Skylab, Space Shuttle, Space Benefits Today and Tomorrow.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The pamphlet "Skylab" describes very generally the kinds of activities to be conducted with the Skylab, America's first manned space station. "Space Shuttle" is a pamphlet which briefly states the benefits of the Space Shuttle, and a concise review of present and future benefits of space activities is presented in the pamphlet "Space Benefits…
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Systematic Expansion of Active Spaces beyond the CASSCF Limit: A GASSCF/SplitGAS Benchmark Study.
Vogiatzis, Konstantinos D; Li Manni, Giovanni; Stoneburner, Samuel J; Ma, Dongxia; Gagliardi, Laura
2015-07-14
The applicability and accuracy of the generalized active space self-consistent field, (GASSCF), and (SplitGAS) methods are presented. The GASSCF method enables the exploration of larger active spaces than with the conventional complete active space SCF, (CASSCF), by fragmentation of a large space into subspaces and by controlling the interspace excitations. In the SplitGAS method, the GAS configuration interaction, CI, expansion is further partitioned in two parts: the principal, which includes the most important configuration state functions, and an extended, containing less relevant but not negligible ones. An effective Hamiltonian is then generated, with the extended part acting as a perturbation to the principal space. Excitation energies of ozone, furan, pyrrole, nickel dioxide, and copper tetrachloride dianion are reported. Various partitioning schemes of the GASSCF and SplitGAS CI expansions are considered and compared with the complete active space followed by second-order perturbation theory, (CASPT2), and multireference CI method, (MRCI), or available experimental data. General guidelines for the optimum applicability of these methods are discussed together with their current limitations.
Space activities and global popular music culture
NASA Astrophysics Data System (ADS)
Wessels, Allison Rae; Collins, Patrick
During the "space age" era, space activities appear increasingly as a theme in Western popular music, as they do in popular culture generally. In combination with the electronics and tele-communications revolution, "pop/rock" music has grown explosively during the space age to become an effectively global culture. From this base a number of trends are emerging in the pattern of influences that space activities have on pop music. The paper looks at the use of themes and imagery in pop music; the role of space technology in the modern "globalization" of pop music; and current and future links between space activities and pop music culture, including how public space programmes are affected by its influence on popular attitudes.
A connectionist model for dynamic control
NASA Technical Reports Server (NTRS)
Whitfield, Kevin C.; Goodall, Sharon M.; Reggia, James A.
1989-01-01
The application of a connectionist modeling method known as competition-based spreading activation to a camera tracking task is described. The potential is explored for automation of control and planning applications using connectionist technology. The emphasis is on applications suitable for use in the NASA Space Station and in related space activities. The results are quite general and could be applicable to control systems in general.
Droomers, Mariël; Jongeneel-Grimen, Birthe; Kramer, Daniëlle; de Vries, Sjerp; Kremers, Stef; Bruggink, Jan-Willem; van Oers, Hans; Kunst, Anton E; Stronks, Karien
2016-02-01
Many problems concentrate in deprived neighbourhoods, among which is poor health. One possible way to address these health problems is to invest in the green space in deprived neighbourhoods. The number of evaluations of the public health impact of actual changes in neighbourhood green space is still limited. This study investigated the impact of real-life changes in the quality or quantity of green space in severely deprived neighbourhoods on physical activity and perceived general health. Repeated cross-sectional surveys from 2004 till 2011 yielded self-reported information on leisure time walking, cycling and sports, and perceived general health of 48,132 adult residents. We fitted generalised mixed models to assess the rate of change per half year, estimate the linear trend, and the change in trends before and after the start of the urban regeneration mid-2008. Using a quasi-experimental design, we compared the trends in the intervention neighbourhoods with different selections of control areas. The deprived neighbourhoods that intervened in green space did not show more favourable changes in the trend of physical activity and good general health compared to all the different groups of control areas. We did not observe short-term positive effects on physical activity and general health among adults from improvements in green space in deprived neighbourhoods. This suggests that greening interventions that have been carried out in the context of the Dutch District Approach did not achieve short-term health gains among adults. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Technical Reports Server (NTRS)
1978-01-01
General highlights of NASA's activities for 1978 are presented. The highlights are categorized into topics such as space science, space transportation systems, space and terrestrial applications, environment, technology utilization, aeronautics, space research and technology, energy programs, and international. A list of the 1978 launches including: (1) launch date; (2) payload designation; (3) launch vehicle; (4) launch site and (5) mission remarks is also presented.
Space life sciences: Programs and projects
NASA Technical Reports Server (NTRS)
1989-01-01
NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.
The human role in space. Volume 2: Research analysis and technology report
NASA Technical Reports Server (NTRS)
1984-01-01
The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, economics, and benefits of the human presence in space was examined. Topics discussed include: human qualifications for space activities; specific project assessments; technology requirements and tasks; and generalization on human roles in space.
General Public Space Travel and Tourism. Volume 2; Workshop Proceedings
NASA Technical Reports Server (NTRS)
ONeil, D. (Compiler); Mankins, J. (Editor); Bekey, I. (Editor); Rogers, T. (Editor); Stallmer, E. (Editor); Piland, W. (Editor)
1999-01-01
The Space Transportation Association and NASA conducted a General Public Space Travel study between 1996 and 1998. During the study, a workshop was held at Georgetown University. Participants included representatives from the travel, aerospace, and construction industries. This report is the proceedings from that workshop. Sections include infrastructure needs, travel packages, policy related issues, and potential near-term activities.
NAROM - a national laboratory for space education and student rockets
NASA Astrophysics Data System (ADS)
Hansen, Arne Hjalmar; Larsen, May Aimee; Østbø, Morten
2001-08-01
Despite a considerable growth in space related industry and scientific research over the past few decades, space related education has largely been neglected in our country. NAROM - the National Centre for Space Related Education - was formed last year to organize space related educational activities, to promote recruitment, to promote appreciation for the benefits of space activities, and to stimulate interest for science in general. This year, nine students from Narvik Engineering College have participated in the Hotel Payload Project (HPP) at Anøya Rocket Range. They have thus played an active and essential role in an ongoing engineering project.
NAROM- a national Laboratory for space education
NASA Astrophysics Data System (ADS)
Hansen, Arne Hjalmar; Østbø, Morten
2002-07-01
Despite a considerable growth in space related industry and scientific research over the past few decades, space related education has largely been neglected in our country. NAROM - the National Centre for Space Related Education - was formed last year to organize space related educational activities, to promote recruitment, to promote appreciation for the benefits of space activities, and to stimulate interest for science in general. This year, nine students from Narvik Engineering College have participated in the Hotel Payload Project (HPP) at Andøya Rocket Range. They have thus played an active and essential role in an ongoing engineering project.
NASA Astrophysics Data System (ADS)
Akpinar, A.
2017-11-01
This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands) are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke). Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small), quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.
Making space part of general education
NASA Technical Reports Server (NTRS)
Horan, Stephen
1992-01-01
General education reform is on-going at many universities to, in part, make undergraduate students more technically literate. The space program provides an area of study that is still exciting to students, provides technical content, and can incorporate the other goals. Additionally, human space activity contains international and interdisciplinary dimensions that can reach students outside of the technical disciplines. The development and contents of a space education course to become part of the university's general education program open to all students is presented. Included in the presentation is a listing of the course materials to be used by the students.
Space Tourism: Orbital Debris Considerations
NASA Astrophysics Data System (ADS)
Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.
2002-01-01
Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a review of the current work on space tourism and debris situation in low earth orbit suitable orbits for space tourism activities with regard to the presence of orbital debris are discussed.
General view of the aft Flight Deck looking at the ...
General view of the aft Flight Deck looking at the mission specialist seats directly behind and to the side of the commander and pilot's seats. These seats are removed, packed and stowed during on-orbit activities. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
1980-01-01
This report is prepared on an annual basis for the purposes of highlighting the fiscal year research and technology (R&T) activities. Its intent is to better inform the R&T Program Managers of significant accomplishments that promise practical and beneficial program application. The report is not inclusive of all R&T activities. The document is organized into two distinct sections: (1) a general summary of the major R&T activities in each program area, and (2) a description of significant individual completed activities and their results. This document will be updated November 1 of each year.
Capturing the Value: Earth Applications of Space Human Factors Research
NASA Technical Reports Server (NTRS)
Connors, Mary M.; Shafto, Michael G. (Technical Monitor)
1995-01-01
This paper details how the Space Human Factors/Life Sciences program at Ames Research Center (ARC) has provided, and continues to provide, a variety of Earth-based benefits. These benefits will be considered under five categories: aeronautics, space-like environments, general applications, human/automation interaction, and methodology. The human factors work at ARC includes a range of activities whose products serve the aerospace community. Some areas of research focus specifically on aeronautical requirements; others are driven by space needs. However, the symbiosis between these two domains allows a sharing of resources, and the insights and experimental results gathered in one domain can often be applied in the other. Aeronautics is an industry whose survival is generally viewed as critical to American competitiveness, and where benefits can result in a very high payoff. The ability to apply space-initiated research to aeronautical requirements represents one example of bringing space benefits down to Earth. The second-order value of space human factors research goes well beyond the aerospace community. Spaceflight shares with a number of other activities certain environmental characteristics that drive human factors engineering design and procedural specification. Spaceflight is an isolated activity, conducted under severely confined conditions, with a high level of risk, and where provisions are restricted and opportunities for outside help are limited. A number of Earth-based activities including submarines and other naval vessels, oil rigs, remote weather stations, and scientific and polar expeditions, share many of these characteristics. These activities serve as testbeds for space-related research and, in turn, space-related research provides beneficial insight to the conduct of these activities.
Perchoux, Camille; Chaix, Basile; Cummins, Steven; Kestens, Yan
2013-05-01
A considerable body of literature has investigated how environmental exposures affect health through various pathways. These studies have generally adopted a common approach to define environmental exposures, focusing on the local residential environment, using census tracts or postcodes to delimit exposures. However, use of such administrative units may not be appropriate to evaluate contextual effets on health because they are generally not a 'true' representation of the environments to which individuals are exposed. Recent work has suggested that advances may be made if an activity-space approach is adopted. The present paper investigates how various disciplines may contribute to the refinement of the concept of activity space for use in health research. In particular we draw on seminal work in time geography, which provides a framework to describe individual behavior in space and time, and can help the conceptualization of activity space. In addition we review work in environmental psychology and social networks research, which provides insights on how people and places interact and offers new theories for improving the spatial definition of contextual exposures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga
ERIC Educational Resources Information Center
Pickett, Andrew C.; Cunningham, George B.
2017-01-01
Purpose: Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore…
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding...
Public choice economics and space policy: realising space tourism
NASA Astrophysics Data System (ADS)
Collins, Patrick
2001-03-01
Government space agencies have the statutory responsibility to suport the commercialisation of space activities. NASA's 1998 report "General Public Space Travel and Tourism" concluded that passenger space travel can start using already existing technology, and is likely to grow into the largest commercial activity in space: it is therefore greatly in taxpayers' economic interest that passenger space travel and accommodation industries should be developed. However, space agencies are doing nothing to help realise this — indeed, they are actively delaying it. This behaviour is predicted by 'public choice' economics, pioneered by Professors George Stigler and James Buchanan who received the 1982 and 1986 Nobel prizes for Economics, which views government organisations as primarily self-interested. The paper uses this viewpoint to discuss public and private roles in the coming development of a space tourism industry.
GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa
2004-01-01
The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.
14 CFR § 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data...§ 1214.119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
Space Research, Education, and Related Activities in the Space Sciences
NASA Technical Reports Server (NTRS)
Black, David; Marshall, Frank (Technical Monitor)
2002-01-01
The Universities Space Research Association received an award of Cooperative Agreement NCC5-356 on September 29, 1998. The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
Space Research, Education, and Related Activities In the Space Sciences
NASA Technical Reports Server (NTRS)
Black, David
2002-01-01
The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.
Space Research, Education, and Related Activities in the Space Sciences
NASA Technical Reports Server (NTRS)
2000-01-01
The Universities Space Research Association received an award of Cooperative Agreement #NCC5-356 on September 29, 1998. The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
NASA Technical Reports Server (NTRS)
Pace, Scott
1992-01-01
The topics are presented in viewgraph form and include the following: the US share of commercial payloads in comparison with Ariane's share; world communications satellite orders; the US share of prime contracts for construction of commercial communications satellites; emerging markets; space activities at the Commerce Department (DOC); Office of Space Commerce (OSC) mission description; key drivers for commercial space; and general DOC space policy themes.
Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David
2016-04-22
Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people's stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant's home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.
Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David
2016-01-01
Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments. PMID:27110803
Private space exploration: A new way for starting a spacefaring society?
NASA Astrophysics Data System (ADS)
Genta, Giancarlo
2014-11-01
Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.
Communicating space weather to policymakers and the wider public
NASA Astrophysics Data System (ADS)
Ferreira, Bárbara
2014-05-01
As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2014 CFR
2014-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2012 CFR
2012-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2011 CFR
2011-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
NASA Technical Reports Server (NTRS)
1976-01-01
The Outlook for Space Study, consideration of National needs and OAST technology goals were factors in the selection of the following themes for candidate technical initiative and supporting program plans: space power station; search for extraterrestrial life; industrialization of space; global service station; exploration of the solar system; and advanced space transportation system. An overview is presented of the Space Theme Workshop activities in developing technology needs, program requirements, and proposed plans in support of each theme. The unedited working papers used by team members are included.
Effect of space allowance and flooring on the behavior of pregnant ewes.
Vik, S G; Øyrehagen, O; Bøe, K E
2017-05-01
Space allowance recommendations for pregnant ewes vary considerably. The aim of this experiment was to investigate the effect of space allowance and floor type on activity, lying position, displacements, and aggressive interactions in pregnant ewes. A 3 × 2 factorial experiment was conducted with space allowance (0.75, 1.50, and 2.25 m/ewe) and type of flooring (straw bedding and expanded metal flooring) as the main factors. A total of 48 pregnant ewes were randomly assigned to 6 groups with 8 ewes in each group. All groups were exposed to each treatment for 7 d. The ewes were video recorded for 24 h at the end of each treatment period and general activity, lying position in the pen, and social lying position were scored every 15 min. Displacements and aggressive interactions were scored continuously from 1030 to 1430 h. Mean lying time ( < 0.0001) and time spent lying simultaneously ( < 0.0001) increased whereas time spent eating ( < 0.001) and standing ( < 0.001) decreased when space allowance increased from 0.75 to 1.50 m/ewe. Further increasing the space allowance to 2.25 m/ewe, however, had no effect on these parameters. Sitting was observed only in the 0.75 m/ewe treatment. Type of flooring had no significant effect on general activity. Ewes in the straw bedding treatment spent more time lying in the middle of the pen than ewes on expanded metal ( < 0.0001), but space allowance had no significant effect on this parameter. The proportion of time spent lying against side walls increased ( < 0.0001) whereas the proportion of time spent lying against the back wall decreased ( < 0.0001) when the space allowance was increased. In general, the distance between the ewes when lying significantly increased when space allowance increased from 0.75 to 1.50 m/ewe. Total number of displacements when lying ( < 0.0001) and aggressive interactions when active ( < 0.001) decreased when space allowance increased from 0.75 to 1.50 m/ewe and further slightly decreased, although the decrease was significant only for displacements when lying, when space allowance increased to 2.25 m/ewe. Low-ranked ewes were not exposed to more aggressive behavior than high-ranked ewes. In conclusion, increasing space allowance from 0.75 to 1.50 m/ewe had positive effects on activity and behavior in pregnant ewes, but further increasing space allowance to 2.25 m/ewe had limited effects, as did type of flooring. Hence, recommended space allowance for pregnant ewes should not be lower than 1.50 m/ewe.
NASA Astrophysics Data System (ADS)
von der Dunk, Frans
2017-07-01
International space law is generally considered to be a branch of public international law. In that sense, it constitutes a "subset of rules, rights and obligations of states within the latter specifically related to outer space and activities in or with respect to that realm." Dealing with an inherently international realm, much of it had been developed in the context of the United Nations, where the key treaties are even adhered to by all major space-faring countries. In addition, other sources—including not only customary international law but also such disputed concepts as "soft law" and political guidelines and recommendations—also contributed to the development of a general framework legal regime for all of mankind's endeavors in or with respect to outer space. Originally, this predominantly included scientific and military/security-related activities, but with the ongoing development of technology and a more practical orientation, it increasingly came to encompass many more civilian and, ultimately, even commercial activities, largely through downstream applications originating from or depending on space technology and space activities. Important here are the overarching, usually more theoretical aspects of international space law, which include how it was developed or continues to be developed, what special roles do "soft law" or the military aspects of space activities play in this regard, and how do national space laws (also) serve as a tool for interpretation of international space law. Also important is the special category of launches and other space operations in the sense of moving space objects safely into, through and—if applicable—back from outer space. Without such operations, space activities would be impossible, yet they bring with them special concerns; for instance, in terms of liability, the creation of space debris and even the legal status and possible commercialization of natural resources produced from celestial bodies. Finally there are the major categories of space applications—as these have started to impact everyday life on earth: the involvement of satellites in communications infrastructures and services, the most commercialized area of space applications yet; the special issue of space serving to mitigate disasters and their consequences on earth; the use of satellites for remote sensing purposes ranging from weather and climate monitoring to spying; and the use of satellites for positioning, navigation, and timing.
Draft position paper on knowledge management in space activities
NASA Technical Reports Server (NTRS)
Holm, Jeanne; Moura, Denis
2003-01-01
As other fields of industry, space activities are facing the challenge of Knowledge Management and the International Academy of Astronautics decided to settle in 2002 a Study Group to analyse the problem and issue general guidelines. This communication presents the draft position paper of this group in view to be discussed during the 2003 IAF Congress.
Izumi, Kiyohiko; Ohkado, Akihiro; Uchimura, Kazuhiro; Murase, Yoshiro; Tatsumi, Yuriko; Kayebeta, Aya; Watanabe, Yu; Ishikawa, Nobukatsu
2015-01-01
Identifying ongoing tuberculosis infection sites is crucial for breaking chains of transmission in tuberculosis-prevalent urban areas. Previous studies have pointed out that detection of local accumulation of tuberculosis patients based on their residential addresses may be limited by a lack of matching between residences and tuberculosis infection sites. This study aimed to identify possible tuberculosis hotspots using TB genotype clustering statuses and a concept of "activity space", a place where patients spend most of their waking hours. We further compared the spatial distribution by different residential statuses and describe urban environmental features of the detected hotspots. Culture-positive tuberculosis patients notified to Shinjuku city from 2003 to 2011 were enrolled in this case-based cross-sectional study, and their demographic and clinical information, TB genotype clustering statuses, and activity space were collected. Spatial statistics (Global Moran's I and Getis-Ord Gi* statistics) identified significant hotspots in 152 census tracts, and urban environmental features and tuberculosis patients' characteristics in these hotspots were assessed. Of the enrolled 643 culture-positive tuberculosis patients, 416 (64.2%) were general inhabitants, 42 (6.5%) were foreign-born people, and 184 were homeless people (28.6%). The percentage of overall genotype clustering was 43.7%. Genotype-clustered general inhabitants and homeless people formed significant hotspots around a major railway station, whereas the non-clustered general inhabitants formed no hotspots. This suggested the detected hotspots of activity spaces may reflect ongoing tuberculosis transmission sites and were characterized by smaller residential floor size and a higher proportion of non-working households. Activity space-based spatial analysis suggested possible TB transmission sites around the major railway station and it can assist in further comprehension of TB transmission dynamics in an urban setting in Japan.
Marshall Space Flight Center battery activity
NASA Technical Reports Server (NTRS)
Lowery, Eric
1993-01-01
The topics covered are presented in viewgraph form and include a flight program history and in-house activities. Some of the in-house activities addressed include secondary battery/cell testing and Hubble Space Telescope Test data updates involving the NiCd type 40 test - battery 1 and 2, the NiCd type 41 test battery, the general electric battery, the NiCd six-battery system, the six four-cell packs, fourteen-cell pack, three four-cell packs, the NiH2 six-battery system, and the flight spare battery. A general test data update is also presented for the twelve-cell pack, the four four-cell packs, the reconditioning test, and planned Ni-MH testing.
General view of the mid deck of the Orbiter Discovery ...
General view of the mid deck of the Orbiter Discovery during pre-launch preparations. Note the payload and mission specialists seats. The seats are removed packed and stowed during on-orbit activities. Also not the black panels in the right of the image, they are protective panels used for preparation of the orbiter and astronaut ingress while the orbiter is in its vertical launch position. This image was taken at Kenney Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
The complex fabric of public opinion on space
NASA Astrophysics Data System (ADS)
A. Roy, Stephanie; C. Gresham, Elaine; Christensen, Carissa Bryce
2000-07-01
Survey questions can be useful tools in gauging public interest. An historical analysis of U.S. public opinion on space-related issues presents some valuable results. Space-related poll questions closely track major events in the history of the U.S. space program. Funding questions are consistently asked, although program-related questions are becoming increasingly popular. Support for space funding has remained remarkably stable at approximately 80% since 1965, with only one significant dip in support in the early 1970s. However, responses on funding questions are extremely sensitive to question wording and should be used cautiously. Around 75% of the American public generally approve of the job that NASA is doing. Human space flight wins out over robotic space programs when put head-to-head, although support for a human Mars mission is on the decline. Despite dramatic increases in commercial space activities, in general opinion polls fail to reflect this increasingly dominant sector of the space economy.
Space Sharing Between Formal and Informal Sectors In Kemang Area
NASA Astrophysics Data System (ADS)
Sihombing, Antony; Dewanti, Hafizka Chandra
2018-01-01
Sharing is a form of human activity as a social being, over resources or spaces. Humans generally define their space according to their psychological and biological needs. However, what if space sharing takes place in an urban scope? The phenomenon of space sharing happens in Kemang area done by two distinct sectors, formal and informal which both are engaged in commercial activities independently. In the study of territory and the behavior settings, the quality of environment can affect the formation of human activities in a space, occurs a phenomenon of space sharing. The researcher will discuss and present a form of the space sharing by the formal and informal sectors in a commercial area through different environmental qualities. In some circumstance, a form of space sharing can increase the value of space and obtain to a shared space, where both sectors mutually take benefits. Otherwise, it leads to an adverse impact in some others. It is clear that differences in the physical environment and social environment have an impact on the formation of space sharing and the value of space in an urban region.
NASA Astrophysics Data System (ADS)
Ferretti, S.; Robinson, D.; Manfletti, C.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Bedogna, P.; Corradi, P.; Marcuccio, M.
2002-01-01
Taking part in space activities and participating in the development and growth of space project has now become an undeniable reality. Thanks to academic institutions and outreach activities space enthusiasts can engage in numerous and diverse yet unique opportunities. The ESA Outreach Office sees students of every background taking part in its activities. This unique mixture of students of diverse nationalities enthusiastically co-operating ensures the program's interdisciplinarity. The added value of such an environment to the programs is significant and must not be forgotten. The friendship that blossom, and lose with which cultural and language barriers are overcome during the time spent working on the projects offered to university student and young professionals are invaluable. The purpose of this abstract is to give our perspective to the space community and to the general public on the importance of developing a space culture. The academic value of the space research projects mainly in which the authors have participated, the importance of such projects for the future of European relations and personal and social development through experience of international teams are topics that will be addressed. The activities discussed are : Attending sessions of congresses around the world, making contacts of major companies and players in the space sector, dealing of topics such as space engineering, policy and law, life sciences, business and finance, satellite applications, the exhilaration of floating in zero-g, the interdisciplinary, international and intercultural approach, the chance of quickly learning about many new concepts are just some of the marvellous experiences and opportunities that these programs offer. Reaching out to the general public is the second purpose of these unique activities.Images, photos and reports can seep into every house thanks to the great instrument that is the media, thus informing almost everyone about the activities and projects growing in the space arena. Newspapers, magazines and scientific publications are extra ordinarily powerful tools that can spread space news. Internet gives everyone the possibility of accessing an immense range of information regarding space flights, space stations, discoveries and new and old projects. Public events and congresses are also effective in approaching the general public and increasing its involvement in the space world. These media contacts are encouraged by the ESA Outreach Office, Euravia association and ISU, and students involve the respective countries as much as possible. This paper aims to show how these media have been used and have lead to the creation of a strong network bringing European universities and organisations together. The experiences have been life changing for the authors. They have succeeded in bringing culturally different young scientists together from across Europe (East Europe and Russia) to strive for a common goal and to better understand space sciences and the next generation technology. It is these experiences that have allowed a deeper understanding of those interpersonal interactions occurring within diverse European teams. Young professionals will no longer work in a country alone but in an European arena and this change makes such understanding essential for the future of Space industry.
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
Critical issues related to registration of space objects and transparency of space activities
NASA Astrophysics Data System (ADS)
Jakhu, Ram S.; Jasani, Bhupendra; McDowell, Jonathan C.
2018-02-01
The main purpose of the 1975 Registration Convention is to achieve transparency in space activities and this objective is motivated by the belief that a mandatory registration system would assist in the identification of space objects launched into outer space. This would also consequently contribute to the application and development of international law governing the exploration and use of outer space. States Parties to the Convention furnish the required information to the United Nations' Register of Space Objects. However, the furnished information is often so general that it may not be as helpful in creating transparency as had been hoped by the drafters of the Convention. While registration of civil satellites has been furnished with some general details, till today, none of the Parties have described the objects as having military functions despite the fact that a large number of such objects do perform military functions as well. In some cases, the best they have done is to indicate that the space objects are for their defense establishments. Moreover, the number of registrations of space objects is declining. This paper addresses the challenges posed by the non-registration of space objects. Particularly, the paper provides some data about the registration and non-registration of satellites and the States that have and have not complied with their legal obligations. It also analyses the specific requirements of the Convention, the reasons for non-registration, new challenges posed by the registration of small satellites and the on-orbit transfer of satellites. Finally, the paper provides some recommendations on how to enhance the registration of space objects, on the monitoring of the implementation of the Registration Convention and consequently how to achieve maximum transparency in space activities.
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.
2012-01-01
As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientist, and general public. This is so important to NASA future that it is one of the agencies strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in helping to achieve this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.
2013-01-01
As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientists, and the general public. This is so important to NASA s future that it is one of the agency s strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in achieving this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.
Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G
2017-02-14
We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.
NASA Astrophysics Data System (ADS)
Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei
2007-09-01
To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.
On-orbit Metrology and Calibration Requirements for Space Station Activities Definition Study
NASA Technical Reports Server (NTRS)
Cotty, G. M.; Ranganathan, B. N.; Sorrell, A. L.
1989-01-01
The Space Station is the focal point for the commercial development of space. The long term routine operation of the Space Station and the conduct of future commercial activities suggests the need for in-space metrology capabilities analogous when possible to those on-Earth. The ability to perform periodic calibrations and measurements with proper traceability is imperative for the routine operation of the Space Station. An initial review, however, indicated a paucity of data related to metrology and calibration requirements for in-space operations. This condition probably exists because of the highly developmental aspect of space activities to date, their short duration, and nonroutine nature. The on-orbit metrology and calibration needs of the Space Station were examined and assessed. In order to achieve this goal, the following tasks were performed: an up-to-date literature review; identification of on-orbit calibration techniques; identification of sensor calibration requirements; identification of calibration equipment requirements; definition of traceability requirements; preparation of technology development plans; and preparation of the final report. Significant information and major highlights pertaining to each task is presented. In addition, some general (generic) conclusions/observations and recommendations that are pertinent to the overall in-space metrology and calibration activities are presented.
Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra
The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less
Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides
Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra
2017-04-07
The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less
ERIC Educational Resources Information Center
Steinberg, Florence S.
