Interactions regulating the head-to-tail directed assembly of biological Janus rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A. C.; Bachand, M.; Gomez, A.
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Interactions regulating the head-to-tail directed assembly of biological Janus rods
Greene, A. C.; Bachand, M.; Gomez, A.; ...
2017-03-31
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
78 FR 19093 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... doing a general visual inspection of the housing assembly of the packboard release mechanism to determine if its surface treatment has been sealed, and if the surface of the housing assembly is unsealed, replacing the housing assembly with a new or serviceable housing assembly. We are issuing this AD to detect...
Single- and Multi-Prime Contracting in North Carolina Public Construction.
ERIC Educational Resources Information Center
Bluestein, Frayda S.
1995-01-01
The North Carolina General Assembly directed the State Building Commission to study the comparative costs of multi- and single-prime contracting and report the results to the 1995 General Assembly. Describes the analysis of data collected from governmental units that had awarded construction contracts. Identifies some alternative contracting…
Hydro lazy tongs energy booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamonica, M.
1987-06-09
An apparatus is described for converting hydraulic power to rotational power. The apparatus comprises: a support base; a source of hydraulic fluid; a pair of piston and cylinder assemblies in communication with the source of hydraulic fluid and mounted to the support base such that the pistons thereof are generally parallel with one another but extending substantially opposite directions; means for alternating directly hydraulic fluid to each of the piston and cylinder assemblies; lazy tong assemblies comprising a first lazy tong assembly, a last lazy tong assembly and an intermediate lazy tong assembly. Each lazy tong assembly comprises at leastmore » one block slidably mounted in proximity to the support base and at least one pair of lazy tongs with each lazy tong having a pair of opposed ends.« less
Yi, He; Bao, Xin-Yu; Tiberio, Richard; Wong, H-S Philip
2015-02-11
Directed self-assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technology node requirements.
76 FR 64287 - Airworthiness Directives; General Electric Company CF34-10E Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... escape. Once removed, the CVD support assembly (consisting of self-locking nut, part number (P/N... location. The wear is caused by relative motion between the CVD support assembly (consisting of self... AD, do not return to service any CVD support assembly (consisting of self-locking nut, P/N 2226M57G03...
Micro-Masonry: Construction of 3D Structures by Mesoscale Self-Assembly
Fernandez, Javier G.; Khademhosseini, Ali
2010-01-01
A general method for construction of three dimensional structures by directed assembly of microscale polymeric sub-units is presented. Shape-controlled microgels are directed to assemble into different shapes by limiting their movement onto a molded substrate. The capillary forces, resulting from the presence of a liquid polymer, assemble the microgels in close contact with the rest of the units and with the free surface, the latter imposing the final geometry of the resulting construct. The result is a freestanding structure composed of one or multiple layers of sub-units assembled in a tightly packed conformation. The applicability of the technique for the construction of scaffolds with cell-laden sub-units is demonstrated. In addition, scaffolds formed by the sequential aggregation of sub-units are produced. PMID:20440697
Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
Lindner, Melvin; Cottingham, James G.
1996-03-12
A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.
Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
Lindner, M.; Cottingham, J.G.
1996-03-12
A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.
Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly
2012-01-01
Background In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). Results In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. Conclusions Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase our physical understanding of an essential biological process, with many interesting potential applications in medicine and materials science. PMID:23244740
76 FR 1983 - Airworthiness Directives; The Boeing Company Model MD-11 and MD-11F Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... assemblies of the tail tank fuel system, a wiring change, and corrective actions if necessary. This AD also requires, for certain airplanes, a general visual inspection for correct installation of the self-adhering high-temperature electrical insulation tape; installation of a wire assembly support bracket and...
75 FR 36577 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... pump wire harness assembly is routed within the tire burst area and that installing and routing a new and longer auxiliary hydraulic pump wire harness assembly outside the tire burst area will minimize... general visual inspection of the wire harness protective sleeving dimensions, which are related...
System and method for incremental forming
Beltran, Michael; Cao, Jian; Roth, John T.
2015-12-29
A system includes a frame configured to hold a workpiece and first and second tool positioning assemblies configured to be opposed to each other on opposite sides of the workpiece. The first and second tool positioning assemblies each include a toolholder configured to secure a tool to the tool positioning assembly, a first axis assembly, a second axis assembly, and a third axis assembly. The first, second, and third axis assemblies are each configured to articulate the toolholder along a respective axis. Each axis assembly includes first and second guides extending generally parallel to the corresponding axis and disposed on opposing sides of the toolholder with respect to the corresponding axis. Each axis assembly includes first and second carriages articulable along the first and second guides of the axis assembly, respectively, in the direction of the corresponding axis.
Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.
Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong
2017-09-01
The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.
Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly
NASA Astrophysics Data System (ADS)
Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong
2017-09-01
The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U (x ,z ) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ , revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.
NASA Astrophysics Data System (ADS)
Mitra, Joydeep; Torres, Andres; Ma, Yuansheng; Pan, David Z.
2018-01-01
Directed self-assembly (DSA) has emerged as one of the most compelling next-generation patterning techniques for sub 7 nm via or contact layers. A key issue in enabling DSA as a mainstream patterning technique is the generation of grapho-epitaxy-based guiding pattern (GP) shapes to assemble the contact patterns on target with high fidelity and resolution. Current GP generation is mostly empirical, and limited to a very small number of via configurations. We propose the first model-based GP synthesis algorithm and methodology for on-target and robust DSA, on general via pattern configurations. The final postoptical proximity correction-printed GPs derived from our original synthesized GPs are resilient to process variations and continue to maintain the same DSA fidelity in terms of placement error and target shape.
Self-Assembly and Crystallization of Hairy (f-Star) and DNA-Grafted Nanocubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knorowski, Christopher; Travesset, Alex
Nanoparticle superlattices are key to realizing many of the materials that will solve current technological challenges. Particularly important for their optical, mechanical or catalytic properties are superlattices of anisotropic (nonspherical) nanoparticles. The key challenge is how to program anisotropic nanoparticles to self-assemble into the relevant structures. In this Article, using numerical simulations, we show that “hairy” (f-star) or DNA grafted on nanocubes provides a general framework to direct the self-assembly into phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order. We discuss the relevance of these phases for engineering nanomaterials or micromaterials displayingmore » precise orientational order, realization of dry superlattices as well as for the field of programmed self-assembly of anisotropic nanoparticles in general.« less
ERIC Educational Resources Information Center
Pennsylvania Joint State Government Commission, Harrisburg.
Pennsylvania's House Resolution 43 of 1995 directs the Joint State Government Commission to report to the General Assembly on the feasibility of creating a voluntary residential school program for disadvantaged children. The Commission assembled a Working Group to consider this issue, and the group focused on poor children living in high crime…
Direction discriminating hearing aid system
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Lin, H. C.; Ward, G.
1991-01-01
A visual display was developed for people with substantial hearing loss in either one or both ears. The system consists of three discreet units; an eyeglass assembly for the visual display of the origin or direction of sounds; a stationary general purpose noise alarm; and a noise seeker wand.
Ion Thruster Support and Positioning System
NASA Technical Reports Server (NTRS)
Haag, Thomas W. (Inventor)
1996-01-01
A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.
Ion Thruster Support and Positioning System
NASA Technical Reports Server (NTRS)
Haag, Thomas W. (Inventor)
1998-01-01
A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.
Dependence of Halo Bias and Kinematics on Assembly Variables
NASA Astrophysics Data System (ADS)
Xu, Xiaoju; Zheng, Zheng
2018-06-01
Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.
Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A
2018-05-30
Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.
Method and apparatus for assembling solid oxide fuel cells
Szreders, B.E.; Campanella, N.
1988-05-11
This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.
Schreiber, Roy E; Avram, Liat; Neumann, Ronny
2018-01-09
High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H 2 F 6 NaW 18 O 56 ] 7- from simple tungstate Na 2 WO 2 F 4 was demonstrated by using 2D 19 F- 19 F NOESY, 2D 19 F- 19 F COSY NMR spectroscopy, a new 2D 19 F{ 183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert
2016-04-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water", "Evolution and Biodiversity" and "Energy and Sustainable Development". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/
NASA Astrophysics Data System (ADS)
Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Camerlenghi, Angelo; Cifelli, Francesca; Funiciello, Francesca; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert
2015-04-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Water!", "Natural Hazards", "Biodiversity and Evolution", "The Polar Regions", "The Carbon Cycle" and "The Earth from Space". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 600 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html
Terminating DNA Tile Assembly with Nanostructured Caps.
Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca
2017-10-24
Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.
Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.
Controlling material birefringence in sapphire via self-assembled, sub-wavelength defects
NASA Astrophysics Data System (ADS)
Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda
2018-02-01
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. Generally, this is an intrinsic optical property of a material and cannot be altered. Here, we report a novel technique—direct laser writing—that enables us to control the natural, material birefringence of sapphire over a broad range of wavelengths. The broadband form birefringence originating from self-assembled, periodic array of sub-wavelength (˜ 50-200 nm) defects created by laser writing, can enhance, suppress or maintain the material birefringence of sapphire without affecting its transparency range in visible or its surface quality.
Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng
2016-06-28
Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.
Magnetic assembly of transparent and conducting graphene-based functional composites
NASA Astrophysics Data System (ADS)
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-06-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.
Hierarchical Co-Assembly Enhanced Direct Ink Writing.
Li, Longyu; Zhang, Pengfei; Zhang, Zhiyun; Lin, Qianming; Wu, Yuyang; Cheng, Alexander; Lin, Yunxiao; Thompson, Christina M; Smaldone, Ronald A; Ke, Chenfeng
2018-04-23
Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self-assembled small-molecule-based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small-molecule-based inks were 3D-printed, and their superstructures were refined by post-printing hierarchical co-assembly. Through spatial and temporal control of individual molecular events from the nano- to the macroscale, fine-tuned macroscale features were successfully installed in the monoliths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Options for improving the coordination of transportation and land use planning in Virginia.
DOT National Transportation Integrated Search
2004-01-01
Virginia's 2003 General Assembly directed the Secretary of Transportation to (1) assess best practices used by other states to coordinate transportation and land use planning, (2) review current state efforts to provide technical assistance to local ...
FUEL ASSEMBLY FOR A NEUTRONIC REACTOR
Wigner, E.P.
1958-04-29
A fuel assembly for a nuclear reactor of the type wherein liquid coolant is circulated through the core of the reactor in contact with the external surface of the fuel elements is described. In this design a plurality of parallel plates containing fissionable material are spaced about one-tenth of an inch apart and are supported between a pair of spaced parallel side members generally perpendicular to the plates. The plates all have a small continuous and equal curvature in the same direction between the side members.
Sze, Sing-Hoi; Parrott, Jonathan J; Tarone, Aaron M
2017-12-06
While the continued development of high-throughput sequencing has facilitated studies of entire transcriptomes in non-model organisms, the incorporation of an increasing amount of RNA-Seq libraries has made de novo transcriptome assembly difficult. Although algorithms that can assemble a large amount of RNA-Seq data are available, they are generally very memory-intensive and can only be used to construct small assemblies. We develop a divide-and-conquer strategy that allows these algorithms to be utilized, by subdividing a large RNA-Seq data set into small libraries. Each individual library is assembled independently by an existing algorithm, and a merging algorithm is developed to combine these assemblies by picking a subset of high quality transcripts to form a large transcriptome. When compared to existing algorithms that return a single assembly directly, this strategy achieves comparable or increased accuracy as memory-efficient algorithms that can be used to process a large amount of RNA-Seq data, and comparable or decreased accuracy as memory-intensive algorithms that can only be used to construct small assemblies. Our divide-and-conquer strategy allows memory-intensive de novo transcriptome assembly algorithms to be utilized to construct large assemblies.
Update on status of proposed TransDominion Express (TDX) passenger rail service.
DOT National Transportation Integrated Search
2007-01-01
The Virginia General Assembly's House Budget Bill for the 2006-2008 biennium directed the Virginia Department of Rail and Public Transportation (DRPT) to update the status of a proposed passenger rail service, called the TransDominion Express (TDX), ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake... General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant. The Department...
Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers
Wajid, Bilal; Serpedin, Erchin
2012-01-01
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. PMID:22768980
78 FR 72834 - Airworthiness Directives; SOCATA Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... modification 70-0334-32, embodied in production to secure rod/piston assembly through addition of a pin and to.... Subtitle I, section 106, describes the authority of the FAA Administrator. ``Subtitle VII: Aviation... under the authority described in ``Subtitle VII, Part A, Subpart III, Section 44701: General...
NASA Astrophysics Data System (ADS)
Macko, S. A.; Arnold, E. M.; Barnikel, F.; Berenguer, J. L.; Cifelli, F.; Funiciello, F.; Schwarz, A.; Smith, P.; Summesberger, H.; Laj, C. E.
2015-12-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Mineral Resources", "Our Changing Planet", "Natural Hazards", "Water" and "Biodiversity and Evolution". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs, presentations and Web streaming of past GIFT workshops are available at: http://www.egu.eu/education/gift/workshops/
NASA Astrophysics Data System (ADS)
Arnold, E. M.; Macko, S. A.; Barnikel, F.; Berenguer, J. L.; Cifelli, F.; Funiciello, F.; Laj, C. E.; Schwarz, A.; Smith, P.; Summesberger, H.
2016-12-01
GIFT workshops are teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program focuses on a different general theme each year. Past themes have included, for example, "Water!", "Energy and Sustainable Development", "The Carbon Cycle", "Mineral Resources" and "The Solar System And Beyond". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html
NASA Astrophysics Data System (ADS)
Macko, S. A.; Arnold, E. M.; Laj, C. E.; Barnikel, F.; Berenguer, J. L.; Schwarz, A.; Cifelli, F.; Smith, P.; Funiciello, F.; Summesberger, H.
2017-12-01
GIFT workshops are teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program focuses on a different general theme each year. Past themes have included, for example, "Energy and Sustainable Development", "The Carbon Cycle", "Mineral Resources", "The Solar System And Beyond" and "The Mediterranean". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... Formerly Known as General Motors Corporation, Orion Assembly Plant Including On-Site Leased Workers From... Motors Corporation, Orion Assembly Plant, Lake Orion, Michigan. The notice was published in the Federal..., Michigan location of General Motors Company, formerly known as General Motors Corporation, Orion Assembly...
Air breathing direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.
TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING
Longhurst, G.E.
1961-07-11
A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.
Magnetic assembly of transparent and conducting graphene-based functional composites
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-01-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243
Containers for use in a self supporting assembly
Gillespie, Peter J.
1982-07-13
This invention is directed to a container having side walls and end walls forming a body having a generally rectangular cross-section. Means for restraining lateral and rotational movement of the container relative to an adjacent container while allowing relatively unhindered movement perpendicular to the side walls is also included. The lateral and rotational movement is restrained in a plane parallel to the side walls. The means include a projection connected to at least one of the side walls and extending outwardly therefrom to engage the adjacent container. Also part of this invention is an assembly of containers which includes a plurality of the above described containers arranged side by side with the end walls generally coplanar and the side walls generally parallel. Means for restraining movement perpendicular to the side walls of the plurality of containers is also included. Each of the containers may house a plurality of battery electrodes.
75 FR 12667 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... certain Model 45 airplanes. This AD requires a general visual inspection for cracked and missing ballscrew... sleeve or flap actuator for cracks, and replacement or modification of the flap actuator if necessary. This AD results from reports of cracked and missing ballscrew assembly sleeves of the flap actuators...
19 CFR 10.253 - Articles eligible for preferential treatment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the production or manufacture of a new or different article which is imported directly into the United... incurred in the growth, production, or manufacture of the material, including general expenses; (2) An... merchandise: (A) All actual labor costs involved in the growth, production, manufacture, or assembly of the...
Basic Education Program Review Committee Annual Report.
ERIC Educational Resources Information Center
Tennessee State Board of Education, 2004
2004-01-01
In the effort to improve essential components of the Basic Education Program (BEP), the General Assembly has adopted legislation directing the BEP Review Committee to perform a comprehensive review of the funding formula, identifying needed revisions, additions, or deletions. This year, through a series of full-day meetings, the committee has…
Facilities Guidelines. North Carolina Public Schools.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
In July 1987, the North Carolina General Assembly enacted legislation to provide funds for public school construction to assist county governments in meeting their capital building needs and to provide additional funds for selected counties with the most critical school facility needs. This document, in accordance with the legislation's direction,…
Youth and Environmental Education.
ERIC Educational Resources Information Center
Connect, 1984
1984-01-01
The United Nations General Assembly decided in 1979 to make 1985 International Youth Year (IYY). Several of the central themes of this year (participation, development, and peace) are directly concerned with education and action relative to an improved, sustainable environment, both natural and built. This issue of the Unesco-UNEP (United Nations…
Lescop, Christophe
2017-04-18
One important concept associated with supramolecular chemistry is supramolecular self-assembly, which deals with the way discrete individual components interact via intermolecular interactions in order to build, upon their spontaneous association, high order functional assemblies. The accumulation of these very simple and localized noncovalent interactions (such as H-bonding, dipole-dipole, hydrophobic/hydrophilic, van der Waals, π-π, π-CH, etc.) is ubiquitous in the complexity of natural systems (such as DNA, proteins, membranes, micelles, etc.). It can also be transposed to the directed synthesis of intricate artificial scaffolds, which have anticipated geometries and properties. Among the synthetic strategies based on this concept, coordination-driven supramolecular chemistry uses the robust, reversible, and directional metal-to-ligand coordinative bond to build discrete metallo-supramolecular architectures. Within the last two decades, coordination-driven supramolecular chemistry has proved to be one of the most powerful contemporary synthetic approaches and has provided a significant number of increasingly complex supramolecular assemblies, which have predetermined sizes and geometries. While much focus has been devoted to architectures bearing internal cavities for host-guest chemistry or to generate specific reactivity, particular attention can also be paid to compact supramolecular assemblies given that their specific structures are characterized by peculiar synthetic guiding rules as well as by alternative long-range self-assembling properties. This Account describes how a preassembled Cu I bimetallic clip bearing short intermetallic distances can be used as a U-shaped molecular clip to give general and versatile access to a large variety of original compact supramolecular metallacycles. When this Cu I precursor is reacted with various cyano-capped ditopic linkers that have increasing lengths and complexities, specific effects guiding the selective and straightforward syntheses of such compact supramolecular objects are highlighted. Whereas a subtle compromise between the length of the ditopic linkers and the steric bulk of the molecular clip appears to be a purely stereogeometric preliminary parameter to master, lateral interlinker interactions (π-π stacking interactions or aurophilic interactions depending on the nature of the internal cores of the linkers) can circumvent these constraints regardless of the length of the linkers and allow the selective formation of new compact supramolecular structures. Generally, such derivatives presented a strong tendency to self-assemble in the solid state due to inter-supramolecule interactions. This approach thus opens a new door toward molecular materials having an attractive solid state structure for potential applications related to charge carrier mobility and luminescence properties. These compact supramolecular assemblies can therefore be considered as original secondary binding units directing the predictive preparation of such extended networks. The on-purpose design of original building blocks bearing specific cores allowed the formation of new compact supramolecular metallacycles such as "U-shaped" π-stacked assemblies or "pseudodouble paracyclophanes". Similarly, the control of the secondary structure of one-dimensional coordination polymers alternating π-stacked compact supramolecular metallacycles was also conducted. The results that are discussed in this Account illustrate how the rational design of both preassembled polymetallic precursors bearing short intermetallic distances and ditopic linkers able to induce cumulative lateral weak interactions can implement the general synthetic guiding rules of coordination driven supramolecular chemistry. This opens perspectives to use such compact supramolecular assemblies as secondary building blocks for the design of long-range organized functional molecular materials that have predictable architectures and targeted properties.
Polymer-based chromophore-catalyst assemblies for solar energy conversion
NASA Astrophysics Data System (ADS)
Leem, Gyu; Sherman, Benjamin D.; Schanze, Kirk S.
2017-12-01
The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.
Polymer-based chromophore-catalyst assemblies for solar energy conversion.
Leem, Gyu; Sherman, Benjamin D; Schanze, Kirk S
2017-01-01
The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.
Review of general algorithmic features for genome assemblers for next generation sequencers.
Wajid, Bilal; Serpedin, Erchin
2012-04-01
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. Copyright © 2012 Beijing Institute of Genomics, Chinese Academy of Sciences. Published by Elsevier Ltd. All rights reserved.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
TRIC: Capturing the direct cellular targets of promoter‐bound transcriptional activators
Dugan, Amanda; Pricer, Rachel; Katz, Micah
2016-01-01
Abstract Transcriptional activators coordinate the dynamic assembly of multiprotein coactivator complexes required for gene expression to occur. Here we combine the power of in vivo covalent chemical capture with p‐benzoyl‐L‐phenylalanine (Bpa), a genetically incorporated photo‐crosslinking amino acid, and chromatin immunoprecipitation (ChIP) to capture the direct protein interactions of the transcriptional activator VP16 with the general transcription factor TBP at the GAL1 promoter in live yeast. PMID:27213278
Native gel analysis for RISC assembly.
Kawamata, Tomoko; Tomari, Yukihide
2011-01-01
Small-interfering RNAs (siRNAs) and microRNAs (miRNAs) regulate expression of their target mRNAs via the RNA-induced silencing complex (RISC). A core component of RISC is the Argonaute (Ago) protein, which dictates the RISC function. In Drosophila, miRNAs and siRNAs are generally loaded into Ago1-containing RISC (Ago1-RISC) and Ago2-containing RISC (Ago2-RISC), respectively. We developed a native agarose gel system to directly detect Ago1-RISC, Ago2-RISC, and their precursor complexes. Methods presented here will provide powerful tools to biochemically dissect the RISC assembly pathways.
