal branching. This phenomenon may represent a strategy of hyphal organisms to avoid osmotic stress encountered by the growing hyphal tip. Copyright © 2016 American Society for Microbiology.
Mahan, Kristina M.; Klingeman, Dawn Marie; Robert L. Hettich; ...
2016-01-21
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. In addition, the 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content.
Klingeman, Dawn M.; Hettich, Robert L.; Parry, Ronald J.
2016-01-01
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. The 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content. PMID:26798098
Badalamenti, Jonathan P; Erickson, Joshua D; Salomon, Christine E
2016-04-14
We sequenced and annotated the complete 7,170,504-bp genome of a novel secondary metabolite-producingStreptomycesstrain,Streptomyces albusSM254, isolated from copper-rich subsurface fluids at ~220-m depth within the Soudan Iron Mine (Soudan, MN, USA). Copyright © 2016 Badalamenti et al.
Barbe, Valérie; Bouzon, Madeleine; Mangenot, Sophie; Badet, Bernard; Poulain, Julie; Segurens, Béatrice; Vallenet, David; Marlière, Philippe; Weissenbach, Jean
2011-01-01
Streptomyces cattleya, a producer of the antibiotics thienamycin and cephamycin C, is one of the rare bacteria known to synthesize fluorinated metabolites. The genome consists of two linear replicons. The genes involved in fluorine metabolism and in the biosynthesis of the antibiotic thienamycin were mapped on both replicons. PMID:21868806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, Kristina M.; Klingeman, Dawn Marie; Robert L. Hettich
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. In addition, the 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content.
USDA-ARS?s Scientific Manuscript database
Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...
Kamil, Fatima H.; Saeed, Esam E.; El-Tarabily, Khaled A.; AbuQamar, Synan F.
2018-01-01
Dieback caused by the fungus Lasiodiplodia theobromae is an important disease on mango plantations in the United Arab Emirates (UAE). In this study, 53 actinobacterial isolates were obtained from mango rhizosphere soil in the UAE, of which 35 (66%) were classified as streptomycetes (SA) and 18 (34%) as non-streptomycetes (NSA). Among these isolates, 19 (12 SA and 7 NSA) showed antagonistic activities against L. theobromae associated with either the production of diffusible antifungal metabolites, extracellular cell-wall-degrading enzymes (CWDEs), or both. Using a “novel” mango fruit bioassay, all isolates were screened in vivo for their abilities to reduce lesion severity on fruits inoculated with L. theobromae. Three isolates, two belonging to Streptomyces and one to Micromonospora spp., showed the strongest inhibitory effect against this pathogen in vitro and were therefore selected for tests on mango seedlings. Our results revealed that the antifungal action of S. samsunensis UAE1 was related to antibiosis, and the production of CWDEs (i.e., chitinase) and siderophores; whilst S. cavourensis UAE1 and M. tulbaghiae UAE1 were considered to be associated with antibiotic- and CWDE-production, respectively. Pre-inoculation in greenhouse experiments with the most promising actinobacterial isolates resulted in very high levels of disease protection in mango seedlings subsequently inoculated with the pathogen. This was evident by the dramatic reduction in the estimated disease severity indices of the mango dieback of individual biocontrol agent (BCA) applications compared with the pathogen alone, confirming their potential in the management of mango dieback disease. L. theobromae-infected mango seedlings treated with S. samsunensis showed significantly reduced number of defoliated leaves and conidia counts of L. theobromae by 2- and 4-fold, respectively, in comparison to the other two BCA applications. This indicates that the synergistic antifungal effects of S. samsunensis using multiple modes of action retarded the in planta invasion of L. theobromae. This is the first report of BCA effects against L. theobromae on mango seedlings by microbial antagonists. It is also the first report of actinobacteria naturally existing in the soils of the UAE or elsewhere that show the ability to suppress the mango dieback disease.
Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.
Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji
2015-10-01
A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Melo, Ricardo Rodrigues de; Persinoti, Gabriela Felix; Paixão, Douglas Antonio Alvaredo; Squina, Fábio Márcio; Ruller, Roberto; Sato, Helia Harumi
Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296bp and G+C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Streptomyces plicatus as a model biocontrol agent.