This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…
2016-01-26
ISS046e024411 (01/26/2016) --- European Space Agency (ESA) astronaut Timothy Peake prepares to install a space acceleration measurement system sensor inside the European Columbus module aboard the International Space Station. The device is used in an ongoing study of the small forces (vibrations and accelerations) on the International Space Station resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments.
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals formore » the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. In conclusion, the chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.« less
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe; ...
2017-11-14
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals formore » the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. In conclusion, the chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.« less
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
NASA Astrophysics Data System (ADS)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe; Gagliardi, Laura; de Jong, Wibe A.
2017-11-01
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals for the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. The chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.
Workstation Designs for a Cis-Lunar Deep Space Habitat
NASA Technical Reports Server (NTRS)
Howe, A. Scott
2014-01-01
Using the International Standard Payload Rack (ISPR) system, a suite of workstations required for deep space missions have been proposed to fill out habitation functions in an International Space Station (ISS) derived Cis-lunar Deep Space Habitat. This paper introduces the functional layout of the Cis-lunar habitat design, and describes conceptual designs for modular deployable work surfaces, General Maintenance Workstation (GMWS), In-Space Manufacturing Workstation (ISMW), Intra-Vehicular Activity Telerobotics Work Station (IVA-TRWS), and Galley / Wardroom.
Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.
Pickett, Andrew C; Cunningham, George B
2017-09-01
Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.
Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1982-01-01
The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.
The Space Shuttle - A future space transportation system
NASA Technical Reports Server (NTRS)
Thompson, R. F.
1974-01-01
The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.
Space Acceleration Measurement System-II
NASA Technical Reports Server (NTRS)
Foster, William
2009-01-01
Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.
2003-08-27
KENNEDY SPACE CENTER, FLA. - Key officials are poised to cut the ribbon officially dedicating the new Security gates on Kennedy Parkway (Gate 2) and NASA Parkway (Gate 3). From left are Wally Schroeder, with Jones, Edmunds & Associates; Bobby Porter, with Oneida Construction; Daniel Tweed, NASA project manager; Jim Kennedy, Center director; and William Sample, SGS deputy program manager. The new gates were activated Aug. 1, allowing the general public to have access to the new Space Commerce Way, which will provide access to the Research Park and KSC Visitor Complex, and providing an alternate route for the general public between Titusville and Merritt Island that is accessible 24 hours a day. The gates are staffed 24 hours daily.
Moving through Life-Space Areas and Objectively Measured Physical Activity of Older People.
Portegijs, Erja; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja
2015-01-01
Physical activity-an important determinant of health and function in old age-may vary according to the life-space area reached. Our aim was to study how moving through greater life-space areas is associated with greater physical activity of community-dwelling older people. The association between objectively measured physical activity and life-space area reached on different days by the same individual was studied using one-week longitudinal data, to provide insight in causal relationships. One-week surveillance of objectively assessed physical activity of community-dwelling 70-90-year-old people in central Finland from the "Life-space mobility in old age" cohort substudy (N = 174). In spring 2012, participants wore an accelerometer for 7 days and completed a daily diary including the largest life-space area reached (inside home, outside home, neighborhood, town, and beyond town). The daily step count, and the time in moderate (incl. walking) and low activity and sedentary behavior were assessed. Differences in physical activity between days on which different life-space areas were reached were tested using Generalized Estimation Equation models (within-group comparison). Participants' mean age was 80.4±4.2 years and 63.5% were female. Participants had higher average step counts (p < .001) and greater moderate and low activity time (p < .001) on days when greater life-space areas were reached, from the home to the town area. Only low activity time continued to increase when moving beyond the town. Community-dwelling older people were more physically active on days when they moved through greater life-space areas. While it is unknown whether physical activity was a motivator to leave the home, intervention studies are needed to determine whether facilitation of daily outdoor mobility, regardless of the purpose, may be beneficial in terms of promoting physical activity.
Roe, Jenny; Aspinall, Peter A.; Ward Thompson, Catharine
2016-01-01
Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from “very good” health (people of Indian origin), to ”good” health (white British), and ”poor” health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled ”Mixed BME” in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in ”Mixed BME”. Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this can play an important role in helping address the health inequalities experienced by these groups. PMID:27399736
Roe, Jenny; Aspinall, Peter A; Ward Thompson, Catharine
2016-07-05
Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from "very good" health (people of Indian origin), to "good" health (white British), and "poor" health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled "Mixed BME" in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in "Mixed BME". Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this can play an important role in helping address the health inequalities experienced by these groups.
The human role in space. Volume 3: Generalizations on human roles in space
NASA Technical Reports Server (NTRS)
1984-01-01
The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions, was investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, ecnomics, and benefits of the human presence in space were examined. Factors which affect crew productivity include: internal architecture; crew support; crew activities; LVA systems; IVA/EVA interfaces; and remote systems management. The accomplished work is reported and the data and analyses from which the study results are derived are included. The results provide information and guidelines to enable NASA program managers and decision makers to establish, early in the design process, the most cost effective design approach for future space programs, through the optimal application of unique human skills and capabilities in space.
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.
NASA Technical Reports Server (NTRS)
1977-01-01
The objective elements representative of the kinds of space activities that will be supported by the space construction base (SCB) are discussed in (1) a brief mission overview including the primary purpose and general objectives; (2) descriptions of the processes involved (where applicable), the mission hardware, the principal activities to be undertaken, the test requirements, and the principal tests; and (3) the SCB requirements including such items as special devices (e.g., fabrication modules, assembly or construction fixtures, cranes, and airlocks), power, data management and communications, waste management, environmental control, safety, and logistics. Each program option is then described in terms of the objective elements it supports, its orbit, the general makeup of the SCB, the transportation approach, and the program schedule goals. The specific requirements that are imposed on the SCB in order to support program option L are given.
Freisthler, Bridget; Thomas, Crystal A.; Curry, Susanna R.; Wolf, Jennifer Price
2015-01-01
Background The environments where parents spend time, such as at work, at their child's school, or with friends and family, may exert a greater influence on their parenting behaviors than the residential neighborhoods where they live. These environments, termed activity spaces, provide individualized information about the where parents go, offering a more detailed understanding of the environmental risks and resources to which parents are exposed. Objective This study conducts a preliminary examination of how neighborhood context, social processes, and individual activity spaces are related to a variety of parenting practices. Methods Data were collected from 42 parents via door-to-door surveys in one neighborhood area. Survey participants provided information about punitive and non-punitive parenting practices, the locations where they conducted daily living activities, social supports, and neighborhood social processes. OLS regression procedures were used to examine covariates related to the size of parent activity spaces. Negative binomial models assessed how activity spaces were related to four punitive and five non-punitive parenting practices. Results With regards to size of parents' activity spaces, male caregivers and those with a local (within neighborhood) primary support member had larger activity spaces. Size of a parent's activity space is negatively related to use of punitive parenting, but generally not related to non-punitive parenting behaviors. Conclusions These findings suggest social workers should assess where parents spend their time and get socially isolated parents involved in activities that could result in less use of punitive parenting. PMID:27057130
COSPAR report to United Nations 2004: satellite dynamics
NASA Technical Reports Server (NTRS)
Willis, Pascal
2004-01-01
The COSPAR Panel on Satellite Dynamics (PSD) is concerned with the determination of the position, velocity and orientation in space of artificial and natural satellites around the Earth or in the outer space. The following report highlighs representative activities of this panel and provides general information on related international aspects.
Design and Development of a Smart Storytelling Toy
ERIC Educational Resources Information Center
Kara, Nuri; Aydin, Cansu Cigdem; Cagiltay, Kursat
2014-01-01
Because computers generally make children passive listeners, new technological devices need to support children's storytelling activities. This article introduces the StoryTech, a smart toy that includes a virtual space comprised of computer-based graphics and characters as well as a real space that involves stuffed animals, background cards…
Cooperative Program In Space Science
NASA Technical Reports Server (NTRS)
Black, David
2003-01-01
The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
Jaeger, Johannes; Irons, David; Monk, Nick
2008-10-01
Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.
Noise control using a plate radiator and an acoustic resonator
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor)
1996-01-01
An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.
ERIC Educational Resources Information Center
International Telecommunication Union, Geneva (Switzerland).
Reports are presented on the 1970-71 activities of the General Secretariat of the International Telecommunication Union, the International Frequency Registration Board, the International Radio Consultative Committee, and the International Telegraph and Telephone Consultative Committee. In addition progress in the field of space communications made…
Wakata and Thirsk with GLACIER in U.S. Lab
2009-06-15
ISS020-E-010018 (15 June 2009) --- Canadian Space Agency astronaut Robert Thirsk and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (partially out of frame at right), both Expedition 20 flight engineers, work with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
The law applicable to the use of space for commercial activities
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1983-01-01
The general principles of space law that have an impact on commercial space activities are discussed. The Outer Space Treaty guaranteed the right of private enterprise in space, with jurisdiction over the participating parties residing in the country of origin. The liability for damages caused to a third party is also assigned to the country of origin. Government consent is necessary in the U.S. before a private firm is permitted to launch an object into space, with the relevant statute sections being part of the Arms Export Control Act; launches are legally treated as exports. FAA regulations define the safe area and flight conditions that must be satisfied for a private launch, although NASA, in the 1958 act which formed the agency, potentialy has the power to regulate space launch activities. The DoD must be notified of any launches in order to notify the U.S.S.R., filings must be made with the Bureau of Alcohol, Tobacco, and Firearms, and fees must be paid to the IRS. It is presently U.S. government policy to encourage and facilitate private sector development of commercial launch services.
NASA Astrophysics Data System (ADS)
Smith, Lesley Jane; Doldirina, Catherine
2010-01-01
Liability for space activities is a much discussed subject and the advent of commercial space operations has only added to its importance. Articles VI and VII Outer Space Treaty, together with Articles II and III Liability Convention, remain the main entry level for state liability for damage arising from private space activities. Few space-faring nations have introduced national space statutes that include a flow down of their international obligations. The European Union (EU) Regulation on the law applicable to non-contractual obligations—hereinafter Rome II Regulation—could harbour developments for liability law in the context of damage resulting from space operations. Space activities were not the main focus of the Regulation but may well turn out to be an interesting spin-off. The Regulation prescribes general rules that will determine the law applicable to damage scenarios where more than one legal system applies. It is important for trans-national tort cases in that it does not limit the rules of applicable law to EU Member States only. This paper focuses on the common rules applicable to damage actions based on torts or other non-contractual obligations as they apply to damage caused by space activities. After an assessment of the relevant international and national law norms, the impact of the Rome II Regulation will be addressed.
NASA Astrophysics Data System (ADS)
Petroni, Giorgio; Bigliardi, Barbara; Galati, Francesco; Petroni, Alberto
2018-01-01
This study investigates the benefits and limits deriving from membership with ESA of six medium-sized space agencies in terms of strengthening and development (or not) of space technologies, as well as their contribution to the growth of productive activities and to the increase of services for citizens. This research contributes to the more general issue of the usefulness of space activities, not only for scientific or military-political purposes but also for economic and social development. Results show that, on the one hand, the membership with ESA has allowed smaller Countries to access space programs, to develop advanced technologies and to support the growth of their firms in some significant markets, but, on the other hand, the membership has also limited the access to space to few companies, without encouraging the broad dissemination of technological knowledge.
Suited crewmember productivity.
Barer, A S; Filipenkov, S N
1994-01-01
Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.
Legal Consequences of the Pollution of Outer Space with Space Debris
NASA Astrophysics Data System (ADS)
Stubbe, Peter
2017-07-01
Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting the generation of debris. They become all the more effective when the principles of sustainable development are taken into account, which infuse considerations of intra- as well as inter-generational justice into international law. In view of the growing debris pollution and its related detrimental effects, it is obvious that questions of liability and responsibility will become increasingly relevant. The Liability Convention offers a remedy for victims having suffered damage caused by space debris. The launching State liability that it establishes is even absolute for damage occurring on the surface of the Earth. The secondary rules of international responsibility law go beyond mere compensation: States can also be held accountable for the environmental pollution event itself, entailing a number of consequential obligations, among them―under certain circumstances―a duty to active debris removal. While international law is, therefore, generally effective in addressing the debris problem, growing use and growing risks necessitate the establishment of a comprehensive traffic management regime for outer space. It would strengthen the rule of law in outer space and ensure the sustainability of space utilization.
Deriving Tools from Real-Time Runs: A New CCMC Support for SEC and AFWA
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2007-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-on-request" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities at the Space Environment Center, or at the Air Force Weather Agency.
1971-07-26
During the Apollo 15 pre-launch activity in the launch control center's firing room 1 at Kennedy Space Center, the then recently appointed NASA Administrator, Dr. James C. Fletcher (right) speaks with (Left to right) William Anders, executive secretary of the National Aeronautics and Space Council; Lt. General Sam Phillips, former Apollo Program Director; and Dr. Wernher von Braun, NASA's Deputy Associate Administrator for planning.
Green space definition affects associations of green space with overweight and physical activity.
Klompmaker, Jochem O; Hoek, Gerard; Bloemsma, Lizan D; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A H
2018-01-01
In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Preflight Adaptation Training for Spatial Orientation and Space Motion Sickness
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Parker, Donald E.
1994-01-01
Two part-task preflight adaptation trainers (PATs) are being developed at the NASA Johnson Space Center to preadapt astronauts to novel sensory stimulus conditions similar to those present in microgravity to facilitate adaptation to microgravity and readaptation to Earth. This activity is a major component of a general effort to develop countermeasures aimed at minimizing sensory and sensorimotor disturbances and Space Motion Sickness (SMS) associated with adaptation to microgravity and readaptation to Earth. Design principles for the development of the two trainers are discussed, along with a detailed description of both devices. In addition, a summary of four ground-based investigations using one of the trainers to determine the extent to which various novel sensory stimulus conditions produce changes in compensatory eye movement responses, postural equilibrium, motion sickness symptoms, and electrogastric responses are presented. Finally, a brief description of the general concept of dual-adopted states that underly the development of the PATs, and ongoing and future operational and basic research activities are presented.
2003-08-27
KENNEDY SPACE CENTER, FLA. - Daniel L. Tweed, with the Facilities Division, NASA Spaceport Services, addresses attendees at the ribbon cutting for the KSC Security gates. Tweed was project manager. The two new Security gates on Kennedy Parkway (Gate 2) and NASA Parkway (Gate 3) were activated Aug. 1, allowing the general public to have access to the new Space Commerce Way, which will provide access to the Research Park and KSC Visitor Complex, and providing an alternate route for the general public between Titusville and Merritt Island that is accessible 24 hours a day. The gates are staffed 24 hours daily. Others taking part in the ribbon cutting were Center Director Jim Kennedy; Chief, Protective & Safe Guards Office, Calvin L. Burch; SGS Deputy Program Manager William A. Sample; and Bobby Porter, with Oneida Construction.
2014-05-16
ISS040-E-000298 (16 May 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
2014-05-16
ISS040-E-000297 (16 May 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
2014-05-16
ISS040-E-000296 (16 May 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Allen, H., Jr.
1983-01-01
The symposium included personal appearances by NASA astronauts, NASA exhibits, aerospace science lecture demonstrations (Spacemobile Lectures), and talks on job opportunities in aerospace and on the benefits of the Space Program. The program was directed mainly at (public, parochial and private) student groups, each of which spent three hours at the symposium site, Wayne State University campus, to participate in the symposium activities. The symposium was open to the general public and consisted of the NASA exhibits, aerospace science lecture demonstrations, films, talks on the benefits of the space program, and a special tasting demonstration of ""space food'' meal systems.
14 CFR Appendix C to Part 1215 - Typical User Activity Timeline
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Typical User Activity Timeline C Appendix C... RELAY SATELLITE SYSTEM (TDRSS) Pt. 1215, App. C Appendix C to Part 1215—Typical User Activity Timeline... mission model. 3 years before launch (Ref. § 1215.109(c). Submit general user requirements to permit...
NASDA'S activities and roles in promoting satellite utilization experiments
NASA Astrophysics Data System (ADS)
Shigeta, Tsutomu; Miyoshi, Takashi
2004-02-01
While NASDA has been engaged in the development of new satellite missions and the bus technologies, NASDA explores new and attractive applications by promoting the utilization of satellite missions and strengthening the relationships with external parties. Offering opportunities to external parties for conducting application experiments will bring great chances for them in challenging and experimenting new space-based applications. Consequently, it is expected that the outcomes of the space development are returned to general public, research institutes, industries, and that ideas or requirements for new satellite mission could emerge and be materialized. With these objectives in mind, NASDA is presently planning a new space project that is named "i-Space". The i-Space project aims to contribute to the progressing "IT Revolution" by providing new space communication capabilities and to develop practical applications by collaborating with external parties. This paper introduces the activities and roles of NASDA in promoting satellite utilization experiments, particularly focusing on the i-Space project.
Ghosh, Soumen; Cramer, Christopher J; Truhlar, Donald G; Gagliardi, Laura
2017-04-01
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e. , systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. We recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functional theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet-triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet-triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.
Selection of active spaces for multiconfigurational wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Sebastian; Boguslawski, Katharina; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-28
The efficient and accurate description of the electronic structure of strongly correlated systems is still a largely unsolved problem. The usual procedures start with a multiconfigurational (usually a Complete Active Space, CAS) wavefunction which accounts for static correlation and add dynamical correlation by perturbation theory, configuration interaction, or coupled cluster expansion. This procedure requires the correct selection of the active space. Intuitive methods are unreliable for complex systems. The inexpensive black-box unrestricted natural orbital (UNO) criterion postulates that the Unrestricted Hartree-Fock (UHF) charge natural orbitals with fractional occupancy (e.g., between 0.02 and 1.98) constitute the active space. UNOs generally approximatemore » the CAS orbitals so well that the orbital optimization in CAS Self-Consistent Field (CASSCF) may be omitted, resulting in the inexpensive UNO-CAS method. A rigorous testing of the UNO criterion requires comparison with approximate full configuration interaction wavefunctions. This became feasible with the advent of Density Matrix Renormalization Group (DMRG) methods which can approximate highly correlated wavefunctions at affordable cost. We have compared active orbital occupancies in UNO-CAS and CASSCF calculations with DMRG in a number of strongly correlated molecules: compounds of electronegative atoms (F{sub 2}, ozone, and NO{sub 2}), polyenes, aromatic molecules (naphthalene, azulene, anthracene, and nitrobenzene), radicals (phenoxy and benzyl), diradicals (o-, m-, and p-benzyne), and transition metal compounds (nickel-acetylene and Cr{sub 2}). The UNO criterion works well in these cases. Other symmetry breaking solutions, with the possible exception of spatial symmetry, do not appear to be essential to generate the correct active space. In the case of multiple UHF solutions, the natural orbitals of the average UHF density should be used. The problems of the UNO criterion and their potential solutions are discussed: finding the UHF solutions, discontinuities on potential energy surfaces, and inclusion of dynamical electron correlation and generalization to excited states.« less
Selection of active spaces for multiconfigurational wavefunctions
NASA Astrophysics Data System (ADS)
Keller, Sebastian; Boguslawski, Katharina; Janowski, Tomasz; Reiher, Markus; Pulay, Peter
2015-06-01
The efficient and accurate description of the electronic structure of strongly correlated systems is still a largely unsolved problem. The usual procedures start with a multiconfigurational (usually a Complete Active Space, CAS) wavefunction which accounts for static correlation and add dynamical correlation by perturbation theory, configuration interaction, or coupled cluster expansion. This procedure requires the correct selection of the active space. Intuitive methods are unreliable for complex systems. The inexpensive black-box unrestricted natural orbital (UNO) criterion postulates that the Unrestricted Hartree-Fock (UHF) charge natural orbitals with fractional occupancy (e.g., between 0.02 and 1.98) constitute the active space. UNOs generally approximate the CAS orbitals so well that the orbital optimization in CAS Self-Consistent Field (CASSCF) may be omitted, resulting in the inexpensive UNO-CAS method. A rigorous testing of the UNO criterion requires comparison with approximate full configuration interaction wavefunctions. This became feasible with the advent of Density Matrix Renormalization Group (DMRG) methods which can approximate highly correlated wavefunctions at affordable cost. We have compared active orbital occupancies in UNO-CAS and CASSCF calculations with DMRG in a number of strongly correlated molecules: compounds of electronegative atoms (F2, ozone, and NO2), polyenes, aromatic molecules (naphthalene, azulene, anthracene, and nitrobenzene), radicals (phenoxy and benzyl), diradicals (o-, m-, and p-benzyne), and transition metal compounds (nickel-acetylene and Cr2). The UNO criterion works well in these cases. Other symmetry breaking solutions, with the possible exception of spatial symmetry, do not appear to be essential to generate the correct active space. In the case of multiple UHF solutions, the natural orbitals of the average UHF density should be used. The problems of the UNO criterion and their potential solutions are discussed: finding the UHF solutions, discontinuities on potential energy surfaces, and inclusion of dynamical electron correlation and generalization to excited states.
Assessing Built Environment Walkability using Activity-Space Summary Measures.
Tribby, Calvin P; Miller, Harvey J; Brown, Barbara B; Werner, Carol M; Smith, Ken R
There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces : the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals' trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time.
Assessing Built Environment Walkability using Activity-Space Summary Measures
Tribby, Calvin P.; Miller, Harvey J.; Brown, Barbara B.; Werner, Carol M.; Smith, Ken R.
2015-01-01
There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces: the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals’ trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time. PMID:27213027
Theory of diffusion of active particles that move at constant speed in two dimensions.
Sevilla, Francisco J; Gómez Nava, Luis A
2014-08-01
Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term. While no difference is observed for the mean-square displacement computed from the two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles with constant speed in dispersive media.
McCaskey, Ursina; von Aster, Michael; O'Gorman Tuura, Ruth; Kucian, Karin
2017-01-01
The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a generalized magnitude system in the occipito-parietal stream in typical development. The detailed investigation of spatial and numerical magnitude abilities in DD reveals that the deficits in number processing and arithmetic cannot be explained with a general magnitude deficiency. Our results further indicate that multiple neuro-cognitive components might contribute to the explanation of DD.
McCaskey, Ursina; von Aster, Michael; O’Gorman Tuura, Ruth; Kucian, Karin
2017-01-01
The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a generalized magnitude system in the occipito-parietal stream in typical development. The detailed investigation of spatial and numerical magnitude abilities in DD reveals that the deficits in number processing and arithmetic cannot be explained with a general magnitude deficiency. Our results further indicate that multiple neuro-cognitive components might contribute to the explanation of DD. PMID:28373834
Innovative Space Sciences Education Programs for Young People
NASA Astrophysics Data System (ADS)
Inbar, T.
2002-01-01
The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4 telescopes and special "mobile science" project, which travel to hundreds of school annually, and bring to them mini exhibitions, scientific activities and lectures. Special events are held when something unique happened: in the last years we have had the Galileo special event when the spacecraft arrived at Jupiter; SL-9 event; Mars Pathfinder special event; Mir re- entry event - to name a few. For 11 years, on July 20 we have the Apollo memorial lecture, and a meteors observation night on August 11. The 12 years of experience I have in teaching space sciences subjects to k-12 students, university students and adults, combines with three years as a director of interactive science museum, allowed me to implement my vision of promoting the general knowledge about space and to move a little more in the direction of creating a space oriented, open and globally interacted society in Israel.
Suited crewmember productivity
NASA Astrophysics Data System (ADS)
Barer, A. S.; Filipenkov, S. N.
Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: —space suit microclimate (gas composition, pressure and temperature); —limitation of motion activity and perception, imposed by the space suit; —good crewmember training in the ground training program; —level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; —individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; —concrete EVA duration and work rate; —EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.
NASA Astrophysics Data System (ADS)
Degnan, Frank; Zadjura, Mona M.; Crocker, William W.; Berry, James D., Jr.
1992-07-01
The information on the financial reserves available to offset risks associated with the National Aeronautics and Space Administration's Space Station Freedom program is provided to Government Activities and Transportation Subcommittee of Committee on Government Operations House of Representatives, as requested. To obtain the information of the financial reserves NASA maintains in the space station program, NASA Headquarters officials in the Controller and Space Station program offices were interviewed. Financial and program documents related to the level of financial reserves in the program and the uses of those reserved to fund additional program requirements were reviewed. The review was conducted from March to July 1992 in accordance with generally accepted government auditing standards. As requested, written agency comments on this report was not obtained, but the reviews of responsible NASA officials were obtained to consider in preparing this report.
Space station WP-04 power system. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.
Operational experience and design recommendations for teleoperated flight hardware
NASA Technical Reports Server (NTRS)
Burgess, T. W.; Kuban, D. P.; Hankins, W. W.; Mixon, R. W.
1988-01-01
Teleoperation (remote manipulation) will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also presented.
STS-3 MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC
1982-03-26
Mission Control Activities during the STS-3 Mission, Day-4 with: Maj. Gen. James A. Abrahamson, Associate Administrator of the Space Transportation System (STS), NASA Hdqs., conversing with Dr. Kraft; Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC, Aaron Cohen, Manager, Space Shuttle Orbiter Project Office; and, J. E. Conner, Ford Aerospace Engineer at the Instrumentation and Communications Officer (INCO) Console position. 1. Glynn S. Lunney 2. Major General James A. Abrahamson 3. Aaron Cohen 4. J. E. Conner 5. Dr. Christopher Kraft JSC, Houston, TX
Natural environment support guidelines for Space Shuttle tests and operations
NASA Technical Reports Server (NTRS)
Carter, E. A.; Brown, S. C.
1974-01-01
The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.
Neuromuscular activation patterns during treadmill walking after space flight
NASA Technical Reports Server (NTRS)
Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.
1997-01-01
Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.
Civil Air Patrol and Aerospace Education
ERIC Educational Resources Information Center
Sorenson, John V.
1972-01-01
Aerospace education is a branch of general education concerned with communicating knowledge, imparting skills, and developing attitudes necessary to interpret aerospace activities and the total impact of air and space vehicles upon society. (Author)
2010-09-01
ISS024-E-012995 (1 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
Exploration, anxiety, and spatial memory in transgenic anophthalmic mice.
Buhot, M C; Dubayle, D; Malleret, G; Javerzat, S; Segu, L
2001-04-01
Contradictory results are found in the literature concerning the role of vision in the perception of space or in spatial navigation, in part because of the lack of murine models of total blindness used so far. The authors evaluated the spatial abilities of anophthalmic transgenic mice. These mice did not differ qualitatively from their wild-type littermates in general locomotor activity, spontaneous alternation, object exploration, or anxiety, but their level of exploratory activity was generally lower. In the spatial version of the water maze, they displayed persistent thigmotaxic behavior and showed severe spatial learning impairments. However, their performances improved with training, suggesting that they may have acquired a rough representation of the platform position. These results suggest that modalities other than vision enable some degree of spatial processing in proximal and structured spaces but that vision is critical for accurate spatial navigation.
Evolving Markets for Commercial, Civil, and Military Services
NASA Astrophysics Data System (ADS)
Kaplan, Marshall H.
2003-01-01
Recent commercial failures in the LEO market, declining budgets for research, and other political factors have made it difficult for entrepreneurs and financial institutions to realize returns from investments in new space transportation systems and satellites. This paper explores the major factors impacting future markets that make use of our space infrastructure. At the top of the list is the high cost of space access. This has been extremely expensive, and will continue to be expensive as long as space access remains low on the nation's priority list. While launch prices have generally been reduced over the past several years, they remain well above the elastic range of supply and demand. Our best estimate is that it will take an order of magnitude reduction to significantly expand the market. Projections about market segments that will represent future winners in space and launch demand forecasts are presented. Future markets, outside of traditional strongholds, are explored, including a long-term view of new commercial space activities, conventional and ambitious future/futuristic activities, and related business aspects.