29 CFR 1926.1406 - Assembly/Disassembly-employer procedures-general requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Assembly/Disassembly-employer procedures-general... CONSTRUCTION Cranes and Derricks in Construction § 1926.1406 Assembly/Disassembly—employer procedures—general requirements. (a) When using employer procedures instead of manufacturer procedures for assembly/disassembly...
29 CFR 1926.1406 - Assembly/Disassembly-employer procedures-general requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Assembly/Disassembly-employer procedures-general... CONSTRUCTION Cranes and Derricks in Construction § 1926.1406 Assembly/Disassembly—employer procedures—general requirements. (a) When using employer procedures instead of manufacturer procedures for assembly/disassembly...
29 CFR 1926.1406 - Assembly/Disassembly-employer procedures-general requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Assembly/Disassembly-employer procedures-general... CONSTRUCTION Cranes and Derricks in Construction § 1926.1406 Assembly/Disassembly—employer procedures—general requirements. (a) When using employer procedures instead of manufacturer procedures for assembly/disassembly...
29 CFR 1926.1406 - Assembly/Disassembly-employer procedures-general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Assembly/Disassembly-employer procedures-general... CONSTRUCTION Cranes and Derricks in Construction § 1926.1406 Assembly/Disassembly—employer procedures—general requirements. (a) When using employer procedures instead of manufacturer procedures for assembly/disassembly...
NASA Technical Reports Server (NTRS)
Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)
2003-01-01
A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.
High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.
Yilmaz, Cihan; Sirman, Asli; Halder, Aditi; Busnaina, Ahmed
2017-08-22
Conductive or semiconducting nanomaterials-based applications such as electronics and sensors often require direct placement of such nanomaterials on insulating surfaces. Most fluidic-based directed assembly techniques on insulating surfaces utilize capillary force and evaporation but are diffusion limited and slow. Electrophoretic-based assembly, on the other hand, is fast but can only be utilized for assembly on a conductive surface. Here, we present a directed assembly technique that enables rapid assembly of nanomaterials on insulating surfaces. The approach leverages and combines fluidic and electrophoretic assembly by applying the electric field through an insulating surface via a conductive film underneath. The approach (called electro-fluidic) yields an assembly process that is 2 orders of magnitude faster compared to fluidic assembly. By understanding the forces on the assembly process, we have demonstrated the controlled assembly of various types of nanomaterials that are conducting, semiconducting, and insulating including nanoparticles and single-walled carbon nanotubes on insulating rigid and flexible substrates. The presented approach shows great promise for making practical devices in miniaturized sensors and flexible electronics.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... Vehicle Manufacturing, formerly known as General Motors Corporation, Shreveport Assembly Plant, including..., formerly known as General Motors Corporation, Shreveport Assembly Plant. The Department has determined that...
Air breathing direct methanol fuel cell
Ren, Xiaoming
2002-01-01
An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.
Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.
Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao
2017-10-24
The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.
Directed liquid phase assembly of highly ordered metallic nanoparticle arrays
Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...
2014-04-01
Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less
Anisotropic nanomaterials: structure, growth, assembly, and functions
Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil
2011-01-01
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867
Cadastral Map Assembling Using Generalized Hough Transformation
NASA Astrophysics Data System (ADS)
Liu, Fei; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka
There are numerous cadastral maps generated by the past land surveying. The raster digitization of these paper maps is in progress. For effective and efficient use of these maps, we have to assemble the set of maps to make them superimposable on other geographic information in a GIS. The problem can be seen as a complex jigsaw puzzle where the pieces are the cadastral sections extracted from the map. We present an automatic solution to this geographic jigsaw puzzle, based on the generalized Hough transformation that detects the longest common boundary between every piece and its neighbors. The experiments have been conducted using the map of Mie Prefecture, Japan and the French cadastral map. The results of the experiments with the French cadastral maps showed that the proposed method, which consists of a flood filling procedure of internal area and detection and normalization of the north arrow direction, is suitable for assembling the cadastral map. The final goal of the process is to integrate every piece of the puzzle into a national geographic reference frame and database.
Mechanisms of lipase maturation
Péterfy, Miklós
2010-01-01
Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding and subunit assembly. This article identifies and discusses mechanisms that direct early and late events in lipase folding and assembly. Lipase maturation employs the two general chaperone systems operating in the endoplasmic reticulum, as well as a recently identified lipase-specific chaperone termed lipase maturation factor 1. We propose that the two general chaperone systems act in a coordinated manner early in lipase maturation in order to help create partially folded monomers; lipase maturation factor 1 then facilitates final monomer folding and subunit assembly into fully functional homodimers. Once maturation is complete, the lipases exit the endoplasmic reticulum and are secreted to extracellular sites, where they carry out a number of functions related to lipoprotein and lipid metabolism. PMID:20543905
Robust, directed assembly of fluorescent nanodiamonds.
Kianinia, Mehran; Shimoni, Olga; Bendavid, Avi; Schell, Andreas W; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J
2016-10-27
Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.
Emitted vibration measurement device and method
NASA Astrophysics Data System (ADS)
Gisler, G. L.
1986-10-01
This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.
Facing Race: Illinois Legislative Report Card on Racial Equity, 2007-2008
ERIC Educational Resources Information Center
Morita, Josina; Keleher, Terry
2008-01-01
This publication reviews 56 bills introduced in the 95th General Assembly that, if signed into law by the Governor, would have the most direct positive and negative impacts on communities of color. The "2007-2008 Illinois Legislative Report Card on Racial Equity" evaluates the Governor and legislators on their responses to these…
Annual Joint Report on Pre-Kindergarten through Higher Education in Tennessee, 2014
ERIC Educational Resources Information Center
Tennessee Higher Education Commission, 2014
2014-01-01
The "Annual Joint Report on Pre-Kindergarten through Higher Education in Tennessee" complies with the requirements established in T.C.A. Section 49-1-302(a)(10). The act directs the State Board of Education and the Tennessee Higher Education Commission to provide a report to the Governor and General Assembly, all public schools, and…
ERIC Educational Resources Information Center
Illinois Inst. for Environmental Quality, Chicago.
This master plan for environmental and energy higher education in Illinois is a direct result of a mandate from the Illinois General Assembly. To prepare students to confront our nation's environmental problems, each university will submit a management and development plan, designed to preserve existing environmental values and provide…
Ferrick, Adam; Wang, Mei; Woehl, Taylor J
2018-05-29
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.
1987-01-01
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.
1985-09-09
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... General Motors Corporation, Shreveport Assembly Plant, including on-site leased workers from Aerotek and..., Shreveport Assembly Plant. The Department has determined that these workers were sufficiently under the...
Programming for energy monitoring/display system in multicolor lidar system research
NASA Technical Reports Server (NTRS)
Alvarado, R. C., Jr.; Allen, R. J.
1982-01-01
The Z80 microprocessor based computer program that directs and controls the operation of the six channel energy monitoring/display system that is a part of the NASA Multipurpose Airborne Differential Absorption Lidar (DIAL) system is described. The program is written in the Z80 assembly language and is located on EPROM memories. All source and assembled listings of the main program, five subroutines, and two service routines along with flow charts and memory maps are included. A combinational block diagram shows the interfacing (including port addresses) between the six power sensors, displays, front panel controls, the main general purpose minicomputer, and this dedicated microcomputer system.
Search prefilters to assist in library searching of infrared spectra of automotive clear coats.
Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; White, Collin; Sandercock, Mark
2015-01-01
Clear coat searches of the infrared (IR) spectral library of the paint data query (PDQ) forensic database often generate an unusable number of hits that span multiple manufacturers, assembly plants, and years. To improve the accuracy of the hit list, pattern recognition methods have been used to develop search prefilters (i.e., principal component models) that differentiate between similar but non-identical IR spectra of clear coats on the basis of manufacturer (e.g., General Motors, Ford, Chrysler) or assembly plant. A two step procedure to develop these search prefilters was employed. First, the discrete wavelet transform was used to decompose each IR spectrum into wavelet coefficients to enhance subtle but significant features in the spectral data. Second, a genetic algorithm for IR spectral pattern recognition was employed to identify wavelet coefficients characteristic of the manufacturer or assembly plant of the vehicle. Even in challenging trials where the paint samples evaluated were all from the same manufacturer (General Motors) within a limited production year range (2000-2006), the respective assembly plant of the vehicle was correctly identified. Search prefilters to identify assembly plants were successfully validated using 10 blind samples provided by the Royal Canadian Mounted Police (RCMP) as part of a study to populate PDQ to current production years, whereas the search prefilter to discriminate among automobile manufacturers was successfully validated using IR spectra obtained directly from the PDQ database. Copyright © 2014 Elsevier B.V. All rights reserved.
Soft matter perspective on protein crystal assembly.
Fusco, Diana; Charbonneau, Patrick
2016-01-01
Crystallography may be the gold standard of protein structure determination, but obtaining the necessary high-quality crystals is also in some ways akin to prospecting for the precious metal. The tools and models developed in soft matter physics to understand colloidal assembly offer some insights into the problem of crystallizing proteins. This topical review describes the various analogies that have been made between proteins and colloids in that context. We highlight the explanatory power of patchy particle models, but also the challenges of providing guidance for crystallizing specific proteins. We conclude with a presentation of possible future research directions. This review is intended for soft matter scientists interested in protein crystallization as a self-assembly problem, and as an introduction to the pertinent physics literature for protein scientists more generally. Copyright © 2015 Elsevier B.V. All rights reserved.
Direct view zoom scope with single focal plane and adaptable reticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagwell, Brett
A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less
Large-scale ordering of nanoparticles using viscoelastic shear processing.
Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J
2016-06-03
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.
Direct membrane binding by bacterial actin MreB.
Salje, Jeanne; van den Ent, Fusinita; de Boer, Piet; Löwe, Jan
2011-08-05
Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T. maritima and E. coli binds directly to cell membranes. This function is essential for cell shape determination in E. coli and is proposed to be a general property of many, if not all, MreBs. We demonstrate that membrane binding is mediated by a membrane insertion loop in TmMreB and by an N-terminal amphipathic helix in EcMreB and show that purified TmMreB assembles into double filaments on a membrane surface that can induce curvature. This, the first example of a membrane-binding actin filament, prompts a fundamental rethink of the structure and dynamics of MreB filaments within cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Large-scale ordering of nanoparticles using viscoelastic shear processing
Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.
2016-01-01
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808
Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.
Ciesielski, Artur; Samorì, Paolo
2011-04-01
Among the many significant advances within the field of supramolecular chemistry over the past decades, the development of the so-called "dynamers" features a direct relevance to materials science. Defined as "combinatorial dynamic polymers", dynamers are constitutional dynamic systems and materials resulting from the application of the principles of supramolecular chemistry to polymer science. Like supramolecular materials in general, dynamers are reversible dynamic multifunctional architectures, capable of modifying their constitution by exchanging, recombining, incorporating components. They may exhibit a variety of novel properties and behave as adaptive materials. In this review we focus on the design of responsive switchable monolayers, i.e. monolayers capable to undergo significant changes in their physical or chemical properties as a result of external stimuli. Scanning tunneling microscopy studies provide direct evidence with a sub-nanometre resolution, on the formation and dynamic response of these self-assembled systems featuring controlled geometries and properties.
75 FR 4265 - Airworthiness Directives; Lifesavings Systems Corp., D-Lok Hook Assembly
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... Airworthiness Directives; Lifesavings Systems Corp., D-Lok Hook Assembly AGENCY: Federal Aviation Administration... adopting a new airworthiness directive (AD) for the Lifesavings Systems Corp., D-Lok Hook assembly... reported surface irregularities and discontinuities on certain D-Lok Hooks because of an unapproved change...
Annual Joint Report on Pre-Kindergarten through Higher Education in Tennessee, 2013
ERIC Educational Resources Information Center
Tennessee State Board of Education, 2013
2013-01-01
This paper complies with the requirements established in T.C.A. Section 49-1-302(a)(10). The act directs the State Board of Education and the Tennessee Higher Education Commission to provide a report to the Governor and General Assembly, all public schools, and institutions of higher learning and their respective boards. This report is to include,…
ERIC Educational Resources Information Center
Colorado State General Assembly, Denver. Legislative Council.
The Interim Committee on Teacher Evaluation and Dismissal was established by (Colorado) Senate Joint Resolution 97-14 to study the state's teacher evaluation and dismissal laws and explore alternatives. The committee was directed to study the relationship between education reform and employment protections for teachers; the effectiveness of adding…
Self-assembly kinetics of microscale components: A parametric evaluation
NASA Astrophysics Data System (ADS)
Carballo, Jose M.
The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments measured the outcome of SA interactions, while studying the independent effects of each parameter. As a first step towards a complete scaling model, experiments were performed to evaluate the effects of part geometry and part travel direction under low kinetic energy conditions. Experimental results show minimal dependence of assembly yield on the incidence angle of the parts, and significant effects induced by changes in part geometry. The results from this work indicate that SA could be modeled as an energy-based process due to the small path dependence effects. Assembly probability is linearly related to the orientation probability. The proportionality constant is based on the area fraction of the sites with an amplification factor. This amplification factor accounts for the ability of capillary forces to align parts with only very small areas of contact when they have a low kinetic energy. Results provide unprecedented insight about SA interactions. The present study is a key step towards completing a basic model of a general SA process. Moreover, the outcome from this work can complement existing SA process models, in order to create a complete design tool for microscale SA systems. In addition to SA experiments, Monte Carlo simulations of experimental part-site interactions were conducted. This study confirmed that a major contributor to experimental variation is the stochastic nature of experimental SA interactions and the limited sample size of the experiments. Furthermore, the simulations serve as a tool for defining an optimum sampling strategy to minimize the uncertainty in future SA experiments.
Spiral-bevel geometry and gear train precision
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Coy, J. J.
1983-01-01
A new aproach to the solution of determination of surface principal curvatures and directions is proposed. Direct relationships between the principal curvatures and directions of the tool surface and those of the principal curvatures and directions of generated gear surface are obtained. The principal curvatures and directions of geartooth surface are obtained without using the complicated equations of these surfaces. A general theory of the train kinematical errors exerted by manufacturing and assembly errors is discussed. Two methods for the determination of the train kinematical errors can be worked out: (1) with aid of a computer, and (2) with a approximate method. Results from noise and vibration measurement conducted on a helicopter transmission are used to illustrate the principals contained in the theory of kinematic errors.
Composition and method for self-assembly and mineralization of peptide-amphiphiles
Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX
2012-02-28
The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
Composition and method for self-assembly and mineralization of peptide amphiphiles
Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX
2009-06-30
The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
NASA Technical Reports Server (NTRS)
White, P. R.; Little, R. R.
1985-01-01
A research effort was undertaken to develop personal computer based software for vibrational analysis. The software was developed to analytically determine the natural frequencies and mode shapes for the uncoupled lateral vibrations of the blade and counterweight assemblies used in a single bladed wind turbine. The uncoupled vibration analysis was performed in both the flapwise and chordwise directions for static rotor conditions. The effects of rotation on the uncoupled flapwise vibration of the blade and counterweight assemblies were evaluated for various rotor speeds up to 90 rpm. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general so that other designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed on Various... directive (AD), which applies to certain AVOX Systems and B/E Aerospace oxygen cylinder assemblies, as installed on various transport airplanes. That AD currently requires removing certain oxygen cylinder...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Manufacturing Formerly Known as General Motors Corporation Shreveport Assembly Plant Including On-Site Leased..., Shreveport Assembly Plant, including on-site leased workers from Aerotek and Kelly Services, Shreveport..., Shreveport Assembly Plant. The Department has determined that these workers were sufficiently under the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... Airworthiness Directives; Sicma Aero Seat Passenger Seat Assemblies Installed on Various Transport Category..., 91xx, 92xx, 93xx, 95xx, and 96xx series passenger seat assemblies, installed on various transport... seat assemblies identified in Annex 1, Issue 2, dated March 19, 2004, of Sicma Aero Seat Service...
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; ...
2016-08-16
Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyreneblock-poly(methyl methacrylate). Faster assembly kinetics aremore » observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. Lastly, the rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.« less
General aviation IFR operational problems
NASA Technical Reports Server (NTRS)
Bolz, E. H.; Eisele, J. E.
1979-01-01
Operational problems of general aviation IFR operators (particularly single pilot operators) were studied. Several statistical bases were assembled and utilized to identify the more serious problems and to demonstrate their magnitude. These bases include official activity projections, historical accident data and delay data, among others. The GA operating environment and cockpit environment were analyzed in detail. Solutions proposed for each of the problem areas identified are based on direct consideration of currently planned enhancements to the ATC system, and on a realistic assessment of the present and future limitations of general aviation avionics. A coordinated set of research program is suggested which would provide the developments necessary to implement the proposed solutions.
Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.
Freed, Karl F
2009-02-14
A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.
Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom
2014-01-01
Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110
DOT National Transportation Integrated Search
1987-01-01
Senate Joint Resolution No. 7 (SJR-7) directs the Department to : develop a plan for reducing expenditures for administration and maintenance : by 5% as compared to FY 1987-88 appropriations and to continue : these reductions into the future. The pla...
Biocatalytic Self-Assembly on Magnetic Nanoparticles.
Conte, Maria P; Sahoo, Jugal Kishore; Abul-Haija, Yousef M; Lau, K H Aaron; Ulijn, Rein V
2018-01-24
Combining (bio)catalysis and molecular self-assembly provides an effective approach for the production and processing of self-assembled materials by exploiting catalysis to direct the assembly kinetics and hence controlling the formation of ordered nanostructures. Applications of (bio)catalytic self-assembly in biologically interfacing systems and in nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator generation and nanostructure self-assembly have also emerged. Building on our previous work in the area, we demonstrate in this report the use of enzymes immobilized onto magnetic nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms stable hydrogels and a nonequilibrium system that normally has a preset lifetime. Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme immobilization on the NPs to give rise to gels with a "hub-and-spoke" morphology, where the nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of self-assembled nanofibers enables both remarkable enhancements in the shear strength of hydrogel systems and a dramatic extension of the hydrogel stability in the nonequilibrium system. We are also able to show that the use of magnetic NPs enables the external control of both the formation of the hydrogel and its overall structure by application of an external magnetic field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme system will have applications ranging from nanomaterial fabrication to biomaterials and biosensing.
NASA Astrophysics Data System (ADS)
Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; King, Chris; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert
2017-04-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly in Vienna, and also elsewhere in the world usually associated with large geoscience conferences. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "The solar system and beyond", "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water" and "Evolution and Biodiversity". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 800 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/
Saunders, Megan; Glenn, Anthony E; Kohn, Linda M
2010-01-01
All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair-wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine-tune crop management strategies. PMID:25567944
Proceedings of the Twenty-Eighth General Assembly Beijing 2012
NASA Astrophysics Data System (ADS)
Montmerle, Thierry
2015-09-01
Preface; 1. Inaugural ceremony; 2. Twenty-eighth General Assembly business sessions; 3. Closing ceremony; 4. Resolutions; 5. Report of Executive Committee, 2009-2012; 6. Reports on Division, Commission, and Working Group meetings; 7. Statutes, bye-laws, and working rules; 8. New members admitted at the General Assembly; 9. Divisions and their Commissions.
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2018-03-01
Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.
NASA Technical Reports Server (NTRS)
Paquette, Beth; Samuels, Margaret; Chen, Peng
2017-01-01
Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.
Drive piston assembly for a valve actuator assembly
Sun, Zongxuan
2010-02-23
A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.
Fast model updating coupling Bayesian inference and PGD model reduction
NASA Astrophysics Data System (ADS)
Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic
2018-04-01
The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.
Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J
2017-10-25
Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.
ERIC Educational Resources Information Center
Virginia State General Assembly, Richmond. Joint Legislative Audit and Review Commission.
Virginia has 36 criminal justice training academies, including 10 regional academies. The academies conduct entry-level, inservice, and specialized training for law enforcement officers, jailers, and other criminal justice personnel. In 1998, the Joint Legislative Audit and Review Commission (JLARC) was directed to review the quality, consistency,…
Three Dimensional Assembly in Directed Self-assembly of Block Copolymers
Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...
2016-09-02
The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... Airworthiness Directives; Dowty Propellers Type R212/4-30-4/22 and R251/4-30-4/49 Propeller Assemblies AGENCY.../22 propeller assemblies with hub and driving center assembly part number (P/N) 601022105, 601022211, 601022294, 601021426, 601021858, or 601021859 installed, and type R251/4-30-4/49 propeller assemblies with...
Directed assembly-based printing of homogeneous and hybrid nanorods using dielectrophoresis
NASA Astrophysics Data System (ADS)
Chai, Zhimin; Yilmaz, Cihan; Busnaina, Ahmed A.; Lissandrello, Charles A.; Carter, David J. D.
2017-11-01
Printing nano and microscale three-dimensional (3D) structures using directed assembly of nanoparticles has many potential applications in electronics, photonics and biotechnology. This paper presents a reproducible and scalable 3D dielectrophoresis assembly process for printing homogeneous silica and hybrid silica/gold nanorods from silica and gold nanoparticles. The nanoparticles are assembled into patterned vias under a dielectrophoretic force generated by an alternating current (AC) field, and then completely fused in situ to form nanorods. The assembly process is governed by the applied AC voltage amplitude and frequency, pattern geometry, and assembly time. Here, we find out that complete assembly of nanorods is not possible without applying both dielectrophoresis and electrophoresis. Therefore, a direct current offset voltage is used to add an additional electrophoretic force to the assembly process. The assembly can be precisely controlled to print silica nanorods with diameters from 20-200 nm and spacing from 500 nm to 2 μm. The assembled nanorods have good uniformity in diameter and height over a millimeter scale. Besides homogeneous silica nanorods, hybrid silica/gold nanorods are also assembled by sequentially assembling silica and gold nanoparticles. The precision of the assembly process is further demonstrated by assembling a single particle on top of each nanorod to demonstrate an additional level of functionalization. The assembled hybrid silica/gold nanorods have potential to be used for metamaterial applications that require nanoscale structures as well as for plasmonic sensors for biosensing applications.