Abd-Allah, E F
2001-01-01
Three hundred and seventy two isolates belonging to the genus Streptomyces were isolated and screened for chitinase production. Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 degrees C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources. S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth of Fusarium oxysporum f.sp. lycopersici, Altrernaria alternata and Verticillium albo-atrum, the causal organisms of Fusarium wilt, stem canker and Verticillium wilt diseases of tomato. Application of S. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungi in vivo.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2016-01-01
Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of pesticide molecules, the factors/conditions that influence the survival of strains that are introduced into soil and the rate of the removal of pyrethroids are also discussed. This knowledge may be useful to optimize the environmental conditions of bioremediation and may be crucial for the effective removal of pyrethroids from polluted soils. PMID:27695449
Auffret, Marc; Pilote, Alexandre; Proulx, Emilie; Proulx, Daniel; Vandenberg, Grant; Villemur, Richard
2011-12-15
Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events. Copyright © 2011 Elsevier Ltd. All rights reserved.
Streptomyces canalis sp. nov., an actinomycete isolated from an alkali-removing canal.
Xie, Yu-Xuan; Han, Xiao-Xue; Luo, Xiao-Xia; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li
2016-08-01
A novel actinomycete strain, designated TRM 46794-61T, was isolated from an alkali-removing canal in 14th Farms of Xinjiang Production and Construction Corps, north-west China. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugar patterns of the isolate contained ribose, mannose and glucose. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified phospholipids. The predominant menaquinones were MK-9(H2), MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The G+C content of the DNA was 70.4 mol%. Phylogenetic analysis showed that strain TRM 46794-61T had a 16S rRNA gene sequence similarity of 97.6 % with the most closely related species with a validly published name, Streptomyces aidingensis TRM 46012T, and it could be distinguished from all species in the genus Streptomyces based on data from this polyphasic taxonomic study. However, DNA-DNA hybridization studies between strain TRM 46794-61T and S.aidingensis TRM 46012T showed only 45.4 % relatedness. On the basis of these data, strain TRM 46794-61T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces canalis sp. nov. is proposed. The type strain is TRM 46794-61T (=CCTCC AA 2015006T=KCTC 39568T).
Claeson, A-S; Sunesson, A-L
2005-01-01
The Streptomyces spp. form a common group of bacteria found in the indoor air of water-damaged buildings. They are known for their capability to produce compounds, like geosmin, with low odor thresholds. In this study, two strains of Streptomyces albidoflavus were cultivated on pinewood, gypsum board, particle-board, sand and tryptone glucose extract agar (TGEA). Air samples from the cultures were collected on six different adsorbents and chemosorbents to sample a wide range of compounds such as VOCs, aldehydes, amines and lightweight organic acids. The samples were analyzed with gas chromatography, high-pressure liquid chromatography and ion chromatography. Mass spectrometry was used for identification of the compounds. Metabolites were found and identified in air samples from cultures on all materials except sand. Alcohols and ketones were the dominating compound groups produced by cultures grown on pinewood and gypsum board. Few metabolites were produced on particle-board. The culture growing on TGEA produced mainly sulfur compounds and sesquiterpenes. Ammonia, methylamine, diethylamine, ethylamine and one unidentifiable amine were also found from cultivation on TGEA. The growth medium was of crucial importance to the production of potentially irritating metabolites. Microbial growth and the production of volatile metabolites is one possible explanation for building-related health problems. Streptomyces spp. are frequently found in water-damaged buildings. This study shows that Streptomyces spp. are able to produce not only odorous compounds like geosmin, but also potentially irritating compounds. This finding should be of interest in indoor air investigations.