IHY Modeling Support at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Chulaki, A.; Hesse, Michael; Kuznetsova, Masha; MacNeice, P.; Rastaetter, L.
2005-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-onrequest" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities during the International Heliospheric Year. In order to tailor CCMC activities to IHY needs, we will also invite community input into our IHY planning activities.
Origin of Marshall Space Flight Center (MSFC)
1960-09-08
President Dwight D. Eisenhower and Mrs. George C. Marshall unveil the bronze bust of General George C. Marshall during the dedication of the Marshall Space Flight Center. Eisenhower signed an Executive Order on October 21, 1959 directing the transfer of persornel from the Redstone Arsenal's Army Ballistic Missile Agency Development Operations Division to NASA. On March 15, 1960, another Executive Order announced that the space complex formed within the boundaries of Redstone Arsenal would become the George C. Marshall Space Flight Center. The Center was activated on July 1, 1960, with dedication ceremonies taking place September 8, 1960.
2015-01-26
HOUSTON, Texas- jsc2015e031278 - NASA Administrator Charles Bolden discusses the agency's Commercial Crew Program during a presentation highlighting key development activities, test plans and objectives for achieving certification of two American crew transportation systems with Commercial Crew Program Manager Kathy Lueders, Boeing Space Exploration Vice President and General Manager John Elbon, Space X President and Chief Operating Officer Gwynne Shotwell and NASA Astronaut Mike Fincke. Photo credit: NASA/Robert Markowitz
2015-01-26
HOUSTON, Texas - jsc2015e031229 - NASA Administrator Charles Bolden discusses the agency's Commercial Crew Program during a presentation highlighting key development activities, test plans and objectives for achieving certification of two American crew transportation systems with Commercial Crew Program Manager Kathy Lueders, Boeing Space Exploration Vice President and General Manager John Elbon, Space X President and Chief Operating Officer Gwynne Shotwell and NASA Astronaut Mike Fincke. Photo credit: NASA/Robert Markowitz
Space Station Freedom coupling tasks: An evaluation of their space operational compatibility
NASA Technical Reports Server (NTRS)
Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.
1991-01-01
The development of the Space Station Freedom tasks that are compatible with both telerobotic as well as extravehicular activity is a necessary redundancy in order to insure successful day to day operation. One task to be routinely performed aboard Freedom will be the changeout of various quick disconnect fluid connectors. In an attempt to resolve these potentially contradictory issues of compatibility, mock-ups of couplings suitable to both extravehicular as well as telerobotic activity were designed and built. An evaluation performed at the Remote Operator Interaction Laboratory at NASA's Johnson Space Center is discussed, which assessed the prototype couplings as well as three standard coupling designs. Data collected during manual and telerobotic manipulation of the couplings indicated that the custom coupling was in fact shown to be faster to operate and generally preferred over the standard coupling designs.
Math Experiences for Preschool Children: Games and Cuisenaire Rods.
ERIC Educational Resources Information Center
Goetz, Elizabeth M.
Acquisition of the basic concepts of mathematics such as matching, number and counting, sets and classifying, comparing, measuring, shape, space, and parts and wholes, may be followed by two types of activities. First, the child may subsequently be presented activities that allow for practice and generalization of those acquired concepts.…
Making Astronomy and Space Science Accessible to the Blind and Visually Impaired
NASA Astrophysics Data System (ADS)
Beck-Winchatz, B.; Hoette, V.; Grice, N.
2003-12-01
One of the biggest obstacles blind and visually impaired people face in science is the ubiquity of important graphical information, which is generally not made available in alternate formats accessible to them. Funded by NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS), we have recently formed a team of scientists and educators from universities, the SOFIA NASA mission, a science museum, an observatory, and schools for the blind. Our goal is to develop and test Braille/tactile space science activities that actively engage students from elementary grades through introductory college-level in space science. We will discuss effective strategies and low-cost technologies that can be used to make graphical information accessible. We will also demonstrate examples, such a thermal expansion graphics created from telescope images of the Moon and other celestial objects, a tactile planisphere, three-dimensional models of near-Earth asteroids and tactile diagrams of their orbits, and an infrared detector activity.
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.; ...
2017-01-19
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
Impact of space weather on human heart rate during the years 2011-2013
NASA Astrophysics Data System (ADS)
Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.
2017-08-01
During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.
National Space Biomedical Research Institute Annual Report
NASA Technical Reports Server (NTRS)
2000-01-01
This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).
Criteria for Public Open Space Enhancement to Achieve Social Interaction: a Review Paper
NASA Astrophysics Data System (ADS)
Salih, S. A.; Ismail, S.
2017-12-01
A This paper presents a various literatures, studies, transcripts and papers aiming to provide an overview of some theories and existing research on the significance of natural environments and green open spaces to achieve social interaction and outdoor recreation. The main objective of the paper is to identify the factors that affecting social interaction in green open spaces, through proving that an appropriate open spaces is important to enhance social interaction and community. This study employs (qualitative) summarizing content analysis method which mainly focused on collect and summarizing of documentation such as transcripts, articles, papers, and books from more than 25 source, regarding the importance of public open spaces for the community. The summarizing content analysis of this paper is the fundament for a qualitative oriented procedure of text interpretation used to analyse the information gathered. Results of this study confirms that sound social interaction need an appropriate physical space including criteria of: design, activities, access and linkage, administration and maintenance, place attachment and users’ characteristics, also previous studies in this area have a health perspective with measures of physical activity of open spaces in general.
NASA Astrophysics Data System (ADS)
Ng, C.; Thompson, B. J.; Cline, T.; Lewis, E.; Barbier, B.; Odenwald, S.; Spadaccini, J.; James, N.; Stephenson, B.; Davis, H. B.; Major, E. R.; Space Weather Living History
2011-12-01
The Space Weather Living History program will explore and share the breakthrough new science and captivating stories of space environments and space weather by interviewing space physics pioneers and leaders active from the International Geophysical Year (IGY) to the present. Our multi-mission project will capture, document and preserve the living history of space weather utilizing original historical materials (primary sources). The resulting products will allow us to tell the stories of those involved in interactive new media to address important STEM needs, inspire the next generation of explorers, and feature women as role models. The project is divided into several stages, and the first stage, which began in mid-2011, focuses on resource gathering. The goal is to capture not just anecdotes, but the careful analogies and insights of researchers and historians associated with the programs and events. The Space Weather Living History Program has a Scientific Advisory Board, and with the Board's input our team will determine the chronology, key researchers, events, missions and discoveries for interviews. Education activities will be designed to utilize autobiographies, newspapers, interviews, research reports, journal articles, conference proceedings, dissertations, websites, diaries, letters, and artworks. With the help of a multimedia firm, we will use some of these materials to develop an interactive timeline on the web, and as a downloadable application in a kiosk and on tablet computers. In summary, our project augments the existing historical records with education technologies, connect the pioneers, current leaders and the nature and history of space weather with K-12 classrooms and the general public, covering all areas of studies in Heliophysics. The project is supported by NASA award NNX11AJ61G.
NASA Technical Reports Server (NTRS)
1990-01-01
Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.
Urban Green Space and Its Impact on Human Health
Kondo, Michelle C.; Fluehr, Jaime M.; McKeon, Thomas; Branas, Charles C.
2018-01-01
Background: Over half of the world’s population now lives in urban areas, and this proportion is expected to increase. While there have been numerous reviews of empirical studies on the link between nature and human health, very few have focused on the urban context, and most have examined almost exclusively cross-sectional research. This review is a first step toward assessing the possibility of causal relationships between nature and health in urban settings. Methods: Through systematic review of published literature, we explored the association between urban green space and human health. Results: We found consistent negative association between urban green space exposure and mortality, heart rate, and violence, and positive association with attention, mood, and physical activity. Results were mixed, or no association was found, in studies of urban green space exposure and general health, weight status, depression, and stress (via cortisol concentration). The number of studies was too low to generalize about birth outcomes, blood pressure, heart rate variability, cancer, diabetes, or respiratory symptoms. Conclusions: More studies using rigorous study design are needed to make generalizations, and meta-analyses, of these and other health outcomes possible. These findings may assist urban managers, organizations, and communities in their efforts to increase new or preserve existing green space. PMID:29510520
INSA Scientific Activities in the Space Astronomy Area
NASA Astrophysics Data System (ADS)
Pérez Martínez, Ricardo; Sánchez Portal, Miguel
Support to astronomy operations is an important and long-lived activity within INSA. Probably the best known (and traditional) INSA activities are those related with real-time spacecraft operations: ground station maintenance and operation (ground station engineers and operators); spacecraft and payload real-time operation (spacecraft and instruments controllers); computing infrastructure maintenance (operators, analysts), and general site services. In this paper, we’ll show a different perspective, probably not so well-known, presenting some INSA recent activities at the European Space Astronomy Centre (ESAC) and NASA Madrid Deep Space Communication Complex (MDSCC) directly related to scientific operations. Basic lines of activity involved include: operations support for science operations; system and software support for real time systems; technical administration and IT support; R&D activities, radioastronomy (at MDSCC and ESAC), and scientific research projects. This paper is structured as follows: first, INSA activities in two ESA cornerstone astrophysics missions, XMM-Newton and Herschel, will be outlined. Then, our activities related to scientific infrastructure services, represented by the Virtual Observatory (VO) framework and the Science Archives development facilities, are briefly shown. Radio astronomy activities will be described afterwards, and, finally, a few research topics in which INSA scientists are involved will also be described.
Learning Setting-Generalized Activity Models for Smart Spaces
Cook, Diane J.
2011-01-01
The data mining and pervasive computing technologies found in smart homes offer unprecedented opportunities for providing context-aware services, including health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to provide these services, smart environment algorithms need to recognize and track activities that people normally perform as part of their daily routines. However, activity recognition has typically involved gathering and labeling large amounts of data in each setting to learn a model for activities in that setting. We hypothesize that generalized models can be learned for common activities that span multiple environment settings and resident types. We describe our approach to learning these models and demonstrate the approach using eleven CASAS datasets collected in seven environments. PMID:21461133
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2016-09-01
It is shown that finding the equivalence set for solving multiobjective discrete optimization problems is advantageous over finding the set of Pareto optimal decisions. An example of a set of key parameters characterizing the economic efficiency of a commercial firm is proposed, and a mathematical model of its activities is constructed. In contrast to the classical problem of finding the maximum profit for any business, this study deals with a multiobjective optimization problem. A method for solving inverse multiobjective problems in a multidimensional pseudometric space is proposed for finding the best project of firm's activities. The solution of a particular problem of this type is presented.
Luis, Patricia; Wouters, Christine; Van der Bruggen, Bart; Sandler, Stanley I
2013-08-09
Head-space gas chromatography (HS-GC) is an applicable method to perform vapor-liquid equilibrium measurements and determine activity coefficients. However, the reproducibility of the data may be conditioned by the experimental procedure concerning to the automated pressure-balanced system. The study developed in this work shows that a minimum volume of liquid in the vial is necessary to ensure the reliability of the activity coefficients since it may become a parameter that influences the magnitude of the peak areas: the helium introduced during the pressurization step may produce significant variations of the results when too small volume of liquid is selected. The minimum volume required should thus be evaluated prior to obtain experimentally the concentration in the vapor phase and the activity coefficients. In this work, the mixture acetonitrile-toluene is taken as example, requiring a sample volume of more than 5mL (about more than 25% of the vial volume). The vapor-liquid equilibrium and activity coefficients of mixtures at different concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 molar fraction) and four temperatures (35, 45, 55 and 70°C) have been determined. Relative standard deviations (RSD) lower than 5% have been obtained, indicating the good reproducibility of the method when a sample volume larger than 5mL is used. Finally, a general procedure to measure activity coefficients by means of pressure-balanced head-space gas chromatography is proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
Outreach Education Modules on Space Sciences in Taiwan
NASA Astrophysics Data System (ADS)
Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen
2013-04-01
The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.
2015-01-26
HOUSTON, Texas - jsc2015e031248 - NASA astronaut Mike Fincke discusses the agency's Commercial Crew Program during a presentation highlighting key development activities, test plans and objectives for achieving certification of two American crew transportation systems with NASA Administrator Charlie Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing Space Exploration Vice President and General Manager John Elbon, Space X President and Chief Operating Officer Gwynne Shotwell and NASA Astronaut Mike Fincke. Photo credit: NASA/Robert Markowitz
2015-01-26
HOUSTON, Texas - jsc2015e031234 - Kathy Lueders, program manager of NASA's Commercial Crew Program, discusses the agency's approach during a presentation highlighting key development activities, test plans and objectives for achieving certification of two American crew transportation systems with NASA Administrator Charlie Bolden, Boeing Space Exploration Vice President and General Manager John Elbon, Space X President and Chief Operating Officer Gwynne Shotwell and NASA Astronaut Mike Fincke. Photo credit: NASA/Robert Markowitz
NASA Overview (K-12, Educators, and General Public)
NASA Technical Reports Server (NTRS)
Ericsson, Aprille Joy
2003-01-01
This viewgraph presentation provides an overview of NASA activities intended for recruitment of employees. It includes NASA's vision statement and mission, images of solar system bodies and the Sojourner rover, as well as information the Aqua satellite and the Stratospheric Aerosol and Gas Experiment III (Sage III). Images of experimental aircraft, a space shuttle, and the Hubble Space Telescope (HST) are shown, and a section on mission planning is included.
NASA Technical Reports Server (NTRS)
1996-01-01
This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.
Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less
NASA Astrophysics Data System (ADS)
Pérez-Ayúcar, M.; Breitfelner, M.
2017-09-01
Solar transits are rare astronomical event of profound historical importance and with an enormous potential to engage nowadays students and general public into Planetary Sciences and Space. Mercury transits occur only about every 13-14 times per century. Total solar eclipses occur around 18 months apart somewhere on Earth, but they recur only every 3-4 centuries on the same location. Although its historic scientific importance (examples, to measure the distances in the solar system, to observe the solar corona) has diminished since humanity roams our solar system with robotic spacecrafts, transits remain a spectacular astronomical event that is used very effectively to engage general public and students to Science and Space in general. The educational project CESAR (Cooperation through Education in Science and Astronomy Research) has been covering since 2012 such events (Venus transit 2012, live Sun transmissions, solar eclipses, ISS transits ...). We report the outstanding outcome of the two public educational and outreach events since last year: the May 2016 Mercury Transit, and the recent August 2017 Total Eclipse. And the follow up activities expected for future transits.
NASA Technical Reports Server (NTRS)
Holland, Albert W. (Editor)
1987-01-01
Topics discussed in this volume include space motion sickness, cardiovascular adaptation, fluid shifts, extravehicular activity, general physiology, perception, vestibular response modifications, vestibular physiology, and pharmacology. Papers are presented on the clinical characterization and etiology of space motion sickness, ultrasound techniques in space medicine, fluid shifts in weightlessness, Space Shuttle inflight and postflight fluid shifts measured by leg volume changes, and the probability of oxygen toxicity in an 8-psi space suit. Consideration is also given to the metabolic and hormonal status of crewmembers in short-term space flights, adaptive changes in perception of body orientation and mental image rotation in microgravity, the effects of a visual-vestibular stimulus on the vestibulo-ocular reflex, rotation tests in the weightless phase of parabolic flight, and the mechanisms of antimotion sickness drugs.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2005-01-01
NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.
NASA Astrophysics Data System (ADS)
Faizal Allaudin, Mohd; Peter, Nicolas; Azlin Md Said, Md; Nor, Khalid
2005-07-01
Due to the large capital investment and high risk generally associated with space activities only a limited number of countries have been able to benefit from the use of space technology. Space technology is often seen as an important tool to allow the transition from a developing country to a developed country. As Malaysia's vision is to be a developed country by 2020, it need to enhance the capability and capacity of its space technology at an accelerated pace. At this stage, Malaysia can be considered as new in space activities, since the first satellite successfully launched into orbit was only in 1997. This paper describes a microsatellite project undertaken in a university environment in Malaysia by the School of Aerospace Engineering from the University of Sains Malaysia (USM) where the students will be participating in the development and operations. Such involvement aim at forming an integral part of the students education extending the traditional way of teaching with practical classes thus providing hands-on experience and offering skills and experience needed by the future Malaysian space workforce, and to expand Malaysian space capacity building.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2
NASA Technical Reports Server (NTRS)
Graf, P. J.; Herwig, H. A.; Neel, L. W.
1973-01-01
This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.
Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team
2013-04-01
During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by amateur astronomers nation-wide (Supernova! Toolkit). This poster highlights various facets of the Fermi E/PO program.
Wakata with GLACIER in U.S. Lab
2009-06-15
ISS020-E-010016 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
Wakata with GLACIER in U.S. Lab
2009-06-15
ISS020-E-010017 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.
Ground Systems Development and Operations (GSDO): Exploration Begins Here [Grades K-4
NASA Technical Reports Server (NTRS)
Hill, Trudy
2012-01-01
Presentation to inform the non-NASA general public and school children of ground systems development and operations activities at Kennedy Space Center, particularly on what GSDO is and does, in a high level overview.
Living environment and mobility of older adults.
Cress, M Elaine; Orini, Stefania; Kinsler, Laura
2011-01-01
Older adults often elect to move into smaller living environments. Smaller living space and the addition of services provided by a retirement community (RC) may make living easier for the individual, but it may also reduce the amount of daily physical activity and ultimately reduce functional ability. With home size as an independent variable, the primary purpose of this study was to evaluate daily physical activity and physical function of community dwellers (CD; n = 31) as compared to residents of an RC (n = 30). In this cross-sectional study design, assessments included: the Continuous Scale Physical Functional Performance - 10 test, with a possible range of 0-100, higher scores reflecting better function; Step Activity Monitor (StepWatch 3.1); a physical activity questionnaire, the area of the home (in square meters). Groups were compared by one-way ANOVA. A general linear regression model was used to predict the number of steps per day at home. The level of significance was p < 0.05. Of the 61 volunteers (mean age: 79 ± 6.3 years; range: 65-94 years), the RC living space (68 ± 37.7 m(2)) was 62% smaller than the CD living space (182.8 ± 77.9 m(2); p = 0.001). After correcting for age, the RC took fewer total steps per day excluding exercise (p = 0.03) and had lower function (p = 0.005) than the CD. On average, RC residents take 3,000 steps less per day and have approximately 60% of the living space of a CD. Home size and physical function were primary predictors of the number of steps taken at home, as found using a general linear regression analysis. Copyright © 2010 S. Karger AG, Basel.
Considerations on private human access to space from an institutional point of view
NASA Astrophysics Data System (ADS)
Hufenbach, Bernhard
2013-12-01
Private human access to space as discussed in this article addresses two market segments: suborbital flight and crew flights to Low Earth Orbit. The role of entrepreneurs, the technical complexity, the customers, the market conditions as well as the time to market in these two segments differ significantly. Space agencies take currently a very different approach towards private human access to space in both segments. Analysing the outcome of broader inter-agency deliberations on the future of human spaceflight and exploration, performed e.g. in the framework of the International Space Exploration Coordination Group, enables to derive some common general views on this topic. Various documents developed by inter-agency working groups recognise the general strategic importance for enabling private human access to space for ensuring a sustainable future of human spaceflight, although the specific definition of private human access and approaches vary. ESA has performed some reflections on this subject throughout the last 5 years. While it gained through these reflections a good understanding on the opportunities and implications resulting from the development of capabilities and markets for Private Human Access, limited concrete activities have been initiated in relation to this topic as of today.
NASA Technical Reports Server (NTRS)
Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.
1974-01-01
Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.
International Space Station ECLSS Technical Task Agreement Summary Report
NASA Technical Reports Server (NTRS)
Ray, C. D. (Compiler); Salyer, B. H. (Compiler)
1999-01-01
This Technical Memorandum provides a summary of current work accomplished under Technical Task Agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). Current activities include ECLSS component design and development, computer model development, subsystem/integrated system testing, life testing, and general test support provided to the ISS program. Under ECLSS design, MSFC was responsible for the six major ECLSS functions, specifications and standard, component design and development, and was the architectural control agent for the ISS ECLSS. MSFC was responsible for ECLSS analytical model development. In-house subsystem and system level analysis and testing were conducted in support of the design process, including testing air revitalization, water reclamation and management hardware, and certain nonregenerative systems. The activities described herein were approved in task agreements between MSFC and NASA Headquarters Space Station Program Management Office and their prime contractor for the ISS, Boeing. These MSFC activities are in line to the designing, development, testing, and flight of ECLSS equipment planned by Boeing. MSFC's unique capabilities for performing integrated systems testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs, are the basis for the TTA activities.
Space education and outreach symposium (E1.). Structures for space education (2.)
NASA Astrophysics Data System (ADS)
Rodrigues, Ivette; Carvalho, Himilcon
2008-07-01
The Brazilian Space Agency (AEB) sponsors an outreach program aimed at promoting Brazilian space activities among students and teachers of primary and secondary schools. The program, called AEB Escola (Brazilian Space Agency School), was created in 2003 and, since then, has taken the space theme to thousands of students and teachers. The main goal of the AEB Escola Program is to make the Brazilian Space Program known among students and teachers. Additionally, it intends to use the space theme as a way to increase youth interest in studies in general, and in sciences in particular. The program focuses on teachers who, ultimately, are the ones responsible for introducing the subject to their students. And who also guarantee the continuity of the Program. An Astronautics and Space Science course is given to teachers by researchers involved with the Brazilian Space Program activities. The course has over 100 h of activities covering the following themes: Astronomy, Satellite Launcher Vehicles, Satellites and Space Platforms, Remote Sensing, Meteorology and Environmental Sciences, and Projects's Learning. The AEB Escola Program also promotes many other activities among students including lectures, contests, interactive exhibitions and hands-on activities. One of the consequences of such initiatives was the creation of two experiments taken to the International Space Station in April 2006 by the Brazilian astronaut, Marcos Pontes. Moreover, a nationwide contest called Brazilian Astronomy and Astronautical Olympics (OBA) is held every year involving nearly half a million students, with ages ranging from 7 to 17. The top five students are taken to the International Astronomy Olympics, where Brazil has obtained many medals. The top 50 students of OBA are taken, along with their teachers, to the city of São José dos Campos, in the state of São Paulo, to participate in the Space Journey event. The journey lasts a week during which the participants get a chance to learn about the activities and infrastructure of the National Institute of Space Research (INPE) and the Institute of Aeronautics and Space (IAE), the leading Brazilian institutions linked to Space activities. The material used by the teachers is produced by a net of partners, including universities and the Brazilian Ministry of Education. The material is produced both in printed and electronics format: CDs and DVDs, being distributed, free of charge, to thousands of schools. The paper introduces the concepts, methods, achievements and perspectives of the AEB Escola Program.
Abdelnour, A. Farras; Huppert, Theodore
2009-01-01
Near-infrared spectroscopy is a non-invasive neuroimaging method which uses light to measure changes in cerebral blood oxygenation associated with brain activity. In this work, we demonstrate the ability to record and analyze images of brain activity in real-time using a 16-channel continuous wave optical NIRS system. We propose a novel real-time analysis framework using an adaptive Kalman filter and a state–space model based on a canonical general linear model of brain activity. We show that our adaptive model has the ability to estimate single-trial brain activity events as we apply this method to track and classify experimental data acquired during an alternating bilateral self-paced finger tapping task. PMID:19457389
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Key officials are poised to cut the ribbon officially dedicating the new Security gates on Kennedy Parkway (Gate 2) and NASA Parkway (Gate 3). From left are Wally Schroeder, with Jones, Edmunds & Associates; Bobby Porter, with Oneida Construction; Daniel Tweed, NASA project manager; Jim Kennedy, Center director; and William Sample, SGS deputy program manager. The new gates were activated Aug. 1, allowing the general public to have access to the new Space Commerce Way, which will provide access to the Research Park and KSC Visitor Complex, and providing an alternate route for the general public between Titusville and Merritt Island that is accessible 24 hours a day. The gates are staffed 24 hours daily.
SHARC: Space Habitat, Assembly and Repair Center
NASA Technical Reports Server (NTRS)
Colangelo, Todd; Hoetger, Debora; Kuo, Addison; Lo, Michael; Marcus, Leland; Tran, Philip; Tutt, Chris; Wassmuth, Chad; Wildgrube, Gregory
1992-01-01
Integrated Space Systems (ISS) has taken on the task of designing a Space Habitat, Assembly and Repair Center (SHARC) in Low Earth Orbit to meet the future needs of the space program. Our goal is to meet the general requirements given by the 1991/1992 AIAA/LORAL Team Space Design competition with an emphasis on minimizing the costs of such a design. A baseline structural configuration along with preliminary designs of the major subsystems was created. Our initial mission requirements, which were set by AIAA, were that the facility be able to: support simultaneous assembly of three major vehicles; conduct assembly operations and minimal extra vehicular activity (EVA); maintain orbit indefinitely; and assemble components 30 feet long with a 10 foot diameter in a shirtsleeve environment.
Ground Systems Development and Operations (GSDO) Education 101: Exploration Begins Here [Grades 9-12
NASA Technical Reports Server (NTRS)
Hill, Trudy
2012-01-01
Presentation to inform the non-NASA general public and school children of ground systems development and operations activities at Kennedy Space Center, particularly on what GSDO is and does, in a high level overview.
Nontechnical Astronomy Books of 1989.
ERIC Educational Resources Information Center
Mercury, 1990
1990-01-01
Presented are 126 reviews. Categories include amateur astronomy, children's books, computers and astronomy, cosmic rays, cosmology, education in astronomy, galaxies, general astronomy, history of astronomy, life in the universe, physics and astronomy, pseudoscience, quasars and active galaxies, reference, solar system, space exploration, stars and…
Economic Benefits of Space Tourism to Europe
NASA Astrophysics Data System (ADS)
Collins, P.
The European aerospace industry has been very slow to consider the commercial opportunities in supplying passenger space travel services. This has been a costly mistake not just of space policy, but also of economic policy and environmental policy. This is because it is very unlikely that space tourism will remain just a small-scale activity of the very rich; it is much more likely to grow into a major new industry, employing millions of people in high quality employment - eventually much of it outside the Earth's eco-system. This is particularly important because, although the European “social-economic model” has greater popular support than the “USA model” (including among the general USA population), Europe today faces the major problem of high unemployment, which is imposing heavy social and economic costs. If Europe makes serious efforts soon to encourage the growth of passenger space travel, and of the many other economically and environmentally valuable space activities to which this will lead, then commercial space activities could become a major new axis of economic growth and employment-creation for Europe. Moreover, Europe has several advantages over the USA, Russia, Japan, China and India, and so could play a leading role in this field, if policy errors are corrected. The paper discusses the above possibilities, and the potential economic, environmental and other benefits for Europe in investing boldly in this fledgling industry.
A generalization of Cesàro sequence spaces in the Orlicz space
NASA Astrophysics Data System (ADS)
Haryadi; Supama; Zulijanto, A.
2018-04-01
In this paper, we generalize the Cesàro sequence spaces in the classic Banach space Lp to the generalized Orlicz space Lφ . We construct the space by replacing the norm {\\Vert \\cdot \\Vert }p in Lp with modular ρφ in Lφ . This generalization has lead to the use of the Luxemburg norm to discuss some topological properties of the spaces. We prove results regarding to modular and norm convergence. We also describe some properties of the spaces and a closed subspaces of the space.