Community perspectives on research consent involving vulnerable children in Western Kenya.
Vreeman, Rachel; Kamaara, Eunice; Kamanda, Allan; Ayuku, David; Nyandiko, Winstone; Atwoli, Lukoye; Ayaya, Samuel; Gisore, Peter; Scanlon, Michael; Braitstein, Paula
2012-10-01
Involving vulnerable pediatric populations in international research requires culturally appropriate ethical protections. We sought to use mabaraza, traditional East African community assemblies, to understand how a community in western Kenya viewed participation of children in health research and informed consent and assent processes. Results from 108 participants revealed generally positive attitudes towards involving vulnerable children in research, largely because they assumed children would directly benefit. Consent from parents or guardians was understood as necessary for participation while gaining child assent was not. They felt other caregivers, community leaders, and even community assemblies could participate in the consent process. Community members believed research involving orphans and street children could benefit these vulnerable populations, but would require special processes for consent.
Community Perspectives on Research Consent Involving Vulnerable Children in Western Kenya
Vreeman, Rachel; Kamaara, Eunice; Kamanda, Allan; Ayuku, David; Nyandiko, Winstone; Atwoli, Lukoye; Ayaya, Samuel; Gisore, Peter; Scanlon, Michael; Braitstein, Paula
2013-01-01
Involving vulnerable pediatric populations in international research requires culturally appropriate ethical protections. We sought to use mabaraza, traditional East African community assemblies, to understand how a community in western Kenya viewed participation of children in health research and informed consent and assent processes. Results from 108 participants revealed generally positive attitudes towards involving vulnerable children in research, largely because they assumed children would directly benefit. Consent from parents or guardians was understood as necessary for participation while gaining child assent was not. They felt other caregivers, community leaders, and even community assemblies could participate in the consent process. Community members believed research involving orphans and street children could benefit these vulnerable populations, but would require special processes for consent. PMID:23086047
The combination of direct and paired link graphs can boost repetitive genome assembly
Shi, Wenyu; Ji, Peifeng
2017-01-01
Abstract Currently, most paired link based scaffolding algorithms intrinsically mask the sequences between two linked contigs and bypass their direct link information embedded in the original de Bruijn assembly graph. Such disadvantage substantially complicates the scaffolding process and leads to the inability of resolving repetitive contig assembly. Here we present a novel algorithm, inGAP-sf, for effectively generating high-quality and continuous scaffolds. inGAP-sf achieves this by using a new strategy based on the combination of direct link and paired link graphs, in which direct link is used to increase graph connectivity and to decrease graph complexity and paired link is employed to supervise the traversing process on the direct link graph. Such advantage greatly facilitates the assembly of short-repeat enriched regions. Moreover, a new comprehensive decision model is developed to eliminate the noise routes accompanying with the introduced direct link. Through extensive evaluations on both simulated and real datasets, we demonstrated that inGAP-sf outperforms most of the genome scaffolding algorithms by generating more accurate and continuous assembly, especially for short repetitive regions. PMID:27924003
Effective Light Directed Assembly of Building Blocks with Microscale Control.
Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung
2017-06-01
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel DNA materials and their applications.
Yang, Dayong; Campolongo, Michael J; Nhi Tran, Thua Nguyen; Ruiz, Roanna C H; Kahn, Jason S; Luo, Dan
2010-01-01
The last two decades have witnessed the exponential development of DNA as a generic material instead of just a genetic material. The biological function, nanoscale geometry, biocompatibility, biodegradability, and molecular recognition capacity of DNA make it a promising candidate for the construction of novel functional nanomaterials. As a result, DNA has been recognized as one of the most appealing and versatile nanomaterial building blocks. Scientists have used DNA in this way to construct various amazing nanostructures, such as ordered lattices, origami, supramolecular assemblies, and even three-dimensional objects. In addition, DNA has been utilized as a guide and template to direct the assembly of other nanomaterials including nanowires, free-standing membranes, and crystals. Furthermore, DNA can also be used as structural components to construct bulk materials such as DNA hydrogels, demonstrating its ability to behave as a unique polymer. Overall, these novel DNA materials have found applications in various areas in the biomedical field in general, and nanomedicine in particular. In this review, we summarize the development of DNA assemblies, describe the innovative progress of multifunctional and bulk DNA materials, and highlight some real-world nanomedical applications of these DNA materials. We also show our insights throughout this article for the future direction of DNA materials. © 2010 John Wiley & Sons, Inc.
Teslaphoresis of Carbon Nanotubes.
Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul
2016-04-26
This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.
Enabling complex nanoscale pattern customization using directed self-assembly.
Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P
2014-12-16
Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.
General view of a fully assembled Solid Rocket Booster sitting ...
General view of a fully assembled Solid Rocket Booster sitting atop the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view taken inside of an assembly bay of the ...
General view taken inside of an assembly bay of the Vehicle Assembly Building at the Kennedy Space Center. This view shows the Orbiter Discovery being lowered into position in preparation for being mated to the External Tank/Solid Rocket Booster assembly on the Mobile Launch Platform. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Astrophysics Data System (ADS)
Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian
2012-05-01
While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. Electronic supplementary information (ESI) available: SEM, and TEM images. See DOI: 10.1039/c2nr30743j
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2017-12-01
Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less
Backward assembly planning with DFA analysis
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1995-01-01
An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies, and analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans is presented. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc. that must occur during the assembly, and handles nonreversible as well as reversible assembly tasks through backward assembly planning. In order to increase the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism
Kler, Stanislav; Asor, Roi; Li, Chenglei; Ginsburg, Avi; Harries, Daniel; Oppenheim, Ariella; Zlotnick, Adam; Raviv, Uri
2012-01-01
Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using Time-Resolved Small-Angle X-ray Scattering (TR-SAXS) we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500 mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly 1/3 complete within 35 milliseconds, following a two–state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 109 M−1 s−1. The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process. PMID:22329660
Liu, Di-Jia [Naperville, IL; Yang, Junbing [Bolingbrook, IL
2012-03-20
A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.
Computational Design of Self-Assembling Cyclic Protein Homo-oligomers
Fallas, Jorge A.; Ueda, George; Sheffler, William; Nguyen, Vanessa; McNamara, Dan E.; Sankaran, Banumathi; Pereira, Jose Henrique; Parmeggiani, Fabio; Brunette, TJ; Cascio, Duilio; Yeates, Todd R.; Zwart, Peter; Baker, David
2016-01-01
Self-assembling cyclic protein homo-oligomers play important roles in biology and the ability to generate custom homo-oligomeric structures could enable new approaches to probe biological function. Here we report a general approach to design cyclic homo-oligomers that employs a new residue pair transform method for assessing the design ability of a protein-protein interface. This method is sufficiently rapid to enable systematic enumeration of cyclically docked arrangements of a monomer followed by sequence design of the newly formed interfaces. We use this method to design interfaces onto idealized repeat proteins that direct their assembly into complexes that possess cyclic symmetry. Of 96 designs that were experimentally characterized, 21 were found to form stable monodisperse homo-oligomers in solution, and 15 (4 homodimers, 6 homotrimers, 6 homotetramers and 1 homopentamer) had solution small angle X-ray scattering data consistent with the design models. X-ray crystal structures were obtained for five of the designs and each of these were shown to be very close to their design model. PMID:28338692
Imaging energy landscapes with concentrated diffusing colloidal probes
NASA Astrophysics Data System (ADS)
Bahukudumbi, Pradipkumar; Bevan, Michael A.
2007-06-01
The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).
Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.
Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the poremore » surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... to prevent the in-line flow indicators of the oxygen mask assembly from fracturing and separating, which could inhibit oxygen flow to the masks. This condition could consequently result in occupants...
49 CFR 572.181 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assembly Drawing number Head Assembly 175-1000 Neck Assembly Test/Cert 175-2000 Neck Bracket Including..., dated February 2008. (c) Weights of body segments (head, neck, upper and lower torso, arms and upper and... the convenience of the user, the added and revised text is set forth as follows: § 572.181 General...
Chapter II: Twenty Eighth General Assembly Business Sessions
NASA Astrophysics Data System (ADS)
Williams, Robert
2015-08-01
The President of the IAU, Prof. Robert Williams, welcomed the delegates and members to this first business session of the General Assembly. The President invited the General Secretary, Dr. Ian Corbett, to start the business session.
Directed self-assembly of proteins into discrete radial patterns
Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas
2013-01-01
Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678
77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... assemblies, which were caused by the fuel return line assembly rubbing against the right steering tube assembly during full rudder pedal actuation. This AD requires you to inspect the fuel return line assembly... the fuel return line assembly and both the right steering tube assembly and the airplane structure...
NASA Technical Reports Server (NTRS)
Komendera, Erik E.; Adhikari, Shaurav; Glassner, Samantha; Kishen, Ashwin; Quartaro, Amy
2017-01-01
Autonomous robotic assembly by mobile field robots has seen significant advances in recent decades, yet practicality remains elusive. Identified challenges include better use of state estimation to and reasoning with uncertainty, spreading out tasks to specialized robots, and implementing representative joining methods. This paper proposes replacing 1) self-correcting mechanical linkages with generalized joints for improved applicability, 2) assembly serial manipulators with parallel manipulators for higher precision and stability, and 3) all-in-one robots with a heterogeneous team of specialized robots for agent simplicity. This paper then describes a general assembly algorithm utilizing state estimation. Finally, these concepts are tested in the context of solar array assembly, requiring a team of robots to assemble, bond, and deploy a set of solar panel mockups to a backbone truss to an accuracy not built into the parts. This paper presents the results of these tests.
Rotational joint assembly and method for constructing the same
NASA Technical Reports Server (NTRS)
Bandera, Pablo (Inventor); Buchele, Paul (Inventor)
2012-01-01
A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.
Wang, Pengfei; Hatta, Agus Muhamad; Zhao, Haoyu; Zheng, Jie; Farrell, Gerald; Brambilla, Gilberto
2015-01-01
A ratiometric wavelength measurement based on a Silicon-on-Insulator (SOI) integrated device is proposed and designed, which consists of directional couplers acting as two edge filters with opposite spectral responses. The optimal separation distance between two parallel silicon waveguides and the interaction length of the directional coupler are designed to meet the desired spectral response by using local supermodes. The wavelength discrimination ability of the designed ratiometric structure is demonstrated by a beam propagation method numerically and then is verified experimentally. The experimental results have shown a general agreement with the theoretical models. The ratiometric wavelength system demonstrates a resolution of better than 50 pm at a wavelength around 1550 nm with ease of assembly and calibration. PMID:26343668
Virginia Higher Education: The 1976 General Assembly. A Summary of Legislation and Appropriations.
ERIC Educational Resources Information Center
Virginia State Council of Higher Education, Richmond.
Higher education bills and appropriations to higher education approved by the 1976 Virginia Assembly are summarized. This session was the first in which the Council of Higher Education, operating under the expanded responsibilities granted to it by the General Assembly in 1974, provided formal recommendations on institutional budget requests to…
ERIC Educational Resources Information Center
KYD, STIRLING
TO GAIN UNDERSTANDING OF MISSOURI'S LEGISLATIVE PROCESS AND AID ADMINISTRATORS OF THE EXTENSION DIVISION, THE AUTHOR INVESTIGATED THE 71ST GENERAL ASSEMBLY. HE READ PUBLICATIONS, INTERVIEWED LOBBYISTS, AND CONDUCTED OPEN ENDED DEPTH INTERVIEWS WITH LEGISLATORS SELECTED TO COMPRISE THE LEADERSHIP OF THE ASSEMBLY. HIS DISSERTATION PRESENTS THE…
49 CFR 572.15 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids
NASA Astrophysics Data System (ADS)
Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian
We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.
Designed Proteins Induce the Formation of Nanocage-containing Extracellular Vesicles
Votteler, Jörg; Ogohara, Cassandra; Yi, Sue; Hsia, Yang; Nattermann, Una; Belnap, David M.; King, Neil P.; Sundquist, Wesley I.
2017-01-01
Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids, and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids1,2 or proteins3–5, but strategies for engineering hybrid biological materials are only beginning to emerge6,7. Here, we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as Enveloped Protein Nanocages (EPNs). Robust EPN biogenesis required protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery8. A variety of synthetic proteins with these functional elements induced EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical and electron cryomicroscopic (cryo-EM) analyses revealed that one design, EPN-01, comprised small (~100 nm) vesicles containing multiple protein nanocages that closely matched the structure of the designed 60-subunit self-assembling scaffold9. EPNs that incorporated the vesicular stomatitis viral glycoprotein (VSV-G) could fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These studies show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a novel class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells. PMID:27919066
Backward assembly planning with DFA analysis
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1992-01-01
An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies is presented. The planning system analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc., that must occur during the assembly. Additionally, the planning handles nonreversible, as well as reversible, assembly tasks through backward assembly planning. In order to decrease the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.
A study of commuter airplane design optimization
NASA Technical Reports Server (NTRS)
Roskam, J.; Wyatt, R. D.; Griswold, D. A.; Hammer, J. L.
1977-01-01
Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program.
Ray Drapek; John B. Kim; Ronald P. Neilson
2015-01-01
Land managers need to include climate change in their decisionmaking, but the climate models that project future climates operate at spatial scales that are too coarse to be of direct use. To create a dataset more useful to managers, soil and historical climate were assembled for the United States and Canada at a 5-arcminute grid resolution. Nine CMIP3 future climate...
Pope, head of UNFPA discuss problems.
1994-05-01
The Pope, in attempts to influence the United Nations Population Fund (UNFPA) and the International Conference on Population and Development (ICPD), held a meeting at the Vatican with Dr. Sadik, Executive Director of UNFPA and Secretary General of the ICPD. At that time, the Pope strongly criticized population programs that try to impose limits on family size. Of particular concern were programs that try to persuade couples to have 1-2 children. Dr. Sadik commented that the disagreement was really over contraception, and the access to control of one's own fertility. There were also points of agreement. The Vatican had also called a meeting of all ambassadors accredited to the Holy See, which is about 120. The purpose was to explain the Church's position on population and development prior to the ICPD meetings in Cairo during September 5-13, 1994. It is a rare occasion when all ambassadors are summoned to the Vatican for a meeting. Diplomatic sources said that the meeting was a direct attempt to influence the ICPD. It was officially reported that the Pope will address the General Assembly in October. This will be the first time that Pope John Paul II has addressed the assembly since 1979. Archbishop Martino commented that the Pope would be commemorating the Year of the Family and the 50th Anniversary of the UN. The address will be directed to issues about the family.
A comprehensive evaluation of assembly scaffolding tools
2014-01-01
Background Genome assembly is typically a two-stage process: contig assembly followed by the use of paired sequencing reads to join contigs into scaffolds. Scaffolds are usually the focus of reported assembly statistics; longer scaffolds greatly facilitate the use of genome sequences in downstream analyses, and it is appealing to present larger numbers as metrics of assembly performance. However, scaffolds are highly prone to errors, especially when generated using short reads, which can directly result in inflated assembly statistics. Results Here we provide the first independent evaluation of scaffolding tools for second-generation sequencing data. We find large variations in the quality of results depending on the tool and dataset used. Even extremely simple test cases of perfect input, constructed to elucidate the behaviour of each algorithm, produced some surprising results. We further dissect the performance of the scaffolders using real and simulated sequencing data derived from the genomes of Staphylococcus aureus, Rhodobacter sphaeroides, Plasmodium falciparum and Homo sapiens. The results from simulated data are of high quality, with several of the tools producing perfect output. However, at least 10% of joins remains unidentified when using real data. Conclusions The scaffolders vary in their usability, speed and number of correct and missed joins made between contigs. Results from real data highlight opportunities for further improvements of the tools. Overall, SGA, SOPRA and SSPACE generally outperform the other tools on our datasets. However, the quality of the results is highly dependent on the read mapper and genome complexity. PMID:24581555
Qiu, Penghe; Mao, Chuanbin
2010-01-01
Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250
General view of the Space Shuttle Main Engine (SSME) assembly ...
General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-Pressure Fuel Turbopump (LPFTP) on the upper left of the engine assembly, the LPFTP Discharge Duct looping around the assembly, the Gimbal Bearing on the top center of the assembly, the Electrical Interface Panel sits just below the Gimbal Bearing and the Low-Pressure Oxidizer Turbopump is mounted on the top right of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
48 CFR 239.7409 - Special assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...
48 CFR 239.7409 - Special assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...
48 CFR 239.7409 - Special assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...
48 CFR 239.7409 - Special assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...
48 CFR 239.7409 - Special assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...
Larsen, Rachel A.; Cusumano, Christina; Fujioka, Akina; Lim-Fong, Grace; Patterson, Paula; Pogliano, Joe
2007-01-01
Prokaryotes rely on a distant tubulin homolog, FtsZ, for assembling the cytokinetic ring essential for cell division, but are otherwise generally thought to lack tubulin-like polymers that participate in processes such as DNA segregation. Here we characterize a protein (TubZ) from the Bacillus thuringiensis virulence plasmid pBtoxis, which is a member of the tubulin/FtsZ GTPase superfamily but is only distantly related to both FtsZ and tubulin. TubZ assembles dynamic, linear polymers that exhibit directional polymerization with plus and minus ends, movement by treadmilling, and a critical concentration for assembly. A point mutation (D269A) that alters a highly conserved catalytic residue within the T7 loop completely eliminates treadmilling and allows the formation of stable polymers at a much lower protein concentration than the wild-type protein. When expressed in trans, TubZ(D269A) coassembles with wild-type TubZ and significantly reduces the stability of pBtoxis, demonstrating a direct correlation between TubZ dynamics and plasmid maintenance. The tubZ gene is in an operon with tubR, which encodes a putative DNA-binding protein that regulates TubZ levels. Our results suggest that TubZ is representative of a novel class of prokaryotic cytoskeletal proteins important for plasmid stability that diverged long ago from the ancient tubulin/FtsZ ancestor. PMID:17510284
DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR
Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.
1962-08-14
A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)
Mao, Shun; Lu, Ganhua; Yu, Kehan; ...
2010-01-01
We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.
NASA Astrophysics Data System (ADS)
Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana
2017-07-01
One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.
NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
Using computer graphics to design Space Station Freedom viewing
NASA Technical Reports Server (NTRS)
Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.
1993-01-01
Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.
From inanimate matter to living systems
NASA Technical Reports Server (NTRS)
Fox, S. W.
1980-01-01
Since the early part of this century, the Genesis account of the origin and evolution of life has been explained as an extrapolation of astronomical and geochemical processes. The essence of the answer to date is a protoreproductive protocell of much biochemical and cytophysical competance. The processes of its origin, molecular ordering, and its functions are described. A crucial understanding is that of the nonrandomness of evolutionary processes at all stages (with perhaps a minor statistical component). In this way, evolution conflicts with statistical randomness; the latter is a favorite assumption of both scientific and creationistic critics of the proteinoid theory. The principle contribution of the proteinoid theory to the understanding of general biology is to particularize the view that evolutionary direction is rooted in the shapes of molecules, in stereochemistry. After molecules of the right kind first assembled to protocells, life in its various stages of evolution was an inevitable consequence. It is molecules that continue to assemble as part of living process and, in the role of enzymes, continue to direct life cycle of the cell.
NASA Astrophysics Data System (ADS)
Müller, A.
1994-09-01
One of the basic problems in science is the understanding of the potentialities of material systems, a topic which is of relevance for disciplines ranging from natural philosophy over topology and/or structural chemistry, and biology ( morphogenesis) to materials science. Information on this problem can be obtained by studying the different types of linking of basic fragments in self-assembly processes, a type of reaction which has proved to be one of the most important in the biological and material world. The outlined problem can be nicely studied in the case of polyoxometalates with reference to basic organizing principles of material systems like conservative self-organization ( self-assembly), host—guest interactions, complementarity, molecular recognition, emergence vs. reduction ( as a dialectic unit), template-direction, exchange-interactions and, in general, the mesoscopic material world with its unusual properties as well as its topological and/or structural diversity. Science will lose in significance as an interdisciplinary unit — as outlined or maybe predicted here — should not more importance be attached to general aspects in the future.
Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei
2015-01-01
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402
Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K; Stanley, Christopher B; Do, Changwoo; Heller, William T; Aggarwal, Aneel K; Callaway, David J E; Bu, Zimei
2015-03-06
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian
2012-06-21
While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.
NASA Technical Reports Server (NTRS)
Yang, Yi; Lu, Yunfeng; Lu, Mengcheng; Huang, Jinman; Haddad, Raid; Xomeritakis, George; Liu, Nanguo; Malanoski, Anthony P.; Sturmayr, Dietmar; Fan, Hongyou;
2003-01-01
Conjugated polymer/silica nanocomposites with hexagonal, cubic, or lamellar mesoscopic order were synthesized by self-assembly using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. By tailoring the size of the oligo(ethylene glycol) headgroup of the diacetylene-containing surfactant, we varied the resulting self-assembled mesophases of the composite material. The nanostructured inorganic host altered the diacetylene polymerization behavior, and the resulting nanocomposites show unique thermo-, mechano-, and solvatochromic properties. Polymerization of the incorporated surfactants resulted in polydiacetylene (PDA)/silica nanocomposites that were optically transparent and mechanically robust. Molecular modeling and quantum calculations and (13)C spin-lattice relaxation times (T(1)) of the PDA/silica nanocomposites indicated that the surfactant monomers can be uniformly organized into precise spatial arrangements prior to polymerization. Nanoindentation and gas transport experiments showed that these nanocomposite films have increased hardness and reduced permeability as compared to pure PDA. Our work demonstrates polymerizable surfactant/silica self-assembly to be an efficient, general approach to the formation of nanostructured conjugated polymers. The nanostructured inorganic framework serves to protect, stabilize, and orient the polymer, mediate its performance, and provide sufficient mechanical and chemical stability to enable integration of conjugated polymers into devices and microsystems.
Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry.
Zhou, Xiao-Ming; Shimanovich, Ulyana; Herling, Therese W; Wu, Si; Dobson, Christopher M; Knowles, Tuomas P J; Perrett, Sarah
2015-06-23
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.
Superlattices assembled through shape-induced directional binding
NASA Astrophysics Data System (ADS)
Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg
2015-04-01
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.
Superlattices assembled through shape-induced directional binding
Lu, Fang; Yager, Kevin G.; Zhang, Yugang; ...
2015-04-23
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less
Power module assembly with reduced inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko
A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly.more » The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.« less
Direct methanol feed fuel cell with reduced catalyst loading
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor)
1999-01-01
Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.
Scalable Directed Self-Assembly Using Ultrasound Waves
2015-09-04
SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such...as a polymer matrix material. The critical difference between the ultrasound technology studied in this project, and other directed self-assembly...of nanoparticles dispersed in a host medium are assembled by means of standing ultrasound waves. Additionally, we have obtained experimental
Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.
Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng
2014-08-01
Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
ERIC Educational Resources Information Center
Virginia State Dept. of Social Services, Richmond.
Research shows that young people are under-informed about the risk of contracting AIDS. This document originated with a legislative directive that AIDS/HIV education guidelines be developed for families caring for foster children under the age of 16. Summarized are the efforts of a work group, comprised of state and local employees, foster parent…
Explosion resistant insulator and method of making same
Meyer, Jeffry R.; Billings, Jr., John S.; Spindle, Harvey E.; Hofmann, Charles F.
1983-01-01
An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.
ROMS and SUNTANS Continued Development and Support of AESOP And NLIWI
2007-09-30
and Carbon Export to the Open Ocean. EGU General Assembly , Vienna, Austria, Apr. 2007. Gruber, N., T. Nagai, H. Frenzel, J.C. McWilliams, and G.-K...new generation of terrain-following, coordinate oceanic models capable of a wide range of applications — from high-resolution local domains to basin...configuration of physical features directly related to our own research, as well as the generation of data to be used as input for side boundaries by our
STS-46 Italian Payload Specialist Malerba uses laptop PGSC on OV-104 middeck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Italian Payload Specialist Franco Malerba, wearing communications kit assembly headset (HDST), uses laptop payload and general support computer (PGSC) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Malerba is positioned in front of the airlock and surrounded by the interdeck access ladder (foreground), a cycle ergometer (directly behind him), the forward lockers (background), and the sleep station (at his left). Food, candy, hygiene kits, beverage containers, and film reels are attached to the forward lockers.
75 FR 12710 - Airworthiness Directives; Bombardier, Inc., Model DHC-8-400 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... for the main landing gear lock actuator assembly, retraction actuator assembly rod end and piston, and... for the main landing gear lock actuator assembly, retraction actuator assembly rod end and piston, and..., retraction actuator assembly rod end and piston, and the upper bearing in the main landing gear shock strut...
Analysis of large space structures assembly: Man/machine assembly analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.
Metal-directed design of supramolecular protein assemblies
Bailey, Jake B.; Subramanian, Rohit H.; Churchfield, Lewis A.
2016-01-01
Owing to their central roles in cellular signaling, construction, and biochemistry, protein-protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive non-covalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, Metal-Directed Protein Self-Assembly (MDPSA) and Metal-Templated Interface Redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution. PMID:27586336
NASA Astrophysics Data System (ADS)
Thrift, W. J.; Darvishzadeh-Varcheie, M.; Capolino, F.; Ragan, R.
2017-08-01
Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface promoting the assembly of close-packed metamolecules. Here, electron beam lithography defined Au pillars are used as seed structures that generate electrohydrodynamic flows. Chemical crosslinking between Au surfaces enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique electromagnetic properties.
19. Launch Area, general view of Missile Assembly Building and ...
19. Launch Area, general view of Missile Assembly Building and Generator Building VIEW SOUTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI
Wind turbine having a direct-drive drivetrain
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2011-02-22
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
General view taken in the transfer aisle of the Vehicle ...
General view taken in the transfer aisle of the Vehicle Assembly Building at the Kennedy Space Center looking at the Orbiter Discovery hoisted, rotated to a vertical position and moving to an assembly bay to be mated to the External Tank/Solid Rocket Booster assembly. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the Aft Skirt Assembly and the Aft ...
General view of the Aft Skirt Assembly and the Aft Solid Rocket Motor Segment mated together in the Vehicle Assembly Building at Kennedy Space Center and being prepared for mounting onto the Mobile Launch Platform and mating with the other Solid Rocket Booster segments. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60
NASA Astrophysics Data System (ADS)
Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.
2011-07-01
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.
Geologic field-trip guide to Long Valley Caldera, California
Hildreth, Wes; Fierstein, Judy
2017-07-26
This guide to the geology of Long Valley Caldera is presented in four parts: (1) An overview of the volcanic geology; (2) a chronological summary of the principal geologic events; (3) a road log with directions and descriptions for 38 field-trip stops; and (4) a summary of the geophysical unrest since 1978 and discussion of its causes. The sequence of stops is arranged as a four-day excursion for the quadrennial General Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), centered in Portland, Oregon, in August 2017. Most stops, however, are written freestanding, with directions that allow each one to be visited independently, in any order selected.
Directional antennas for electromagnetic mapping in a borehole
Reagor, David Wesley; Nguyen, Doan Ngoc; Ashworth, Stephen Paul
2017-05-02
A bottom hole assembly used for a field operation is disclosed herein. The bottom hole assembly can include at least one directional antenna disposed on an outer surface of a first tubing pipe of a tubing string, where the at least one directional antenna receives a first electric current from at least one power source, where the first electric current generates a first magnetic field that radiates from the at least one directional antenna into a formation. The bottom hole assembly can also include at least one receiver disposed on a second tubing pipe of the tubing string, where the at least one receiver receives the first magnetic field returning from the formation.
Zhang, Pengfei; Wang, Li; Yang, Shize; Schott, Jennifer A.; Liu, Xiaofei; Mahurin, Shannon M.; Huang, Caili; Zhang, Yu; Fulvio, Pasquale F.; Chisholm, Matthew F.; Dai, Sheng
2017-01-01
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic–organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4–10 nm), large pore volumes (up to 0.96 cm3 g−1) and high-surface areas exceeding 1,000 m2 g−1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm). PMID:28452357
CBrowse: a SAM/BAM-based contig browser for transcriptome assembly visualization and analysis.
Li, Pei; Ji, Guoli; Dong, Min; Schmidt, Emily; Lenox, Douglas; Chen, Liangliang; Liu, Qi; Liu, Lin; Zhang, Jie; Liang, Chun
2012-09-15
To address the impending need for exploring rapidly increased transcriptomics data generated for non-model organisms, we developed CBrowse, an AJAX-based web browser for visualizing and analyzing transcriptome assemblies and contigs. Designed in a standard three-tier architecture with a data pre-processing pipeline, CBrowse is essentially a Rich Internet Application that offers many seamlessly integrated web interfaces and allows users to navigate, sort, filter, search and visualize data smoothly. The pre-processing pipeline takes the contig sequence file in FASTA format and its relevant SAM/BAM file as the input; detects putative polymorphisms, simple sequence repeats and sequencing errors in contigs and generates image, JSON and database-compatible CSV text files that are directly utilized by different web interfaces. CBowse is a generic visualization and analysis tool that facilitates close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors in transcriptome sequencing projects. CBrowse is distributed under the GNU General Public License, available at http://bioinfolab.muohio.edu/CBrowse/ liangc@muohio.edu or liangc.mu@gmail.com; glji@xmu.edu.cn Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Arunava; Prevelige, Peter E
The primary goal of the project was to develop protein-templated approaches for the synthesis and directed assembly of semiconductor nanomaterials that are efficient for visible light absorption and hydrogen production. In general, visible-light-driven photocatalysis reactions exhibit low quantum efficiency for solar energy conversion primarily because of materials-related issues and limitations, such as the control of the band gap, band structure, photochemical stability, and available reactive surface area of the photocatalyst. Synthesis of multicomponent hierarchical nano-architectures, consisting of semiconductor nanoparticles (NPs) with desired optical properties fabricated to maximize spatial proximity for optimum electron and energy transfer represents an attractive route formore » addressing the problem. Virus capsids are highly symmetrical, self-assembling protein cage nanoparticles that exist in a range of sizes and symmetries. Selective deposition of inorganic, by design, at specific locations on virus capsids affords precise control over the size, spacing, and assembly of nanomaterials, resulting in uniform and reproducible nano-architectures. We utilized the self-assembling capabilities of the 420 subunit, 60 nm icosahedral, P22 virus capsid to direct the nucleation, growth, and proximity of a range of component materials. Controlled fabrication on the exterior of the temperature stable shell was achieved by genetically encoding specific binding peptides into an externally exposed loop which is displayed on each of the 420 coat protein subunits. Localization of complimentary materials to the interior of the particle was achieved through the use “scaffolding-fusion proteins. The scaffolding domain drives coat protein polymerization resulting in a coat protein shell surrounding a core of approximately 300 scaffolding/fusion molecules. The fusion domain comprises a peptide which specifically binds the semiconductor material of interest.« less
49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Brake tubing and hoses; hose assemblies and end... assemblies and end fittings. (a) General construction requirements for tubing and hoses, assemblies, and end fittings. All brake tubing and hoses, brake hose assemblies, and brake hose end fittings must meet the...
49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Brake tubing and hoses; hose assemblies and end... assemblies and end fittings. (a) General construction requirements for tubing and hoses, assemblies, and end fittings. All brake tubing and hoses, brake hose assemblies, and brake hose end fittings must meet the...
49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Brake tubing and hoses; hose assemblies and end... assemblies and end fittings. (a) General construction requirements for tubing and hoses, assemblies, and end fittings. All brake tubing and hoses, brake hose assemblies, and brake hose end fittings must meet the...
Minimal Absent Words in Four Human Genome Assemblies
Garcia, Sara P.; Pinho, Armando J.
2011-01-01
Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species. PMID:22220210
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false General. 56.90-1 Section 56.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Assembly § 56.90-1 General. (a) The assembly of the various piping components, whether done in a shop or as field...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false General. 56.90-1 Section 56.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Assembly § 56.90-1 General. (a) The assembly of the various piping components, whether done in a shop or as field...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false General. 56.90-1 Section 56.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Assembly § 56.90-1 General. (a) The assembly of the various piping components, whether done in a shop or as field...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false General. 56.90-1 Section 56.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Assembly § 56.90-1 General. (a) The assembly of the various piping components, whether done in a shop or as field...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false General. 56.90-1 Section 56.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Assembly § 56.90-1 General. (a) The assembly of the various piping components, whether done in a shop or as field...
Servo-integrated patterned media by hybrid directed self-assembly.
Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David
2014-11-25
A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.
MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya
2012-11-09
Highlights: Black-Right-Pointing-Pointer MYBPH inhibits NMHC IIA assembly and cell motility. Black-Right-Pointing-Pointer MYBPH interacts to assembly-competent NM IIA. Black-Right-Pointing-Pointer MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosinmore » heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.« less
Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition
Polles, Guido; Indelicato, Giuliana; Potestio, Raffaello; Cermelli, Paolo; Twarock, Reidun; Micheletti, Cristian
2013-01-01
Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available. PMID:24244139
Self-assembly of active amphiphilic Janus particles
NASA Astrophysics Data System (ADS)
Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.
2017-12-01
In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.
NASA Astrophysics Data System (ADS)
Nahmias, Yaakov Koby
Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our approach has the advantage of retaining the natural heterotypic cell-cell interaction and spatial arrangement of native tissue, which is important for proper tissue function.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Microsoft Office; Windows MediaPlayer or RealPlayer.
Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.
Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung
2016-02-24
Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
General view in the transfer aisle of the Vehicle Assembly ...
General view in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center looking at one of a pair of Forward Segments of the Solid Rocket Motor of the Solid Rocket Booster awaiting hoisting and mating to the Solid Rocket Booster assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view in the transfer aisle of the Vehicle Assembly ...
General view in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center looking at one of a pair of Forward Center Segments of the Solid Rocket Motor of the Solid Rocket Booster awaiting hoisting and mating to the Solid Rocket Booster assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Quantitative computational models of molecular self-assembly in systems biology
Thomas, Marcus; Schwartz, Russell
2017-01-01
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149
Quantitative computational models of molecular self-assembly in systems biology.
Thomas, Marcus; Schwartz, Russell
2017-05-23
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.
Latching relay switch assembly
Duimstra, Frederick A.
1991-01-01
A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.
49 CFR 572.5 - General description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... M080—Right leg assembly SA 150 M081—Left leg assembly SA 150 M010—Head assembly SA 150 M020—Neck... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 50th Percentile Male § 572... grouped by component assemblies under the following nine headings: SA 150 M070—Right arm assembly SA 150...
Direct assembling methodologies for high-throughput bioscreening
Rodríguez-Dévora, Jorge I.; Shi, Zhi-dong; Xu, Tao
2012-01-01
Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms. PMID:22021162
77 FR 35306 - Airworthiness Directives; Bell Helicopter Textron, Inc. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... assemblies (power cable assemblies). This proposed AD is prompted by the determination that the power cable assembly connector (connector) can deteriorate, causing a short in the connector that may lead to a fire. This AD would require replacing the power cable assemblies and their associated parts, and performing...
75 FR 61999 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
..., for certain airplanes, reworking the bonding jumper assemblies on the drain tube assemblies of the... inspections of the drain tube assemblies of the slat track housing of the wings to find discrepancies... would also require replacing the drain tube assemblies. For certain airplanes, this proposed AD would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-(), 174080-(), 174085-(), 174095... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...
Directed block copolymer self-assembly implemented via surface-embedded electrets
NASA Astrophysics Data System (ADS)
Wu, Mei-Ling; Wang, Dong; Wan, Li-Jun
2016-02-01
Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution.
General Assembly Governance H Human Development Human Rights I Indigenous Peoples Integral Development Scholarships School of Governance Science and Technology Social Development Summits of the Americas Sustainable - 2005 Quito, Ecuador - 2004 Santiago, Chile - 2003 Bridgetown, Barbados - 2002 Special Sessions Fifty
Messias, Ana; Rocha, Salomão; Calha, Nuno; Neto, Maria Augusta; Nicolau, Pedro; Guerra, Fernando
2017-01-01
Implant-abutment assembly stability is critical for the success of implant-supported rehabilitation. The intentional removal of the prosthetic components may hamper the achievement of the essential stability due to preload reduction in the screw joint and implant-screw mating surface changes. To evaluate the effect of intentional abutment disconnection and reconnection in the stability of internal locking hex implants and corresponding abutments using the method of 3D digital image correlation. Ten conical shape and internal hexagon connection implants were embedded in acrylic resin and assembled to prosthetic abutments with 30 Ncm torque and assigned to two groups: group 1 - tested for static load-bearing capacity at 30° off-axis for two times and group 2 - underwent intentional disconnection and reconnection between tests. Micro-movements were captured with two high-speed photographic cameras and analyzed with video correlation system in three spacial axes U, V and W. Screw abutment and internal implant thread morphology was observed with a field-emission scanning electron microscopy. After the intentional disconnection of the abutment, group 2 showed generally higher maximum displacements for U and V directions. Under 50N load, mean difference was 24.7 μm (P = 0.008) for U direction and -7.7 μm (P = 0.008) for V direction. No significant differences were found for maximum and minimum displacements in the W direction. Mean displacement of the speckle surface presented was statistically different in the two groups (P = 0.016). SEM revealed non-homogenous screw surfaces with scoring on group 2 plus striations and debris in the implant threads. Micro-movements were higher for the group submitted to intentional disconnection and reconnection of the abutment, particularly under average bite forces. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., assembles, or fabricates, or controls the design, manufacture, assembly, or fabrication of a fuse, and who... means a device, no less effective than an automatic circuit breaker, for use with direct current which... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., assembles, or fabricates, or controls the design, manufacture, assembly, or fabrication of a fuse, and who... means a device, no less effective than an automatic circuit breaker, for use with direct current which... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., assembles, or fabricates, or controls the design, manufacture, assembly, or fabrication of a fuse, and who... means a device, no less effective than an automatic circuit breaker, for use with direct current which... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING...
Planning Assembly Of Large Truss Structures In Outer Space
NASA Technical Reports Server (NTRS)
De Mello, Luiz S. Homem; Desai, Rajiv S.
1992-01-01
Report dicusses developmental algorithm used in systematic planning of sequences of operations in which large truss structures assembled in outer space. Assembly sequence represented by directed graph called "assembly graph", in which each arc represents joining of two parts or subassemblies. Algorithm generates assembly graph, working backward from state of complete assembly to initial state, in which all parts disassembled. Working backward more efficient than working forward because it avoids intermediate dead ends.
Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang
2017-09-01
The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.
Chang, Tongxin; Huang, Haiying; He, Tianbai
2016-01-01
The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.
The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…
Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry
2015-01-01
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507
Fluid driven reciprocating apparatus
Whitehead, J.C.
1997-04-01
An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.
Fluid driven recipricating apparatus
Whitehead, John C.
1997-01-01
An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.
Wind turbine having a direct-drive drivetrain
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2008-10-07
A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
Genome assembly from synthetic long read clouds
Kuleshov, Volodymyr; Snyder, Michael P.; Batzoglou, Serafim
2016-01-01
Motivation: Despite rapid progress in sequencing technology, assembling de novo the genomes of new species as well as reconstructing complex metagenomes remains major technological challenges. New synthetic long read (SLR) technologies promise significant advances towards these goals; however, their applicability is limited by high sequencing requirements and the inability of current assembly paradigms to cope with combinations of short and long reads. Results: Here, we introduce Architect, a new de novo scaffolder aimed at SLR technologies. Unlike previous assembly strategies, Architect does not require a costly subassembly step; instead it assembles genomes directly from the SLR’s underlying short reads, which we refer to as read clouds. This enables a 4- to 20-fold reduction in sequencing requirements and a 5-fold increase in assembly contiguity on both genomic and metagenomic datasets relative to state-of-the-art assembly strategies aimed directly at fully subassembled long reads. Availability and Implementation: Our source code is freely available at https://github.com/kuleshov/architect. Contact: kuleshov@stanford.edu PMID:27307620
General view of the Space Shuttle Main Engine (SSME) assembly ...
General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-pressure Fuel Turbopump discharge Duct looping from the upper left side of the engine assembly to the lower left side of the assembly, the Low-Pressure Oxidizer Turbopump (LPOTP) is on the upper left of the assembly in this view and the LPOTP Discharge Duct loops from the upper left to upper right. The sphere in the middle right side of the assembly in this view is the POGO System Accumulator , the partial sphere to its left and slightly more toward the center of the assembly is the Heat Exchanger on the Oxidizer Preburner side of the Hot Gas Manifold, beneath that is the High-Pressure Oxidizer Turbopump (HPOTP) and the HPOTP Discharge duct loops from the pump around to the lower left of the assembly. The Pneumatic Control Assembly is in the approximate center of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
19 CFR 10.18 - Valuation of assembled articles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Valuation of assembled articles. 10.18 Section 10... THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.18 Valuation of assembled articles. As in the case of...
19 CFR 10.18 - Valuation of assembled articles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Valuation of assembled articles. 10.18 Section 10... THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.18 Valuation of assembled articles. As in the case of...
19 CFR 10.18 - Valuation of assembled articles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Valuation of assembled articles. 10.18 Section 10... THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.18 Valuation of assembled articles. As in the case of...
19 CFR 10.18 - Valuation of assembled articles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Valuation of assembled articles. 10.18 Section 10... THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.18 Valuation of assembled articles. As in the case of...
19 CFR 10.18 - Valuation of assembled articles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Valuation of assembled articles. 10.18 Section 10... THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.18 Valuation of assembled articles. As in the case of...
Self-assembling biomolecular catalysts for hydrogen production
NASA Astrophysics Data System (ADS)
Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor
2016-02-01
The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
General view of a Space Shuttle Main Engine (SSME) mounted ...
General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping around the right side and underneath the assembly, the High-Pressure Fuel Turbopump located on the lower left portion of the assembly, the Engine Controller and Main Fuel Valve Hydraulic Actuator located on the upper portion of the assembly and the Low-Pressure Oxidizer Turbopump Discharge Duct at the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Self-assembly concepts for multicompartment nanostructures
NASA Astrophysics Data System (ADS)
Gröschel, André H.; Müller, Axel H. E.
2015-07-01
Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.
Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes
Han, Koohee; Shields, C. Wyatt; Diwakar, Nidhi M.; Bharti, Bhuvnesh; López, Gabriel P.; Velev, Orlin D.
2017-01-01
Colloidal-scale assemblies that reconfigure on demand may serve as the next generation of soft “microbots,” artificial muscles, and other biomimetic devices. This requires the precise arrangement of particles into structures that are preprogrammed to reversibly change shape when actuated by external fields. The design and making of colloidal-scale assemblies with encoded directional particle-particle interactions remain a major challenge. We show how assemblies of metallodielectric patchy microcubes can be engineered to store energy through magnetic polarization and release it on demand by microscale reconfiguration. The dynamic pattern of folding and reconfiguration of the chain-like assemblies can be encoded in the sequence of the cube orientation. The residual polarization of the metallic facets on the microcubes leads to local interactions between the neighboring particles, which is directed by the conformational restrictions of their shape after harvesting energy from external magnetic fields. These structures can also be directionally moved, steered, and maneuvered by global forces from external magnetic fields. We illustrate these capabilities by examples of assemblies of specific sequences that can be actuated, reoriented, and spatially maneuvered to perform microscale operations such as capturing and transporting live cells, acting as prototypes of microbots, micromixers, and other active microstructures. PMID:28798960
Mechanisms Underlying the Active Self-Assembly of Microtubule Rings and Spools.