Souagui, Y; Tritsch, D; Grosdemange-Billiard, C; Kecha, M
2015-06-01
Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification of the actinomycete strain was realized on the basis of 16S rRNA gene sequencing. Antifungal production was optimized following one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The most suitable medium for growth and antifungal production was found using one-factor-at-a-time methodology. The individual and interaction effects of three nutritional variables, carbon source (glucose), nitrogen source (yeast extract) and sodium chloride (NaCl) were optimized by Box-Behnken design. Finally, culture conditions for the antifungal production, pH and temperature were studied and determined. Analysis of the 16S rRNA gene sequence (1454 nucleotides) assigned this strain to Streptomyces genus with 99% similarity with Streptomyces cyaneofuscatus JCM4364(T), the most closely related. The results of the optimization study show that concentrations 3.476g/L of glucose, 3.876g/L of yeast extract and 41.140g/L of NaCl are responsible for the enhancement of antifungal production by Streptomyces sp. SY-BS5. The preferable culture conditions for antifungal production were pH 10, temperature 30°C for 09 days. This study proved that RSM is usual and powerful tool for the optimization of antifungal production from actinomycetes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Streptomyces cameroonensis sp. nov., a Geldanamycin Producer That Promotes Theobroma cacao Growth.
Boudjeko, Thaddée; Tchinda, Romaric Armel Mouafo; Zitouni, Mina; Nana, Joëlle Aimée Vera Tchatchou; Lerat, Sylvain; Beaulieu, Carole
2017-03-31
The taxonomy of an actinobacterial strain, designated JJY4 T , was established using a polyphasic approach. JJY4 T was isolated from the rhizosphere of Chromolaena odorata in Yaoundé (Cameroon) during a project for the selection of biological control agents. Strain JJY4 T exhibited antimicrobial activities against bacteria, fungi, and oomycetes. Strain JJY4 T also exhibited the traits of plant growth-promoting rhizobacteria such as the solubilization of inorganic phosphate, production of siderophores and indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase activity. In planta assays performed on cocoa plantlets confirmed that strain JJY4 T exhibited strong abilities to promote plant growth and protect against Phytophthora megakarya, the main causal agent of cocoa pod rot. The formation of rugose-ornamented spores in spiral spore chains by strain JJY4 T is a typical feature of members found in the Streptomyces violaceusniger clade and, similar to some members of the clade, strain JJY4 T produces geldanamycin. A phylogenetic analysis based on 16S rRNA gene sequences confirmed this classification and suggests that strain JJY4 T be added to the subclade constituted of the type strains Streptomyces malaysiensis DSM 41697 T and Streptomyces samsunensis DSM 42010 T . However, DNA-DNA relatedness and physiological characteristics allowed for the differentiation of strain JJY4 T from its closest phylogenetic relatives. Based on these results, strain JJY4 T (=NRRL B-65369, =NBRC 112705) appears to represent a novel species in the S. violaceusniger clade for which the proposed name is Streptomyces cameroonensis sp. nov.
Genome-wide inference of regulatory networks in Streptomyces coelicolor.
Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou
2010-10-18
The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.
Sakdapetsiri, Chatsuda; Fukuta, Yasuhisa; Aramsirirujiwet, Yaovapa; Shirasaka, Norifumi; Kitpreechavanich, Vichien
2016-05-01
A total of 123 actinomycetes was isolated from 12 varieties of wild orchids and screened for potential antagonistic activity against Phytophthora, which causes black rot disease in orchids. In vitro and in vivo experimental results revealed that Streptomyces sp. strain 9X166 showed the highest antagonistic activity; its β-1,3-glucanase production ability was a key mechanism for growth inhibition of the pathogen. PCR amplification and DNA sequencing of the 16S ribosomal RNA gene allowed the identification of this strain, with high similarity (99.93%) to the novel species Streptomyces similaensis. The glucanase enzyme, purified to homogeneity by anion exchange and gel filtration chromatography, showed a specific activity of 58 U mg(-1) (a 3.9-fold increase) and yield of 6.4%. The molecular weight, as determined by SDS-PAGE and gel filtration, was approximately 99 and 80 kDa, respectively, suggesting that the enzyme was a monomer. The purified enzyme showed the highest substrate specificity to laminarin, indicating that it was β-1,3-glucanase. The hydrolyzed products of cello-oligosaccharides suggested that this enzyme was endo-type β-1,3-glucanase. Streptomyces sp. 9X166 culture filtrate, possessing β-1,3-glucanase activity, could degrade both freeze-dried and living mycelium. This is the first report on a β-1,3-glucanase-producing Streptomyces sp. that could be an effective biocontrol agent for black rot disease in orchids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Padmanaban, Vishnu Priya; Verma, Pankaj; Venkatabaskaran, Srividhyalakshmi; Keppayan, Thirupathi; Gopal, Dharani; Sekar, Ashok Kumar; Ramalingam, Kirubagaran