Panel discussion: Roles of space program in the Asia Pacific region
NASA Astrophysics Data System (ADS)
Nomura, Tamiya
1992-03-01
A panel discussion on the subject 'Roles played by space development in Asia Pacific region' was held chaired by Space Activities Commission member and attended by the representatives of the participating countries, special attendance and observers. Opinions were expressed by each representative on three subjects, that is, social effects and benefits obtained by remote sensing data, observation data desired to augment the effect, and expectation for developed countries in space development. President of NASDA (National Space Development Agency of Japan) expressed his intension to promote international cooperation for the Japanese Earth Resources Satellite-1 (JERS-1) verification program, utilization augmentation of Japanese earth observing satellites and human resource training and education. Deputy Director-General for Science and Technology Agency (STA) outlined ASCA (Association for Science Cooperation in Asia) seminar and STA fellowship in relation to human resource development. Chairman of the Japan International Space Year (ISY) Association cited the necessity of closer and extensive communication networks free from the existing commercial communication. Deputy-Minister for Posts and Telecommunications outlined the PARTNERS project (Post-operational utilization of the Engineering Test Satellite-5 (ETS-5)) for international cooperation in space activities in Asia Pacific region. President of the Institute of Space and Astronautical Science (ISAS) outlined Japan's present status of and international cooperation in space science.
Juarez, Juan C; Brown, David M; Young, David W
2014-05-19
Current Strehl ratio models for actively compensated free-space optical communications terminals do not accurately predict system performance under strong turbulence conditions as they are based on weak turbulence theory. For evaluation of compensated systems, we present an approach for simulating the Strehl ratio with both low-order (tip/tilt) and higher-order (adaptive optics) correction. Our simulation results are then compared to the published models and their range of turbulence validity is assessed. Finally, we propose a new Strehl ratio model and antenna gain equation that are valid for general turbulence conditions independent of the degree of compensation.
NASA Technical Reports Server (NTRS)
Zusmanovich, A. G.; Kryakunova, O. N.; Churunova, L. F.; Shvartsman, Y. E.
1985-01-01
A numerical model of the propagation of galactic cosmic rays in interplanetary space was constructed for the case when the modulation depth determined by the level of solar activity changed in time. Also the contribution of particle drift in the regular field was calculated, and the agreement with experimental data concerning the ratio of protons and electrons in two solar activity minima is shown.
2003-12-01
Active Velcro” is a general technology which can be applied at different scales (micro- to macro -) for different required performance by tailoring a...operations (engagement, retention/release, positioning) to provide synthesis and analysis tools. Several different scaled prototypes were fabricated and...necessary foundation for further development of this unique paradigm which is useful for any unstable environment (space, fluidic, moving, vibration
NASA Technical Reports Server (NTRS)
1980-01-01
The symposium included personal appearances by NASA astronauts, NASA exhibits, aerospace science lecture demonstrations (Spacemobile Lectures), souvenir photos for each student attending the symposium, and talks on job opportunities in aerospace and on the benefits of the Space Program. The program was directed mainly at (public, parochial and private) student groups, each of which spend three hours on the CCC campus to participate in the symposium activities. The symposium was open to the general public and consisted of the NASA exhibits, aerospace science lecture demonstrations, films, talks on the benefits of the space program, additional lectures by members of the American Institute of Aeronautics and Astronautics (AIAA), and a special tasting demonstration of space food meal systems.
Space station thermal control surfaces. [space radiators
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.
1979-01-01
Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.
STS-101: Crew Activity Report/Flight Day 10 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
This video presents a report from the Space Shuttle Atlantis Crew. The crew consists of James D. Halsell, Jr., Mission Commander; Scott Horowitz, Pilot; and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. The crew made preparations for the Space Shuttle Atlantis return to Earth. Weber gave a general overview of refurbishments done to the International Space Station such as maintenance of the electrical system, one to three thousands of pounds of new hardware supplied to I.S.S. and a supply of personal hygiene products. Also live animation of the Spacehab Module is given where supplies bound for the Space Station are stored.
ASM Student Technology and Career Night
NASA Technical Reports Server (NTRS)
Hamilton, Jeff
2005-01-01
This viewgraph presentation presents a general overview of Marshall Space Flight Center (MSFC) for students who are perspective MSFC employees. The presentation includes an organizational chart and a summary of MSFC activities, as well as photographs and descriptions of some of the center's test facilities.
Astronomy Books of 1984: The Non-Technical List.
ERIC Educational Resources Information Center
Fraknoi, Andrew
1985-01-01
Presents an annotated list of nontechnical astronomy books in these categories: amateur astronomy; children's books; cosmology; galaxies; general astronomy; history of astronomy; life in the universe; physics and astronomy; pseudoscience; quasars and active galaxies; solar system; space exploration; stars/stellar evolution; sun; astronomy…
Space human factors discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.
2014-01-01
Background The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Method Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Results Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Conclusion Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home. PMID:24646136
Gong, Yi; Gallacher, John; Palmer, Stephen; Fone, David
2014-03-19
The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home.
Education and Outreach on Space Sciences and Technologies in Taiwan
NASA Astrophysics Data System (ADS)
Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te
2014-05-01
The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.
Proximity operations concept design study, task 6
NASA Technical Reports Server (NTRS)
Williams, A. N.
1990-01-01
The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.
NASA Technical Reports Server (NTRS)
Lintott, J.; Costello, M. J.
1977-01-01
A system for quantitating the cardiac electrical activity of Skylab crewmen was required for three medical experiments (M092, Lower Body Negative Pressure; M171, Metabolic Activity; and M093, In-flight Vectorcardiogram) designed to evaluate the effects of space flight on the human cardiovascular system. A Frank lead vectorcardiograph system was chosen for this task because of its general acceptability in the scientific community and its data quantification capabilities. To be used effectively in space flight, however, the system had to meet certain other requirements. The system was required to meet the specifications recommended by the American Heart Association. The vectorcardiograph had to withstand the extreme conditions of the space environment. The system had to provide features that permitted ease of use in the orbital environment. The vectorcardiograph system performed its intended function throughout all the Skylab missions without a failure. A description of this system follows.
Agreement governing the activities of states on the Moon and other celestial bodies
NASA Technical Reports Server (NTRS)
Gaggero, E. D.; Ripoll, R. P.
1981-01-01
The treaty on the Moon is not revolutionary but it embodies the legal rule for future activities of man on the Moon as opposed to the Space Treaty of 1967 which was too general. The new text is conservative but still allows some room for the developing States as in the law of the sea. The Moon is declared the "Common Heritage of Mankind" but the regime of exploitation of its resources is still blurred with imprecise guidelines still needing to be developed. The two superpowers cannot as in the past, ignore the rest of the world in the conquest of space and the fact that the U.N. is the depositary for ratifications, and not the two superpowers as in previous treaties, is the first sign of wider participation in the creation of Space Law.
United States Civil Space Policy: Summary of a Workshop
NASA Technical Reports Server (NTRS)
2008-01-01
What are the principal purposes, goals, and priorities of the U.S. civil space program? This question was the focus of the workshop on civil space policy held November 29-30, 2007, by the Space Studies Board (SSB) and the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC). In addressing this question, invited speakers and panelists and the general discussion from this public workshop explored a series of topics, including the following: (1) Key changes and developments in the U.S. civil space program since the new national Vision for Space Exploration2 (the Vision) was articulated by the executive branch in 2004; (2) The fit of space exploration within a broader national and international context; (3) Affordability, public interest, and political will to sustain the civil space program; (4) Definitions, metrics, and decision criteria for the mix and balance of activities within the program portfolio; (5) Roles of government in Earth observations from space; and (6) Gaps in capabilities and infrastructure to support the program.
Special Inspector General for Iraq Reconstruction
2008-10-30
U.S. supervision on matters of law, policy, and gover - nance. This aspect of Iraq’s nascent normalcy has decreased GOI transparency for U.S...additional sleep- ing space for firefighters, fire support equipment, and covered parking.511 Tourism . In August 2008, the North Carolina...struction activities. The PRT aims to replicate this form of partnership in other PRT activities, especially in the tourism and agriculture sectors.573
Space debris protection: A standard procedure in future?
NASA Astrophysics Data System (ADS)
Yasaka, Tetsuo
2003-08-01
The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris. Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left unprotected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.
Space Debris Protection: A Standard Procedure in Future?
NASA Astrophysics Data System (ADS)
Yasaka, Tetsuo
2002-01-01
The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris.Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left un-protected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.
Verhaar, Auke P.; Hoekstra, Elmer; Tjon, Angela S. W.; Utomo, Wesley K.; Deuring, J. Jasper; Bakker, Elvira R. M.; Muncan, Vanesa; Peppelenbosch, Maikel P.
2014-01-01
Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease. PMID:24968806
Verhaar, Auke P; Hoekstra, Elmer; Tjon, Angela S W; Utomo, Wesley K; Deuring, J Jasper; Bakker, Elvira R M; Muncan, Vanesa; Peppelenbosch, Maikel P
2014-06-27
Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease.
Asymmetric behavior of the B(E2↑;0+ → 2+) values in 104-130Sn and generalized seniority
NASA Astrophysics Data System (ADS)
Maheshwari, Bhoomika; Jain, Ashok Kumar; Singh, Balraj
2016-08-01
We present freshly evaluated B (E 2 ↑ ;0+ →2+) values across the even-even Sn-isotopes which confirm the presence of an asymmetric behavior as well as a dip in the middle of the full valence space. We explain these features by using the concept of generalized seniority. The dip in the B (E 2) values near 116Sn is understood in terms of a change in the dominant orbits before and after the mid shell, which also explains the presence of asymmetric peaks in the B (E 2) values. This approach helps in deciding the most active valence spaces for a given set of isotopes, and single out the most useful truncation scheme for Large Scale Shell Model (LSSM) calculations. The LSSM calculations so guided by generalized seniority are also able to reproduce the experimental data on B (E 2) ↑ values quite well.
10 CFR 1040.73 - New construction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false New construction. 1040.73 Section 1040.73 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES... interpreted to exempt from the requirements of UFAS only mechanical rooms and other spaces that, because of...
Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain
Park, Soojin; Konkle, Talia; Oliva, Aude
2015-01-01
Estimating the size of a space and its degree of clutter are effortless and ubiquitous tasks of moving agents in a natural environment. Here, we examine how regions along the occipital–temporal lobe respond to pictures of indoor real-world scenes that parametrically vary in their physical “size” (the spatial extent of a space bounded by walls) and functional “clutter” (the organization and quantity of objects that fill up the space). Using a linear regression model on multivoxel pattern activity across regions of interest, we find evidence that both properties of size and clutter are represented in the patterns of parahippocampal cortex, while the retrosplenial cortex activity patterns are predominantly sensitive to the size of a space, rather than the degree of clutter. Parametric whole-brain analyses confirmed these results. Importantly, this size and clutter information was represented in a way that generalized across different semantic categories. These data provide support for a property-based representation of spaces, distributed across multiple scene-selective regions of the cerebral cortex. PMID:24436318
NASA Astrophysics Data System (ADS)
Wang, Min
2017-06-01
This paper aims to establish the Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. For this purpose, we firstly prove a very general existence result for generalized mixed variational inequalities, provided that the mapping involved has the so-called mixed variational inequality property and satisfies a rather weak coercivity condition. Finally, we establish the Tikhonov regularization method for generalized mixed variational inequalities. Our findings extended the results for the generalized variational inequality problem (for short, GVIP( F, K)) in R^n spaces (He in Abstr Appl Anal, 2012) to the generalized mixed variational inequality problem (for short, GMVIP(F,φ , K)) in reflexive Banach spaces. On the other hand, we generalized the corresponding results for the generalized mixed variational inequality problem (for short, GMVIP(F,φ ,K)) in R^n spaces (Fu and He in J Sichuan Norm Univ (Nat Sci) 37:12-17, 2014) to reflexive Banach spaces.
The Economic Impact of Space Weather: Where Do We Stand?
Eastwood, J P; Biffis, E; Hapgood, M A; Green, L; Bisi, M M; Bentley, R D; Wicks, R; McKinnell, L-A; Gibbs, M; Burnett, C
2017-02-01
Space weather describes the way in which the Sun, and conditions in space more generally, impact human activity and technology both in space and on the ground. It is now well understood that space weather represents a significant threat to infrastructure resilience, and is a source of risk that is wide-ranging in its impact and the pathways by which this impact may occur. Although space weather is growing rapidly as a field, work rigorously assessing the overall economic cost of space weather appears to be in its infancy. Here, we provide an initial literature review to gather and assess the quality of any published assessments of space weather impacts and socioeconomic studies. Generally speaking, there is a good volume of scientific peer-reviewed literature detailing the likelihood and statistics of different types of space weather phenomena. These phenomena all typically exhibit "power-law" behavior in their severity. The literature on documented impacts is not as extensive, with many case studies, but few statistical studies. The literature on the economic impacts of space weather is rather sparse and not as well developed when compared to the other sections, most probably due to the somewhat limited data that are available from end-users. The major risk is attached to power distribution systems and there is disagreement as to the severity of the technological footprint. This strongly controls the economic impact. Consequently, urgent work is required to better quantify the risk of future space weather events. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.
Confined Space Evaluation Student Manual, #19613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chochoms, Michael
Many workplaces contain spaces that are considered to be “confined” because their configuration hinders the activities of employees who must enter into, work in, and exit from them. In general, the permit-required confined spaces (PRCSs) Occupational Safety and Health Administration (OSHA) standard requires that Los Alamos National Laboratory (LANL) evaluate the workplace to determine if any spaces are PRCSs. The standard specifies strict procedures for the evaluation and atmospheric testing of a space before and during an entry by workers. The OSHA PRCS standard provides for alternative (less stringent than full-permit) entry procedures in cases where the only hazard inmore » a space is atmospheric and the hazard can be controlled by forced air. At LANL, all confined spaces or potential confined spaces on LANL-owned or -operated property must be identified and evaluated by a confined space evaluator accompanied by a knowledgeable person. This course provides the information needed by confined space evaluators to make judgements about whether a space is a confined space, and if so, whether the space will require a permit for entry.« less
NASA Technical Reports Server (NTRS)
Moseley, E. C.
1974-01-01
The Medical Information Computer System (MEDICS) is a time shared, disk oriented minicomputer system capable of meeting storage and retrieval needs for the space- or non-space-related applications of at least 16 simultaneous users. At the various commercially available low cost terminals, the simple command and control mechanism and the generalized communication activity of the system permit multiple form inputs, real-time updating, and instantaneous retrieval capability with a full range of options.
2008-05-05
one meter Diesel truck at 15 meters; noisy urban daytime 70 – 80 Shouting at one meter; vacuum cleaner at three meters Gas lawnmower at 30 meters 60...leaders during the Cold War. Since the National Aeronautics and Space Administration ( NASA ) was established in 1958, the civilian space program has...the Operation of Highly Technical or Scientific Facilities, specifically refers to the many active NASA and U.S. Air Force launch complexes that have
NASA Astrophysics Data System (ADS)
Johnson, Christopher Daniel
2018-01-01
Negotiated at the United Nations and in force since 1967, the Outer Space Treaty has been ratified by over 100 countries and is the most important and foundational source of space law. The treaty, whose full title is "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies," governs all of humankind's activities in outer space, including activities on other celestial bodies and many activities on Earth related to outer space. All space exploration and human spaceflight, planetary sciences, and commercial uses of space—such as the global telecommunications industry and the use of space technologies such as position, navigation, and timing (PNT), take place against the backdrop of the general regulatory framework established in the Outer Space Treaty. A treaty is an international legal instrument which balances rights and obligations between states, and exists as a kind of mutual contract of shared understandings, rights, and responsibilities between them. Negotiated and drafted during the Cold War era of heightened political tensions, the Outer Space Treaty is largely the product of efforts by the United States and the USSR to agree on certain minimum standards and obligations to govern their competition in "conquering" space. Additionally, the Outer Space Treaty is similar to other treaties, including treaties governing the high seas, international airspace, and the Antarctic, all of which govern the behavior of states outside of their national borders. The treaty is brief in nature and only contains 17 articles, and is not comprehensive in addressing and regulating every possible scenario. The negotiating states knew that the Outer Space Treaty could only establish certain foundational concepts such as freedom of access, state responsibility and liability, non-weaponization of space, the treatment of astronauts in distress, and the prohibition of non-appropriation of celestial bodies. Subsequent treaties were to refine these concepts, and national space legislation was to incorporate the treaty's rights and obligations at the national level. While the treaty is the cornerstone in the regulation of activities in outer space, today the emergence of new issues that were not contemplated at the time of its creation, such as small satellites and megaconstellations, satellite servicing missions, the problem of space debris and the possibility of space debris removal, and the use of lunar and asteroid resources, all stretch the coherence and continuing adequacy of the treaty, and may occasion the need for new governance frameworks.
On a Quantum Model of Brain Activities
NASA Astrophysics Data System (ADS)
Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.
2010-01-01
One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.
NASA Technical Reports Server (NTRS)
1971-01-01
The requirements for the activities involved, and the procedures used by the crew in the operations of the modular space station are presented. All crew-related characteristics of the station and its operations are indicated. The interior configuration and arrangement of each of the space station modules, the facilities and equipment in the module and their operation are described as related to crew habitability. The crew activities and procedures involved in the operation of the station in the accomplishment of its primary mission are defined. The operations involved in initial station buildup, and the on-orbit operation and maintenance of the station and its subsystems to support the experimental program are included. A general description of experiment operations is also given.
Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer...
Maintainability Program Requirements for Space Systems
NASA Technical Reports Server (NTRS)
1987-01-01
This document is established to provide common general requirements for all NASA programs to: design maintainability into all systems where maintenance is a factor in system operation and mission success; and ensure that maintainability characteristics are developed through the systems engineering process. These requirements are not new. Design for ease of maintenance and minimization of repair time have always been fundamental requirements of the systems engineering process. However, new or reusable orbital manned and in-flight maintainable unmanned space systems demand special emphasis on maintainability, and this document has been prepared to meet that need. Maintainability requirements on many NASA programs differ in phasing and task emphasis from requirements promulgated by other Government agencies. This difference is due to the research and development nature of NASA programs where quantities produced are generally small; therefore, the depth of logistics support typical of many programs is generally not warranted. The cost of excessive maintenance is very high due to the logistics problems associated with the space environment. The ability to provide timely maintenance often involves safety considerations for manned space flight applications. This document represents a basic set of requirements that will achieve a design for maintenance. These requirements are directed primarily at manned and unmanned orbital space systems. To be effective, maintainability requirements should be tailored to meet specific NASA program and project needs and constraints. NASA activities shall invoke the requirements of this document consistent with program planning in procurements or on inhouse development efforts.
MOCR activity during Day 4 of STS-3 mission
NASA Technical Reports Server (NTRS)
1982-01-01
Major General J.A. Abrahamson, right, talks to JSC Director Christopher C. Kraft, Jr., (seated left) and Space Shuttle Program Manager Glynn S. Lunney on the back row of consoles in the mission operations control room (MOCR) in the Johnson Space Center mission control center. The reflection behind the men is a window for the MOCR viewing room (28772,28775); Abrahamson, second right, talks to JSC's Aaron Cohen, right, as Kraft (seated left) and Lunney listen in mission control (28773); Flight controller J.E. Connor monitors a television transmission from the Space Shuttle Columbia during day 4 of the STS-3 mission. Conner is seated at his INCO console (28774).
Modeling of space environment impact on nanostructured materials. General principles
NASA Astrophysics Data System (ADS)
Voronina, Ekaterina; Novikov, Lev
2016-07-01
In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible approximations and limitations of proposed simulation methods as well as of widely used software codes. This TS may be used as a base for developing a new standard devoted to nanomaterials applications for spacecraft.
Planning as a Precursor to Scheduling for Space Station Payload Operations
NASA Technical Reports Server (NTRS)
Howell, Eric; Maxwell, Theresa
1995-01-01
Contemporary schedulers attempt to solve the problem of best fitting a set of activities into an available timeframe while still satisfying the necessary constraints. This approach produces results which are optimized for the region of time the scheduler is able to process, satisfying the near term goals of the operation. In general the scheduler is not able to reason about the activities which precede or follow the window into which it is inputs to scheduling so that the intermediate placing activities. This creates a problem for operations which are composed of many activities spanning long durations (which exceed the scheduler's reasoning horizon) such as the continuous operations environment for payload operations on the Space Station. Not only must the near term scheduling objectives be met, but somehow the results of near term scheduling must be made to support the attainment of long term goals.
1987-01-01
166 174 170 167 Config Change Rqsts 45 54 53 52 Config Audits 20 26 26 25 Manual Change Rqsts 516 500 489 477 Work Years 91 90 90 90 7) Noise Reduction... manual methods. 771 ’ 1 1-50 3442f/7 Activity Group: Space Systems Operations (cont’d) AMOUNT C. Other Program Growth in FY 1989 (878) 1) Space...P+WS htp ~ h Na vy lr,(j Ma? itf’ to a nri rt. r 1’r f 1, Pri y t, i lu, iwe, a t ion, t a t H % ;, i rndi t 04 l I r k 4, PMfi , . j(I l j ,’Ř
Environmental Impact Assessment and Space Activities
NASA Astrophysics Data System (ADS)
Viikari, L.
Environmental Impact Assessment (EIA) is a common tool for environment a l protection and management on Earth today, as prior assessment of the environmental consequences of planned activities. It is meant to provide the decision-makers with as comprehensive as possible information about the different environmental effects the proposed activity would entail, including alternative courses of action and the zero-alternative (i.e. the no action alternative). Additionally, plans for mitigation in respect of each alternative are to be outlined. The assessments take account of i.a. environmental impacts on ecosystems, diminution of aesthetic and scientific values, long-term or cumulative effects, as well as transfrontier implications. They also consider issues such as pollution control, environmental protection measures, reporting, post-project analysis, rehabilitation and so on. Also uncertainties in the assessment process are to be expressly presented. Most importantly, a common requirement also is that the results of the impact studies are presented in a way comprehensible to the g neral public,e too. Although the central aspect of the EIA is to provide the decision-makers with scientific information, the process also has other important implications. One of the most relevant of them is the involvement of those people potentially affected in some way by the proposed activity: most EIA systems require in some way the participation of the public, alongside with the relevant governmental authorities and other stake-holders. Such public involvement has various aims and goals: it may serve as a testimony to good governance in general, or be considered in more practical terms as improved planning, due to the concrete contribution of the public to the decision-making process. Obviously, it also is a tool for reducing conflict and developing wider support for the eventual decisions. In short, it enables the public to gain information about planned activities and influence these developments in way or another. In addition to national EIA regulations, there are also international agreements on EIA (i.a. the Espoo Convention) which establish their own EIA systems. In international law of outer space, environmental impact assessment is, however, not a well-established tool. The UN space treaties were drafted during a time when such consideratio ns were still not among the highest ranking items on national agendas. Therefore, these instruments fail to contain provisions regarding impact assessment, and also rest of the environmental content found in them is rather modest. The nearest equivalent to any impact assessment is contained in the Outer Space Treaty Article IX, namely the requirement of prior consultations in case of planned space activity or experiment that might cause "potentially harmful interference" with space activities of other St ates Parties. There also exist some applicable provisions on national level, such as the requirement of "formal assessment" on NASA programs of "[orbital] debris generation potential and debris mitigation options" in NASA Policy for Limiting Orbital Debris Generation (Art. 1.b). Also the national legislation of some space faring countries provides at least for the supply of some kind of information assessing the possible environmental consequences of proposed space activities. For instance, the Russian Statute on Lisencing Space Operations requires that for obtaining a license for space operation in the Russian Federation, the applicant has to supply, i.a. "documents confirming the safety of space operations (including ecological, fire and explosion safety) and the reliability of space equipment'"(Art.5.h). However, such provisions are obviously not enough for ensuring effective international regulation of the issue. The goal of this paper is to consider the usefulness of international environmental impact assessment for space activities. The space environment, however, is a unique arena in many ways. An obvious problem for any impact assessment are the deficiencies in knowledge about processes taking place in space in general. The outcome of proposed space activities therefore cannot necessarily be assessed in detail. In any case, outer space is a global common, and any adverse environmental effects of space utilization are therefore likely to be highly severe, irreversible and wide in scope. On the other hand, the tragedy of the commons problem render many nationally adopted strategies for combating adverse environmental consequences ineffective. Additionally, some principles applied on earth have not been as warmly welcomed among the space faring nations and other entities involved. For instance, it is still an issue under debate whether space has any intrinsic value or is merely a resource for human utilization. There is presently no permanent human settlement in space, and the environs thereby remain somew hat remote for the everyday lives of the vast majority of humankind. Space industry is, furthermore, highly commercialised and militarised area of international activity. Relevance of the precautionary principle and sustainable development, for instance, seem to rest therefore on a bit shakier ground while applied in outer space. Space faring nations and other entities seldom are very keen on distributing detailed information about their planned activities either. Also the fact that any activity taking place in outer space may be regarded ultra-hazardous, although during their normal operation the environmental harms usually are minor, renders for instance the due diligence principle, and the transboundary impact assessment duty it entails, somewhat less applicable. Nevertheless, sustainable development and precautionary principle are important issues for all space activities, too, and such goals would obviously necessitate better environmental protection. Additionally, democracy would seem to require the possibility of enhanced public participation, or at least more open distribution of information about human enterprises in space, too.However, the "public concerned" in space activities may cover the entire humanity, which would most likely direct the possible spatial EIA procedures into the auspices of the UN, with states representing their portion of the "public". Despite the peculiarities in assessing the potential impacts of space activities, Environmental Impact Assessment, modified to answer thes e particular features, would seem as a tool worth considering for the above objectives of enhanced environmental protection and public involvement. This is particularly true, as any adverse environmental impacts of space activities are highly difficult to mitigate, once they have materialized. For the above mentioned reasons, and for the fact that space activities are regulated for a major part on policy level, particularly Strategic Environmental Assessment (SEA) would seem a viable option. As distinct from the project EIA, the SEA means carrying out EIAs of plans themselves, i.e. it directly addresses the environmental implications of proposed strategies and policies. Formerly, the governmental authorities tended to regard SEA with suspicion because of the public interest groups involvement in policy making that the SEA entails. However, currently the SEA is a highly topical issue in the international arena, particularly because of the ongoing discussions within the United Nations Economic Commision for Europe about adopting a Protocol on Strategic Environmental Assessment to amend the Espoo Convention, and of the recent EU Directive (2001/42/EC) on the assessment of the effects of certain plans and programmes on t he environment. These instruments could also serve as feasible models for SEA in the outer space environment.
CFD Aerothermodynamic Characterization Of The IXV Hypersonic Vehicle
NASA Astrophysics Data System (ADS)
Roncioni, P.; Ranuzzi, G.; Marini, M.; Battista, F.; Rufolo, G. C.
2011-05-01
In this paper, and in the framework of the ESA technical assistance activities for IXV project, the numerical activities carried out by ASI/CIRA to support the development of Aerodynamic and Aerothermodynamic databases, independent from the ones developed by the IXV Industrial consortium, are reported. A general characterization of the IXV aerothermodynamic environment has been also provided for cross checking and verification purposes. The work deals with the first year activities of Technical Assistance Contract agreed between the Italian Space Agency/CIRA and ESA.
ISSPO Educational Outreach through Educational Program Cooperation
NASA Technical Reports Server (NTRS)
Conley, Carolynn
2004-01-01
The International Space Station Program Office (ISSPO) has organized a consolidated program to provide communication, education, and outreach to the general public. Existing space station education programs, including amateur radio activities on ISS done voluntarily by the crew members, can be linked to additional classroom and field activities, multiplying the impact of this very scarce and valuable Station resource. Linkages could be created between programs such as Starshine, Space Camp Turkey, MISSES/PCSAT2, and Amateur Radio on ISS. In addition, Amateur radio provides a means of introducing school children to technical hardware and concepts while being fun for the youthful mind. Amateur radio can reach the worldwide community while remaining within very affordable budgets of schools and individuals. When the radio communication is coupled with the Internet, the effect is even greater. People in many diverse areas of the world have access to the internet or radio.