VanDelinder, Virginia; Brener, Stephanie; Bachand, George D
2016-03-14
Active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly. Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.
Mechanisms underlying the active self-assembly of microtubule rings and spools
VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.
2016-02-04
Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly.more » Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.« less
Direct-write assembly of microperiodic planar and spanning ITO microelectrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Bok Y; Lorang, David J; Duoss, Eric B.
2010-01-01
Printed Sn-doped In{sub 2}O{sub 3} (ITO) microelectrodes are fabricated by direct-write assembly of sol–gel inks with varying concentration. This maskless, non-lithographic approach provides a facile route to patterning transparent conductive features in planar arrays and spanning architectures.
Meta assembler enhancements and generalized linkage editor
NASA Technical Reports Server (NTRS)
1979-01-01
A meta Assembler for NASA was developed. The initial development of the Meta Assembler for the SUMC was performed. The capabilities included assembly for both main and micro level programs. A period of checkout and utilization to verify the performance of the Meta Assembler was undertaken. Additional enhancements were made to the Meta Assembler which expanded the target computer family to include architectures represented by the PDP-11, MODCOMP 2, and Raytheon 706 computers.
Assembly vs. direct launch of transfer vehicles
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Pritchard, E. Brian
1990-01-01
A top level assessment is performed of the relative impacts of on-orbit assembly of the lunar or Mars transfer vehicles versus direct launch. The objective is to identify the major option paths for the Earth-to-orbit, ETO, transportation systems. Heavy lift launch vehicles, if large enough, could reduce or eliminate on-orbit assembly. However, with every new approach, there are always counter-balancing considerations and it is the objective to begin the delineation of the necessary follow-on trade study issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Long; Zuckermann, Ronald N.; DeYoreo, James J.
The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to biomimetic materials design and synthesis. Here we report the assembly of peptoids—a class of highly stable sequence-defined synthetic polymers—into biomimetic materials on mica surfaces. The assembling 12-mer peptoid contains alternating acidic and aromatic residues, and the presence of Ca2+ cations creates peptoid-peptoid and peptoid-mica interactions that drive assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles, these particles then transform into hexagonally-patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy (DFS) studies show that peptoid-micamore » interactions are much stronger than peptoidpeptoid interactions in the presence of Ca2+, illuminating the physical parameters that drive peptoid assembly. We further demonstrate the display of functional groups at the N-terminus of assembling peptoid sequence to produce biomimetic materials with similar hierarchical structures. This research demonstrates that surface-directed peptoid assembly can be used as a robust platform to develop biomimetic coating materials for applications.« less
Report to the General Assembly [of Illinois].
ERIC Educational Resources Information Center
Illinois Community Coll. Board, Springfield.
In this nine-part report to Illinois' General Assembly, the Illinois Community College Board (ICCB) reviews Board powers and duties, and systemwide goals, financial resources, student characteristics and outcomes, educational programs, training and economic development activities, programs for special populations, and current issues of importance…
A study of commuter airplane design optimization
NASA Technical Reports Server (NTRS)
Keppel, B. V.; Eysink, H.; Hammer, J.; Hawley, K.; Meredith, P.; Roskam, J.
1978-01-01
The usability of the general aviation synthesis program (GASP) was enhanced by the development of separate computer subroutines which can be added as a package to this assembly of computerized design methods or used as a separate subroutine program to compute the dynamic longitudinal, lateral-directional stability characteristics for a given airplane. Currently available analysis methods were evaluated to ascertain those most appropriate for the design functions which the GASP computerized design program performs. Methods for providing proper constraint and/or analysis functions for GASP were developed as well as the appropriate subroutines.
1975-05-20
across the anode side of the membrane -electrode assembly. Flow distribution of the hydrogen gas from cell to cell is not a problem as that system is...DOCUMENTATION PAGE RiEAI T C OMPLETING FORM V ~i 12.BR NUMVE AccEisioN NO4 II T AAO UM811" 4. TITL[ (Wd SibItl@) ... . I YPE or REPORT I PERIOD COVERED...instructions for Fuel Cell Module FS-2. The ion exchange membrane fuel cell module is produced by the General Electric Company, Direct Energy
Decontamination apparatus and method. [Patent applications
Oakley, D.J.
1983-12-16
This invention relates generally to the fabrication of fuel pin elements employed in nuclear reactors and, more particularly, to removing radioactive contamination disposed on the exterior of finally assembled fuel pins. A blast head includes a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.
Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C
2017-09-21
Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.
NASA Astrophysics Data System (ADS)
Swan, James W.; Brady, John F.; Moore, Rachel S.; ChE 174
2011-07-01
We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body's translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor's helical swimmer, Purcell's three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.
Turbine blade tip flow discouragers
Bunker, Ronald Scott
2000-01-01
A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.
Reductionist Approach in Peptide-Based Nanotechnology.
Gazit, Ehud
2018-06-20
The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.
Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.
Bharti, Bhuvnesh; Velev, Orlin D
2015-07-28
Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.
Kuppuswamy, Chamundeeswari
2007-01-01
This article analyses the international governance of human reproductive cloning. Noting that bioethics is a new field of engagement for international lawyers, it recounts some of the institutional developments in bioethical law making. The role of UNESCO and the United Nations General Assembly is scrutinized and the author discusses the relative merits of the institutions' governance of human reproductive cloning. The author suggests that some international institutions and mechanisms are better suited than others for bioethical law making. The 2005 General Assembly resolution on human cloning is analysed in this context.
El Najjar, Farah; Cifuentes-Muñoz, Nicolás; Zhu, Haining; Buchholz, Ursula J.; Moncman, Carole L.; Dutch, Rebecca Ellis
2016-01-01
Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses. PMID:27683250
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... stabilator horn assembly or repetitive inspection of the stabilator horn assembly for corrosion or cracks with replacement of the stabilator horn assembly if any corrosion or cracks are found. This proposed AD... to detect and correct corrosion or cracks in the stabilator horn assembly. Corrosion or cracks could...
General view of the Orbiter Discovery mated to the External ...
General view of the Orbiter Discovery mated to the External Tank and Solid Rocket Booster assembly in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor
Pennell, William E.
1977-01-01
A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.
NASA Astrophysics Data System (ADS)
Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul
2010-03-01
Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.
General view of the Space Shuttle Main Engine (SSME) assembly ...
General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-pressure oxidizer Turbopump discharge Duct looping from the upper left side of the engine assembly to the lower left side of the assembly, the Low-Pressure Fuel Turbopump (LPFTP) is on the upper left of the assembly in this view and the LPFTP Discharge Duct loops from the upper left to upper right then turns back and down the assembly to the High-Pressure Fuel Turbopump on the lower right of the assembly. The Engine Controller and the Main fuel Valve Hydraulic Actuator are on the lower left portion of the assembly. The vertical rod that is in the approximate center of the engine assembly is a piece of ground support equipment call a Gimbal Actuator Replacement Strut which are used on the SSMEs when they are not installed in an orbiter. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Farrell, Richard A; Petkov, Nikolay; Morris, Michael A; Holmes, Justin D
2010-09-15
Self-assembled nanoscale porous architectures, such as mesoporous silica (MPS) films, block copolymer films (BCP) and porous anodic aluminas (PAAs), are ideal hosts for templating one dimensional (1D) nano-entities for a wide range of electronic, photonic, magnetic and environmental applications. All three of these templates can provide scalable and tunable pore diameters below 20 nm [1-3]. Recently, research has progressed towards controlling the pore direction, orientation and long-range order of these nanostructures through so-called directed self-assembly (DSA). Significantly, the introduction of a wide range of top-down chemically and physically pre-patterning substrates has facilitated the DSA of nanostructures into functional device arrays. The following review begins with an overview of the fundamental aspects of self-assembly and ordering processes during the formation of PAAs, BCPs and MPS films. Special attention is given to the different ways of directing self-assembly, concentrating on properties such as uni-directional alignment, precision placement and registry of the self-assembled structures to hierarchal or top-down architectures. Finally, to distinguish this review from other articles we focus on research where nanostructures have been utilised in part to fabricate arrays of functioning devices below the sub 50 nm threshold, by subtractive transfer and additive methods. Where possible, we attempt to compare and contrast the different templating approaches and highlight the strengths and/or limitations that will be important for their potential integration into downstream processes. Copyright 2010 Elsevier Inc. All rights reserved.
Ball Screw Actuator Including an Axial Soft Stop
NASA Technical Reports Server (NTRS)
Forrest, Steven Talbert (Inventor); Woessner, George (Inventor); Abel, Steve (Inventor); Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)
2016-01-01
An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.
Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.
Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik
2012-06-27
While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.
Environmental Education in the Developing World.
ERIC Educational Resources Information Center
Connor, James V.
This paper attempts to explore how developing nations can best respond to the request of the United Nations General Assembly to examine their ongoing programs and policies for environmental impact, and to report regularly to the General Assembly on the progress being made towards the objectives of "environmentally sound and sustainable…
Report on Education Legislation: 1990 Session of the General Assembly.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
Summaries of special provisions and ratified bills are presented in this report on educational legislation conducted by the 1990 session of the North Carolina General Assembly. Contents include legislation pertaining to education budget expansions and reductions and summaries of special provisions and ratified bills. Legislative outcomes include…
General view of the interior of the Vehicle Assembly Building ...
General view of the interior of the Vehicle Assembly Building showing the External Tank mated to the Solid Rocket Boosters awaiting the arrival and mating of the Orbiter Discovery. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Electrochemical assembly of organic molecules by the reduction of iodonium salts
Dirk, Shawn M [Albuquerque, NM; Howell, Stephen W [Albuquerque, NM; Wheeler, David R [Albuquerque, NM
2009-06-23
Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.
Engine balance apparatus and accessory drive device
NASA Technical Reports Server (NTRS)
Egleston, Robert W. (Inventor)
2002-01-01
A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons. The balancing mechanism comprises a primary balance mass assembly non-rotatably and removably affixed to the crankshaft. The primary mass assembly comprises a primary mass affixed to a primary hub portion and a primary cap portion removably affixed to the primary hub portion to clamp a portion of the crankshaft therebetween. A secondary balance mass assembly may be rotatably and removably supported on the crankshaft. A driver assembly is affixed to the crankshaft to cause the secondary balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components. The gears are readily detachable from the apparatus to facilitate inspection and repair operations.
77 FR 52205 - Airworthiness Directives; Univair Aircraft Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... balance assembly and ailerons for cracks and excessive looseness of associated parts with the required... Applicability section; require inspections of the ailerons, aileron balance assembly, and aileron rigging for... the Applicability section; require inspections of the ailerons, aileron balance assembly, and aileron...
The structure and protein binding of amyloid-specific dye reagents.
Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin
2003-01-01
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.
In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications
NASA Technical Reports Server (NTRS)
Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.;
2017-01-01
Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... merchandise: (1) All actual labor costs involved in the growth, production, manufacture or assembly of the... the growth, production, manufacture, or assembly of the merchandise, such as administrative salaries... costs either directly incurred in, or which can be reasonably allocated to, the growth, production...
Electrical assembly having heat sink protrusions
Rinehart, Lawrence E.; Romero, Guillermo L.
2009-04-21
An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.
Eskin, Julian A.; Jaiswal, Richa
2017-01-01
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT–actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration. PMID:28663347
Horizontal high speed stacking for batteries with prismatic cans
Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.
2016-06-14
A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.
Cloutier, Philippe; Poitras, Christian; Durand, Mathieu; Hekmat, Omid; Fiola-Masson, Émilie; Bouchard, Annie; Faubert, Denis; Chabot, Benoit; Coulombe, Benoit
2017-01-01
The R2TP/Prefoldin-like (R2TP/PFDL) complex has emerged as a cochaperone complex involved in the assembly of a number of critical protein complexes including snoRNPs, nuclear RNA polymerases and PIKK-containing complexes. Here we report on the use of multiple target affinity purification coupled to mass spectrometry to identify two additional complexes that interact with R2TP/PFDL: the TSC1–TSC2 complex and the U5 small nuclear ribonucleoprotein (snRNP). The interaction between R2TP/PFDL and the U5 snRNP is mostly mediated by the previously uncharacterized factor ZNHIT2. A more general function for the zinc-finger HIT domain in binding RUVBL2 is exposed. Disruption of ZNHIT2 and RUVBL2 expression impacts the protein composition of the U5 snRNP suggesting a function for these proteins in promoting the assembly of the ribonucleoprotein. A possible implication of R2TP/PFDL as a major effector of stress-, energy- and nutrient-sensing pathways that regulate anabolic processes through the regulation of its chaperoning activity is discussed. PMID:28561026
Silberman, P; Wicker, D A; Smith, S H; DeFriese, G H
2000-01-01
Following publication of the Task Force's recommendations for improving dental care access among low-income populations, North Carolina has taken several steps forward. The Division of Medical Assistance and the NC Dental Society are forming an advisory committee (comprising Medicaid patients, providers, and representatives from all elements of organized dentistry in the state) to review dental coverage and reimbursement rates. Using existing state funds, the NC Office of Research, Demonstrations and Rural Health Development has recruited 15 additional dentists and 1 dental hygienist to practice in community facilities serving low-income and uninsured patients. In 1999, the NC General Assembly revised the NC Dental Practice Act. Now, under the general direction of a licensed public health dentist, specially trained public health dental hygienists can perform oral health screenings and preventive and educational services outside the public school setting. The NC Institute of Medicine has begun exploring how to use dental hygienists to expand preventive dental services to underserved populations in federally-funded community or migrant health centers, state-funded health clinics, and the not-for-profit clinics that serve predominantly Medicaid, low-income or uninsured populations. A report is to be sent to the Governor and the Joint Legislative Commission on Governmental Operations no later than May 1, 2000. In 1999, the General Assembly directed the NC State Board of Dental Examiners to establish a procedure for streamlined licensing of dentists and dental hygienists who have been practicing in other states. This should increase the number of qualified dental practitioners in the state. The proposed rules governing the new licensing pathway are to be prepared by May 15, 2000. The Board of Dental Examiners will determine which new procedures will be needed to allow less burdensome and more timely entry of qualified out-of-state licensed applicants, while still affording the public the same protection as under current law and procedures. The NC Institute of Medicine is organizing a work group to study the feasibility of new residency programs in pediatric dentistry in addition to the current program located in Chapel Hill. The Institute will present a report to the General Assembly, no later than May 1, 2000. On April 1, 1999, the state Medicaid program authorized use of ADA Procedure Code 1203, which allows reimbursement for the application of dental fluoride varnishes without a full prophylaxis. It also authorized pediatricians, nurse practitioners, or physician's assistants to apply these varnishes to the teeth of young children, allowing more rapid dissemination of this proven preventive procedure among the state's low-income children. Implementation began in Carolina Access II and III project sites in the fall, 1999, and should spread statewide in 2000. Furthermore, the General Assembly's 1999 session expanded NC Health Choice to cover dental sealants, fluoride treatment, simple extractions, stainless steel crowns, and pulpotomies. Since publication of the Task Force Report in May 1999, considerable forward movement has taken place. It was apparent that the problems associated with poor dental care were severe, of immediate concern, and needed a broad, nonpolitical analysis followed by action from public and private-sector policy makers and shapers. The key recommendation of the Task Force (to increase the level of payment to dentists for services provided to Medicaid beneficiaries) was not acted on in the 1999 session of the General Assembly, but it was seriously discussed in legislative hearings and will be considered further in the year 2000 legislative session. Given the number of problems surrounding adequate health care for North Carolina's low-income populations, inquiries such as that described here can point the way to the concrete and feasible steps that need to be taken. (ABSTRACT TRUNCATED)
Metal Ion-Assembled Micro-Collagen Heterotrimers
LeBruin, Lyndelle Toni; Banerjee, Sunandan; O'Rourke, Bruce Delany; Case, Martin Ashley
2011-01-01
Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30 °C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. PMID:21590759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiang; Zhang, Shuai; Jiao, Fang
Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-stepmore » pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.« less
Optical analysis of the fine crystalline structure of artificial opal films.
Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H
2009-11-17
Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.
Flexible, Symmetry-Directed Approach To Assembling Protein Cages (Publisher’s Version Open Access)
2016-08-01
widespread in nature and confers new biological properties. Engineered protein assemblies have potential applica- tions in nanotechnology and medicine...and nanotechnology in designing novel self-assembling proteins and adapting natural protein assem- blies for a range of applications broadly
EVALUATION OF A MULTIFUNCTIONAL VALVE ASSEMBLY IN A DIRECT EXPANSION REFRIGERATION SYSTEM REPORT
The report describes the performance, including energy consumption, of a refrigeration system incorporating a multifunctional valve (MXV assembly). The MXV assembly (consisting of additional liquid line, an XTC valve, and a larger thermostatic expansion valve) was installed on al...
Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets
NASA Astrophysics Data System (ADS)
Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.
2010-03-01
Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.
Rolhauser, Andrés G; Pucheta, Eduardo
2017-03-01
How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly. © 2017 by the Ecological Society of America.
General view of a Space Shuttle Main Engine (SSME) mounted ...
General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping diagonally across the top of the assembly and connecting to the High-Pressure Fuel Turbopump, the Low-Pressure Oxidizer Turbopump (LPOTP) located center right of the assembly and the LPOTP Discharge Duct looping around from the pump to the underside of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Unconference session at the IAU General Assembly 2015
NASA Astrophysics Data System (ADS)
Nava, Tibisay Sankatsing; Venugopal, Ramasamy; Verdolini, Silvia
2016-10-01
The Astronomy For Development Focus Meeting 20 at the IAU General Assembly encompassed an `Unconference' session as part of the proceedings. Unstructured conferences, with their potential to unleash innovative ideas, are gaining traction in various conferences and symposia. Astronomy For Development is a field that is applicable to the entire Astronomy community (and even beyond) and hence an unconference inviting ideas and fostering frank dialogue is very pertinent. Officially one of the final sessions of the the 2015 General Assembly, the unconference session was intended to provide a balanced platform for a diverse set of participants and act as an informal setting to promote open discussion on topics of relevance to Astronomy for Development.
50. Photograph of a line drawing. 'AREA B, GENERAL ASSEMBLY, ...
50. Photograph of a line drawing. 'AREA B, GENERAL ASSEMBLY, BUILDINGS I, J, L, & M - LINES 9 & 10.' Holston Army Ammunition Plant. March 13, 1967; revised November 15, 1967, January 3, 1968. Delineator: Unknown. Drawing # 7651-1009.454. - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN
Human Rights Education Ways and Means
ERIC Educational Resources Information Center
Sajan, K. S.
2010-01-01
This paper describes the importance of human rights education as proclaimed by UN (1994) and also the strategies for developing human rights education by UN General assembly 2005. In proclaiming the United Nations Decade for Human Rights Education (1995-2004), in December 1994, the General Assembly defined human rights education as "a life-long…
Self-Assembled Student Interactions in Undergraduate General Chemistry Clicker Classrooms
ERIC Educational Resources Information Center
MacArthur, James R.; Jones, Loretta
2013-01-01
Student interviews, focus groups, and classroom observations were used in an exploratory study of the nature of student interactions in a large (300+ students) general chemistry course taught with clickers. These data suggest that students are self-assembling their learning environment: choosing ways in which to interact with one another during…
DOT National Transportation Integrated Search
1995-01-01
In its 1995 session, the Virginia General Assembly passed House Bill 2320, which lowered the age at which persons could obtain a learner's permit from 15 years 8 months to 15 years. In the same session, the General Assembly passed House Joint Resolut...
77 FR 38470 - Airworthiness Directives; Saab AB, Saab Aerosystems Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
..., performing a detailed inspection for individual play between the elevator pushrod assembly and degradation of... R20990 elevator pushrod assemblies [for individual play between the elevator pushrod assembly and... between the national government and the States, or on the distribution of power and responsibilities among...
Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong
2015-04-18
We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... new airworthiness directive (AD) for the Sikorsky Model S-92A helicopters. This AD requires a... (MGB) upper housing assembly rib on the left, right, and forward MGB mounting foot at specified... prompted by a report of a crack found on the MGB upper housing assembly left mounting foot forward rib that...
Utturkar, Sagar M.; Klingeman, Dawn Marie; Land, Miriam L.; ...
2014-06-14
Our motivation with this work was to assess the potential of different types of sequence data combined with de novo and hybrid assembly approaches to improve existing draft genome sequences. Our results show Illumina, 454 and PacBio sequencing technologies were used to generate de novo and hybrid genome assemblies for four different bacteria, which were assessed for quality using summary statistics (e.g. number of contigs, N50) and in silico evaluation tools. Differences in predictions of multiple copies of rDNA operons for each respective bacterium were evaluated by PCR and Sanger sequencing, and then the validated results were applied as anmore » additional criterion to rank assemblies. In general, assemblies using longer PacBio reads were better able to resolve repetitive regions. In this study, the combination of Illumina and PacBio sequence data assembled through the ALLPATHS-LG algorithm gave the best summary statistics and most accurate rDNA operon number predictions. This study will aid others looking to improve existing draft genome assemblies. As to availability and implementation–all assembly tools except CLC Genomics Workbench are freely available under GNU General Public License.« less
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging
Füzik, Tibor; Píchalová, Růžena; Schur, Florian K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, John A. G.
2016-01-01
ABSTRACT The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV. PMID:26912613
Selective directed self-assembly of coexisting morphologies using block copolymer blends
NASA Astrophysics Data System (ADS)
Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.
2016-08-01
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.
Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.