2017-02-01
Microbial-derived natural products from extreme niches such as deepsea are known to possess structural and functional novelty. With this background, the present study was designed to investigate the bioprospecting potential and systematics of a deep-sea derived piezotolerant bacterial strain NIOT-Ch-40, showing affiliation to the genus Streptomyces based on 16S RNA gene similarity. Preliminary screening for the presence of biosynthetic genes like polyketide synthase I, polyketide synthase II, non ribosomal peptide synthase, 3-amino-5-hydroxybenzoic acid synthase and spiroindimicin followed by antibacterial activity testing confirmed the presence of potent bioactivity. The secondary metabolites produced during fermentation in Streptomyces broth at 28 °C for 7 days were extracted with ethyl acetate. The extract exhibited a specific inhibitory activity against Gram-positive bacteria and was significantly effective (p < 0.0001) against methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration and minimum bactericidal concentration against MRSA was 1.5 µg/mL, which was statistically significant in comparison with erythromycin. A multifaceted analysis of the Streptomyces spp. was carried out to delineate the strain NIOT-Ch-40 at a higher resolution which includes morphological, biochemical and molecular studies. Piezotolerance studies and comparison of fatty acid profiles at high pressures revealed that it could be considered as one of the taxonomic markers, especially for the strains isolated from the deep sea environments. In conclusion, the observation of comparative studies with reference strains indicated towards the strain NIOT-Ch-40 as an indigenous marine piezotolerant Streptomyces sp. with a higher probability of obtaining novel bioactive metabolites.
Chapleau, Mélanie; Guertin, Julien F; Farrokhi, Ali; Lerat, Sylvain; Burrus, Vincent; Beaulieu, Carole
2016-05-01
The genes conferring pathogenicity in Streptomyces turgidiscabies, a pathogen causing common scab of potato, are grouped together on a pathogenicity island (PAI), which has been found to be mobile and appears to transfer and disseminate like an integrative and conjugative element (ICE). However, in Streptomyces scabiei, another common scab-inducing species, the pathogenicity genes are clustered in two regions: the toxicogenic region (TR) and the colonization region. The S. scabiei 87.22 genome was analysed to investigate the potential mobility of the TR. Attachment sites (att), short homologous sequences that delineate ICEs, were identified at both extremities of the TR. An internal att site was also found, suggesting that the TR has a composite structure (TR1 and TR2). Thaxtomin biosynthetic genes, essential for pathogenicity, were found in TR1, whereas candidate genes with known functions in recombination, replication and conjugal transfer were found in TR2. Excision of the TR1 or TR2 subregions alone, or of the entire TR region, was observed, although the excision frequency of TR was low. However, the excision frequency was considerably increased in the presence of either mitomycin C or Streptomyces coelicolor cells. A composite TR structure was not observed in all S. scabiei and Streptomyces acidiscabies strains tested. Of the ten strains analysed, seven lacked TR2 and no TR excision event could be detected in these strains, thus suggesting the implication of TR2 in the mobilization of S. scabiei TR. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Braña, Alfredo F; Braña, Afredo F; Fiedler, Hans-Peter; Nava, Herminio; González, Verónica; Sarmiento-Vizcaíno, Aida; Molina, Axayacatl; Acuña, José L; García, Luis A; Blanco, Gloria
2015-04-01
Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Avilés Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.
Mahan, Kristina M; Klingeman, Dawn M; Hettich, Robert L; Parry, Ronald J; Graham, David E
2016-01-21
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. The 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content. Copyright © 2016 Mahan et al.
Alkaline tolerant dextranase from streptomyces anulatus
Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.
2003-01-01
A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.