Zhou, Peiling; Grady, Sue C; Chen, Guo
2017-11-01
Although the general population in China is physically active, only 45% of older adults meet the World Health Organization's recommendation for weekly moderate-to-vigorous exercise, to achieve health benefits. This percentage is even lower (9.8%) in urban China. It is, therefore, important to understand the pathways by which physical activity behaviors are impacted by the built environment. This study utilized a mixed methods approach-interviews (n = 42) and longitudinal (2010-2015) health survey data (n = 3094) for older people residing in three neighborhoods in Huainan, a mid-sized city in Anhui Province, central eastern China. First, a content analysis of interview data was used to identify individual and built environment factors (motivators and barriers) that impacted physical activity within older people's activity spaces. Second, a multilevel path analysis was conducted using the health survey data to demonstrate the pathways by which these motivators and barriers contributed to the initiation, regulation, and maintenance of physical activity. This study found (a) that the liveliness of an apartment building and its proximity to functional spaces (fast-food stores, farmer's markets, supermarkets, pharmacies, schools, hospitals, PA facilities and natural and man-made water bodies) were important factors in attracting sedentary older people to initiate physical activity; (b) the social networks of apartment neighbors helped to initiate, regulate, and maintain physical activity; and housing closeness to functional spaces was important in maintaining physical activity, particularly for those older people with chronic diseases. To increase older people's overall physical activity, future interventions should focus on residential form and access to functional spaces, prior to investing in large-scale urban design interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
2 CFR Appendix A to Part 230 - General Principles
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with the relative benefits received. A cost is allocable to a Federal award if it is treated... personnel, occupy space, and benefit from the organization's indirect costs. 4. The costs of activities... major function, or where all its major functions benefit from its indirect costs to approximately the...
Offering the Moon to the Public
NASA Astrophysics Data System (ADS)
Papaioannou, K.; Chatzichristou, E.
2017-09-01
Il Mondo della Luna is a project that puts forward a series of activities with the aim to communicate and inspire young people and the public in general to explore space and planetary science through artistic actions. The focus of the action is F. J. Haydn's Opera "Il Mondo della Luna".
7 CFR 4285.46 - Prohibited use of cooperative agreement funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... excluded as the research on cooperatives program activities. (b) Federal funds cannot be used to purchase... purchase: (1) Promotional pieces such as point-of-sale materials, promotional kits, billboard space and... gift nature. (d) Cooperative agreement funds cannot be used to conduct general publicity or information...
Survey of standards applicable to a database management system
NASA Technical Reports Server (NTRS)
Urena, J. L.
1981-01-01
Industry, government, and NASA standards, and the status of standardization activities of standards setting organizations applicable to the design, implementation and operation of a data base management system for space related applications are identified. The applicability of the standards to a general purpose, multimission data base management system is addressed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Classification Principles and Considerations § 1203.300 General. In general, the types of NASA-generated...
Modeling the data systems role of the scientist (for the NEEDS Command and Control Task)
NASA Technical Reports Server (NTRS)
Hei, D. J., Jr.; Winter, W. J., Jr.; Brookes, R.; Locke, M.
1981-01-01
Research was conducted into the command and control activities of the scientists for five space missions: International Ultraviolet Explorer, Solar Maximum Mission, International Sun-Earth Explorer, High-Energy Astronomy Observatory 1, and Atmospheric Explorer 5. A basis for developing a generalized description of the scientists' activities was obtained. Because of this characteristic, it was decided that a series of flowcharts would be used. This set of flowcharts constitutes a model of the scientists' activities within the total data system. The model was developed through three levels of detail. The first is general and provides a conceptual framework for discussing the system. The second identifies major functions and should provide a fundamental understanding of the scientists' command and control activities. The third level expands the major functions into a more detailed description.
Changes in gene expression and signal transduction in microgravity
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.
2001-01-01
Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.
Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei
2016-01-12
In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment analysis suggests that because essential conformational events are mainly driven by the compensating fluctuations of essential solute-solvent and solute-solute interactions, commonly employed "predictive" sampling methods are unlikely to be effective on this seemingly "simple" system. The gOST development presented in this paper illustrates how to employ the OSS scheme for physics-based sampling method designs.
Fasting launches CRTC to facilitate long-term memory formation in Drosophila.
Hirano, Yukinori; Masuda, Tomoko; Naganos, Shintaro; Matsuno, Motomi; Ueno, Kohei; Miyashita, Tomoyuki; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-25
Canonical aversive long-term memory (LTM) formation in Drosophila requires multiple spaced trainings, whereas appetitive LTM can be formed after a single training. Appetitive LTM requires fasting prior to training, which increases motivation for food intake. However, we found that fasting facilitated LTM formation in general; aversive LTM formation also occurred after single-cycle training when mild fasting was applied before training. Both fasting-dependent LTM (fLTM) and spaced training-dependent LTM (spLTM) required protein synthesis and cyclic adenosine monophosphate response element-binding protein (CREB) activity. However, spLTM required CREB activity in two neural populations--mushroom body and DAL neurons--whereas fLTM required CREB activity only in mushroom body neurons. fLTM uses the CREB coactivator CRTC, whereas spLTM uses the coactivator CBP. Thus, flies use distinct LTM machinery depending on their hunger state.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Daniel L. Tweed, with the Facilities Division, NASA Spaceport Services, addresses attendees at the ribbon cutting for the KSC Security gates. Tweed was project manager. The two new Security gates on Kennedy Parkway (Gate 2) and NASA Parkway (Gate 3) were activated Aug. 1, allowing the general public to have access to the new Space Commerce Way, which will provide access to the Research Park and KSC Visitor Complex, and providing an alternate route for the general public between Titusville and Merritt Island that is accessible 24 hours a day. The gates are staffed 24 hours daily. Others taking part in the ribbon cutting were Center Director Jim Kennedy; Chief, Protective & Safe Guards Office, Calvin L. Burch; SGS Deputy Program Manager William A. Sample; and Bobby Porter, with Oneida Construction.
Extreme learning machine for ranking: generalization analysis and applications.
Chen, Hong; Peng, Jiangtao; Zhou, Yicong; Li, Luoqing; Pan, Zhibin
2014-05-01
The extreme learning machine (ELM) has attracted increasing attention recently with its successful applications in classification and regression. In this paper, we investigate the generalization performance of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations of activation functions in ELM. The generalization analysis is established for the ELM-based ranking (ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien
Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.« less
Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien; ...
2017-05-16
Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.« less
Progress in European CELSS activities
NASA Technical Reports Server (NTRS)
Skoog, A. I.
1987-01-01
The European Controlled Ecological Life Support System (CELSS) activities started in the late 1970's with system analysis and feasibility studies of Biological Life Support Systems (BLSS). The initiation for CELSS came from the industry side in Europe, but since then planning and hardware feasibility analyses have been initiated also from customer/agency side. Despite this, it is still too early to state that a CELSS program as a concerted effort has been agreed upon in Europe. However, the general CELSS objectives were accepted as planning and possible development goals for the European effort for manned space activities, and as experimental planning topics in the life sciences community for the next decades. It is expected that ecological life support systems can be tested and implemented on a space station towards the end of this century or early in the next. For the European activities a possible scenario can be projected based on ongoing life support system development activities and the present life sciences goals.
"Tormenta Espacial" - Exploring The Sun-earth Connection With A Spanish-language Planetarium Show
NASA Astrophysics Data System (ADS)
Elteto, Attila; Salas, F.; Duncan, D.; Traub-Metlay, S.
2007-10-01
Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - "Space Storm” - into "Tormenta Espacial". This show explores the Sun-Earth connection and explains how solar activity affects technology and life on Earth. Solar scientists from NOAA's Space Environment Center and the University of Colorado at Boulder contributed to provide scientific accuracy. Show content and accompanying educational materials are aligned with state and national science standards. While designed for students in grades 6-8, this show has been positively evaluated by students from grades 4-10 and shown to the general public with favorable responses. Curricular materials extend the planetarium experience into the K-12 classroom so that students inspired and engaged by the show continue to see real-life applications and workplace opportunities. Fiske Planetarium offers both "Space Storm” and "Tormenta Espacial” to other planetariums at a minimal rate, including technical support for the life of the show. Thanks to a request from a planetarium in Belgium, a version of "Space Storm” is available with no spoken dialogue so that languages other than English or Spanish may be accommodated. Collaborative projects among planetariums, NASA missions (planned as well as active), research scientists and other parties keep EPO activities healthy and well-funded. Fiske Planetarium staff strive to develop and maintain partnerships throughout the EPO and informal education communities.
NASA Technical Reports Server (NTRS)
1996-01-01
In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.
Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.
Heislbetz, Sandra; Rauhut, Guntram
2010-03-28
A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.
STS-113 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lockhart outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the primary mission payload (the P1 truss) and the crew transfer activities (Expedition 6 crew will replace the Expedition 5 Crew). Lockhart discusses the planned EVAs in detail and mentions what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts about the importance of the ISS as the second anniversary of continuous human occupation of the space station approaches.
A breadboard of optically-pumped atomic-beam frequency standard for space applications
NASA Astrophysics Data System (ADS)
Berthoud, P.; Ruffieux, R.; Affolderbach, C.; Thomann, P.
2004-06-01
Observatoire de Neuchâtel (ON) has recently started breadboarding activities for an Optically-pumped Space Cesium-beam Atomic Resonator in the frame of an ESA-ARTES 5 project. The goal is to demonstrate a frequency stability approaching σy = 1×10-12 τ-1/2 with the simplest optical scheme (a single optical frequency for both the atomic pumping and detection processes). This development constitutes a fundamental step in the general effort to reduce the mass of the on-board clocks, while keeping or even improving its performances. It will take advantage of previous activities at ON in the late '80 and of the latest progresses in the field of tunable and narrow-band laser diodes.
NASA Technical Reports Server (NTRS)
Williams, Richard S.
2015-01-01
The presentation is next Sunday, May 10th. It will be to the Civil Aviation Medical Association, for 2 hours at Disney World in Orlando. It is a high level talk on space medicine, including history, the role of my office, human health risks of space flight, general aspects of space medicine practice, human health risk management (including integrated activities of medical operations and the Human Research Program, and thoughts concerning health risks for long duration exploration class space missions. No proprietary data or material will be used, all is readily available in the public sector. There is also a short (30 min) talk on Monday at the CAMA lunch. There we will describe the Visual Impairment and Intracranial Pressure syndrome, with possible etiologies and plans for research (already selected studies). Again, nothing proprietary will be discussed.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. D.
2015-06-01
This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).
Current and future activities of the Observatoire de Haute Provence in Education and Public Outreach
NASA Astrophysics Data System (ADS)
Boër, M.; Ducerf, D.
The Haute Provence Observatory OHP is an observation station located 100km North of Marseille France It performs both astronomical observations and routine atmospheric measurements in the NDSC Network for Data on Stratospheric Changes and several other geophysics national and international networks The site offers also a program directed to the general public the teachers the pupils and the students at all levels In the past two years we reinforced these activities following few guidelines enhance the scientific diffusion activities towards the general public by presenting an exhibition a stronger program for the teachers and the implementation of a project oriented program for the high school and university students We participate also to a curriculum for planetarium attendants We are currently defining the general long term plan for the observatory including a strong EPO program taking advantages of the site visitors facilities guesthouse research group EPO personnel This program will be oriented to the general space and planetary sciences and is prepared in cooperation with both the academic and regional authorities
Study of launch site processing and facilities for future launch vehicles
NASA Astrophysics Data System (ADS)
Shaffer, Rex
1995-03-01
The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.
Study of launch site processing and facilities for future launch vehicles
NASA Technical Reports Server (NTRS)
Shaffer, Rex
1995-01-01
The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.
Reports on work in support of NASA's tracking and communication division
NASA Technical Reports Server (NTRS)
Feagin, Terry; Lekkos, Anthony
1991-01-01
This is a report on the research conducted during the period October 1, 1991 through December 31, 1991. The research is divided into two primary areas: (1) generalization of the Fault Isolation using Bit Strings (FIBS) technique to permit fuzzy information to be used to isolate faults in the tracking and communications system of the Space Station; and (2) a study of the activity that should occur in the on board systems in order to attempt to recover from failures that are external to the Space Station.
Cardiopulmonary discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.
Visual Analytics of integrated Data Systems for Space Weather Purposes
NASA Astrophysics Data System (ADS)
Rosa, Reinaldo; Veronese, Thalita; Giovani, Paulo
Analysis of information from multiple data sources obtained through high resolution instrumental measurements has become a fundamental task in all scientific areas. The development of expert methods able to treat such multi-source data systems, with both large variability and measurement extension, is a key for studying complex scientific phenomena, especially those related to systemic analysis in space and environmental sciences. In this talk, we present a time series generalization introducing the concept of generalized numerical lattice, which represents a discrete sequence of temporal measures for a given variable. In this novel representation approach each generalized numerical lattice brings post-analytical data information. We define a generalized numerical lattice as a set of three parameters representing the following data properties: dimensionality, size and post-analytical measure (e.g., the autocorrelation, Hurst exponent, etc)[1]. From this representation generalization, any multi-source database can be reduced to a closed set of classified time series in spatiotemporal generalized dimensions. As a case study, we show a preliminary application in space science data, highlighting the possibility of a real time analysis expert system. In this particular application, we have selected and analyzed, using detrended fluctuation analysis (DFA), several decimetric solar bursts associated to X flare-classes. The association with geomagnetic activity is also reported. DFA method is performed in the framework of a radio burst automatic monitoring system. Our results may characterize the variability pattern evolution, computing the DFA scaling exponent, scanning the time series by a short windowing before the extreme event [2]. For the first time, the application of systematic fluctuation analysis for space weather purposes is presented. The prototype for visual analytics is implemented in a Compute Unified Device Architecture (CUDA) by using the K20 Nvidia graphics processing units (GPUs) to reduce the integrated analysis runtime. [1] Veronese et al. doi: 10.6062/jcis.2009.01.02.0021, 2010. [2] Veronese et al. doi:http://dx.doi.org/10.1016/j.jastp.2010.09.030, 2011.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
1993-01-01
This document contains the proceedings of NASA's fourth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on April 14-15, 1993. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: advanced secondary batteries, fuel cells, and advanced concepts for space power. This document contains the papers presented.
Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol
2014-01-01
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
NASA Technical Reports Server (NTRS)
Hogan, Robert P.; Dalton, Bonnie P.
1991-01-01
This paper discusses the performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) plus other associated hardware during the recent flight of Spacelab Life Sciences 1 (SLS-1). The RAHF was developed to provide proper housing (food, water, temperature control, lighting and waste management) for up to 24 rodents during flights on the Spacelab. The GPWS was designed to contain particulates and toxic chemicals generated during plant and animal handling and dissection/fixation activities during space flights. A history of the hardware development involves as well as the redesign activities prior to the actual flight are discussed.
Results of the Second U.S. Manned Suborbital Space Flight, July 21, 1961
NASA Technical Reports Server (NTRS)
1961-01-01
This document presents the results of the second United States manned suborbital space flight. The data and flight description presented form a continuation of the information provided at an open conference held under the auspices of the National Aeronautics and Space Administration, in cooperation with the National Institutes of Health and the National Academy of Sciences, at the U.S. Department of State Auditorium on June 6, 1961. The papers presented herein generally parallel the presentations of the first report and were prepared by the personnel of the NASA Manned Spacecraft Center in collaboration with personnel from other government agencies, participating industry, and universities. The second successful manned suborbital space flight on July 21, 1961, in which Astronaut Virgil I. Grissom was the pilot was another step in the progressive research, development, and training program leading to the study of man's capabilities in a space environment during manned orbital flight. Data and operational experiences gained from this flight were in agreement with and supplemented the knowledge obtained from the first suborbital flight of May 5, 1961, piloted by Astronaut Alan B. Shepard, Jr. The two recent manned suborbital flights, coupled with the unmanned research and development flights, have provided valuable engineering nd scientific data on which the program can progress. The successful active participation of the pilots, in much the same way as in the development and testing of high performance aircraft, has. greatly increased our confidence in giving man a significant role in future space flight activities. It is the purpose of this report to continue the practice of providing data to the scientific community interested in activities of this nature. Brief descriptions are presented of the Project Mercury spacecraft and flight plan. Papers are provided which parallel the presentations of data published for the first suborbital space flight. Additional information is given relating to the operational aspects of the medical support activities for the two manned suborbital space flights.
Alterations in protein metabolism during space flight and inactivity
NASA Technical Reports Server (NTRS)
Ferrando, Arny A.; Paddon-Jones, Doug; Wolfe, Robert R.
2002-01-01
Space flight and the accompanying diminished muscular activity lead to a loss of body nitrogen and muscle function. These losses may affect crew capabilities and health in long-duration missions. Space flight alters protein metabolism such that the body is unable to maintain protein synthetic rates. A concomitant hypocaloric intake and altered anabolic/catabolic hormonal profiles may contribute to or exacerbate this problem. The inactivity associated with bedrest also reduces muscle and whole-body protein synthesis. For this reason, bedrest provides a good model for the investigation of potential exercise and nutritional countermeasures to restore muscle protein synthesis. We have demonstrated that minimal resistance exercise preserves muscle protein synthesis throughout bedrest. In addition, ongoing work indicates that an essential amino acid and carbohydrate supplement may ameliorate the loss of lean body mass and muscle strength associated with 28 d of bedrest. The investigation of inactivity-induced alterations in protein metabolism, during space flight or prolonged bedrest, is applicable to clinical populations and, in a more general sense, to the problems associated with the decreased activity that occur with aging.
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2011-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.
New Civic Voices & the Emerging Media Literacy Landscape
ERIC Educational Resources Information Center
Mihailidis, Paul
2011-01-01
The recent protests across the Middle East, generally referred to as the largest civic uprising enabled by social media platforms and mobile technologies, are actively reshaping how one thinks about citizenship, community, and participation in the 21st Century. Within these new spaces have emerged voices--largely those of everyday citizens--that…
2013-03-12
ISS034-E-067263 (12 March 2013) --- Canadian astronaut Chris Hadfield, right, assists fellow Expedition 34 flight engineer and NASA astronaut Tom Marshburn during Minus Eighty-Degree Laboratory Freezer for International Space Station (MELFI)operations. The two are doing transfers of samples connected to the General Laboratory Active Cryogenic ISS Experiment Refrigerator or GLACIER in the U.S. lab Destiny.
Biomedical Research Division significant accomplishments for FY 1983
NASA Technical Reports Server (NTRS)
Martello, N. V.
1984-01-01
Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.
Guidelines for regenerating southern pine beetle spots
J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer
2012-01-01
Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...
ERIC Educational Resources Information Center
Range, Shannon K'doah; Mullins, Jennifer
This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3)…
ESA activities on satellite laser ranging to non-cooperative objects
NASA Astrophysics Data System (ADS)
Flohrer, Tim; Krag, Holger; Funke, Quirin; Jilete, Beatriz; Mancas, Alexandru
2016-07-01
Satellite laser ranging (SLR) to non-cooperative objects is an emerging technology that can contribute significantly to operational, modelling and mitigation needs set by the space debris population. ESA is conducting various research and development activities in SLR to non-cooperative objects. ESA's Space Situational Awareness (SSA) program supports specific activities in the Space Surveillance and Tracking (SST) segment. Research and development activities with operational aspects are run by ESA's Space Debris Office. At ESA SSA/SST comprises detecting, cataloguing and predicting the objects orbiting the Earth, and the derived applications. SST aims at facilitating research and development of sensor and data processing technologies and of related common components while staying complementary with, and in support of, national and multi-national European initiatives. SST promotes standardisation and interoperability of the technology developments. For SLR these goals are implemented through researching, developing, and deploying an expert centre. This centre shall coordinate the contribution of system-external loosely connected SLR sensors, and shall provide back calibration and expert evaluation support to the sensors. The Space Debris Office at ESA is responsible for all aspects related to space debris in the Agency. It is in charge of providing operational support to ESA and third party missions. Currently, the office studies the potential benefits of laser ranging to space debris objects to resolve close approaches to active satellites, to improve re-entry predictions of time and locations, and the more general SLR support during contingency situations. The office studies the determination of attitude and attitude motion of uncooperative objects with special focus on the combination of SLR, light-curve, and radar imaging data. Generating sufficiently precise information to allow for the acquisition of debris objects by a SLR sensor in a stare-and-chase scenario, or from externally provided orbital information, is also investigated. In our paper we will outline the motivation and objectives, as well as detail the current status of the various and parallel SLR-related SST and Space Debris Office activities at ESA. We will provide an overview on plans for SLR activities in research and development and in operational support. Current gaps in the standardisation of data exchange and sensor interfaces will be addressed, reflecting the need of coordinating multiple stations in all tasks.
Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01
NASA Technical Reports Server (NTRS)
1993-01-01
This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.
STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.
Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA
2016-01-01
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245
Nationwide network of total solar eclipse high altitude balloon flights
NASA Astrophysics Data System (ADS)
Des Jardins, A. C.
2017-12-01
Three years ago we envisioned tapping into the strength of the National Space Grant Program to make the most of a rare astronomical event to engage the general public through education and to create meaningful long-lasting partnerships with other private and public entities. We believe strongly in giving student participants career-making opportunities through the use of the most cutting edge tools, resources, and communication. The NASA Space Grant network was in a unique position to engage the public in the eclipse in an awe-inspiring and educational way at a surprisingly small cost. In addition to public engagement, the multidisciplinary project presented an in-depth hands-on learning opportunity for the thousands of student participants. The project used a network of high altitude ballooning teams positioned along the path of totality from Oregon to South Carolina to conduct coordinated collaborative activities during the eclipse. These activities included 1) capturing and streaming live video of the eclipse from near space, 2) partnering with NASA Ames on a space biology experiment, and 3) conducting high-resolution atmospheric radiosonde measurements. This presentation will summarize the challenges, results, lessons learned, and professional evaluation from developing, training, and coordinating the collaboration. Details of the live streaming HD video and radiosonde activities are described in separate submissions to this session.
Variations in global thunderstorm activity inferred from the OTD records
NASA Astrophysics Data System (ADS)
Nickolaenko, A. P.; Hayakawa, M.; Sekiguchi, M.
2006-03-01
We use the data on the planetary distribution of thunderstorms collected by optical transient detector (OTD) to derive the properties of global electric activity. Processing of optical data indicates that modern observations from space confirm the general concept of thunderstorm distribution and motion. Close similarity is demonstrated between the World Meteorological Organization data and modern records including Carnegie curve. Departures noted might be caused by thunderstorms redistribution owing to climate change; the issue deserves a special examination.
Adaptations of advanced safety and reliability techniques to petroleum and other industries
NASA Technical Reports Server (NTRS)
Purser, P. E.
1974-01-01
The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.
2007-01-01
The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.
Neuronal correlates of personal space intrusion in violent offenders.
Schienle, Anne; Wabnegger, Albert; Leitner, Mario; Leutgeb, Verena
2017-04-01
Personal space (PS) is defined as the imagery region immediately surrounding our body, which acts as safety zone. It has been suggested that PS is enlarged in violent offenders and that this group shows an enhanced sensitivity to the reduction of interpersonal distance. In the present fMRI study high-risk violent offenders and noncriminal controls were presented with photos of neutral facial expressions by men and women. All images were shown twice, as static photos, and animated (i.e., appearing to approach the subject) in order to simulate PS intrusion. Approaching faces generally provoked activation of a fronto-parietal network and the insula. Offenders responded with greater insula activation to approaching faces, especially when the person was male. Insular activation has been recognized before as a neuronal correlate of potential threat and harm detection in PS. The increased reactivity of violent offenders is possibly a result of their hostile attribution bias.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 415.201 Section 415.201 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Environmental Review § 415.201 General. An applicant shall provide the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 415.201 Section 415.201 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Environmental Review § 415.201 General. An applicant shall provide the...
Bola, R. Aaron; Kiyatkin, Eugene A.
2016-01-01
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008
Task-discriminative space-by-time factorization of muscle activity
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213
Task-discriminative space-by-time factorization of muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.
Parallel plan execution with self-processing networks
NASA Technical Reports Server (NTRS)
Dautrechy, C. Lynne; Reggia, James A.
1989-01-01
A critical issue for space operations is how to develop and apply advanced automation techniques to reduce the cost and complexity of working in space. In this context, it is important to examine how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this reason, the feasibility of applying self-processing network models to a variety of planning and control problems relevant to spacecraft activities is being explored. Goals are to demonstrate that self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software environment for implementing self-processing models, is sufficiently robust to support development of a wide range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, a model of the execution of a Spaceworld plan was implemented. This is a simplified model of the Voyager spacecraft which photographed Jupiter, Saturn, and their satellites. It is shown that plan execution, a task usually solved using traditional artificial intelligence (AI) techniques, can be accomplished using a self-processing network. The fact that self-processing networks were applied to other space-related tasks, in addition to the one discussed here, demonstrates the general applicability of this approach to planning and control problems relevant to spacecraft activities. It is also demonstrated that MIRRORS/II is a powerful environment for the development and evaluation of self-processing systems.
General view in the Horizontal Processing Area of the Space ...
General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME number 2048 mounted on an SSME engine Handler. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
The James Webb Space Telescope: Mission Overview and Status
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.
2009-01-01
The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 < 0 < 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 < 0 < 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.
The James Webb Space Telescope: Mission Overview and Status
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.
2011-01-01
The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 415.21 Section 415.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Policy Review and Approval § 415.21 General. The FAA issues a policy...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 415.21 Section 415.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Policy Review and Approval § 415.21 General. The FAA issues a policy...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 415.21 Section 415.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Policy Review and Approval § 415.21 General. The FAA issues a policy...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 415.21 Section 415.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Policy Review and Approval § 415.21 General. The FAA issues a policy...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 415.21 Section 415.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Policy Review and Approval § 415.21 General. The FAA issues a policy...
Aspects of ESA s public outreach programme
NASA Astrophysics Data System (ADS)
Maree, H.
The Science Programme Communication Service is currently implementing a new policy to increase the overall public interest in ESA Science Programme by adopting new ways of promoting its activities, accordingly to the simple principle that "different target audiences have different needs". It is clear that the general public (i.e. "the man in the street" / "the average tax- payer") rarely has the knowledge and the background to understand what exactly a space mission is, what it does and why it does it ("Mission oriented approach"). The experience has shown that a space mission becomes "popular" amongst this target audience when the relevant communication is done by passing generic/bas ic/simple messages ("Thematic oriented approach"). The careful selection of adequate supports together with efficient distribution and promotion networks are also key parameters for success of the latter approach. One should also note that the overall objective of this new policy, is to raise people's interest in space in general. By presenting the information under the ESA brand, the public will start more and more to associate this brand and Europe to space exploration. Within the next twelve months, four scientific missions will be launched. Interestingly, tree of them (SMART-1, ROSETTA and MARS EXPRESS) offer a unique opportunity to implement the new communication policy under the single thematic : Europe is exploring the Solar System. Nevertheless, the study of the various mission profiles and their potential communication impact lead us to choose to reach out the general public primarily via the sub-thematic : Europe goes to Mars.
Reducing environmental risk associated with laboratory decommissioning and property transfer.
Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G
2000-12-01
The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness.