Koss, K M; Unsworth, L D
2016-10-15
Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering. Copyright © 2016. Published by Elsevier Ltd.
Multi-Robot Assembly Strategies and Metrics.
Marvel, Jeremy A; Bostelman, Roger; Falco, Joe
2018-02-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Multi-Robot Assembly Strategies and Metrics
MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE
2018-01-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234
Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping
2017-03-09
Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
49 CFR 572.71 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... D SA 106C 041 Arm Assembly (right) SA 106C 001, sheet 14 A SA 106C 042 Arm Assembly (left) SA 106C... Assembly (left) SA 106C 001, sheet 17 A (c) Adjacent segments are joined in a manner such that except for...
49 CFR 572.71 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... D SA 106C 041 Arm Assembly (right) SA 106C 001, sheet 14 A SA 106C 042 Arm Assembly (left) SA 106C... Assembly (left) SA 106C 001, sheet 17 A (c) Adjacent segments are joined in a manner such that except for...
Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M
2013-05-10
Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.
49 CFR 571.207 - Standard No. 207; Seating systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... standard establishes requirements for seats, their attachment assemblies, and their installation to... longitudinal direction; (c) For a seat belt assembly attached to the seat—the force specified in paragraph (a... applied simultaneously with the forces imposed on the seat by the seat belt assembly when it is loaded in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... design change for the combustion chamber liner assembly. This proposed AD would retain the requirements... design change to the combustion chamber liner assembly. The current design of the combustion chamber liner assembly is a one- piece configuration. The new design change involves replacing the combustion...
78 FR 9796 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... against the right steering tube assembly during rudder pedal actuation. This AD requires you to install... between the fuel return line assembly and the steering tube assembly and clearance between the fuel return...://www.cessnasupport.com . You may review copies of the referenced service information at the FAA, Small...
77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... rubbing against the right steering tube assembly during full rudder pedal actuation. This proposed AD would require you to inspect the fuel return line assembly for chafing; replace the fuel return line... right steering tube assembly and the airplane structure; and adjustment as necessary. We are proposing...
77 FR 72250 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... rubbing against the right steering tube assembly during rudder pedal actuation. This proposed AD would require you to install the forward and aft fuel return line support clamps and brackets; inspect for a minimum clearance between the fuel return line assembly and the steering tube assembly and clearance...
77 FR 65613 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
... related reaction link assembly, and replacing the rudder PCU and its related reaction link assembly if... substrate because of the use of liquid nitrogen during installation of the bushing into the reaction link... identify the condition of its related reaction link assembly, and replacing the rudder PCU and its related...
77 FR 37829 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... assemblies of the left- and right-hand thrust reversers. Since we issued that AD, the manufacturer has issued new life limits on certain thrust reverser C-duct assemblies. This proposed AD would require removing certain C-duct assemblies of the left- and right-hand thrust reversers from service at certain designated...
Directed assembly of colloidal particles for micro/nano photonics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zheng, Yuebing
2017-02-01
Bottom-up fabrication of complex structures with chemically synthesized colloidal particles as building blocks pave an efficient and cost-effective way towards micro/nano photonics with unprecedented functionality and tunability. Novel properties can arise from quantum effects of colloidal particles, as well as inter-particle interactions and spatial arrangement in particle assemblies. Herein, I discuss our recent developments and applications of three types of techniques for directed assembly of colloidal particles: moiré nanosphere lithography (MNSL), bubble-pen lithography (BPL), and optothermal tweezers (OTTs). Specifically, MNSL provides an efficient approach towards creating moiré metasurface with tunable and multiband optical responses from visible to mid-infrared regime. Au moiré metasurfaces have been applied for surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins. BPL is developed to pattern a variety of colloidal particles on plasmonic substrates and two-dimensional atomic-layer materials in an arbitrary manner. The laser-directed microbubble captures and immobilizes nanoparticles through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. OTTs are developed to create dynamic nanoparticle assemblies at low optical power. Such nanoparticle assemblies have been used for surface-enhanced Raman spectroscopy for molecular analysis in their native environments.
Self Assembled Bi-functional Peptide Hydrogels with Biomineralization-Directing Peptides
Gungormus, Mustafa; Branco, Monica; Fong, Hanson; Schneider, Joel P.; Tamerler, Candan; Sarikaya, Mehmet
2014-01-01
A peptide-based hydrogel has been designed that directs the formation of hydroxyapatite. MDG1, a twenty-seven residue peptide, undergoes triggered folding to form an unsymmetrical β-hairpin that self-assembles in response to an increase in solution ionic strength to yield a mechanically rigid, self supporting hydrogel. The C-terminal portion of MDG1 contains a heptapeptide (MLPHHGA) capable of directing the mineralization process. Circular dichroism spectroscopy indicates that the peptide folds and assembles to form a hydrogel network rich in β-sheet secondary structure. Oscillatory rheology indicates that the hydrogel is mechanical rigid (G′ ∼ 2500 Pa) before mineralization. In separate experiments, mineralization was induced both biochemically and with cementoblast cells. Mineralization-domain had little effect on the mechanical rigidity of the gel. SEM and EDS show that MDG1 gels are capable of directing the formation of hydroxapatite. Control hydrogels, prepared by peptides either lacking the mineral-directing portion or reversing its sequence, indicated that the heptapeptide is necessary and its actions are sequence specific. PMID:20591477
Dual-axis resonance testing of wind turbine blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Scott; Musial, Walter; White, Darris
An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies ofmore » the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.« less
Ultrasonically-assisted Thermal Stir Welding System
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2014-01-01
A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.
Ference, Edward W.; Houtman, John L.; Waldby, Robert N.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.
NASA Astrophysics Data System (ADS)
Garner, Grant Parker
The directed self assembly of block copolymers is an exciting complimentary technique for the fabrication of nanoscale structures for lithographic applications. Typically a directed self assembly process is driven through substrates with chemical (chemoepitaxy) or topographical (graphoepitaxy) guiding features. These patterning strategies have led to the ability to assemble structures with a high degree of perfection over large areas. However, a guiding pattern has not been created which assembles the desired features with a defect density that is commensurate with industrial standards of 1 defect/100cm 2. This work focuses on using molecular simulations on the Theoretically Informed Coarse Grained model to provide design rules for substrate patterns which drive the assembly of desired, device-oriented morphologies. Prior to the work presented in Chapter 2, the TICG model has been used in conjunction with a chemical pattern that is approximated as a hard-impenetrable surface. As many experimental systems use polymer brushes to help guide the polymer melt deposited on the substrate, this work analyzes the consequences of such an assumption by comparing a model where the polymer brush is explicitly implemented to the hard-wall substrate used in the past. Then, a methodology which utilizes a evolutionary optimization method is used to map the parameters of the more detailed model to the hard-surface model. This provides a qualitative understanding of how to interpret the model parameters used in previous works in the context of real experimental pattern designs. Chapter 3 discuss the concept of competitive assemblies in regards to defining a thermodynamic processing window in design space for assembling lines-and-spaces. The most competitive assembly to the desired orientation of the lamella is defined as a rotation of assembled lamella to the underlying pattern. Thermodynamic integration is used to calculate the free-energy difference between these assemblies over chemical patterns with varied design parameters. Local maximums in the free-energy difference are observed over pattern designs that are in qualitatively agreement with the pattern designs which produce the most perfect assemblies in experiments. The analysis is extended to study how choice of chemistry impacts this thermodynamic selection for the desired morphology. Finally, Chapter 4 provides insight into the kinetics of patterned directed self-assembly by investigating cylinder forming block copolymers within cylindrical confinements. Through the use of the string method, the minimum free-energy path between a defective state and the desired assembled morphology is calculated and clear transition states are highlighted. The effects of key parameters of the confinement design on the calculated minimum free energy path are calculated to identify design rules which should lead to a better understanding of optimal connement design for eliminating defects. In addition, a specific modification to existing cylindrical confinements is discussed as a possibility for tackling the problem of placement accuracy for a cylinder that is assembled within the confinement.
Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Dai, Pengcheng; Yamauchi, Yusuke
2015-12-01
Large-sized (ca. 40 nm) mesoporous Er2O3 thin films are synthesized by using a triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) as a pore directing agent. Each block makes different contributions and the molar ratio of PVP/Er(3+) is crucial to guide the resultant mesoporous structure. An easy and general method is proposed and used to prepare a series of mesoporous rare-earth oxide (Sm2O3, Dy2O3, Tb2O3, Ho2O3, Yb2O3, and Lu2O3) thin films with potential uses in electronics and optical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle
NASA Astrophysics Data System (ADS)
Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai
2018-03-01
Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.
2001-05-31
This diagram shows the general arrangement of the payloads to be carried by the multidisciplinary STS-107 Research-1 Space Shuttle mission in 2002. The Spacehab module will host experiments that require direct operation by the flight crew. Others with special requirements will be on the GAS Bridge Assembly sparning the payload bay. The Extended Duration Orbiter kit carries additional oxygen and hydrogen for the electricity-producing fuel cells. Research-1 experiments will cover space biology, life science, microgravity research, and commercial space product development, research sponsored by NASA's Office of Biological and Physical Research. An alternative view without callouts is available at 0101765.
2001-05-31
Thisdiagram shows the general arrangement of the payloads to be carried by the multidisciplinary STS-107 Research-1 Space Shuttle mission in 2002. The Spacehab module will host experiments that require direct operation by the flight crew. Others with special requirements will be on the GAS Bridge Assembly sparning the payload bay. The Extended Duration Orbiter kit carries additional oxygen and hydrogen for the electricity-producing fuel cells. Research-1 experiments will cover space biology, life science, microgravity research, and commercial space product development, research sponsored by NASA's Office of Biological and Physical Research. An alternative view with callouts is available at 0101764.
NASA Technical Reports Server (NTRS)
2001-01-01
Thisdiagram shows the general arrangement of the payloads to be carried by the multidisciplinary STS-107 Research-1 Space Shuttle mission in 2002. The Spacehab module will host experiments that require direct operation by the flight crew. Others with special requirements will be on the GAS Bridge Assembly sparning the payload bay. The Extended Duration Orbiter kit carries additional oxygen and hydrogen for the electricity-producing fuel cells. Research-1 experiments will cover space biology, life science, microgravity research, and commercial space product development, research sponsored by NASA's Office of Biological and Physical Research. An alternative view with callouts is available at 0101764.
NASA Technical Reports Server (NTRS)
2001-01-01
This diagram shows the general arrangement of the payloads to be carried by the multidisciplinary STS-107 Research-1 Space Shuttle mission in 2002. The Spacehab module will host experiments that require direct operation by the flight crew. Others with special requirements will be on the GAS Bridge Assembly sparning the payload bay. The Extended Duration Orbiter kit carries additional oxygen and hydrogen for the electricity-producing fuel cells. Research-1 experiments will cover space biology, life science, microgravity research, and commercial space product development, research sponsored by NASA's Office of Biological and Physical Research. An alternative view without callouts is available at 0101765.
Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jian; Wang, Xiaowei; Paiella, Roberto
2016-06-13
Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.
Lifting system and apparatus for constructing wind turbine towers
Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James
2011-02-01
The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.
General view of a Space Shuttle Main Engine (SSME) mounted ...
General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Oxidizer Turbopump Discharge Duct looping around the right side of the engine assembly then turning in and connecting to the High-Pressure Oxidizer Turbopump. The sphere in the approximate center of the assembly is the POGO System Accumulator, the Engine Controller is located on the bottom and slightly left of the center of the Engine Assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Carbon-rich supramolecular metallacycles and metallacages
Northrop, Brian H.; Chercka, Dennis; Stang, Peter J.
2008-01-01
Coordination-driven self-assembly via the directional-bonding approach utilizes rigid transition metal acceptors and electron-rich donors to allow for complex, nanoscale 2D polygons and 3D polyhedra to be prepared under mild conditions and in high yields. To ensure proper rigidity and directionality, many acceptor and donor precursors contain largely carbon-rich aromatic and/or acetylenic moieties. This article introduces self-assembly as an alternative means of synthesizing carbon-rich materials and discusses the development, design, synthesis, and applications of carbon-rich supramolecular metallacycles and metallacages as well as the self-assembly of new diastereomeric carbon-rich supramolecular triangles. PMID:20011029
Dallabernardina, Pietro; Ruprecht, Colin; Smith, Peter J; Hahn, Michael G; Urbanowicz, Breeanna R; Pfrengle, Fabian
2017-12-06
We report the automated glycan assembly of oligosaccharides related to the plant cell wall hemicellulosic polysaccharide xyloglucan. The synthesis of galactosylated xyloglucan oligosaccharides was enabled by introducing p-methoxybenzyl (PMB) as a temporary protecting group for automated glycan assembly. The generated oligosaccharides were printed as microarrays, and the binding of a collection of xyloglucan-directed monoclonal antibodies (mAbs) to the oligosaccharides was assessed. We also demonstrated that the printed glycans can be further enzymatically modified while appended to the microarray surface by Arabidopsis thaliana xyloglucan xylosyltransferase 2 (AtXXT2).
General view of the Aft Rocket Motor mated with the ...
General view of the Aft Rocket Motor mated with the External Tank Attach Ring and Aft Skirt Assembly in the process of being mounted onto the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the Aft Rocket Motor mated with the ...
General view of the Aft Rocket Motor mated with the External Tank Attach Ring and Aft Skirt Assembly being transported from the Rotation Processing and Surge Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Session of the General Assembly of IUCN (15th, Christchurch, New Zealand, October 11-23, 1981).
ERIC Educational Resources Information Center
International Union for Conservation of Nature and Natural Resources, Morges, (Switzerland).
Resolutions adopted by the 15th session of the General Assembly of the International Union for Conservation of Nature and Natural Resources (IUCN) are provided in this document. These resolutions focus on areas/issues related to: (1) world conservation strategy; (2) conservation and peace; (3) people, resources, and environment; (4) environmental…
Recommendations to the Illinois General Assembly on Zoning for Community Residences.
ERIC Educational Resources Information Center
Illinois Planning Council on Developmental Disabilities, Springfield.
The Illinois General Assembly enacted the Community Residence Location Planning Act (CRLPA) to provide assistance to the state's 110 home rule municipalities to help bring their zoning ordinances into compliance with 1988 amendments to the U.S. Fair Housing Act. This report presents the results of this effort and offers recommendations to the…
Teacher Activism in Response to North Carolina's 2013 Excellent Public Schools Act
ERIC Educational Resources Information Center
Cox, Courtnee Danielle
2017-01-01
In 2013, North Carolina's political power balances shifted with the election of a Republican governor, Pat McCrory, and a Republican super-majority in the General Assembly. This shift in political power allowed for more conservative legislation to be introduced in the North Carolina General Assembly. Some of the newly proposed legislation,…
ERIC Educational Resources Information Center
Colorado Commission on Higher Education, 2011
2011-01-01
Pursuant to Section 23-1-121(6) Colorado Revised Statutes (CRS), the Colorado Commission on Higher Education (CCHE) reports annually to the Education Committees of the General Assembly on the effectiveness of the review of educator preparation programs. This report also includes: (1) An overview of enrollments in approved educator preparation…
DOT National Transportation Integrated Search
1990-01-01
During its 1989 session, the Virginia General Assembly passed House Joint Resolution No. 419. The Resolution requested that Virginia's pedestrian safety laws be studied and that recommendations for revisions of those laws be made to improve pedestria...
Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.
Yonemoto, Isaac T; Weyman, Philip D
2017-01-01
Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.
The Self-Assembly of Particles with Multipolar Interactions
2004-01-01
the LATEX template in which this thesis has been written. I also thank Kevin Van Workum and Jack Douglas for contributing simulation work and some...of the computational expense of simulating such complex self-assembly systems at the molecular level and a desire to understand the self-assembly at...Dissertation directed by: Professor Wolfgang Losert Department of Physics In this thesis , we describe results from investigations of the self-assembly of
NASA Astrophysics Data System (ADS)
Nored, Donald L.
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
NASA Technical Reports Server (NTRS)
Nored, Donald L.
1990-01-01
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
Direct hierarchical assembly of nanoparticles
Xu, Ting; Zhao, Yue; Thorkelsson, Kari
2014-07-22
The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.
78 FR 59293 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... Engineering Corporation parts manufacturer approval replacement cylinder assemblies installed. The replacement cylinder assemblies are marketed by Engine Components International Division. DATES: The comment period for...
Kassner, Michael E.; Nemat-Nasser, Sia; Suo, Zhigang; ...
2004-09-15
The Division of Materials Sciences and Engineering of the US Department of Energy (DOE) sponsored a workshop to identify cutting-edge research needs and opportunities, enabled by the application of theoretical and applied mechanics. The workshop also included input from biochemical, surface science, and computational disciplines, on approaching scientific issues at the nanoscale, and the linkage of atomistic-scale with nano-, meso-, and continuum-scale mechanics. This paper is a summary of the outcome of the workshop, consisting of three main sections, each put together by a team of workshop participants. Section 1 addresses research opportunities that can be realized by the applicationmore » of mechanics fundamentals to the general area of self-assembly, directed self-assembly, and fluidics. Section 2 examines the role of mechanics in biological, bioinspired, and biohybrid material systems, closely relating to and complementing the material covered in Section 1. In this manner, it was made clear that mechanics plays a fundamental role in understanding the biological functions at all scales, in seeking to utilize biology and biological techniques to develop new materials and devices, and in the general area of bionanotechnology. While direct observational investigations are an essential ingredient of new discoveries and will continue to open new exciting research doors, it is the basic need for controlled experimentation and fundamentally- based modeling and computational simulations that will be truly empowered by a systematic use of the fundamentals of mechanics. Section 3 brings into focus new challenging issues in inelastic deformation and fracturing of materials that have emerged as a result of the development of nanodevices, biopolymers, and hybrid bio–abio systems. As a result, each section begins with some introductory overview comments, and then provides illustrative examples that were presented at the workshop and which are believed to highlight the enabling research areas and, particularly, the impact that mechanics can make in enhancing the fundamental understanding that can lead to new technologies.« less
Forced response of mistuned bladed disk assemblies
NASA Technical Reports Server (NTRS)
Watson, Brian C.; Kamat, Manohar P.; Murthy, Durbha V.
1993-01-01
A complete analytic model of mistuned bladed disk assemblies, designed to simulate the dynamical behavior of these systems, is analyzed. The model incorporates a generalized method for describing the mistuning of the assembly through the introduction of specific mistuning modes. The model is used to develop a computational bladed disk assembly model for a series of parametric studies. Results are presented demonstrating that the response amplitudes of bladed disk assemblies depend both on the excitation mode and on the mistune mode.
Ellingson, William A.; Forster, George A.
1999-11-02
Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.
Larson, Mark E.; Falconer, Daniel J.; Myers, Alan M.; Barb, Adam W.
2016-01-01
A comprehensive description of starch biosynthesis and granule assembly remains undefined despite the central nature of starch as an energy storage molecule in plants and as a fundamental calorie source for many animals. Multiple theories regarding the starch synthase (SS)-catalyzed assembly of (α1–4)-linked d-glucose molecules into maltodextrins generally agree that elongation occurs at the non-reducing terminus based on the degradation of radiolabeled maltodextrins, although recent reports challenge this hypothesis. Surprisingly, a direct analysis of the SS catalytic product has not been reported, to our knowledge. We expressed and characterized recombinant Zea mays SSIIa and prepared pure ADP-[13CU]glucose in a one-pot enzymatic synthesis to address the polarity of maltodextrin chain elongation. We synthesized maltoheptaose (degree of polymerization 7) using ADP-[13CU]glucose, maltohexaose (degree of polymerization 6), and SSIIa. Product analysis by ESI-MS revealed that the [13CU]glucose unit was added to the non-reducing end of the growing chain, and SSIIa demonstrated a >7,850-fold preference for addition to the non-reducing end versus the reducing end. Independent analysis of [13CU]glucose added to maltohexaose by SSIIa using solution NMR spectroscopy confirmed the polarity of maltodextrin chain elongation. PMID:27733678
77 FR 56172 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... high tensile standing stress, resulting from dry fit axle assembly method. Improvement has been introduced subsequently with a grease fit axle assembly method. Fatigue and damage tolerance analyses were...
Rational Self-Assembly of Nano-Colloids using DNA Interaction
NASA Astrophysics Data System (ADS)
Ung, Marie T.; Scarlett, Raynaldo; Sinno, Talid R.; Crocker, John C.
2010-03-01
DNA is an attractive tool to direct the rational self-assembly of nano-colloids since its interaction is specific and reversible. This tunable attractive interaction should lead to a diverse and rich phase diagram of higher ordered structures which would not otherwise be entropically favored.footnotetextTkachenko AV, Morphological Diversity of DNA-Colloidal Self-Assembly, Phys. Rev. Lett 89 (2002) We compare our latest experimental observations to a simulation framework that precisely replicates the experimental phase behavior and the crystal growth kinetics.footnotetextKim AJ, Scarlett R., Biancaniello PL, Sinno T, Crocker JC, Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly, Nature Materials 8, 52-55 (2009) We will discuss the crystallography of novel structures and address how particle size and heterogeneity affect nucleation and growth rates.
NASA Technical Reports Server (NTRS)
Caruso, S. V.; Perkins, K. L.; Licari, J. J.
1973-01-01
Although it is generally accepted that the use of adhesives in the assembly of hybrid microcircuits offers advantages over other bonding methods, there currently does not exist a set of guidelines for the selection of adhesives which will insure that hybrid microcircuits assembled with them will meet the long use-life, high-reliability requirements of electronic equipment for space applications. This study was directed to the identification of the properties of electrically insulative adhesives that potentially could cause problems in such an application, and to the development of evaluation tests to quantify these properties and thus form the basis for establishing suitable guidelines and, ultimately, specifications. Bond strength, outgassing after cure, and corrosivity were selected for detailed attention since they are considered to be especially critical. Introductory discussion includes enumeration and brief comments on the properties of adhesives considered to be important for the proposed application, a general review of polymeric types of adhesives, and identification of the major types of adhesives commercially available and specifically designed for microelectronic use. The specific tests developed to evaluate bond strength, outgassing after cure, and corrosivity are discussed in detail, and comparative results obtained for selected adhesives representative of the major types are given.