2011-06-03
reduces hemorrhage-induced injuries. In our laboratory we have shown that geldanamycin, a natural product from the bacterium Streptomyces ...product produced by Streptomyces hygroscopicus that binds with high affinity to the ATP binding pocket of HSP-90 [9, 10]. 17-DMAG is water soluble, less
Wu, C J; Janssen, G R
1996-10-01
The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.
Analysis of the Pho regulon in Streptomyces tsukubaensis.
Ordóñez-Robles, María; Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F
2017-12-01
Phosphate regulation of antibiotic biosynthesis in Streptomyces has been studied due to the importance of this genus as a source of secondary metabolites with biological activity. Streptomyces tsukubaensis is the main producer of tacrolimus (or FK506), an immunosuppressant macrolide that generates important benefits for the pharmaceutical market. However, the production of tacrolimus is under a negative control by phosphate and, therefore, is important to know the molecular mechanism of this regulation. Despite its important role, there are no reports about the Pho regulon in S. tsukubaensis. In this work we combined transcriptional studies on the response to phosphate starvation with the search for PHO boxes in the whole genome sequence of S. tsukubaensis. As a result, we identified a set of genes responding to phosphate starvation and containing PHO boxes that include common Pho regulon members but also new species-specific candidates. In addition, we demonstrate for the first time the functional activity of PhoP from S. tsukubaensis through complementation studies in a Streptomyces coelicolor ΔphoP strain. For this purpose, we developed an anhydrotetracycline inducible system that can be applied to the controlled expression of target genes. Copyright © 2017 Elsevier GmbH. All rights reserved.
Lampel, J S; Aphale, J S; Lampel, K A; Strohl, W R
1992-01-01
The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase. Images PMID:1569011
Clardy, Jon; Currie, Cameron R.
2011-01-01
Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest. PMID:21364940
Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung
2018-04-17
Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.
Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong
2017-09-01
Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.
Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias
2017-10-18
Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Junwei; Shi, Linlin; Li, Wenchao; Wang, Jiabin; Wang, Han; Tian, Yuanyuan; Xiang, Wensheng; Wang, Xiangjing
2018-02-01
Two novel actinomycete isolates, designated strains NEAU-A4 T and NEAU-A3, were isolated from rhizosphere soil of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the two strains coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the two isolates exhibited 99.6 % 16S rRNA gene sequence similarity with each other and that they were most closely related to Streptomyces violaceorectus DSM 40279 T (98.8, 99.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains clustered together and formed a separate subclade. Furthermore, a combination of DNA-DNA hybridization results and some physiological and biochemical properties demonstrated that the two strains could be distinguished from its closest relative. Therefore, it is proposed that strains NEAU-A4 T and NEAU-A3 should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomycestritici sp. nov. is proposed. The type strain is NEAU-A4 T (=CGMCC 4.7393 T =DSM 104540 T ).
Zin, Noraziah Mohamad; Baba, Mohd Shukri; Zainal-Abidin, Abu Hassan; Latip, Jalifah; Mazlan, Noor Wini; Edrada-Ebel, RuAngelie
2017-01-01
Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg−1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg−1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model. PMID:28223778
RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces
Šetinová, Dita; Šmídová, Klára; Pohl, Pavel; Musić, Inesa; Bobek, Jan
2018-01-01
cis-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces, the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH, and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces, including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors. PMID:29379487
RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces.
Šetinová, Dita; Šmídová, Klára; Pohl, Pavel; Musić, Inesa; Bobek, Jan
2017-01-01
cis -Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces , the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH , and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces , including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors.
Zhong, Xingyu; Tian, Yuqing; Niu, Guoqing; Tan, Huarong
2013-07-01
A draft genome sequence of Streptomyces ansochromogenes 7100 was generated using 454 sequencing technology. In combination with local BLAST searches and gap filling techniques, a comprehensive antiSMASH-based method was adopted to assemble the secondary metabolite biosynthetic gene clusters in the draft genome of S. ansochromogenes. A total of at least 35 putative gene clusters were identified and assembled. Transcriptional analysis showed that 20 of the 35 gene clusters were expressed in either or all of the three different media tested, whereas the other 15 gene clusters were silent in all three different media. This study provides a comprehensive method to identify and assemble secondary metabolite biosynthetic gene clusters in draft genomes of Streptomyces, and will significantly promote functional studies of these secondary metabolite biosynthetic gene clusters.