NASA Astrophysics Data System (ADS)
Matía, Isabel; González-Camacho, Fernando; Marco, Roberto; Kiss, John Z.; Gasset, Gilbert; Medina, Francisco-Javier
Seeds of Arabidopsis thaliana were sent to the International Space Station in the "Cervantes Mission" (Spanish Soyuz Mission). Seed germination was initiated in flight by supplying culture medium. Seedlings were grown for 4 days at 22 °C, and growth was stopped by the addition of paraformaldehyde fixative. Once back on the ground, samples were immediately processed for microscopy. A ground control experiment was simultaneously replicated. Glutaraldehyde-fixed root cells from seedlings grown in the Biorack on board of the Space Shuttle (STS-84 Mission) in similar conditions were also ultrastructurally examined. The length of seedlings grown at 1 g was conspicuously shorter than parallel samples grown under microgravity. We examined the morphology of the root meristematic cells, with a focus on their nucleoli in the cortex and stele. In general, root cortical cells proliferate at a higher rate and their nucleoli are more active than those of stele cells. While the stele showed longer cells with larger nucleoli in the flight samples, cortical cells from space-grown seedlings were shorter, more numerous and more densely packed than ground controls. However, nucleoli were smaller and less active in fast proliferating flight cells than in the ground controls. This reduced level of ribosome synthesis in the flight samples is probably the result of an accelerated cell cycle. An altered rate of cell proliferation may be detrimental for the plant and could be the reason for the reported smaller size of older space-grown seedlings. Finally, two-dimensional protein electrophoresis showed noticeable differences between space samples and ground controls.
Reducing environmental risk associated with laboratory decommissioning and property transfer.
Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G
2000-01-01
The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365
A class of designs for a sparse distributed memory
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1989-01-01
A general class of designs for a space distributed memory (SDM) is described. The author shows that Kanerva's original design and the selected-coordinate design are related, and that there is a series of possible intermediate designs between those two designs. In each such design, the set of addresses that activate a memory location is a sphere in the address space. We can also have hybrid designs, in which the memory locations may be a mixture of those found in the other designs. In some applications, the bits of the read and write addresses that will actually be used might be mostly zeros; that is, the addresses might lie on or near z hyperplane in the address space. The author describes a hyperplane design which is adapted to this situation and compares it to an adaptation of Kanerva's design. To study the performance of these designs, he computes the expected number of memory locations activated by both of two addresses.
The benefits and dilemmas of an international space station
NASA Astrophysics Data System (ADS)
Bluth, B. J.
Serious recommendations have been made about the development and mutual manning of an international space station. The achievements of ESA show that such international organizations can work successfully in high technology projects, although with problems. However, other work on isolated and confined environments suggests that sustained cooperation in the unique quarters of a space station for long durations may have special inter-cultural difficulties that need to be examined before any long term commitment is made. Also, a careful look at international activities in general suggests that in spite of the fact that there are many potential benefits for cooperative activities, there are also many international obstacles. If such an effort is to be embarked upon, it is important to look candidly at the problems that can be generated from the multi-national social, economic, and cultural systems in order to do serious and direct analyses. Such a project might be strangled by unanticipated and complex problems of a socio-cultural nature.
2014-05-19
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, Florida State Surgeon General John Armstrong and other guests prepare for an early morning run at the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
2014-05-19
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, and Florida State Surgeon General John Armstrong begin an early morning run along the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
2014-05-19
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, shakes hands with Florida State Surgeon General John Armstrong before an early morning run along the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
2014-05-19
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, left, and Florida State Surgeon General John Armstrong complete an early morning run along the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
2014-05-19
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, and Florida State Surgeon General John Armstrong take an early morning run along the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
An update on the Department of Energy's photovoltaic program
NASA Technical Reports Server (NTRS)
Benner, John P.; Fitzgerald, Mark
1994-01-01
Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.
Explorations in K-12 Education and Public Outreach
NASA Astrophysics Data System (ADS)
Limaye, S. S.; Pertzborn, R. A.; Sromovsky, L. A.
1997-07-01
Space exploration remains a topic of immense interest and excitement for children and the general public. A diverse approach has been utilized at the Space Science and Engineering Center to initiate outreach and K-12 education activities. The hands-on experience gained through a working relationships with educators has been useful in understanding the challenges, usefulness and limitations of scientists' involvement in the education process. Our efforts have included school visits, development of lesson plans (KidSat), internet based activities (Planet Exploration Toolkit for Live from Mars, a Passport to Knowledge Project), World Wide Web, Public Lectures, summer teacher enhancement workshops, internships, and substitute teaching in science classes. The feedback and comments from teachers and students has demonstrated the usefulness and need for these efforts. The experience has also demonstrated that a committed effort in outreach is ultimately satisfying although immensely time consuming. Our outreach efforts have been partially supported by a NASA/IDEA grant, Wisconsin Space Grant Consortium, NOAA and more recently, the Evjue Foundation (Madison-Wisconsin).
NASA Technical Reports Server (NTRS)
1993-01-01
Satellite systems to date have been mainly scientific in nature. Only a few systems have been of direct use to the public such as for telephone or television transmission. Space enterprises have remained a mystery to the general public and beyond the reach of the small business community. The result is a less than supportive public when it comes to space activities. The purpose of the ISAT-1 program is to develop a small and relatively inexpensive satellite that will serve the State of Iowa, primarily for educational purposes. It will provide products, services, and activities that will be educational, practical, and useful for a large number for people. The emphasis is on public awareness, 'space literacy', and routine practical applications rather than high technology. The initial conceptual design phase was complete when the current team took over the project. Some areas of the conceptual design were taken a little farther, but for the most part this team started at the detailed design stage.
14 CFR 1252.300 - General responsibilities of recipients.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General responsibilities of recipients. 1252.300 Section 1252.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... Responsibilities of Recipients § 1252.300 General responsibilities of recipients. Each NASA recipient must ensure...
STS-113 Crew Interviews: Michael Lopez-Alegria, Mission Specialist 1
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Mission Specialist 1 Michael Lopez-Alegria is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lopez-Alegria outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (P1 truss) and the crew transfer activities (the crew of Expedition Six is replacing the crew of Expedition Five on the International Space Station (ISS)). Lopez-Alegria discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew. He ends with his thoughts on the importance of the ISS as the second anniversary of human occupation of the Space Station approaches.
Discriminative Cooperative Networks for Detecting Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, Ye-Hua; van Nieuwenburg, Evert P. L.
2018-04-01
The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.
On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23
NASA Astrophysics Data System (ADS)
Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi
2015-09-01
Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.
NASA Technical Reports Server (NTRS)
1976-01-01
General physical, functional, and operational interface control requirements for instruments on the first AMPS payload are presented. Interface specifications are included to satisfy ground handling, prelaunch, launch, stowage, operation, and landing activities. Applicable supporting documentation to implement the information is also given.
Preliminary design study for an atomospheric science facility
NASA Technical Reports Server (NTRS)
Hutchison, R.
1972-01-01
The activities and results of the Atmospheric Science Facility preliminary design study are reported. The objectives of the study were to define the scientific goals, to determine the range of experiment types, and to develop the preliminary instrument design requirements for a reusable, general purpose, optical research facility for investigating the earth's atmosphere from a space shuttle orbital vehicle.
24 CFR 574.310 - General standards for eligible housing activities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... quality. Every room or space must be provided with natural or mechanical ventilation. Structures must be... syndrome or related diseases: (i) For a period of not less than 10 years, in the case of assistance... rehabilitation or acquisition of a building or structure; or (ii) For a period of not less than 3 years in the...
24 CFR 574.310 - General standards for eligible housing activities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... quality. Every room or space must be provided with natural or mechanical ventilation. Structures must be... syndrome or related diseases: (i) For a period of not less than 10 years, in the case of assistance... rehabilitation or acquisition of a building or structure; or (ii) For a period of not less than 3 years in the...
24 CFR 574.310 - General standards for eligible housing activities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... quality. Every room or space must be provided with natural or mechanical ventilation. Structures must be... syndrome or related diseases: (i) For a period of not less than 10 years, in the case of assistance... rehabilitation or acquisition of a building or structure; or (ii) For a period of not less than 3 years in the...
Expedition 28 Crew Members remove samples from the JPM MELFI
2011-07-08
ISS028-E-014918 (8 July 2011) --- NASA astronauts Ron Garan (left) and Mike Fossum, both Expedition 28 flight engineers, remove samples from the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) and insert in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI-1) in the Kibo laboratory of the International Space Station.
Expedition 28 Crew Members remove samples from the JPM MELFI
2011-07-08
ISS028-E-014916 (8 July 2011) --- NASA astronauts Ron Garan (left) and Mike Fossum, both Expedition 28 flight engineers, remove samples from the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) and insert in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI-1) in the Kibo laboratory of the International Space Station.
ERIC Educational Resources Information Center
Fitzgerald, Victoria
2012-01-01
Part of the School of Physical Sciences mission and plan is to deliver an effective outreach programme to the community and South East regions to stimulate interest, both in school pupils and the general public, in science. To do this, it offers many activities that are school-based and aimed at students in Key stages 3, 4 and 5 (ages 11-18).…
Thaker, Maria; Vanak, Abi T; Owen, Cailey R; Ogden, Monika B; Niemann, Sophie M; Slotow, Rob
2011-02-01
Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.
General view in the Horizontal Processing Area of the Space ...
General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME 2052 and 2051 mounted on their SSME Engine Handlers. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
National Standard of the Russian Federation for Space Debris Mitigation
NASA Astrophysics Data System (ADS)
Loginov, S.; Yakovlev, M.; Mikhailov, M.; Popkova, L.
2009-03-01
Normative and technical document that define requirements for the mitigation of human-produced near-earth space pollution develops in Russian Federation.NATIONAL STANDARD of the Russian Federation GOST R 52925-2008 «SPACE TECHNOLOGY ITEMS. General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution» was approved in 2008 and entered into force since 1st January of 2009. Requirements of this standard harmonized with requirements of «UN SPACE DEBRIS MITIGATION GUIDELINESÈ»This standard consists of six parts:- Scope;- References to Standards;- Terms & Definitions;- Abbreviations;- General Provisions;- General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution.
Chicago Meets Outer Space program
NASA Technical Reports Server (NTRS)
Allen, H., Jr.
1978-01-01
The symposium included personal appearances by NASA astronauts, NASA exhibits, souvenir photos for each student attending the symposium, live demonstrations of how the Communication Technology Satellite links the U. S. with people around the world, and talks on job opportunities in aerospace and on the benefits of space. Monday through Friday, the program was directed mainly at (public, parochial and private) student groups, each of which spent a half day on the CSU campus to participate in the symposium activities. On Saturday and Sunday, the symposium was open to the general public and consisted of the NASA exhibits, films, a shorter version of the lectures and a special demonstration and tasting opportunity of space food meal systems. These quick meal systems that were designed for senior citizens.
Microgravity vibration isolation: Optimal preview and feedback control
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.
1992-01-01
In order to achieve adequate low-frequency vibration isolation for certain space experiments an active control is needed, due to inherent passive-isolator limitations. Proposed here are five possible state-space models for a one-dimensional vibration isolation system with a quadratic performance index. The five models are subsets of a general set of nonhomogeneous state space equations which includes disturbance terms. An optimal control is determined, using a differential equations approach, for this class of problems. This control is expressed in terms of constant, Linear Quadratic Regulator (LQR) feedback gains and constant feedforward (preview) gains. The gains can be easily determined numerically. They result in a robust controller and offers substantial improvements over a control that uses standard LQR feedback alone.
A nonlinear generalized continuum approach for electro-elasticity including scale effects
NASA Astrophysics Data System (ADS)
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear hyperelasticity, is embedded in the generalized continuum. In this way material information of the micro-space, which are here only the geometrical specifications of the micro-continuum, can naturally enter the constitutive law. Several applications with moving least square-based approximations (MLS) demonstrate the potential of the proposed method. This particular meshfree method is chosen, as it has been proven to be highly flexible with regard to continuity and consistency required by this generalized approach.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 435.21 Section 435.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and Approval for Reentry of a Reentry Vehicle § 435.21 General. The FAA issues a policy approval to a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 435.21 Section 435.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and Approval for Reentry of a Reentry Vehicle § 435.21 General. The FAA issues a policy approval to a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 435.21 Section 435.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and Approval for Reentry of a Reentry Vehicle § 435.21 General. The FAA issues a policy approval to a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 435.21 Section 435.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and Approval for Reentry of a Reentry Vehicle § 435.21 General. The FAA issues a policy approval to a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 435.21 Section 435.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and Approval for Reentry of a Reentry Vehicle § 435.21 General. The FAA issues a policy approval to a...
14 CFR 1212.600 - General policy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true General policy. 1212.600 Section 1212.600 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS Instructions for NASA Employees § 1212.600 General policy. In compliance with the Privacy Act and in accordance...
14 CFR 1212.600 - General policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false General policy. 1212.600 Section 1212.600 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS Instructions for NASA Employees § 1212.600 General policy. In compliance with the Privacy Act and in accordance...
Catherine Cesarsky - President Elect of the International Astronomical Union (IAU)
NASA Astrophysics Data System (ADS)
2003-07-01
The General Assembly of the International Astronomical Union (IAU), meeting in Sydney (Australia), has appointed the ESO Director General, Dr. Catherine Cesarsky, as President Elect for a three-year period (2003-2006). The IAU is the world's foremost organisation for astronomy, uniting almost 9000 professional scientists on all continents. The IAU General Assembly also elected Prof. Ron Ekers (Australia) as President (2003 - 2006). Dr. Cesarsky will then become President of the IAU in 2006, when the General Assembly next meets in Prague (The Czech Republic). Dr. Cesarsky is the first woman scientist to receive this high distinction. "The election of Catherine Cesarsky as President-Elect of the IAU is an important recognition for a scientist who has made impressive contributions to various areas of modern astrophysics, from cosmic rays to the interstellar medium and cosmology" , commented the outgoing IAU President, Prof. Franco Pacini. "It is also an honour and an important accolade for the European astronomical community in general and ESO in particular." Dr. Cesarsky, who assumed the function as ESO Director General in 1999, was born in France. She received a degree in Physical Sciences at the University of Buenos Aires and graduated with a PhD in Astronomy in 1971 from Harvard University (Cambridge, Mass., USA). Afterwards she worked at the California Institute of Technology (CALTECH). In 1974, she became a staff member of the Service d'Astrophysique (SAp), Direction des Sciences de la Matière (DSM), Commissariat à l'Energie Atomique (CEA) (France). As Director of DSM (1994 - 1999), she was leading about 3000 scientists, engineers and technicians active within a broad spectrum of basic research programmes in physics, chemistry, astrophysics and earth sciences. Dr. Cesarsky is known for her successful research activities in several central areas of modern astrophysics. She first worked on the theory of cosmic ray propagation and acceleration, and galactic gamma-ray emission. Later, she led the design and construction of the ISOCAM camera onboard the Infrared Space Observatory (ISO) of the European Space Agency (ESA), and the ISOCAM Central Programme which studied the infrared emission from many different galactic and extragalactic sources. This has led to new and exciting results on star formation and galactic evolution, and in the identification of the sources providing the bulk of the energy in the Cosmic Infrared Background. As ESO Director General, she has been a driving force towards the realisation of the full potential of ESO's unique Very Large Telescope (VLT) and its associated interferometer ( VLTI), and also towards the recent European-North American agreement on the powerful Atacama Large Millimeter Array (ALMA). Dr. Cesarsky received the COSPAR (Committee on Space Research) Space Science Award in 1998. She is married and has two children.
Planning Complex Projects Automatically
NASA Technical Reports Server (NTRS)
Henke, Andrea L.; Stottler, Richard H.; Maher, Timothy P.
1995-01-01
Automated Manifest Planner (AMP) computer program applies combination of artificial-intelligence techniques to assist both expert and novice planners, reducing planning time by orders of magnitude. Gives planners flexibility to modify plans and constraints easily, without need for programming expertise. Developed specifically for planning space shuttle missions 5 to 10 years ahead, with modifications, applicable in general to planning other complex projects requiring scheduling of activities depending on other activities and/or timely allocation of resources. Adaptable to variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction.
Effects of microgravity on osteoblast growth
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V.
1998-01-01
Studies from space flights over the past two decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. Recently analyzed data from the 1973-1974 Skylabs disclose that there is a rise in the systemic hormone, cortisol, which may play a role in bone loss in flight. In two flights where bone growth was measured (Skylabs 3 and 4), the crew members had a significant loss of calcium accompanied by a rise in 24 hour urinary cortisol during the entire flight period. In ground-based work on osteoblasts, we have demonstrated that equivalent amounts of glucocorticoids can inhibit osteoblast cell growth. In addition, this laboratory has recently studied gene growth and activation of mouse osteoblasts (MC3T3-E1) during spaceflight. Osteoblast cells were grown on glass coverslips, loaded in the Biorack plunger boxes 18 hours before launch and activated 19 hours after launch in the Biorack incubator under microgravity conditions. The osteoblasts were launched in a serum deprived state, activated and collected in microgravity. Samples were collected at 29 hours after sera activation (0-g, n=4; 1-g, n=4). The osteoblasts were examined for changes in gene expression and cell morphology. Approximately one day after growth activation, remarkable differences were observed in gene expression in 0-g and 1-g flight samples. The 0-g activated cells had increased c-fos mRNA when compared to flight 1-g controls. The message of immediate early growth gene, cox-2 was decreased in the microgravity activated cells when compared to ground or 1-g flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of actin mRNA between the 0-g and 1-g samples. These data indicate that quiescent osteoblasts are slower to enter the cell cycle in microgravity, suggesting that the force of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-g. Here we examine ground-based and space flown data on osteoblast growth in ground-based experiments mimicking space flight conditions and in microgravity to simulate lack of gravity stress to help us understand the mechanism of bone loss by experiments.
Neuroscience discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.
NASA Astrophysics Data System (ADS)
Cobabe-Ammann, E.; Jakosky, B.
2007-12-01
Historically, there has been a delineation between those activities that promote the education of the general public (formal and information education) and those that involve journalists and the media (public affairs). However, over the last several years, there has been recognition that in the interest of "full spectrum science communication", journalists, who deliver more than 85% of the science news and content to the general public, may be legitimately seen as an audience for education activities. The goal of these activities is not primarily to promote a specific story, event or theme, but instead to broaden and deepen journalists' understanding of space science and to promote increased communication and understanding among journalists, scientists and educators. In the last several years, the Laboratory for Atmospheric and Space Physics has initiated workshops for the professional development of journalists as a cornerstone of its Education program. To date, workshops have covered Mars System Science, Life in Extreme Environments, Extrasolar Planets, Out Planets, and soon, the Role of Uncertainty in Climate Change. These programs bring together 20 elite journalists from both print and broadcast and 6-8 internationally recognized scientists in a 3-4 day encounter. Evaluation of past workshops suggests that the journalists not only feel that these workshops are a worthwhile use of their time, but that they impact the quality of their writing. Several indicated that the quality of the writing and its content had been noticed by their editor and allowed them to more easily 'pitch' space science stories when they were in the news. Many, including several regional journalists, commented that the workshop provided a level of background information that would help them for years to come. In this talk, we present the LASP media workshop model, talk about editorial barriers for journalists and the impact of the workshops, and discuss lessons learned that increase participation by the nation's leading media outlets.
What can the annual 10Be solar activity reconstructions tell us about historic space weather?
NASA Astrophysics Data System (ADS)
Barnard, Luke; McCracken, Ken G.; Owens, Mat J.; Lockwood, Mike
2018-04-01
Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity, constraining past space climate with reasonable uncertainty. Much less is known about past space weather conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305-3069) (MB15) suggest that annually resolved 10Be can be significantly affected by solar energetic particle (SEP) fluxes. This poses a problem, and presents an opportunity, as the accurate quantification of past solar magnetic activity requires the SEP effects to be determined and isolated, whilst doing so might provide a valuable record of past SEP fluxes. Aims: We compare the MB15 reconstruction of the heliospheric magnetic field (HMF), with two independent estimates of the HMF derived from sunspot records and geomagnetic variability. We aim to quantify the differences between the HMF reconstructions, and speculate on the origin of these differences. We test whether the differences between the reconstructions appear to depend on known significant space weather events. Methods: We analyse the distributions of the differences between the HMF reconstructions. We consider how the differences vary as a function of solar cycle phase, and, using a Kolmogorov-Smirnov test, we compare the distributions under the two conditions of whether or not large space weather events were known to have occurred. Results: We find that the MB15 reconstructions are generally marginally smaller in magnitude than the sunspot and geomagnetic HMF reconstructions. This bias varies as a function of solar cycle phase, and is largest in the declining phase of the solar cycle. We find that MB15's excision of the years with very large ground level enhancement (GLE) improves the agreement of the 10Be HMF estimate with the sunspot and geomagnetic reconstructions. We find no statistical evidence that GLEs, in general, affect the MB15 reconstruction, but this analysis is limited by having too few samples. We do find evidence that the MB15 reconstructions appear statistically different in years with great geomagnetic storms.
Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives.
Alessandro, Cristiano; Delis, Ioannis; Nori, Francesco; Panzeri, Stefano; Berret, Bastien
2013-01-01
In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well.
Fuel Cell Activities at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)
2002-01-01
Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented
Innovative Robot Archetypes for In-Space Construction and Maintenance
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher
2005-01-01
The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts
14 CFR 1259.102 - General policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false General policy. 1259.102 Section 1259.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND... (3) of the National Aeronautics and Space Act of 1958, as amended, (42 U.S.C. 2457(a)(3)), it is NASA...
14 CFR 1259.102 - General policy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true General policy. 1259.102 Section 1259.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND... (3) of the National Aeronautics and Space Act of 1958, as amended, (42 U.S.C. 2457(a)(3)), it is NASA...
General view of the shop floor looking north in the ...
General view of the shop floor looking north in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. SSME number 2061 is in the foreground. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Astrophysics Data System (ADS)
Raine, D. J.; Heller, M.
Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics; Copernican kinematics; Newtonian dynamics; the space-time of classical dynamics; classical space-time in the presence of gravity; the space-time of special relativity; the space-time of general relativity; solutions and problems in general relativity; Mach's principle and the dynamics of space-time; theories of inertial mass; the integral formation of general relativity; and the frontiers of relativity (e.g., unified field theories and quantum gravity).
The real world and lunar base activation scenarios
NASA Technical Reports Server (NTRS)
Schmitt, Harrison H.
1992-01-01
A lunar base or a network of lunar bases may have highly desirable support functions in a national or international program to explore and settle Mars. In addition, He-3 exported from the Moon could be the basis for providing much of the energy needs of humankind in the twenty-first century. Both technical and managerial issues must be addressed when considering the establishment of a lunar base that can serve the needs of human civilization in space. Many of the technical issues become evident in the consideration of hypothetical scenarios for the activation of a network of lunar bases. Specific and realistic assumptions must be made about the conduct of various types of activities in addition to the general assumptions given above. These activities include landings, crew consumables, power production, crew selection, risk management, habitation, science station placement, base planning, science, agriculture, resource evaluation, readaptation, plant activation and test, storage module landings, resource transport module landings, integrated operations, maintenance, Base 2 activation, and management. The development of scenarios for the activation of a lunar base or network of bases will require close attention to the 'real world' of space operations. That world is defined by the natural environment, available technology, realistic objectives, and common sense.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id; Arif, Johan; Nurzaman, Muhamad Zamzam
Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicatemore » technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.« less
Realtime Space Weather Forecasts Via Android Phone App
NASA Astrophysics Data System (ADS)
Crowley, G.; Haacke, B.; Reynolds, A.
2010-12-01
For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.
14 CFR Section 2 - General Accounting Policies
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General Accounting Policies Section 2 Section 2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... General Accounting Provisions Section 2 General Accounting Policies ...
NASA Technical Reports Server (NTRS)
Wallington, Clint
1999-01-01
Educational outreach is an integral part of the International Space Station (ISS) mandate. In a few scant years, the International Space Station has already established a tradition of successful, general outreach activities. However, as the number of outreach events increased and began to reach school classrooms, those events came under greater scrutiny by the education community. Some of the ISS electronic field trips, while informative and helpful, did not meet the generally accepted criteria for education events, especially within the context of the classroom. To make classroom outreach events more acceptable to educators, the ISS outreach program must differentiate between communication events (meant to disseminate information to the general public) and education events (designed to facilitate student learning). In contrast to communication events, education events: are directed toward a relatively homogeneous audience who are gathered together for the purpose of learning, have specific performance objectives which the students are expected to master, include a method of assessing student performance, and include a series of structured activities that will help the students to master the desired skill(s). The core of the ISS education events is an interactive videoconference between students and ISS representatives. This interactive videoconference is to be preceded by and followed by classroom activities which help the students aftain the specified learning objectives. Using the interactive videoconference as the centerpiece of the education event lends a special excitement and allows students to ask questions about what they are learning and about the International Space Station and NASA. Whenever possible, the ISS outreach education events should be congruent with national guidelines for student achievement. ISS outreach staff should recognize that there are a number of different groups that will review the events, and that each group has different criteria for acceptance. For example, school administrators are more likely to be concerned about an event meeting national standards and the cost of the event. In contrast, a teacher's acceptance of an education event may be directly related to the amount of extra work the event imposes upon that teacher. ISS education events must be marketed differently to the different groups of educators, and must never increase the workload of the average teacher.
Stewart, Tom; Duncan, Scott; Schipperijn, Jasper
2017-01-01
Although active school travel (AST) is important for increasing moderate-to-vigorous physical activity (MVPA), it is unclear how AST is related to context-specific physical activity and non-school travel. This study investigated how school travel is related to physical activity and travel behaviours across time- and space-classified domains. A total of 196 adolescents wore a Global Positioning System receiver and an accelerometer for 7 days. All data were classified into one of four domains: home, school, transport, or leisure. Generalized linear mixed models were used to compare domain-specific PA and non-school trips between active and passive school travellers. Active travellers accumulated 13 and 14 more min of MVPA on weekdays and weekend days, respectively. They also spent 15min less time in vehicular travel during non-school trips, and accrued an additional 9min of MVPA while walking on weekend days. However, those with no AST still achieved most of their MVPA in the transport domain. AST is related to out-of-school physical activity and transportation, but transport is also important for those who do not use AST. As such, future studies should consider overall mobility and destinations other than school when assessing travel and physical activity behaviours. Copyright © 2016 Elsevier Ltd. All rights reserved.
Astronomy Education and Teacher Training in Turkey
NASA Astrophysics Data System (ADS)
Kirbiyik, Halil
In this talk, education in astronomy and space sciences in schools in Turkey as well as activities to create awareness in these subjects will be discussed. A search done among youngsters(ages from 15 to 24) for measuring the scientific literacy showed that most attractive subjects to the Turkish younsters are “internet” and “astronomy”. This result led authorities to take necessary measures to fill the gap especially in teaching material such as books. Another attempt along this is to increase astronomy subjects in the school curricula. Besides TUBITAK National Observatory, universities and Turkish Astronomical Society are giving every efort to create public awareness of space activities and space sciences. As for the teacher training in astronomy and space sciences, much has been done but no success has come yet. Astronomy subjects, in schools, are generally taught not by astronomers but some other substitutes from other branches, such as physics and mathematics. Thus the Ministry of Education prefers training teachers in service. Nevertheless it must be stated that astronomers are pushing forward to formally have the right to train astronomers to become teachers to be hired by the Ministry of Education in schools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Tianzhou; Rassias, John Michael; Xu Wanxin
2010-09-15
We establish some stability results concerning the general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. In addition, we establish some results of approximately general mixed additive-cubic mappings in non-Archimedean fuzzy normed spaces. The results improve and extend some recent results.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... research, technology or operations. ...