78 FR 12991 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
..., and replacement or rework of the bellcrank assemblies if necessary. The other AD currently requires... replacement or rework of the bellcrank assemblies, if necessary. That AD resulted from reports that elevator..., 2000, is 0.35 inch or more, but less than 0.50 inch, rework or replace the bellcrank assembly with a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... Buckle Assemblies AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Scientific seat restraint rotary buckle assemblies (buckle). This proposed AD is prompted by several reports... checking the P/N on the reverse side of the buckle assembly against the P/N listed in Appendix 1 of the SB...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... gearbox (MGB) filter bowl assembly with a two-piece MGB filter bowl assembly and replacing the existing mounting studs. The AD also requires inspecting the MGB lube system filters, the housing, the housing... prompted by tests indicating that an existing MGB filter bowl assembly can fail under certain loading...
78 FR 4762 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... certain hydraulic servo actuator assemblies (servo) for a loose nut, shaft, and clevis assembly, modifying... through 52430, with a hydraulic servo actuator assembly (servo), part number (P/N) 206-076-062-103...) No. 206L-11-169, Revision B, dated August 29, 2011 (ASB). (2) Applying only hand pressure, determine...
Direct mounted photovoltaic device with improved side clip
Keenihan, James R; Boven, Michelle L; Brown, Jr., Claude; Eurich, Gerald K; Gaston, Ryan S; Hus, Michael
2013-11-19
The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.
78 FR 33197 - Airworthiness Directives; Iniziative Industriali Italiane S.p.A. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... plane hinge assembly. We are issuing this AD to require actions to address the unsafe condition on these... plane hinge assembly have been reported. This condition, if not detected and corrected, could lead to... bearing and the horizontal tail/elevator plane hinge assembly to detect any crack, signs of corrosion or...
Direct mounted photovoltaic device with improved front clip
Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike
2013-11-05
The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.
Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris
2015-01-02
In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Legendre-Guillemin, Valerie; Metzler, Martina; Lemaire, Jean-Francois; Philie, Jacynthe; Gan, Lu; Hayden, Michael R; McPherson, Peter S
2005-02-18
Huntingtin interacting protein 1 (HIP1) is a component of clathrin coats. We previously demonstrated that HIP1 promotes clathrin assembly through its central helical domain, which binds directly to clathrin light chains (CLCs). To better understand the relationship between CLC binding and clathrin assembly we sought to dissect this interaction. Using C-terminal deletion constructs of the HIP1 helical domain, we identified a region between residues 450 and 456 that is required for CLC binding. Within this region, point mutations showed the importance of residues Leu-451, Leu-452, and Arg-453. Mutants that fail to bind CLC are unable to promote clathrin assembly in vitro but still mediate HIP1 homodimerization and heterodimerization with the family member HIP12/HIP1R. Moreover, HIP1 binding to CLC is necessary for HIP1 targeting to clathrin-coated pits and clathrin-coated vesicles. Interestingly, HIP1 binds to a highly conserved region of CLC previously demonstrated to regulate clathrin assembly. These results suggest a role for HIP1/CLC interactions in the regulation of clathrin assembly.
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-01-01
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Emerging Insights into Directed Assembly: Taking Examples from Nature to Design Synthetic Processes
NASA Astrophysics Data System (ADS)
de Pablo, Juan J.
There is considerable interest in controlling the assembly of polymeric material in order to create highly ordered materials for applications. Such materials are often trapped in metastable, non-equilibrium states, and the processes through which they assemble become an important aspect of the materials design strategy. An example is provided by di-block copolymer directed self-assembly, where a decade of work has shown that, through careful choice of process variables, it is possible to create ordered structures whose degree of perfection meets the constraints of commercial semiconductor manufacturing. As impactful as that work has been, it has focused on relatively simple materials neutral polymers, consisting of two or at most three blocks. Furthermore, the samples that have been produced have been limited to relatively thin films, and the assembly has been carried out on ideal, two-dimensional substrates. The question that arises now is whether one can translate those achievements to polymeric materials having a richer sequence, to monomers that include charges, to three-dimensional substrates, or to active systems that are in a permanent non-equilibrium state. Building on discoveries from the biophysics literature, this presentation will review recent work from our group and others that explains how nature has evolved to direct the assembly of nucleic acids into intricate, fully three-dimensional macroscopic functional materials that are not only active, but also responsive to external cues. We will discuss how principles from polymer physics serve to explain those assemblies, and how one might design a new generation of synthetic systems that incorporate some of those principles.
Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.
Luo, Jie; Cimermancic, Peter; Viswanath, Shruthi; Ebmeier, Christopher C; Kim, Bong; Dehecq, Marine; Raman, Vishnu; Greenberg, Charles H; Pellarin, Riccardo; Sali, Andrej; Taatjes, Dylan J; Hahn, Steven; Ranish, Jeff
2015-09-03
TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit. Copyright © 2015 Elsevier Inc. All rights reserved.
Nanotechnology-based approaches for the development of diagnostics, therapeutics, and vaccines.
Srinivasan, Alagarsamy; Rastogi, Anshu; Ayyavoo, Velpandi; Srivastava, Shiv
2014-06-01
The architecture of nanoparticles of biological origin, generally also known as bionanoparticles, presents several features that are ideal for their use in developing diagnostics, therapeutics, and vaccines. In this regard, particles formed by viral proteins using recombinant DNA technology resemble authentic virus particles. However, they lack infectivity due to the absence of genetic components such as DNA or RNA. Hence, they are designated as virus-like particles (VLP). VLPs possess the following characteristics: (1) they can be generated by either a single or a few viral proteins; (2) their size, formed by viral proteins, is in the range of 20 to100 nm; (3) the number of protein molecules required for particle assembly is from hundreds to thousands, depending on the VLP; (4) the protein(s) responsible for their assembly are amenable for manipulation; and (5) multiple proteins/peptides can be incorporated into a VLP. The potential advantages of VLPs directed by retroviral proteins are discussed in this review.
Architecture of the human and yeast general transcription and DNA repair factor TFIIH
Luo, Jie; Cimermancic, Peter; Viswanath, Shruthi; Ebmeier, Christopher C.; Kim, Bong; Dehecq, Marine; Raman, Vishnu; Greenberg, Charles H.; Pellarin, Riccardo; Sali, Andrej; Taatjes, Dylan J.; Hahn, Steven; Ranish, Jeff
2015-01-01
Summary TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved “topological regions” that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with Xeroderma pigmentosum and Trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit. PMID:26340423
Tilt assembly for tracking solar collector assembly
Almy, Charles; Peurach, John; Sandler, Reuben
2012-01-24
A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.
Capacitor assembly and related method of forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lili; Tan, Daniel Qi; Sullivan, Jeffrey S.
A capacitor assembly is disclosed. The capacitor assembly includes a housing. The capacitor assembly further includes a plurality of capacitors disposed within the housing. Furthermore, the capacitor assembly includes a thermally conductive article disposed about at least a portion of a capacitor body of the capacitors, and in thermal contact with the capacitor body. Moreover, the capacitor assembly also includes a heat sink disposed within the housing and in thermal contact with at least a portion of the housing and the thermally conductive article such that the heat sink is configured to remove heat from the capacitor in a radialmore » direction of the capacitor assembly. Further, a method of forming the capacitor assembly is also presented.« less
NASA Astrophysics Data System (ADS)
Wyrsta, Michael Dmytro
A new class of transition metal initiators for the controlled polymerization of alpha-aminoacid-N-carboxyanhydrides (alpha-NCAs), has been developed by Deming et al. This discovery has allowed for the synthesis of well-defined "protein-like" polymers. Using this chemistry we have made distinct block/random copolypeptides for biomedical applications. Drug delivery, gene delivery, and antimicrobial polymers were the focus of our research efforts. The motivation for the synthesis and study of synthetic polypeptide based materials comes from proteins. Natural proteins are able to adopt a staggeringly large amount of uniquely well-defined folded structures. These structures account for the diversity in properties of proteins. As catalysts (enzymes) natural proteins perform some of the most difficult chemistry with ease and precision at ambient pressures and temperatures. They also exhibit incredible structural properties that directly result from formation of complex hierarchical assemblies. Self-assembling block copolymers were synthesized with various compositions and architectures. In general, di- and tri-block amphiphiles were studied for their self-assembling properties. Both spherical and tubular vesicles were found to assemble from di- and tri-block amphiphiles, respectively. In addition to self-assembly, pH responsiveness was engineered into these amphiphiles by the incorporation of basic residues (lysine) into the hydrophobic block. Another form of self-assembly studied was the condensation of DNA using cationic block copolymers. It was found that cationic block copolymers could condense DNA into compact, ordered, water-soluble aggregates on the nanoscale. These aggregates sufficiently protected DNA from nucleases and yet were susceptible to proteases. These studies form the basis of a gene delivery platform. The ease with which NCAs are polymerized renders them completely amenable to parallel synthetic methods. We have employed this technique to discover new antimicrobial polypeptides. The polymers studied were themselves the antimicrobial agent, not a self-assembled aggregate that contained antibiotics. It was found that powerful antibacterial polymers could be readily prepared with simple binary compositions. Antibacterial activity was sensitive to copolymer composition, bacterial cell-wall type, and insensitive to chain length (within reason).
Development of student's skills of 3D modeling of assembly units
NASA Astrophysics Data System (ADS)
Chepur, P. V.; Boshhenko, T. V.
2018-03-01
The paper presents data on the influence of additives of the pre-treated aluminium oxide powder on the structure of cast lead-tin-based bronzes. The article demonstrates that modern, advanced from the point of view of automation, methods in designing products are the basis for the successful implementation of any production task. The advantages of product presentation in the form of an assembly consisting of 3D models of its details are described. The extreme importance of high-quality preparation of students of engineering specialties for work in computer-aided design programs such as AutoCAD, Compass 3D, Inventer|, Solid Edge, Solid Works, Revit, ANSYS is considered. It is established that one of the most effective forms of increasing the level of computer graphic preparation of students are academic competitions and contests on modeling and prototyping products. The stages of creation of assembly unit models in the AutoCad and Compass 3D software suits generally accepted both in design in a business environment and during training of specialists are considered. The developed 3D models of assembly units are presented in the course of preparation for academic competitions (called Academic Olympics in Russia) of students of the 2nd-5th years of study and the first year students of the master's program in engineering. The conclusions and recommendations on the development of the direction of three-dimensional design in the environment of higher education are given.
Simulation Study on the Controllable Dielectrophoresis Parameters of Graphene
NASA Astrophysics Data System (ADS)
Ji, Jian-Long; Liu, Ya-Li; Ge, Yang; Xie, Sheng-Dong; Zhang, Xi; Sang, Sheng-Bo; Jian, Ao-Qun; Duan, Qian-Qian; Zhang, Qiang; Zhang, Wen-Dong
2017-03-01
The method of using dielectrophoresis (DEP) to assemble graphene between micro-electrodes has been proven to be simple and efficient. We present an optimization method for the kinetic formula of graphene DEP, and discuss the simulation of the graphene assembly process based on the finite element method. The simulated results illustrate that the accelerated motion of graphene is in agreement with the distribution of the electric field squared gradient. We also conduct research on the controllable parameters of the DEP assembly such as the alternating current (AC) frequency, the shape of micro-electrodes, and the ratio of the gap between electrodes to the characteristic/geometric length of graphene (λ). The simulations based on the Clausius-Mossotti factor reveal that both graphene velocity and direction are influenced by the AC frequency. When graphene is close to the electrodes, the shape of micro-electrodes will exert great influence on the velocity of graphene. Also, λ has a great influence on the velocity of graphene. Generally, the velocity of graphene would be greater when λ is in the range of 0.4-0.6. The study is of a theoretical guiding significance in improving the precision and efficiency of the graphene DEP assembly. Supported by the Basic Research Project of Shanxi Province under Grant No 2015021092, the National Natural Science Foundation of China under Grant Nos 61471255, 61474079, 61501316, 51505324 and 51622507, and the National High-Technology Research and Development Program of China under Grant No 2015AA042601.
Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella
2009-01-01
Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.
Solar collector-skylight assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dame, R.E.
1984-10-09
A solar collector-skylight assembly having movable parabolic concentrators wherein, in one position the parabolic concentrators direct solar energy to a collector to heat fluid circulating therethrough to thereby provide a solar heater; and when the concentrators are moved to another position, the assembly functions as a skylight wherein the solar energy is allowed to pass through the collector, to thereby illuminate the interior of a building upon which the solar collector-skylight assembly is mounted.
The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein.
Vander Wood, Drew A; Keatinge-Clay, Adrian T
2018-06-01
Here, the term "module" is redefined for trans-acyltransferase (trans-AT) assembly lines to agree with how its domains cooperate and evolutionarily co-migrate. The key domain in both the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) modules of assembly lines is the acyl carrier protein (ACP). ACPs not only relay growing acyl chains through the assembly line but also collaborate with enzymes in modules, both in cis and in trans, to add a specific chemical moiety. A ketosynthase (KS) downstream of ACP often plays the role of gatekeeper, ensuring that only a single intermediate generated by the enzymes of a module is passed downstream. Bioinformatic analysis of 526 ACPs from 33 characterized trans-AT assembly lines reveals ACPs from the same module type generally clade together, reflective of the co-evolution of these domains with their cognate enzymes. While KSs downstream of ACPs from the same module type generally also clade together, KSs upstream of ACPs do not-in disagreement with the traditional definition of a module. Beyond nomenclature, the presented analysis impacts our understanding of module function, the evolution of assembly lines, pathway prediction, and assembly line engineering. © 2018 Wiley Periodicals, Inc.
Public Secondary School Dropouts in Pennsylvania 2003-04. Report to the General Assembly
ERIC Educational Resources Information Center
Hruska, Richard A., Comp.
2005-01-01
Act 49 of 1987 requires the Secretary of Education to provide the General Assembly with an annual report on public school dropouts in Pennsylvania. The purpose of this report is to document the actual number of students who drop out each year and to provide various characteristics about these students. The type of data collected about each dropout…
Public Secondary School Dropouts in Pennsylvania, 2002-03. Report to the General Assembly.
ERIC Educational Resources Information Center
Hruska, Richard A., Comp.
2004-01-01
Act 49 of 1987 requires the Secretary of Education to provide the General Assembly with an annual report on public school dropouts in Pennsylvania. The purpose of this report is to document the actual number of students who drop out each year and to provide various characteristics about these students. The type of data collected about each dropout…
Public Secondary School Dropouts in Pennsylvania 2005-06: Report to the General Assembly
ERIC Educational Resources Information Center
Bobek, Joanne R., Comp.
2007-01-01
Act 49 of 1987 requires the Secretary of Education to provide the General Assembly with an annual report on public school dropouts in Pennsylvania. The purpose of this report is to document the actual number of students who drop out each year and to provide various characteristics about these students. The type of data collected about each dropout…
The General Assembly of the United Nations, 1979 (34th).
ERIC Educational Resources Information Center
Keys, Donald F.
This report is a succinct summary of action taken by the 34th General Assembly of the United Nations. It is intended for use by members of UN delegations, UN secretariat staff, policy makers, scholars, students, and members of the public interested in global problems and world issues. The report provides an accurate record of actions taken,…
DOT National Transportation Integrated Search
1994-01-01
The 1993 Session of the Virginia General Assembly lessened restrictions relating to the application of aftermarket tinted window films to motor vehicle glass. Effective July 1, 1993, vehicles are allowed to have window tinting treatments that do not ...
General view taken in the transfer aisle in the Vehicle ...
General view taken in the transfer aisle in the Vehicle Assembly Building at the Kennedy Space Center looking at the Orbiter Discovery as it is being prepared to be hoisted, moved and mated to the External Tank/Solid Rocket Booster Assembly. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.
The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.
The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…
Launch Lock Assemblies with Reduced Preload and Spacecraft Isolation Systems Including the Same
NASA Technical Reports Server (NTRS)
Barber, Tim Daniel (Inventor); Young, Ken (Inventor); Hindle, Timothy (Inventor)
2016-01-01
Launch lock assemblies with reduced preload are provided. The launch lock assembly comprises first and second mount pieces, a releasable clamp device, and a pair of retracting assemblies. Each retracting assembly comprises a pair of toothed members having interacting toothed surfaces. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement. When the releasable clamp device is actuated, the first and second mount pieces are released from clamped engagement and one toothed member of each retracting assembly moves in an opposite direction relative to the other one toothed member of the other retracting assembly to define an axial gap on each side of the first mount piece.
Chemical reactions directed Peptide self-assembly.
Rasale, Dnyaneshwar B; Das, Apurba K
2015-05-13
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Chemical Reactions Directed Peptide Self-Assembly
Rasale, Dnyaneshwar B.; Das, Apurba K.
2015-01-01
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603
Mao, Shun; Wen, Zhenhai; Kim, Haejune; Lu, Ganhua; Hurley, Patrick; Chen, Junhong
2012-08-28
Crumpled graphene oxide (GO)/graphene is a new type of carbon nanostructure that has drawn growing attention due to its three-dimensional open structure and excellent stability in an aqueous solution. Here we report a general and one-step approach to produce crumpled graphene (CG)-nanocrystal hybrids, which are produced by direct aerosolization of a GO suspension mixed with precursor ions. Nanocrystals spontaneously grow from precursor ions and assemble on both external and internal surfaces of CG balls during the solvent evaporation and GO crumpling process. More importantly, CG-nanocrystal hybrids can be directly deposited onto various current-collecting substrates, enabling their tremendous potential for energy applications. As a proof of concept, we demonstrate the use of hybrid electrodes of CG-Mn(3)O(4) and CG-SnO(2) in an electrochemical supercapacitor and a lithium-ion battery, respectively. The performance of the resulting capacitor/battery is attractive and outperforms conventional flat graphene-based hybrid devices. This study provides a new and facile route to fabricating high-performance hybrid CG-nanocrystal electrodes for various energy systems.
NASA Astrophysics Data System (ADS)
Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.
2001-05-01
The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.
Cellulose Biosynthesis: Current Views and Evolving Concepts
SAXENA, INDER M.; BROWN, R. MALCOLM
2005-01-01
• Aims To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. • Scope Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. • Conclusions With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back. PMID:15894551
Cellulose biosynthesis: current views and evolving concepts.
Saxena, Inder M; Brown, R Malcolm
2005-07-01
To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. * Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. * With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back.
NASA Technical Reports Server (NTRS)
Wilson, Maywood L. (Inventor); Johnson, Gary S. (Inventor); Frye, Mark W. (Inventor); Stanfield, Clarence E. (Inventor)
1988-01-01
This invention relates generally to pultrusion die assemblies, and more particularly, to a pultrusion die assembly which incorporates a plurality of functions in order to produce a continuous, thin composite fiber reinforced thermoplastic material. The invention is useful for making high performance thermoplastic composite materials in sheets which can be coiled on a spool and stored for further processing.
Fall 1978 Directory - Assembly of Life Sciences, National Research Council.
ERIC Educational Resources Information Center
National Academy of Sciences, Washington, DC.
This directory of the Assembly of Life Sciences (ALS), National Research Council, reflects the status of all committees, their membership, Corresponding Societies, and ALS staff as of October, 1978. Organization charts illustrate the relationship between the Assembly of Life Sciences and the general structure of the National Academy of Sciences,…
Code of Federal Regulations, 2013 CFR
2013-07-01
...'s procedures must be followed. When lifting loads without using outriggers or stabilizers, the manufacturer's procedures must be met regarding truck wedges or screws. (r) Rigging. In addition to following...(o)(3) before assembly/disassembly begins. (5) Boom and jib pick points. The point(s) of attachment...
Code of Federal Regulations, 2012 CFR
2012-07-01
...'s procedures must be followed. When lifting loads without using outriggers or stabilizers, the manufacturer's procedures must be met regarding truck wedges or screws. (r) Rigging. In addition to following...(o)(3) before assembly/disassembly begins. (5) Boom and jib pick points. The point(s) of attachment...
Code of Federal Regulations, 2011 CFR
2011-07-01
...'s procedures must be followed. When lifting loads without using outriggers or stabilizers, the manufacturer's procedures must be met regarding truck wedges or screws. (r) Rigging. In addition to following...(o)(3) before assembly/disassembly begins. (5) Boom and jib pick points. The point(s) of attachment...
Code of Federal Regulations, 2014 CFR
2014-07-01
...'s procedures must be followed. When lifting loads without using outriggers or stabilizers, the manufacturer's procedures must be met regarding truck wedges or screws. (r) Rigging. In addition to following...(o)(3) before assembly/disassembly begins. (5) Boom and jib pick points. The point(s) of attachment...