Abdel-Haliem, M E F; Sakr, A A; Ali, M F; Ghaly, M F; Sohlenkamp, C
2013-08-25
Paintings in ancient Egyptian tombs often suffer colour changes due to microbial growth and colonization. Streptomyces strains were isolated from mural paintings of Tell Basta and Tanis tombs (East of Nile Delta, Egypt) and were identified using biochemical and molecular methods. The16S rDNA sequences data indicated that isolated strains were closely related to S. coelicolor, S. albidofuscus, S. ambofaciens, S. canarius, S. parvullus, S. corchorusii, S. albidofuscus and S. nigrifaciens. It could be shown that Streptomyces strains are involved on a large scale in the colour changes of paintings and stone support by producing a wide range of metabolites such as acids (oxalic, citric and sulphuric acids), biopigments of melanin, carotenoids, and hydrogen sulphide. Copyright © 2013 Elsevier GmbH. All rights reserved.
Hong, Yang; Hondalus, Mary K
2008-10-01
Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.
Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa
2010-01-01
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327
Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.
Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó; Kuttner, Eva; Ásgeirsdóttir, Margrét E; Young, Louise C; Green, David H; Edrada-Ebel, Ruangelie; Duncan, Katherine R
2016-01-08
The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.
Shi, YingWu; Zhang, Xuebing; Lou, Kai
2013-01-01
Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492
Identification of thermophilic bacteria in solid-waste composting.
Strom, P F
1985-01-01
The thermophilic microbiota of solid-waste composting, with major emphasis on Bacillus spp., was examined with Trypticase soy broth (BBL Microbiology Systems) with 2% agar as the initial plating medium. Five 4.5-liter laboratory units at 49 to 69 degrees C were fed a mixture of dried table scraps and shredded newspaper. The composting plants treating refuse at Altoona, Pa., and refuse-sludge at Leicester, England, were also sampled. Of 652 randomly picked colonies, 87% were identified as Bacillus spp. Other isolates included two genera of unidentified nonsporeforming bacteria (one of gram-negative small rods and the other of gram-variable coccobacilli), the actinomycetes Streptomyces spp. and Thermoactinomyces sp., and the fungus Aspergillus fumigatus. Among the Bacillus isolates, the following, in order of decreasing frequency, were observed: B. circulans complex, B. stearothermophilus, B. coagulans types A and B, B. licheniformis, B. brevis, B. sphaericus, Bacillus spp. types i and ii, and B. subtilis. About 15% of the Bacillus isolates could be assigned to species only by allowing for greater variability in one or more characteristics than has been reported by other authors for their strains. In particular, growth at higher temperatures than previously reported was found for strains of several species. A small number of Bacillus isolates (less than 2%) could not be assigned to any recognized species. PMID:4083886
Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting
Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó.; Kuttner, Eva; Ásgeirsdóttir, Margrét E.; Young, Louise C.; Green, David H.; Edrada-Ebel, Ruangelie; Duncan, Katherine R.
2016-01-01
The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations. PMID:26761036
Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1.
Mongodin, Emmanuel F; Shapir, Nir; Daugherty, Sean C; DeBoy, Robert T; Emerson, Joanne B; Shvartzbeyn, Alla; Radune, Diana; Vamathevan, Jessica; Riggs, Florenta; Grinberg, Viktoria; Khouri, Hoda; Wackett, Lawrence P; Nelson, Karen E; Sadowsky, Michael J
2006-12-01
Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.
Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review.