14 CFR § 1259.102 - General policy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false General policy. § 1259.102 Section § 1259.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE...(a)(2) and (3) of the National Aeronautics and Space Act of 1958, as amended, (42 U.S.C. 2457(a)(3...
Impact of Space Transportation System on planetary spacecraft and missions design
NASA Technical Reports Server (NTRS)
Barnett, P. M.
1975-01-01
Results of Jet Propulsion Laboratory (JPL) activities to define and understand alternatives for planetary spacecraft operations with the Space Transportation System (STS) are summarized. The STS presents a set of interfaces, operational alternatives, and constraints in the prelaunch, launch, and near-earth flight phases of a mission. Shuttle-unique features are defined and coupled with JPL's existing program experience to begin development of operationally efficient alternatives, concepts, and methods for STS-launched missions. The time frame considered begins with the arrival of the planetary spacecraft at Kennedy Space Center and includes prelaunch ground operations, Shuttle-powered flight, and near-earth operations, up to acquisition of the spacecraft signal by the Deep Space Network. The areas selected for study within this time frame were generally chosen because they represent the 'driving conditions' on planetary-mission as well as system design and operations.
Thermo-Optical and Mechanical Property Testing of Candidate Solar Sail Materials
NASA Technical Reports Server (NTRS)
Hollerman, WIlliam A.; Stanaland, T. L.; Womack, F.; Edwards, David; Hubbs, Whitney; Semmel, Charles
2003-01-01
Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra-lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This poster will discuss the preliminary results of this research.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Generalized probabilistic scale space for image restoration.
Wong, Alexander; Mishra, Akshaya K
2010-10-01
A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.
Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992
NASA Technical Reports Server (NTRS)
Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)
1992-01-01
This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.
Military Medical Care: Questions and Answers
2013-07-24
services through either Department of Defense (DOD) medical facilities, known as “military treatment facilities” or “MTFs” as space is available, or...Chiefs of Staff, CAE /PEO =Component Acquisition Executive/Program Executive Officer, DHA OGC = Defense Health Agency Office of General Counsel, NCR...funding for all fixed medical treatment facilities/activities, including such costs as real property maintenance, environmental compliance, minor
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1990-01-01
The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.
The JWST Science Instrument Payload: Mission Context and Status
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.
2014-01-01
The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope that will achieve diffraction limited angular resolution at a wavelength of 2 microns. The science instrument payload includes four passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronography, as well as multi-object and integral-field spectroscopy over the 0.6 < lambda < 5.0 microns spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronography, and integral-field spectroscopy over the 5.0 < lambda < 29 microns spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete. Construction, integration and verification testing is underway in all areas of the program. The JWST is on schedule for launch during 2018.
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
General view in the Vertical Processing Area of the Space ...
General view in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view shows a SSME Rotating Sling in the foreground right and SSME 2056 in the foreground and SSMEs 2050, 2062 and 2054 in succession towards the background. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Consortium for materials development in space interaction with Space Station Freedom
NASA Technical Reports Server (NTRS)
Lundquist, Charles A.; Seaquist, Valerie
1992-01-01
The Consortium for Materials Development in Space (CMDS) is one of seventeen Centers for the Commercial Development of Space (CCDS) sponsored by the Office of Commercial Programs of NASA. The CMDS formed at the University of Alabama in Huntsville in the fall of 1985. The Consortium activities therefore will have progressed for over a decade by the time Space Station Freedom (SSF) begins operation. The topic to be addressed here is: what are the natural, mutually productive relationships between the CMDS and SSF? For management and planning purposes, the Consortium organizes its activities into a number of individual projects. Normally, each project has a team of personnel from industry, university, and often government organizations. This is true for both product-oriented materials projects and for infrastructure projects. For various projects Space Station offers specific mutually productive relationships. First, SSF can provide a site for commercial operations that have evolved as a natural stage in the life cycle of individual projects. Efficiency and associated cost control lead to another important option. With SSF in place, there is the possibility to leave major parts of processing equipment in SSF, and only bring materials to SSF to be processed and return to earth the treated materials. This saves the transportation costs of repeatedly carrying heavy equipment to orbit and back to the ground. Another generic feature of commercial viability can be the general need to accomplish large through-put or large scale operations. The size of SSF lends itself to such needs. Also in addition to processing equipment, some of the other infrastructure capabilities developed in CCDS projects may be applied on SSF to support product activities. The larger SSF program may derive mutual benefits from these infrastructure abilities.
Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression
NASA Astrophysics Data System (ADS)
Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.
2013-10-01
Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.
Astrophysics for Early Elementary Students and Teachers
NASA Astrophysics Data System (ADS)
Kang, R.
2004-12-01
How can very young students be taught astrophysics? What can we offer to teachers of K-4 students? Whether you deal directly with youngsters in classrooms, work with your School of Education to develop science inquiry training, or offer occasional general outreach, we discuss activities your program can adopt from the University of Oregon's Electronic Universe outreach program. This collaboration through NASA's Oregon Space Grant plus citizen amateur astronomers has been successfully delivering astrophysics to students in all grades throughout Oregon for over a decade. Students in grades K-4 are generally very enthusiastic learners who have a lot of interest in content and technology about space. Unfortunately typical curricula, state learning requirements, and typical training of their teachers is usually very simplistic and often contains erroneous and outdated materials. We'll work through a series of explorations designed for elementary level that use digital data and virtual reality simulations in conjunction with kinesthetic activities to connect observations such as brightness, shadows, motions, shapes, and colors to basic physical characteristics and properties. This is the starting place where we can grab already curious students and inspire teachers, particularly new teachers, to use space science content to develop science inquiry based curricula. Young students and their teachers can handle astrophysics if the topics are presented in familiar terms and with use of sufficient first hand modeling. Don't be afraid to start them early on these topics, this could dispel myths, generate future interest, and promote careers in science.
48 CFR 570.403 - Expansion requests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...
48 CFR 570.403 - Expansion requests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, determine whether it is more prudent to provide the expansion space by supplemental agreement to the existing lease...
48 CFR 570.403 - Expansion requests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...
48 CFR 570.403 - Expansion requests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...
48 CFR 570.403 - Expansion requests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...
46 CFR 116.700 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Spaces § 116.700 General requirements. (a) A crew accommodation space and a work space must be of sufficient size, adequate construction, and with suitable equipment to provide for the safe operation of the..., service, route, speed, and modes of operation of the vessel. (b) The deck above a crew accommodation space...
46 CFR 116.700 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Spaces § 116.700 General requirements. (a) A crew accommodation space and a work space must be of sufficient size, adequate construction, and with suitable equipment to provide for the safe operation of the..., service, route, speed, and modes of operation of the vessel. (b) The deck above a crew accommodation space...
General view of the shop floor looking north in the ...
General view of the shop floor looking north in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. SSME number 2061's nozzle is being inspected by an SSME technician in the foreground. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight
NASA Technical Reports Server (NTRS)
Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.
1990-01-01
The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.
The flight telerobotic servicer and technology transfer
NASA Technical Reports Server (NTRS)
Andary, James F.; Bradford, Kayland Z.
1991-01-01
The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.
Impact of the New Optimal Rules for Arbitration of Disputers Relating to Space Debris Controversies
NASA Astrophysics Data System (ADS)
Force, Melissa K.
2013-09-01
The mechanisms and procedures for settlement of disputes arising from space debris collision damage, such as that suffered by the Russian Cosmos and US Iridium satellites in 2009, are highly political, nonbinding and unpredictable - all of which contributes to the uncertainty that increases the costs of financing and insuring those endeavors that take place in near-Earth space, especially in Low Earth Orbit. Dispute settlement mechanisms can be found in the 1967 Outer Space Treaty, which provides for consultations in cases involving potentially harmful interference with activities of States parties, and in the 1972 Liability Convention which permits but does not require States - not non-governmental entities - to pursue claims in a resolution process that is nonbinding (unless otherwise agreed.) There are soft- law mechanisms to control the growth of space debris, such as the voluntary 2008 United Nations Space Debris Mitigation Guidelines, and international law and the principles of equity and justice generally provide reparation to restore a person, State or organization to the condition which would have existed if damage had not occurred, but only if all agree to a specific tribunal or international court; even then, parties may be bound by the result only if agreed and enforcement of the award internationally remains uncertain. In all, the dispute resolution process for damage resulting from inevitable future damage from space debris collisions is highly unsatisfactory. However, the Administrative Council of the Permanent Court of Arbitration's recently adopted Optional Rules for the Arbitration of Disputes Relating to Outer Space Activities are, as of yet, untested, and this article will provide an overview of the process, explore the ways in which they fill in gaps in the previous patchwork of systems and analyze the benefits and shortcomings of the new Outer Space Optional Rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false General. § 1203.300 Section § 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... research, technology or operations. ...
NASA Astrophysics Data System (ADS)
Mourra, Olivier; Blancquaert, Thierry; Signorini, Carla; Tonicello, Ferdinando
2008-09-01
The European Cooperation for Space Standardization is an initiative established to develop and maintain a coherent, single set of user-friendly standards for use in all European space activities [1].The standard documents are today grouped in 4 families: Space Project Management, Space ProductAssurance, Space Engineering, and General.The Space Engineering family contains around 60 standards covering several domains. Among them, the ",Electrical and Electronic Standard" has a long history, starting with a PSS document initiated more than 20 years ago [2][3].In 2007 and 2008, the Electrical and Electronic Standard has been reviewed by the European Space Agency, National Space Agencies and European space industries. The new version (ECSS-E-ST-20-C) has just been released. It is proposed to present this new standard and to illustrate a set of major and important power electronic requirements with relevant rationales and technical explanations.The first part of the paper will focus on the main modifications with respect to the existing ECSS-E-20A standard.The other parts will focus on a set of major and important requirements present in the new ECSS-E-ST-20C. The rationales justifying these requirements will be given and sometimes illustrated with specific examples.
d-Neighborhood system and generalized F-contraction in dislocated metric space.
Kumari, P Sumati; Zoto, Kastriot; Panthi, Dinesh
2015-01-01
This paper, gives an answer for the Question 1.1 posed by Hitzler (Generalized metrics and topology in logic programming semantics, 2001) by means of "Topological aspects of d-metric space with d-neighborhood system". We have investigated the topological aspects of a d-neighborhood system obtained from dislocated metric space (simply d-metric space) which has got useful applications in the semantic analysis of logic programming. Further more we have generalized the notion of F-contraction in the view of d-metric spaces and investigated the uniqueness of fixed point and coincidence point of such mappings.
Low cost split stirling cryogenic cooler for aerospace applications
NASA Astrophysics Data System (ADS)
Veprik, Alexander; Zechtzer, Semeon; Pundak, Nachman; Riabzev, Sergey; Kirckconnel, C.; Freeman, Jeremy
2012-06-01
Cryogenic coolers are used in association with sensitive electronics and sensors for military, commercial or scientific space payloads. The general requirements are high reliability and power efficiency, low vibration export and ability to survive launch vibration extremes and long-term exposure to space radiation. A long standing paradigm of using exclusively space heritage derivatives of legendary "Oxford" cryocoolers featuring linear actuators, flexural bearings, contactless seals and active vibration cancellation is so far the best known practice aiming at delivering high reliability components for the critical and usually expensive space missions. The recent tendency of developing mini and micro satellites for the budget constrained missions has spurred attempts to adapt leading-edge tactical cryogenic coolers to meet the space requirements. The authors are disclosing theoretical and practical aspects of a collaborative effort on developing a space qualified cryogenic refrigerator based on the Ricor model K527 tactical cooler and Iris Technology radiation hardened, low cost cryocooler electronics. The initially targeted applications are cost-sensitive flight experiments, but should the results show promise, some long-life "traditional" cryocooler missions may well be satisfied by this approach.
NASA Astrophysics Data System (ADS)
Moussas, X.; Coustenis, A.; Solomonidou, A.; Bampasidis, G.; Bratsolis, E.; Stamogiorgos, S.
2012-04-01
People have always been charmed by the beauty of the starry sky, the Sun, the Moon, the planets, the Solar System and the mystery of the birth and the evolution of the Cosmos. As the deep space is believed to be the only territory unexplored by the mankind, the humanity has always been looking forward to the discoveries of Space Science. However, due to the complicated character of modern Science and Technology, people usually are alienated from scientific issues. Dealing with this situation, the Space Group of the National and Kapodistrian University of Athens in collaboration with LESIA of the Observatoire de Paris-Meudon, have been performing several campaigns to raise the public awareness of Science and Astronomy with emphasis to the Solar System exploration. The Space Group of the University of Athens has scientific impact in both the Space Physics field and the public outreach of Astronomy throughout Europe, Northern Africa and the United States of America. Using the Antikythera Mechanism as central object and as a great attractor of children and the general public to astronomy and even philosophy, we have performed numerous outreach activities focalized on the general audience in order to conceptualize astronomical phenomena and change their prior usually not very clear knowledge and intuition. These Solar System events, conducted by our Group, help young people to develop their critical thinking, self-expression and creative talents and eventually to love astronomy and to develop an interest the planets. Their introduction into the space field seems essential for cultivation of these skills.
NASA Technical Reports Server (NTRS)
Cassinis, R.; Lechi, G. M.; Tonelli, A. M.
1974-01-01
ERTS-1 imagery of the volcanic areas of southern Italy was used primarily for the evaluation of space platform capabilties in the domains of regional geology, soil and rock-type classification and, more generally, to study the environment of active volcanoes. The test sites were selected and equipped primarily to monitor thermal emission, but ground truth data was also collected in other domains (reflectance of rocks, soils and vegetation). The test areas were overflown with a two channel thermal scanner, while a thermo camera was used on the ground to monitor the hot spots. The primary goal of this survey was to plot the changes in thermal emission with time in the framework of a research program for the surveillance of active volcanoes. However, another task was an evaluation of emissivity changes by comparing the outputs of the two thermal channels. These results were compared with the reflectance changes observed on multispectral ERTS-1 imagery.
Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten
2016-08-09
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.
Hierarchy of Information Processing in the Brain: A Novel 'Intrinsic Ignition' Framework.
Deco, Gustavo; Kringelbach, Morten L
2017-06-07
A general theory of brain function has to be able to explain local and non-local network computations over space and time. We propose a new framework to capture the key principles of how local activity influences global computation, i.e., describing the propagation of information and thus the broadness of communication driven by local activity. More specifically, we consider the diversity in space (nodes or brain regions) over time using the concept of intrinsic ignition, which are naturally occurring intrinsic perturbations reflecting the capability of a given brain area to propagate neuronal activity to other regions in a given brain state. Characterizing the profile of intrinsic ignition for a given brain state provides insight into the precise nature of hierarchical information processing. Combining this data-driven method with a causal whole-brain computational model can provide novel insights into the imbalance of brain states found in neuropsychiatric disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Robotic vision techniques for space operations
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1994-01-01
Automation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.
78 FR 42524 - Leasing versus Renting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE... Defense (DoD), General Services Administration (GSA), and National Aeronautics and Space Administration... your attached document. Fax: 202-501-4067. Mail: General Services Administration, Regulatory...
143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ...
143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ROOM (120), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Lin, Chin-Cheng; Yang, Qixiang
The well-posedness of generalized Navier-Stokes equations with initial data in some critical homogeneous Besov spaces and in some critical Q spaces was known. In this paper, we establish a wavelet characterization of Besov type Morrey spaces under the action of semigroup. As an application, we obtain the well-posedness of smooth solution for the generalized Navier-Stokes equations with initial data in some critical homogeneous Besov type Morrey spaces ( (1/2 ><β<1, γ1-γ2=1-2β), 1
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 33.3 Section 33.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.3 General. Each applicant must show that the aircraft engine concerned meets...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 33.3 Section 33.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.3 General. Each applicant must show that the aircraft engine concerned meets...
Nonequilibrium dynamics of probe filaments in actin-myosin networks
NASA Astrophysics Data System (ADS)
Gladrow, J.; Broedersz, C. P.; Schmidt, C. F.
2017-08-01
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of NASA's third Space Electrochemical Research and Technology (SERT) conference are presented. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions in the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: the electrochemical interface, the next generation in aerospace batteries and fuel cells, and electrochemistry for nonenergy storage applications.
Trends in space activities in 2014: The significance of the space activities of governments
NASA Astrophysics Data System (ADS)
Paikowsky, Deganit; Baram, Gil; Ben-Israel, Isaac
2016-01-01
This article addresses the principal events of 2014 in the field of space activities, and extrapolates from them the primary trends that can be identified in governmental space activities. In 2014, global space activities centered on two vectors. The first was geopolitical, and the second relates to the matrix between increasing commercial space activities and traditional governmental space activities. In light of these two vectors, the article outlines and analyzes trends of space exploration, human spaceflights, industry and technology, cooperation versus self-reliance, and space security and sustainability. It also reviews the space activities of the leading space-faring nations.
14 CFR 420.41 - License to operate a launch site-general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... does it confer any proprietary, property, or exclusive right in the use of airspace or outer space. ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false License to operate a launch site-general. 420.41 Section 420.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...
14 CFR 420.41 - License to operate a launch site-general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... does it confer any proprietary, property, or exclusive right in the use of airspace or outer space. ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false License to operate a launch site-general. 420.41 Section 420.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...
14 CFR 420.41 - License to operate a launch site-general.
Code of Federal Regulations, 2012 CFR
2012-01-01
... does it confer any proprietary, property, or exclusive right in the use of airspace or outer space. ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false License to operate a launch site-general. 420.41 Section 420.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...
Agreements/subagreements Applicable to Wallops, 12 Nov. 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.
2014-05-19
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, Florida State Surgeon General John Armstrong, other Kennedy managers and guests prepare for an early morning run at the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
2014-05-19
CAPE CANAVERAL, Fla. – From left, Florida State Surgeon General John Armstrong, Kennedy Space Center Director Bob Cabana, Center Operations Director Nancy Bray and Kennedy workers and guests prepare to take an early morning run along the center's Pathfinder Trail near the Operations and Support Building II at Kennedy Space Center in Florida, to officially kick off National Employee Health and Fitness Month with the NASA Moves! challenge. NASA Moves! challenged the workforce from each of the agency's field centers to engage in at least 20 minutes of activity, or 10,000 steps, each day from May 18-31. About 100 people participated in the kickoff event on the Pathfinder Trail in the heart of the center's Launch Complex 39. The one-third-mile-long gravel walkway traces the iconic shape of a space shuttle orbiter and features a set of exercise stations. The friendly contest is part of NASA's new Health4Life initiative, a Web-based health initiative designed to help employees track their health, fitness and nutrition. Health4Life also provides an array of resources geared toward increasing physical activity. Photo credit: NASA/Dimitri Gerondidakis
Extravehicular activity training and hardware design consideration
NASA Technical Reports Server (NTRS)
Thuot, P. J.; Harbaugh, G. J.
1995-01-01
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.
Origins Space Telescope: Study Plan
NASA Astrophysics Data System (ADS)
Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.
Origins Space Telescope: Study Plan
NASA Astrophysics Data System (ADS)
Cooray, Asantha R.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.
Extravehicular activity training and hardware design consideration.
Thuot, P J; Harbaugh, G J
1995-07-01
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space.
Montoro, Pedro R; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a 'positive-up/negative-down' embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space
Montoro, Pedro R.; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a ‘positive-up/negative-down’ embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis. PMID:26322007
Latent Herpes Viruses Reactivation in Astronauts
NASA Technical Reports Server (NTRS)
Mehta, Satish K.; Pierson, Duane L.
2008-01-01
Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth's magnetosphere is particularly worrisome because it includes ionizing radiation from cosmic galactic radiation. Increased stress levels appear even before flight, presumably from the rigors of preflight training and the anticipation of the mission (12, 32, 38, 39). Space flight causes significant changes in human immune function (32), but the means by which these changes come about have been difficult to discern. Consistent indicators of stress associated with space flight include increased production of stress hormones, and changes in cells of the immune system. These changes include elevated white blood cell (WBC) and neutrophil counts at landing (15, 16, 35, 37). Activation of generalized stress responses before, during, and after space flight probably affects the function of the immune system. Space flight has been shown to decrease many aspects of immune function, including natural killer (NK) cell activity, interferon production, the blastogenic response of leukocytes to mitogens, cell-mediated immunity, neutrophil function and monocyte function (5, 16, 18, 21, 35-37).
The main results of EVA medical support on the Mir Space Station
NASA Astrophysics Data System (ADS)
Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.
2004-04-01
The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.
The main results of EVA medical support on the Mir Space Station.
Katuntsev, V P; Osipov, Yu Yu; Barer, A S; Gnoevaya, N K; Tarasenkov, G G
2004-04-01
The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely. c2003 Elsevier Ltd. All rights reserved.
Regulatory physiology discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.
Omnidirectional Sensory and Motor Volumes in Electric Fish
Snyder, James B; Nelson, Mark E; Burdick, Joel W; MacIver, Malcolm A
2007-01-01
Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals. PMID:18001151
Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs
NASA Astrophysics Data System (ADS)
Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.
2005-05-01
Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA programs available via either the Internet or CD (e.g., those distributed by P. Reiff, Rice University) that provide inquiry-based activities for students. There is great potential to share the connections of Earth and space science by using NASA developed education materials. The materials can be adapted for the classroom, after school programs, family outreach events, and summer science enrichment programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Is there a general hierarchy of consideration that agencies must follow in their utilization of space? 102-79.55 Section 102-79... Utilization of Space Utilization of Space § 102-79.55 Is there a general hierarchy of consideration that...
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody
2010-05-24
A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.
Parietal and superior frontal visuospatial maps activated by pointing and saccades
Hagler, D.J.; Riecke, L.; Sereno, M.I.
2009-01-01
A recent study from our laboratory demonstrated that parietal cortex contains a map of visual space related to saccades and spatial attention and identified this area as the likely human homologue of the lateral intraparietal (LIP). A human homologue for the parietal reach region (PRR), thought to preferentially encode planned hand movements, has also been recently proposed. Both of these areas, originally identified in the macaque monkey, have been shown to encode space with eye-centered coordinates. Functional magnetic resonance imaging (fMRI) of humans was used to test the hypothesis that the putative human PRR contains a retinotopic map recruited by finger pointing but not saccades and to test more generally for differences in the visuospatial maps recruited by pointing and saccades. We identified multiple maps in both posterior parietal cortex and superior frontal cortex recruited for eye and hand movements, including maps not observed in previous mapping studies. Pointing and saccade maps were generally consistent within single subjects. We have developed new group analysis methods for phase-encoded data, which revealed subtle differences between pointing and saccades, including hemispheric asymmetries, but we did not find evidence of pointing-specific maps of visual space. PMID:17376706
Science with the Space Infrared Telescope Facility
NASA Technical Reports Server (NTRS)
Roellig, Thomas L.
2003-01-01
The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.
NASA Technical Reports Server (NTRS)
Adams, Catherine A.; Murdoch, Jennifer L.; Consiglio, Maria C.; WIlliams, Daniel M.
2005-01-01
One objective of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated Airport Management Module (AMM) and separation responsibilities to general aviation (GA) pilots. Implementation of this concept required the development of a research Multi-Function Display (MFD) to support the interactive communications between pilots and the AMM. The interface also had to accommodate traffic awareness, self-separation, and spacing tasks through dynamic messaging and symbology for flight path conformance and conflict detection and alerting (CDA). The display served as the mechanism to support the examination of the viability of executing instrument operations designed for SATS designated airports. Results of simulation and flight experiments conducted at the National Aeronautics and Space Administration's (NASA) Langley Research Center indicate that the concept, as facilitated by the research MFD, did not increase pilots subjective workload levels or reduce their situation awareness (SA). Post-test usability assessments revealed that pilots preferred using the enhanced MFD to execute flight procedures, reporting improved SA over conventional instrument flight rules (IFR) procedures.
Astrobiology, space and the future age of discovery.
Blumberg, Baruch S
2011-02-13
Astrobiology is the study of the origins, evolution, distribution and future of life in the Universe, and specifically seeks to understand the origin of life and to test the hypothesis that life exists elsewhere than on Earth. There is a general mathematics, physics and chemistry; that is, scientific laws that obtain on Earth also do so elsewhere. Is there a general biology? Is the Universe life-rich or is Earth an isolated island of biology? Exploration in the Age of Enlightenment required the collection of data in unexplored regions and the use of induction and empiricism to derive models and natural laws. The current search for extra-terrestrial life has a similar goal, but with a much greater amount of data and with computers to help with management, correlations, pattern recognition and analysis. There are 60 active space missions, many of them aiding in the search for life. There is not a universally accepted definition of life, but there are a series of characteristics that can aid in the identification of life elsewhere. The study of locations on Earth with similarities to early Mars and other space objects could provide a model that can be used in the search for extra-terrestrial life.
Schneider, Stefan; Abeln, Vera; Popova, Julia; Fomina, Elena; Jacubowski, Amrei; Meeusen, Romain; Strüder, Heiko K
2013-01-01
With respect to the plans of national and internationals space agencies to send people to Mars or Moon, long-term isolation studies are performed to learn about the psycho-physiological and psycho-social limitations of such missions. From June 3rd 2010 to November 4th 2011 six participants lived under totally isolated and confined conditions in the MARS500 habitat located in Moscow. Despite the possibility to mimic the condition of space travel, this study allowed for experimental conditions under very reliable and traceable conditions. As exercise is widely discussed to have a positive impact on neuro-cognitive performance, this study aimed to test the effect of different exercise protocol (endurance/strength orientated) on brain cortical activity and cognitive performance. Brain cortical activity was recorded using a 16 channel EEG before and after exercise across the 520 days of confinement. Cognitive performance was assessed using three commercially available brain games. Following the theory of transient hypofrontality, results show a significant decrease of frontal brain cortical activity after exercise (p<.05) which was most expressed after endurance orientated protocols. Cognitive performance was improved following running sessions on an active treadmill (p<.05). Results let us assume that not exercise per se acts as a neuro-enhancer. It is more likely that a general defocusing caused by an immersion into exercise is necessary to improve cognitive performance. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pierre, Kern; Malbet, Fabien; Berger, Jean Philippe; Rousselet-Perraut, Karine; Schanen, Isabelle; Nabias, Laurent; Benech, Pierre
2018-04-01
This paper, "Integrated optics applied to astronomical aperture synthesis: general concept for space and ground based applications," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Vlach, Haley A; Sandhofer, Catherine M
2012-01-01
The spacing effect describes the robust finding that long-term learning is promoted when learning events are spaced out in time rather than presented in immediate succession. Studies of the spacing effect have focused on memory processes rather than for other types of learning, such as the acquisition and generalization of new concepts. In this study, early elementary school children (5- to 7-year-olds; N = 36) were presented with science lessons on 1 of 3 schedules: massed, clumped, and spaced. The results revealed that spacing lessons out in time resulted in higher generalization performance for both simple and complex concepts. Spaced learning schedules promote several types of learning, strengthening the implications of the spacing effect for educational practices and curriculum. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
Sub-orbital flights, a starting point for space tourism
NASA Astrophysics Data System (ADS)
Gaubatz, William A.
2002-07-01
While there is a growing awareness and interest by the general public in space travel neither the market nor the infrastructure exist to make a commercial space tourism business an attractive risk venture. In addition there is much to be learned about how the general public will respond to space flights and what physiological and psychological needs must be met to ensure a pleasurable as well as adventurous experience. Sub-orbital flights offer an incremental approach to develop the market and the infrastructure, demonstrate the safety of space flight, obtain real flight information regarding the needs of general public passengers and demonstrate the profitability of space tourism. This paper will summarize some of the system, operations, and financial aspects of creating a sub-orbital space tourism business as a stepping-stone to public space travel. A sample business case will be reviewed and impacts of markets, operations and vehicle costs and lifetimes will be assessed.