Cycoń, Mariusz; Mrozik, Agnieszka; Piotrowska-Seget, Zofia
2017-04-01
Bioaugmentation, a green technology, is defined as the improvement of the degradative capacity of contaminated areas by introducing specific microorganisms, has emerged as the most advantageous method for cleaning-up soil contaminated with pesticides. The present review discusses the selection of pesticide-utilising microorganisms from various sources, their potential for the degradation of pesticides from different chemical classes in liquid media as well as soil-related case studies in a laboratory, a greenhouse and field conditions. The paper is focused on the microbial degradation of the most common pesticides that have been used for many years such as organochlorinated and organophosphorus pesticides, triazines, pyrethroids, carbamate, chloroacetamide, benzimidazole and derivatives of phenoxyacetic acid. Special attention is paid to bacterial strains from the genera Alcaligenes, Arthrobacter, Bacillus, Brucella, Burkholderia, Catellibacterium, Pichia, Pseudomonas, Rhodococcus, Serratia, Sphingomonas, Stenotrophomonas, Streptomyces and Verticillum, which have potential applications in the bioremediation of pesticide-contaminated soils using bioaugmentation technology. Since many factors strongly influence the success of bioaugmentation, selected abiotic and biotic factors such as pH, temperature, type of soil, pesticide concentration, content of water and organic matter, additional carbon and nitrogen sources, inoculum size, interactions between the introduced strains and autochthonous microorganisms as well as the survival of inoculants were presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stompor, Monika; Kałużny, Mateusz; Żarowska, Barbara
2016-10-01
Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.
[Isolation of actinobacteria with antibiotic associated with soft coral Nephthea sp].
Ma, Liang; Zhang, Wenjun; Zhu, Yiguang; Wu, Zhengchao; Saurav, Kumar; Hang, Hui; Zhang, Changsheng
2013-10-04
The present study aims to isolate and identify actinobacteria associated with the soft coral Nephthea sp., and to isolate natural products from these actinobacteria under the guidance of PCR screening for polyketides synthase (PKS) genes. Eleven selective media were used to isolate actinobacteria associated with the soft coral Nephthea sp. collected from Yongxin Island. The isolated actinobacteria were classified on the basis of phylogenetic tree analysis of their 16S rRNA genes. Degenerated primers targeted on conserved KS (ketoacyl-synthase) domain of type I PKS genes were used to screen for potential isolates. The positive isolates were cultured in three different media to check their producing profiles. One bioactive strain that is rich in metabolites was subjected to larger scale fermentation for isolating bioactive natural products. A total of 20 strains were isolated from Nephthea sp., and were categorized into 3 genera including Streptomyces, Dietzia and Salinospora, among which 18 strains were positive in screening with type I PKS genes. Two bioactive compounds rifamycin S and rifamycin W were isolated and identified from Salinospora arenicola SH04. This is the first report of isolating indigenous marine actinobacteria Salinospora from the soft coral Nephthea sp. It provides an example of isolating bioactive secondary metabolites from cultivable actinobacteria associated with Nephthea sp. by PCR screening.
Cao, Yanru; Jiang, Yi; Li, Youlong; Chen, Xiu; Jin, Rongxian; He, Wenxiang
2012-07-04
We studied the isolation methods and diversity of culturable fecal actinobacteria associated with Panthera tigris tigris by using culture-dependent approaches. Fresh fecal samples of healthy Panthera tigris tigris were collected from Yunnan Safari Park. Pretreatment of the samples, isolation media and inhibitors were tested for actinobacteria isolation. 16S rRNA genes of actinobacteria were sequenced and subjected to phylogenetic analysis. The abundance of culturable actinobacteria was 1.10 x 10(8) cfu/g colony forming units (CFU) per gram of feces (wet weight). We obtained 110 purified cultural actinobacterium strains. The analysis based on 16S rRNA gene sequences showed that these strains were distributed in 10 different families and 12 genera of actinobacteria at least, and most of them were non-filamentous, such as Arthrobacter, Dietzia, Kocuria, Corynebacterium and Microbacterium. Streptomyces was the mainly classical filamentous actinobacteria, and up to 64% of total. Drying and heating up the fecal samples can greatly increase the rate of the actinobacteria. Many kinds of inhibitors and chemical defined media are suitable for isolation of fecal actinobacteria. The culturable actinobacteria are abundant in Panthera tigris tigris feces. Our study found an effective method to isolate animals' fecal actinobacteria and it's useful for studying and exploiting animals' fecal actinobacteria.
Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua
2014-01-01
Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116
Köberl, Martina; White, Richard A.; Erschen, Sabine; ...
2015-08-06
Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.
Daryamide Analogues from a Marine-Derived Streptomyces species.
Fu, Peng; La, Scott; MacMillan, John B
2017-04-28
Three new cyclohexene amine derivatives, daryamides D-F (1-3), a new arylamine derivative, carpatamide D (4), and a new ornithine lactamization derivative, ornilactam A (5), were isolated from the marine-derived Streptomyces strain SNE-011. Their structures, including absolute configurations, were elucidated on the basis of spectroscopic analysis and chemical methods. The carpatamide skeleton could be considered as the biosynthetic precursor of the daryamides.
Tormet Gonzalez, Gabriela D.; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L.; de Azevedo, João Lucio
2014-01-01
The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content. PMID:24994795
Nanthini, Jayaram; Chia, Kim-Hou; Thottathil, Gincy P; Taylor, Todd D; Kondo, Shinji; Najimudin, Nazalan; Baybayan, Primo; Singh, Siddharth; Sudesh, Kumar
2015-11-20
Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified. Copyright © 2015 Elsevier B.V. All rights reserved.
Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M
1994-12-01
Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria.
USDA-ARS?s Scientific Manuscript database
This study was conducted to optimize the medium composition and cultural conditions for improving production of antifungal substances (AFS) by Streptomyces 3-10 and for enhancing its efficacy in suppression of clubroot disease of oilseed rape caused by Plasmodiophora brassicae. Results showed that t...
2015-01-01
Spithioneines A and B (1 and 2), two new bohemamine-type pyrrolizidine alkaloids possessing an unusual ergothioneine moiety, were isolated from a marine-derived Streptomyces spinoverrucosus. Their structures were elucidated by spectroscopic analysis, CD spectra, and chemical degradation and synthesis. Compounds 1 and 2 are rare natural products that incorporate the amino acid ergothioneine. PMID:26024315
Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin
2016-01-01
ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery. PMID:27451447
Sevillano, Laura; Díaz, Margarita; Santamaría, Ramón I
2017-09-26
The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces. The antitoxin gene present in the expression plasmid counteracts the effect of the toxin gene in the genome. In absence of the expression plasmid, the toxin causes cell death ensuring that only plasmid-containing cells persist.
Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains.
Bourguignon, Natalia; Isaac, Paula; Alvarez, Héctor; Amoroso, María J; Ferrero, Marcela A
2014-12-01
Fifteen actinomycete strains were evaluated for their potential use in removal of polycyclic aromatic hydrocarbons (PAH). Their capability to degrade of naphthalene, phenanthrene, and pyrene was tested in minimal medium (MM) and MM with glucose as another substrate. Degradation of naphthalene in MM was observed in all isolates at different rates, reaching maximum values near to 76% in some strains of Streptomyces, Rhodococcus sp. 016 and Amycolatopsis tucumanensis DSM 45259. Maximum values of degradation of phenanthrene in MM occurred in cultures of A. tucumanensis DSM 45259 (36.2%) and Streptomyces sp. A12 (20%), while the degradation of pyrene in MM was poor and only significant with Streptomyces sp. A12 (4.3%). Because of the poor performance when growing on phenanthrene and pyrene alone, Rhodococcus sp. 20, Rhodococcus sp. 016, A. tucumanensis DSM 45259, Streptomyces sp. A2, and Streptomyces sp. A12 were challenged to an adaptation schedule of successive cultures on a fresh solid medium supplemented with PAHs, decreasing concentration of glucose in each step. As a result, an enhanced degradation of PAHs by adapted strains was observed in the presence of glucose as co-substrate, without degradation of phenanthrene and pyrene in MM while an increase to up to 50% of degradation was seen with these strains in glucose amended media. An internal fragment of the catA gene, which codes for catechol 1,2-dioxygenase, was amplified from both Rhodococcus strains, showing the potential for degradation of aromatic compounds via salycilate. These results allow us to propose the usefulness of these actinomycete strains for PAH bioremediation in the environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.