A general formalism for phase space calculations
NASA Technical Reports Server (NTRS)
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
Spacing and Induction: Application to Exemplars Presented as Auditory and Visual Text
ERIC Educational Resources Information Center
Zulkiply, Norehan; McLean, John; Burt, Jennifer S.; Bath, Debra
2012-01-01
It is an established finding that spacing repetitions generally facilitates memory for the repeated events. However, the effect of spacing of exemplars on inductive learning is not really known. Two experiments using textual material were conducted to investigate the effect of spacing on induction. Experiment 1 and 2 extended the generality of…
Hypogravity's Effect on the Life Cycle of Japanese Quail
NASA Technical Reports Server (NTRS)
Hester, Patricia Y.
1999-01-01
A series of studies were conducted to determine the effect of activities preceding space-flight and during space-flight on quail embryonic development. While the overall development of the quail embryos was evaluated, the report presented herein, focused on calcium utilization or uptake from eggshells by developing embryos during incubation in space and on earth. In the pre-space trials, fertilized quail eggs were subjected to pre-night dynamics including forces of centrifugation, vibration, or a combination of vibration and centrifugation prior to incubation for 6 or 16 days. In another trial, fertile quail eggs were tested for survivability in a refrigerator stowage kit for eggs (RSKE) which was subsequently used to transport the eggs to space. Eggs in the RSKE were subjected to shuttle launch dynamics including G force and random vibration profiles. In the space- flight trials, 48 fertile quail eggs were launched on space shuttle Flight STS-76 and were subsequently incubated in a Slovakian incubator onboard space station, MIR. Two sets of ground controls each with 48 fertile eggs with and without exposure to launch dynamics were initiated 5 days post-launch. There was a laboratory control (incubated in Lyon RX2 incubator at 37.5 C) and a synchronous control (incubated in Lyon RX2 incubator at 39 - 400 C), which simulated the temperature of the space-flight incubator. Following space-flight trials, post-flight trials were conducted where quail eggs were incubated in Lyon RX2 or Slovakian incubators under various temperatures with or without launch dynamics. Eggshells from all study trials were retrieved and analyzed for calcium content to determine if its utilization by developing quail embryos was affected by activities preceding space-flight or during incubation in space under microgravity. Results from the pre-flight and post-flight showed that pre-flight activities and shuttle launch dynamics had no effect on calcium uptake from the eggshell by developing embryos. However, calcium uptake from the eggshell by developing embryos incubated in micro,aravity was impaired by 12.6% when compared to embryos incubated on earth under laboratory control environment. This impairment was unlikely due to factors other than microgravity. In general, calcium utilization by developing embryos increased with age of incubation with the most increase occurring at day 16 of incubation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
NASA Astrophysics Data System (ADS)
Cahuzac, F.; Biard, A.
2012-01-01
The development of space activities has led France to define a new legal framework: French Space Operation Act (FSOA). The aim of this act, is to define the conditions according to which the French government authorizes and checks the spatial operations under its jurisdiction or its international responsibility as State of launch, according to the international treaties of the UN on space, in particular the Treaty (1967) on Principles Governing the Activities of States in the Exploration and Use of Outer Space, the Convention ( 1972 ) on International Liability for Damage Caused by Space Objects, and the Convention (1975) on Registration of Objects Launched into Outer Space. The main European space centre is the Guiana Space Centre (CSG), settled in France. A clarification of the French legal framework was compulsory to allow the arrival of new launchers (Soyuz and Vega). This act defines the competent authority, the procedure of authorization and licenses, the regime for operations led from foreign countries, the control of spatial objects, the enabling of inspectors, the delegation of monitoring to CNES, the procedure for urgent measures necessary for the safety, the registration of spatial objects. In this framework, the operator is fully responsible of the operation that he leads. He is subjected to a regime of authorization and to governmental technical monitoring delegated to CNES. In case of litigation, the operator gets the State guarantee above a certain level of damage to third party. The introduction of FSOA has led to issue a Technical Regulation set forth, in particular for the safety of persons and property, the protection of public health and the environment. This general regulation is completed by a specific regulation applicable to CSG that covers the preparation phase of the launch, and all specificities of the launch range, as regards the beginning of the launch. The Technical Regulation is based on 30 years of Ariane's activities and on the application of international standards. Thus, its introduction has been made easy. The Technical Regulation is mainly written in term of objectives of safety, leaving great possibilities of technical innovations or improvements to the developer and operators. In the Technical Regulation, the approach of risk management is based on two orientations: prevention of risk on one side, treatment of risks on the other side. The prevention of risks is based on the reliability of the launch system, and the treatment of risk is based either on a neutralization function, or the control of trajectory according to the phase of the mission. The monitoring of activity is fitted to this approach of control of risks. Thus, the operator and its final customer, practically benefit from the system of monitoring associated to the act. One of the contributions of FSOA is a clarification of roles, between on one side an operator that controls the activities, and on the other side an independent entity that monitors activities according to the Technical Regulation. This act introduce a secured legal framework, on one side clear and suitable for protecting anyone against dangers linked necessarily to space activities, on the other side offering to all actors a favourable environment for the development of their activities. A first appraisal of the application of the authorization regime applied since 2010, December 10th, is presented.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.
33-Foot-Diameter Space Station Leading to Space Base
NASA Technical Reports Server (NTRS)
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.
2017-12-01
The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.
Gao, Fei; Liu, Huafeng; Shi, Pengcheng
2010-01-01
Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.
Expanding the biomass derived chemical space
Brun, Nicolas; Hesemann, Peter
2017-01-01
Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products. PMID:28959397
Park, Sophie; Khan, Nada F; Hampshire, Mandy; Knox, Richard; Malpass, Alice; Thomas, James; Anagnostelis, Betsy; Newman, Mark; Bower, Peter; Rosenthal, Joe; Murray, Elizabeth; Iliffe, Steve; Heneghan, Carl; Band, Amanda; Georgieva, Zoya
2015-05-06
General practice is increasingly used as a learning environment in undergraduate medical education in the UK. The aim of this project was to identify, summarise and synthesise research about undergraduate medical education in general practice in the UK. We systematically identified studies of undergraduate medical education within a general practice setting in the UK from 1990 onwards. All papers were summarised in a descriptive report and categorised into two in-depth syntheses: a quantitative and a qualitative in-depth review. 169 papers were identified, representing research from 26 UK medical schools. The in-depth review of quantitative papers (n = 7) showed that medical students learned clinical skills as well or better in general practice settings. Students receive more teaching, and clerk and examine more patients in the general practice setting than in hospital. Patient satisfaction and enablement are similar whether a student is present or not in a consultation, however, patients experience lower relational empathy. Two main thematic groups emerged from the qualitative in-depth review (n = 10): the interpersonal interactions within the teaching consultation and the socio-cultural spaces of learning which shape these interactions. The GP has a role as a broker of the interactions between patients and students. General practice is a socio-cultural and developmental learning space for students, who need to negotiate the competing cultures between hospital and general practice. Lastly, patients are transient members of the learning community, and their role requires careful facilitation. General practice is as good, if not better, than hospital delivery of teaching of clinical skills. Our meta-ethnography has produced rich understandings of the complex relationships shaping possibilities for student and patient active participation in learning.
The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'
NASA Astrophysics Data System (ADS)
Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark
The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the environment of the Moon and other celestial bodies should be sought among spacefaring states, while the question of new laws and regulations should be deliberated in the UN and scientific organisations. In doing so, it is recommended that experience in formulating the Antarctic Treaty System and other terrestrial environmen-tal accords should be taken into account. In general terms, it is expected that the majority of space activities would remain untouched by any future policies and regulations, to ensure that space exploration and exploitation remains open to future generations. But this philosophy brings with it a responsibility to protect the freedoms of those future generations from the ill-conceived practices of the present. As a result, activities that threaten the environments of celestial bodies, and our cultural heritage, should be identified, mitigated and discouraged (either by policy or by law).
Predicting the effect of urban noise on the active space of avian vocal signals.
Parris, Kirsten M; McCarthy, Michael A
2013-10-01
Urbanization changes the physical environment of nonhuman species but also markedly changes their acoustic environment. Urban noise interferes with acoustic communication in a range of animals, including birds, with potentially profound impacts on fitness. However, a mechanistic theory to predict which species of birds will be most affected by urban noise is lacking. We develop a mathematical model to predict the decrease in the active space of avian vocal signals after moving from quiet forest habitats to noisy urban habitats. We find that the magnitude of the decrease is largely a function of signal frequency. However, this relationship is not monotonic. A metaregression of observed increases in the frequency of birdsong in urban noise supports the model's predictions for signals with frequencies between 1.5 and 4 kHz. Using results of the metaregression and the model described above, we show that the expected gain in active space following observed frequency shifts is up to 12% and greatest for birds with signals at the lower end of this frequency range. Our generally applicable model, along with three predictions regarding the behavioral and population-level responses of birds to urban noise, represents an important step toward a theory of acoustic communication in urban habitats.
Tracking Clouds on Venus using Venus Express Data
NASA Astrophysics Data System (ADS)
Pertzborn, Rosalyn; Limaye, Sanjay; Markiewicz, Wojciech; Jasmin, Tommy; Udgaonkar, Nishant
2014-05-01
In the US, a growing emphasis has been placed on the development of inclusive and authentic educational experiences which promote active participation by the K-12 learning community as well as the general public in NASA's earth and space science research activities. In the face of growing national and international budgetary constraints which present major challenges across all scientific research organizations around the world, the need for scientific communities to dramatically improve strategies for effective public engagement experiences, demonstrating the relevance of earth and space science research contributions to the citizenry, have become paramount. This presentation will provide an introduction to the online Venus Express Cloud tracking applet, an overview of feedback from educational users based on classroom/pilot implementation efforts, as well as the concept's potential viability for the promotion of expanded public participation in the analysis of data in future planetary exploration and research activities, nationally and internationally. Acknowledgements: We wish to acknowledge the contributions of Mr. Nishant Udgaonkar, a summer intern with the S.N. Bose Scholars Program, sponsored by the Science and Engineering Board, Department of Science and Technology, Government of India, the Indo-U.S. Science and Technology Forum, and the University of Wisconsin-Madison. We also wish to acknowledge the Space Science and Engineering Center as well as NASA for supporting this project.
Helio-geomagnetic influence in cardiological cases
NASA Astrophysics Data System (ADS)
Katsavrias, Ch.; Preka-Papadema, P.; Moussas, X.; Apostolou, Th.; Theodoropoulou, A.; Papadima, Th.
2013-01-01
The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth's ionosphere-magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE-ACS) and non-ST-segment elevation acute coronary syndromes (NSTE-ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997-2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE-ACS to STE-ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE-ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.
NASA Astrophysics Data System (ADS)
Ishin, Artem; Perevalova, Natalia; Voeykov, Sergey; Khakhinov, Vitaliy
2017-12-01
Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50-55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregu larities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that SibNet deployed in the Southern Baikal region is an effective instrument for monitoring ionospheric conditions.
Xu, Enhua; Zhao, Dongbo; Li, Shuhua
2015-10-13
A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.
14 CFR 420.51 - Responsibilities-general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Responsibilities-general. 420.51 Section 420.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420...
14 CFR 420.51 - Responsibilities-general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Responsibilities-general. 420.51 Section 420.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 431.31 Section 431.31 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...) The FAA issues a safety approval to an RLV mission license applicant that satisfies the requirements...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 431.31 Section 431.31 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...) The FAA issues a safety approval to an RLV mission license applicant that satisfies the requirements...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 431.31 Section 431.31 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...) The FAA issues a safety approval to an RLV mission license applicant that satisfies the requirements...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 431.21 Section 431.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... RLV mission license applicant upon completion of a favorable policy review. A policy approval is part...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 431.21 Section 431.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... RLV mission license applicant upon completion of a favorable policy review. A policy approval is part...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 431.21 Section 431.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... RLV mission license applicant upon completion of a favorable policy review. A policy approval is part...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 431.31 Section 431.31 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...) The FAA issues a safety approval to an RLV mission license applicant that satisfies the requirements...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 431.21 Section 431.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... RLV mission license applicant upon completion of a favorable policy review. A policy approval is part...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 431.21 Section 431.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... RLV mission license applicant upon completion of a favorable policy review. A policy approval is part...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... information and material requiring protection in the interest of national security lie in the areas of applied...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... information and material requiring protection in the interest of national security lie in the areas of applied...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 431.31 Section 431.31 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... otherwise landing it on Earth, without jeopardizing public health and safety and the safety of property. (b...
NIST activities in support of space-based radiometric remote sensing
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Johnson, B. Carol
2001-06-01
We provide an historical overview of NIST research and development in radiometry for space-based remote sensing. The applications in this field can be generally divided into two areas: environmental and defense. In the environmental remote sensing area, NIST has had programs with agencies such as the National Aeronautical and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to verify and improve traceability of the radiometric calibration of sensors that fly on board Earth-observing satellites. These produce data used in climate models and weather prediction. Over the years, the scope of activities has expanded from existing routine calibration services for artifacts such as lamps, diffusers, and filters, to development and off-site deployment of portable radiometers for radiance- and irradiance-scale intercomparisons. In the defense remote sensing area, NIST has had programs with agencies such as the Department of Defense (DOD) for support of calibration of small, low-level infrared sources in a low infrared background. These are used by the aerospace industry to simulate ballistic missiles in a cold space background. Activities have evolved from calibration of point-source cryogenic blackbodies at NIST to measurement of irradiance in off-site calibration chambers by a portable vacuum/cryogenic radiometer. Both areas of application required measurements on the cutting edge of what was technically feasible, thus compelling NIST to develop a state-of-the-art radiometric measurement infrastructure to meet the needs. This infrastructure has led to improved dissemination of the NIST spectroradiometric quantities.
Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.
2007-01-01
Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Johnston, Mark; Frank, Jeremy; Giuliano, Mark; Kavelaars, Alicia; Lenzen, Christoph; Policella, Nicola
2012-01-01
Numerous automated and semi-automated planning & scheduling systems have been developed for space applications. Most of these systems are model-based in that they encode domain knowledge necessary to predict spacecraft state and resources based on initial conditions and a proposed activity plan. The spacecraft state and resources as often modeled as a series of timelines, with a timeline or set of timelines to represent a state or resource key in the operations of the spacecraft. In this paper, we first describe a basic timeline representation that can represent a set of state, resource, timing, and transition constraints. We describe a number of planning and scheduling systems designed for space applications (and in many cases deployed for use of ongoing missions) and describe how they do and do not map onto this timeline model.
Fire safety applications for spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Olson, Sandra L.
1989-01-01
Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.
Review of Low Earth Orbital (LEO) flight experiments
NASA Technical Reports Server (NTRS)
Leger, L.; Santosmason, B.; Visentine, J.; Kuminecz, J.
1987-01-01
The atomic oxygen flux exposure experiments flown on Space Shuttle flights STS-5 and STS-8 are described along with the results of measurements made on hardware returned from the Solar Maximum repair mission (Space Shuttle flight 41-C). In general, these experiments have essentially provided for passive exposure of samples to oxygen fluences of approximately 1 to 3.5 x 10(20) atoms/sq cm. Atmospheric density is used to derive fluence and is dependent on solar activity, which has been on the decline side of the 11-year cycle. Thus, relatively low flight altitudes of less than 300 km were used to acquire these exposures. After exposure, the samples were analyzed using various methods ranging from mass loss to extensive scanning electron microscopy and surface analysis techniques. Results are summarized and implications for the space station are discussed.
[Pursed Lips Inspiration for Vocal Cord Dysfunction].
Maruyama, Yumiko; Tsukada, Yayoi; Hirai, Nobuyuki; Nakanishi, Yosuke; Yoshizaki, Tomokazu
2015-01-01
Paradoxical vocal cord motion (PVCM) during vocal cord dysfunction (VCD) generally occurs spasmodically and transiently. After we had experienced 36 cases of VCD and successfully treated with conservative treatment including "pursed lips inspiration" method, we experienced a boy who had persistent PVCM. It was observed his PVCM vanished when he breathed in through pursed lips, while it appeared again when he stopped pursed lips inspiration. An airway reflex has been reported where the negative pressure in the subglottic space resulting from the inspiratory effort against a narrowed glottis activates the vocal cord adductor. VCD is considered to have both acceleration of laryngeal closure reflex against airway stimuli and active adductive movement of vocal cords against negative pressure in the subglottic space as underlying factors. The pursed lips inspiration method enables VCD patients not only to accomplish slow and light breathing but also to decrease the difference in the pressure between the supra--and subglottic space by occluding the nasal cavity and voluntary puckering up of the mouth which generate negative pressure in the supraglottic space. This is the first report of the pursed lips inspiration method as a treatment for VCD. Pursed lips inspiration is a simple method which is easy to perform anytime, anywhere without any special equipment, and is considered to be worth trying for VCD.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 431.51 Section 431.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... approve reentry of the payload. (b) A payload reentry review may be conducted as part of an RLV mission...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 431.51 Section 431.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... approve reentry of the payload. (b) A payload reentry review may be conducted as part of an RLV mission...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 431.51 Section 431.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... approve reentry of the payload. (b) A payload reentry review may be conducted as part of an RLV mission...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 431.51 Section 431.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... approve reentry of the payload. (b) A payload reentry review may be conducted as part of an RLV mission...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 431.51 Section 431.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... approve reentry of the payload. (b) A payload reentry review may be conducted as part of an RLV mission...
General view of a fully assembled Solid Rocket Booster sitting ...
General view of a fully assembled Solid Rocket Booster sitting atop the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
46 CFR 190.07-10 - Construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., including stringers and treads, shall be of steel. (6) Except for washrooms and toilet spaces, deck... laboratories spaces within a general laboratory area may be of B or C class construction. (2) Temporary divisional bulkheads between laboratory spaces within a general laboratory area may be constructed of...
46 CFR 190.07-10 - Construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., including stringers and treads, shall be of steel. (6) Except for washrooms and toilet spaces, deck... laboratories spaces within a general laboratory area may be of B or C class construction. (2) Temporary divisional bulkheads between laboratory spaces within a general laboratory area may be constructed of...
46 CFR 190.07-10 - Construction.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., including stringers and treads, shall be of steel. (6) Except for washrooms and toilet spaces, deck... laboratories spaces within a general laboratory area may be of B or C class construction. (2) Temporary divisional bulkheads between laboratory spaces within a general laboratory area may be constructed of...
46 CFR 190.07-10 - Construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., including stringers and treads, shall be of steel. (6) Except for washrooms and toilet spaces, deck... laboratories spaces within a general laboratory area may be of B or C class construction. (2) Temporary divisional bulkheads between laboratory spaces within a general laboratory area may be constructed of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE... Services Administration (GSA), and National Aeronautics and Space Administration (NASA). ACTION: Small... Defense, the Administrator of General Services and the Administrator of the National Aeronautics and Space...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false General. 1215.100 Section 1215.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... data acquisition services to spacecraft in low earth orbit or to mobile terrestrial users such as...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General. 1215.100 Section 1215.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... data acquisition services to spacecraft in low earth orbit or to mobile terrestrial users such as...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true General. 1215.100 Section 1215.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... data acquisition services to spacecraft in low earth orbit or to mobile terrestrial users such as...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 33.42 Section 33.42 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.42 General. Before each...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 33.42 Section 33.42 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.42 General. Before each...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 33.82 Section 33.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.82 General. Before each endurance...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 33.82 Section 33.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.82 General. Before each endurance...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 33.82 Section 33.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.82 General. Before each endurance...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false General. 33.82 Section 33.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.82 General. Before each endurance...
Code of Federal Regulations, 2010 CFR
2010-07-01
... buildings, including land incidental thereto, suitable for the general use of Government agencies, including...) Special-purpose space is space in buildings, including land incidental thereto, wholly or predominantly utilized for the special purposes of an agency, and not generally suitable for general-purpose use...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 27.471 Section 27.471 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.471 General. (a) Loads and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 27.321 Section 27.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.321 General. (a) The flight...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 27.471 Section 27.471 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.471 General. (a) Loads and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 23.1581 Section 23.1581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Airplane Flight Manual and Approved Manual Material § 23.1581 General. (a) Furnishing information. An...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 23.1581 Section 23.1581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Airplane Flight Manual and Approved Manual Material § 23.1581 General. (a) Furnishing information. An...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false General. 23.1581 Section 23.1581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Airplane Flight Manual and Approved Manual Material § 23.1581 General. (a) Furnishing information. An...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false General. 23.1581 Section 23.1581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Airplane Flight Manual and Approved Manual Material § 23.1581 General. (a) Furnishing information. An...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 23.1581 Section 23.1581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Airplane Flight Manual and Approved Manual Material § 23.1581 General. (a) Furnishing information. An...
Greenman, Loren; Mazziotti, David A
2009-05-14
Using the active-space two-electron reduced density matrix (2-RDM) method, which scales polynomially with the size of the active space [G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008)], we were able to use active spaces as large as 24 electrons in 24 orbitals in computing the ground-state energies and properties of highly multireferenced arynes. Because the conventional complete-active-space self-consistent-field (CASSCF) method scales exponentially with the size of the active space, its application to arynes was mainly limited to active spaces of 12 electrons in 12 orbitals. For these smaller active spaces the active-space 2-RDM method accurately reproduces the results of CASSCF. However, we show that the larger active spaces are necessary for describing changes in energies and properties with aryne chain length such as the emergence of polyradical character. Furthermore, the addition of further electron correlation by multireference perturbation theory is demonstrated to be inadequate for removing the limitations of the smaller active spaces.
General Anesthesia Inhibits the Activity of the “Glymphatic System”
Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; Martinez de Lizarrondo, Sara; Vivien, Denis; Gauberti, Maxime
2018-01-01
INTRODUCTION: According to the “glymphatic system” hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent. PMID:29344300
General Anesthesia Inhibits the Activity of the "Glymphatic System".
Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime
2018-01-01
INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
NASA Technical Reports Server (NTRS)
Jacobus, Heidi; Riggs, Alan J.; Jacobus, Charles; Weinstein, Yechiel
1991-01-01
Teleoperated control requires a master human interface device that can provide haptic input and output which reflect the responses of a slave robotic system. The effort reported in this paper addresses the design and prototyping of a six degree-of-freedom (DOF) Cartesian coordinate hand controller for this purpose. The device design recommended is an XYZ stage attached to a three-roll wrist which positions a flight-type handgrip. Six degrees of freedom are transduced and control brushless DC motor servo electronics similar in design to those used in computer controlled robotic manipulators. This general approach supports scaled force, velocity, and position feedback to aid an operator in achieving telepresence. The generality of the device and control system characteristics allow the use of inverse dynamics robotic control methodology to project slave robot system forces and inertias to the operator (in scaled form) and at the same time to reduce the apparent inertia of the robotic handcontroller itself. The current control design, which is not multiple fault tolerant, can be extended to make flight control or space use possible. The proposed handcontroller will have advantages in space-based applications where an operator must control several robot arms in a simultaneous and coordinated fashion. It will also have applications in intravehicular activities (within the Space Station) such as microgravity experiments in metallurgy and biological experiments that require isolation from the astronauts' environment. For ground applications, the handcontroller will be useful in underwater activities where the generality of the proposed handcontroller becomes an asset for operation of many different manipulator types. Also applications will emerge in the Military, Construction, and Maintenance/Manufacturing areas including ordnance handling, mine removal, NBC (Nuclear, Chemical, Biological) operations, control of vehicles, and operating strength and agility enhanced machines. Future avionics applications including advanced helicopter and aircraft control may also become important.
Neural net forecasting for geomagnetic activity
NASA Technical Reports Server (NTRS)
Hernandez, J. V.; Tajima, T.; Horton, W.
1993-01-01
We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The objectives and planning activities for the Apollo-Soyuz mission are summarized. Aspects of the space flight considered include the docking module and launch configurations, spacecraft orbits, and weightlessness. The 28 NASA experiments conducted onboard the spacecraft are summarized. The contributions of the mission to the fields of astronomy, geoscience, biology, and materials sciences resulting from the experiments are explored.
[The "Green Brigades" task-force. Description and practical information].
Taillon, A
1995-11-01
The General Rhône Council has set up a new task force, the "Green Brigades", which reflects awareness that the environment can serve as a means towards social and professional reinsertion. The field of activity is maintenance of open spaces on sites that are cleaned up on behalf of local authorities: removal of bulky matter, renovation of banks and riverbeds, clearing or making of footpaths, etc.
Research and Development, Technology Requirements, and Use of Existing Space Assets
NASA Technical Reports Server (NTRS)
Grey, Jerry; Rowell, Larry
1999-01-01
Technology requirements are addressed in three categories: (1) Passenger-carrying STS(s); (2) orbital facilities (including on-orbit operations such as servicing) and human factors (crew and passenger training and recreation, on-orbit environmental control, etc.); and (3) ground infrastructure. An example tourism trip scenario is used in discussing possible targets for technology development activities. Some general comments are made as are considerations for other working groups.
Reliability issues in active control of large flexible space structures
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.
1986-01-01
Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management
From the Sun to Pluto and Beyond - Inspiring the Next Generation of Explorers
NASA Astrophysics Data System (ADS)
Beisser, K.; Matiella Novak, M.; Butler, L.; Turney, D.
2010-12-01
The Johns Hopkins University Applied Physics Laboratory (APL) Space Department currently manages a variety of Solar System exploratory satellite missions on behalf of NASA and in coordination with other universities and institutions. Along with managing these missions on a scientific and operational basis, the Space Department also maintains an education and public outreach staff that provides education and outreach events and activities to inspire, engage and educate the next generation of Solar System explorers. The main objective of the E/PO program is to create hands-on, minds-on learning experiences for students, educators and the general public. From the Sun to Pluto, APL is engineering the future of space exploration - examining Earth’s near-space environment, our star, planetary bodies, and the outer solar system. The E/PO office provides unique opportunities for K-12 students, educators, undergraduate and graduate students, museums, science centers, and the general public to share in the excitement of the missions APL manages for NASA. The E/PO program uses mission and instrument science and engineering to enhance the nation’s formal education system and contribute to public understanding of science, mathematics, and technology, making space exploration an adventure for students of all ages. Current Solar System missions that APL is involved with include missions to Pluto and the Kuiper Belt (New Horizons), exploring the Earth’s outermost layers of atmosphere (TIMED), studying the Sun’s coronal mass ejections (STEREO), mapping the geological and surface features of Mars (CRISM), exploring near-Earth asteroids (NEAR), understanding space weather (RBSP), studying Mercury (MESSENGER), and getting closer to the Sun than any probe has ever been (Solar Probe Plus). APL offers education and outreach opportunities, in coordination with NASA, for all of these missions.
General view of the Orbiter Discovery mated to the External ...
General view of the Orbiter Discovery mated to the External Tank and Solid Rocket Booster assembly in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
14 CFR 1259.102 - General policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the exploration and development of the resources and opportunities afforded by the space environment..., composed of university and industry members, to advance the exploration and development of space resources... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General policy. 1259.102 Section 1259.102...
14 CFR 1259.102 - General policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the exploration and development of the resources and opportunities afforded by the space environment..., composed of university and industry members, to advance the exploration and development of space resources... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false General policy. 1259.102 Section 1259.102...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false General. 1215.100 Section 1215.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... acquisition services to spacecraft in low-Earth orbit or to mobile terrestrial users such as aircraft or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 23.321 Section 23.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false General. 23.321 Section 23.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to...