The IAU Division A Working Group on the Third Realization of the ICRF: Background, Goals, Plans
NASA Astrophysics Data System (ADS)
Gaume, Ralph
2015-08-01
The XXVIII General Assembly of the IAU (Beijing, 2012) established the Division A Working Group on the Third Realization of the International Celestial Reference Frame (ICRF). The adopted charter of the ICRF3 Working Group includes a commitment to report on the implementation and execution plans for ICRF3 during the XXIX General Assembly of the IAU along with a targeted completion and presentation of ICRF3 in 2018 to the XXX General Assembly for adoption. This talk will discuss the background, purpose, and overall implementation plan for ICRF3, and motivate the concept, currently under consideration by the ICRF3 Working Group, that future realizations of the ICRF be based on multi-frequency astrometric data, starting with ICRF3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao; Liu, Yadong; Wan, Lei
2016-03-15
We demonstrated here for the first time that the stereochemistry of polylactide (PLA) blocks affected the assembly behaviors of PS-b-PLA on chemical patterns. Two PS-b-PLA block copolymers, where the PLA block is either racemic (PDLLA) or left-handed (PLLA), were synthesized and directed to assemble on chemical patterns with a wide range of L-s/L-o. PS-b-PDLLA was stretched up to 70% on chemical patterns, while PS-b-PLLA was only stretched by 20%. The assembly behavior of PS-b-PDLLA was different from AB diblock copolymer, but similar to that of ABA triblock copolymer. The high stretchability might be attributed to the formation of stereocomplexes inmore » PDLLA blocks. Compared to ABA triblock copolymers, stereocomplexed diblock copolymers have much faster assembly kinetics. This observation provides a new concept to achieve large process windows by the introduction of specific interactions, for example, H-bonding, supramolecular interaction, and sterecomplexation, between polymer chains.« less
Selective directed self-assembly of coexisting morphologies using block copolymer blends
Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.
2016-01-01
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist. PMID:27480327
Selective directed self-assembly of coexisting morphologies using block copolymer blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, A.; Wright, G.; Yager, K. G.
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less
Selective directed self-assembly of coexisting morphologies using block copolymer blends
Stein, A.; Wright, G.; Yager, K. G.; ...
2016-08-02
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less
Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming
2018-04-01
Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raghava, Saripalli V; Gopinath, Pushparathinam; Srivastava, Bhartendu K; Ramkumar, Venkatachalam; Muraleedharan, Kannoth M
2017-03-13
A design approach that incorporates structural requirements for the formation of a 1D assembly, fibril stability, and fibril-fibril interactions for gelation was attempted by using amino acid-based sulfamides with the general structure Aa-NH-SO 2 -NH-Aa (Aa=amino acid). A preference for 1D assembly alone was not a sufficient condition for gelation, which became evident from studies involving sulfamide esters 1-5. Reducing the crystallization tendency without hindering unidirectional growth was executed through diacids of the sulfamide precursors with various amines that form an envelope around the sulfamide core through salt bridges. This strategy was fruitful, and gels of a wide variety of solvents could be formed by varying the acid and amine components. The use of dodecylamine or benzylamine, which could stabilize the molecular layers through alkyl-chain segregation or π-π interactions improved the gelation tendency, whereas the nature of the amino acid side chain, especially the rotational freedom and hydrophobicity, had a direct role in dictating the solvent preference. Crystallographic studies of these two-component systems gave molecular-level insight into the assembly and showed the importance of anisotropy in the distribution of secondary interactions in gelation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Self- and Directed Assembly of Nanowires
NASA Astrophysics Data System (ADS)
Smith, Benjamin David
This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The nanowires rapidly sedimented due to gravity onto a glass cover slip to concentrate and form a dense film. Particles and assemblies were imaged using inverted optical microscopy. We quantitatively analyzed the images and movies captured in order to track and classify particles and classify the overall arrays formed. We then correlated how particle characteristics, e.g., materials, size, segmentation, etc. changed the ordering and alignment observed. With that knowledge, we hope to be able to form new and interesting structures. We began our studies by examining the assembly of single component nanowires. Chapter 2 describes this work, in which solid Au nanowires measuring 2-7 mum in length and 290 nm in diameter self-assembled into smectic rows. By both experiment and theory, we determined that these rows formed due to a balance of electrostatic repulsions and van der Waals attractions. Final assemblies were stable for at least several days. Monte Carlo methods were used to simulate assemblies and showed structures that mirrored those experimentally observed. Simulations indicated that the smectic phase was preferred over others, i.e., nematic, when an additional small charge was added to the ends of the nanowires. Our particles have rough tips, which might create these additional electrostatic repulsions. To increase the particle and array complexity, two-component, metallic nanowire assembly was explored in Chapter 3. We examined numerous types of nanowires by changing the segment length, ratio, and material, the nanowire length, the surface coating, and the presence of small third segments. These segmented nanowires were generally Au-Ag and also ordered into smectic rows. Segmented wires arranged in rows, however, can be aligned in two possible ways with respect to a neighboring particle. The Au segments on neighboring particles can be oriented in the same direction or opposed to each other. Orientation was quantified in terms of an order parameter that took into account alignment with respect to nearest neighbor particles. All experiments showed order parameters indicating a slight preference for orientational ordering that was relatively insensitive to segment size, nanowire size, and nanowire coating. Monte Carlo simulations pointed towards this alignment as a consequence of small differences in the van der Waals attractions between the segments. Experimentally, ordering might to be limited by the large size of the nanowires, which results in kinetically trapped structures. In an attempt to obtain better ordering within rows, silica coated nanowires with partial Au cores were made. The synthesis involved silica-coating the nanowires and selectively etching a Ag segment. These particles have extremely different VDWs attractions between their segments, as the Au cores are much more attractive than the solvent-filled etched ends. The assembly of these partially etched nanowires (PENs) is detailed in Chapters 4, 5, and 6. When allowed to self-assemble, we observed the formation of either vertically or horizontally oriented arrays depending on PEN composition. The formation of vertically oriented arrays of anisotropic particles is important, since not many methods to produce these structures are currently available for particles of this size. We examined the effects of PEN length, PEN diameter, and the size, number, and location of the core segments. Our findings showed a large etched segment at one end (which resulted in a large offset in the center of mass and concentrated the VDWs attractions to one end of the particle) resulted in the best columnar assemblies. These vertically orientated arrays formed in a two part process. First, after PENs sedimented, they fell flat and oriented parallel to the surface. These PENs then sampled many orientations, including rotating out of the surface plane. When higher surface concentrations of particles built as more PENs fell to the surface of the cover slip, neighboring particles stabilized vertical orientations. Second, particles fell oriented vertically and when the surface concentrations were high, they retained this orientation upon reaching the substrate. Since vertically aligned PENs supported each other, assembly into vertical arrays was highly dependent on the surface concentration. But, oriented arrays could be easily formed on larger or smaller substrates, provided a particle concentration scaled to the substrate were used. The mixing of these particles to form heterogeneous arrays was examined. The overall array structure favored that of particles which sedimented more quickly and/or were present in higher amounts. The semi-automated counting of PENs in images by software is used heavily in Chapters 4 and 5. Appendix A describes the use, development, and validation of macros within Image-Pro. The structure, syntax, and use are specifically examined for three nanowire counting macros. The counting results; including: number of particles in an image, number of horizontally vs. vertically oriented PENs, and PENs in microwells; are compared with manual hand counts. Chapter 7 examines the overall conclusions and future directions for this research. By combining our assembly techniques with known directing forces (e.g., electric or magnetic fields) more specific alignment and/or positioning could be achieved. We have also begun to explore directing assembly through lithographic microwells. Further work needs to explore the integration of arrays into devices and the use of functional materials. Then, high density, oriented arrays could be created for photonic, energy, sensing, catalytic, and electronic applications.
78 FR 17082 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbojet Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... flight. (5) If you find any broken bolt in the HPT shaft air seal sleeve, visually inspect the HPT stage... assembly, high pressure turbine (HPT) bearing support assembly and HPT air seal sleeve bolts identified... turbine (HPT) bearing support assembly, and HPT air seal sleeve within 100 engine cycles-in-service. (2...
77 FR 66769 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbojet Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
.... (5) If any bolt is found broken in the HPT shaft air seal sleeve, inspect the HPT stage 1 disc for...) bearing support assembly and HPT air seal sleeve bolts identified that, before installation, those bolts... assembly, high-pressure turbine (HPT) bearing support assembly, and HPT air seal sleeve. (2) If engine...
Three dimensional colorimetric assay assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-dimensional colorimetric assay assemblies
Charych, Deborah; Reichert, Anke
2001-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
77 FR 1654 - Airworthiness Directives; Agusta S.p.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... a ``T'' marked after the serial number, or Inspect the link assembly for the torsion value force of...-service, remove the link assembly from the helicopter and inspect the torsion value force of the ball bearing rotation. If the torsion value force in either end of the link assembly is greater than 7.30 N...
77 FR 52270 - Airworthiness Directives; Agusta S.p.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... would take about three work- hours per helicopter to rework the top cable-cutter assembly, one work... would be $255 per helicopter to rework the top cable-cutter assembly, $9,085 per helicopter to replace... 4G9540A00111, either: (i) Rework the top cable cutter assembly, P/N 423-83001-1, in accordance with the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... balance assembly and ailerons for cracks and excessive looseness of associated parts with the required... inspections of the ailerons, inspections of the aileron balance assembly and aileron rigging for looseness or... G Airplanes. That AD requires an initial and repetitive inspection of the aileron balance assembly...
75 FR 61987 - Airworthiness Directives; Bombardier, Inc. Model DHC-8 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... the access panel involving the use of excessive force. Failure of the latch assembly can result in the... closure of the access panel involving the use of excessive force. Failure of the latch assembly can result... panel involving the use of excessive force. Failure of the latch assembly can result in the access panel...
75 FR 38064 - Airworthiness Directives; Bombardier, Inc. Model DHC-8 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... involving the use of excessive force. Failure of the latch assembly can result in the access panel being... excessive force. Failure of the latch assembly can result in the access panel being jammed in the closed... panel involving the use of excessive force. Failure of the latch assembly can result in the access panel...
77 FR 70357 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... replacing the drain tube assemblies and support clamps on the aft fairing of the engine struts. This new AD requires replacing the drain tube assembly of the left and right engine strut aft fairings with a new one... require replacing the drain tube assembly of the left and right engine strut aft fairings with a new one...
Centrioles: some self-assembly required.
Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F
2008-12-01
Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.
Representations of mechanical assembly sequences
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.
Method for achieving sustained anisotropic crystal growth on the surface of a silicon melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackintosh, Brian H.; Kellerman, Peter L.; Sun, Dawei
An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus maymore » further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.« less
Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly.
Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen; Jespersen, Jakob Berg; Sommer, Morten O A; Wernersson, Rasmus; Olsen, Lars Rønn
2015-03-20
USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at http://www.cbs.dtu.dk/services/AMUSER/.
Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly
Cook, Jeremy D.; Kondapalli, Kalyan C.; Rawat, Swati; Childs, William C.; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L.
2010-01-01
Frataxin, a conserved nuclear encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich’s ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two: Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone n the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to better understand the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry (ITC). Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into a Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly. PMID:20815377
Molecular Details of the Yeast Frataxin-Isu1 Interaction during Mitochondrial Fe-S Cluster Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.; Kondapalli, K; Rawat, S
2010-01-01
Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural modulemore » to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.« less
Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly.
Cook, Jeremy D; Kondapalli, Kalyan C; Rawat, Swati; Childs, William C; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L
2010-10-12
Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.
Demirörs, Ahmet Faik; Courty, Diana; Libanori, Rafael; Studart, André R.
2016-01-01
Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft–hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5. PMID:27071113
Self-aligning hydraulic piston assembly for tensile testing of ceramic
Liu, Kenneth C.
1987-01-01
The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensil specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen irregardless whether there is initial misalignment between the specimen load column assembly and housing axis.
Self-aligning hydraulic piston assembly for tensile testing of ceramic
Liu, K.C.
1987-08-18
The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensile specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen regardless whether there is initial misalignment between the specimen load column assembly and housing axis. 4 figs.
Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration
Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J.
2014-01-01
The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel. PMID:24478460
Directing folding pathways for multi-component DNA origami nanostructures with complex topology
NASA Astrophysics Data System (ADS)
Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.
2016-05-01
Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.
Photovoltaic sheathing element with a flexible connector assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langmaid, Joseph A; Keenihan, James R; Mills, Michael E
2016-07-12
The present invention is premised upon an assembly including at least a photovoltaic sheathing element capable of being affixed on a building structure, the sheathing element including at least: a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; at least a first and a second connector assembly disposed on opposing sides of the sheathing element and capable of directly or indirectly electrically connecting the photovoltaic cell assembly to at least two adjoining devices that are affixed to the building structure and wherein at least one of the connector assemblies includes amore » flexible portion; one or more connector pockets disposed in the body portion the pockets capable of receiving at least a portion of the connector assembly.« less
High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.
Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi
2010-12-15
A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.
Amano, M; Umeda, G; Nakajima, H; Yatsuki, K
1988-01-01
The characteristic work actions of female shoe manufacturing assembly line workers were analyzed by the records of 8-mm cine-films. The relationship between cervicobrachial disorders and work actions was investigated as a cross-sectional factor control study by using sex-age matched pairs for non-assembly line workers (102 pairs). The following conclusions were obtained: 1) The assembly line workers handled about 3,400 sneaker shoes per day on the assembly line. A completed shoe weighed 200-500 g. The metal last weighted 400-1,200 g. As the lines were not completely mechanized, the workers passed shoes to the next worker by hand. 2) In the line selected for the study of work actions, 28 female workers and one male worker were engaged. The work direction of the line was one-way (from left to right or vice versa). The actions of the workers were classified into four fundamental actions: i) grasping the shoe or tool, ii) extending or iii) bending of the arms, and iv) keeping the arms in a certain position. These fundamental actions were repeated more than 3,400 times per day by each worker. The time spent in holding a shoe in the left hand was longer than that of the right hand in holding a shoe or tool. 3) Results of medical examinations showed a higher prevalence in assembly line workers than that in non-assembly line workers. Especially the prevalence rate of tapping test, pain sensibility test, vibratory sensibility test, Morley's test, tenosynovitis in the fingers, tenderness at spinal muscle around the thoracic vertebrae, levator muscle of scapula, trapezius muscle, rhomboid muscle, infraspinatus muscle, greater pectoral muscle, anterior scalene muscle, thenar eminence, biceps muscle of arm, brachioradial muscle, and antebrachial flexor muscle were found to be different significantly by McNemar's test between the two groups. These disorders were appeared in the left shoulder, arm and hand. 4) As the non-assembly line workers were not engaged in compulsory work or in one-way work direction, they injured the right side (skillful side). On the contrary, it is considered that compulsory transfer of shoes and one-way work direction imposes a heavier load on the left side of the body in assembly line workers, and consequently they injured the left side more severely. 5) It is concluded that the sustained task of handing over shoes to the next worker or one-way work direction caused cervicobrachial disorders of assembly line workers, especially on the left side of the body.
ERIC Educational Resources Information Center
United Nations Children's Fund, New York, NY.
The United Nations Special Session on Children in May, 2002, was a landmark for children and human developmentthe first Special Session of the General Assembly devoted exclusively to children and the first to include them as official delegates. Participants came together to assess the progress made toward achieving the goals of the 1990 World…
General view of the Solid Rocket Booster's (SRB) Solid Rocket ...
General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
ERIC Educational Resources Information Center
Virginia State General Assembly, Richmond. House.
An advisory committee, in response to a 1985 resolution by the Virginia General Assembly, presents this analysis and makes recommendations concerning state school bus safety. The report is divided into eight topics; six appendices comprise three-fourths of the study. "Origin of the Study" states requests to be investigated by the…
Feedbacks between community assembly and habitat selection shape variation in local colonization
Kraus, J.M.; Vonesh, J.R.
2010-01-01
1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.
Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.A.; van der Wiel, Wilfred G.; Rijnders, Guus; Huskens, Jurriaan
2010-01-01
FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices. PMID:20480007
Cooperativity in self-limiting equilibrium self-associating systems
NASA Astrophysics Data System (ADS)
Freed, Karl F.
2012-11-01
A wide variety of highly cooperative self-assembly processes in biological and synthetic systems involve the assembly of a large number (m) of units into clusters, with m narrowly peaked about a large size m0 ≫ 1 and with a second peak centered about the m = 1 unassembled monomers. While very specific models have been proposed for the assembly of, for example, viral capsids and core-shell micelles of ß-casein, no available theory describes a thermodynamically general mechanism for this double peaked, highly cooperative equilibrium assembly process. This study provides a general mechanism for these cooperative processes by developing a minimal Flory-Huggins type theory. Beginning from the simplest non-cooperative, free association model in which the equilibrium constant for addition of a monomer to a cluster is independent of cluster size, the new model merely allows more favorable growth for clusters of intermediate sizes. The theory is illustrated by computing the phase diagram for cases of self-assembly on cooling or heating and for the mass distribution of the two phases.
Generalized superradiant assembly for nanophotonic thermal emitters
NASA Astrophysics Data System (ADS)
Mallawaarachchi, Sudaraka; Gunapala, Sarath D.; Stockman, Mark I.; Premaratne, Malin
2018-03-01
Superradiance explains the collective enhancement of emission, observed when nanophotonic emitters are arranged within subwavelength proximity and perfect symmetry. Thermal superradiant emitter assemblies with variable photon far-field coupling rates are known to be capable of outperforming their conventional, nonsuperradiant counterparts. However, due to the inability to account for assemblies comprising emitters with various materials and dimensional configurations, existing thermal superradiant models are inadequate and incongruent. In this paper, a generalized thermal superradiant assembly for nanophotonic emitters is developed from first principles. Spectral analysis shows that not only does the proposed model outperform existing models in power delivery, but also portrays unforeseen and startling characteristics during emission. These electromagnetically induced transparency like (EIT-like) and superscattering-like characteristics are reported here for a superradiant assembly, and the effects escalate as the emitters become increasingly disparate. The fact that the EIT-like characteristics are in close agreement with a recent experimental observation involving the superradiant decay of qubits strongly bolsters the validity of the proposed model.
NASA Astrophysics Data System (ADS)
Fan, Zhichao; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2018-02-01
Mechanically-guided 3D assembly based on controlled, compressive buckling represents a promising, emerging approach for forming complex 3D mesostructures in advanced materials. Due to the versatile applicability to a broad set of material types (including device-grade single-crystal silicon) over length scales from nanometers to centimeters, a wide range of novel applications have been demonstrated in soft electronic systems, interactive bio-interfaces as well as tunable electromagnetic devices. Previously reported 3D designs relied mainly on finite element analyses (FEA) as a guide, but the massive numerical simulations and computational efforts necessary to obtain the assembly parameters for a targeted 3D geometry prevent rapid exploration of engineering options. A systematic understanding of the relationship between a 3D shape and the associated parameters for assembly requires the development of a general theory for the postbuckling process. In this paper, a double perturbation method is established for the postbuckling analyses of planar curved beams, of direct relevance to the assembly of ribbon-shaped 3D mesostructures. By introducing two perturbation parameters related to the initial configuration and the deformation, the highly nonlinear governing equations can be transformed into a series of solvable, linear equations that give analytic solutions to the displacements and curvatures during postbuckling. Systematic analyses of postbuckling in three representative ribbon shapes (sinusoidal, polynomial and arc configurations) illustrate the validity of theoretical method, through comparisons to the results of experiment and FEA. These results shed light on the relationship between the important deformation quantities (e.g., mode ratio and maximum strain) and the assembly parameters (e.g., initial configuration and the applied strain). This double perturbation method provides an attractive route to the inverse design of ribbon-shaped 3D geometries, as demonstrated in a class of helical mesostructures.
Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai
2018-03-15
Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Challenges and breakthroughs in recent research on self-assembly
Ariga, Katsuhiko; Hill, Jonathan P; Lee, Michael V; Vinu, Ajayan; Charvet, Richard; Acharya, Somobrata
2008-01-01
The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. However, existing fabrication techniques suffer from several disadvantages including size-restrictions and a general paucity of applicable materials. Because of this, the development of alternative approaches based on supramolecular self-assembly processes is anticipated as a breakthrough methodology. This review article aims to comprehensively summarize the salient aspects of self-assembly through the introduction of the recent challenges and breakthroughs in three categories: (i) types of self-assembly in bulk media; (ii) types of components for self-assembly in bulk media; and (iii) self-assembly at interfaces. PMID:27877935
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA, John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA, John F. Kennedy Space Center, Florida. Drawing 79K05424, Seelye Stevenson Value & Knecht, March, 1975. SITE WORK, GENERAL AREA PLAN. Sheet 8 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
President's Assembly--State Policy Research at the University of Illinois. Final Report.
ERIC Educational Resources Information Center
Gove, Samuel K., Ed.; Zollinger, Richard A., Ed.
The activities at the President's Assembly on State Policy Research at the University of Illinois, which was convened to explore a series of questions related to the interaction between universities and the agencies that create public policy, are reported. The report of the assembly, which is a statement representing general agreement among the…
Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.
Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu
2017-10-06
A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.
Assembly: a resource for assembled genomes at NCBI
Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi
2016-01-01
The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580
Directed self-assembly of mesoscopic components for led applications
NASA Astrophysics Data System (ADS)
Tkachenko, Anton
Light-emitting diodes (LEDs) constitute a rapidly evolving and fast growing technology that promises to replace incandescent bulbs and compact fluorescent lights in many illumination applications. Large-area LED luminaires have a capability to transform lighting by providing a venue for development of smart lighting systems with additional benefits, such as visible light communications, sensing, health and productivity improvement through color temperature control, capability of creating "virtual sky" ceiling, and many others. The objective of this work is to explore directed self-assembly (DSA) approaches suitable for cost-effective assembly of large amount of LEDs and other mesoscopic (i.e. millimeter and sub-millimeter) electronic components and thus to enable manufacturing of smart lighting luminaires. Existing alternative approaches for assembly of semiconductor dies are examined including transfer printing, laser-assisted die transfer, and various directed self-assembly approaches using shape-recognition, magnetic and capillary forces, etc. After comparing their advantages and limitations, we developed two approaches to magnetic force-assisted DSA of LEDs on a large-area substrate in liquid and air medium. The first approach involves pick-up of buoyant and magnetic dies from the liquid surface onto the flexible substrate in a roll-to-roll process. The possibility of high-speed assembly of LED dies is demonstrated, but with a low yield due to the influence of the capillary force of the carrier liquid and the difficulty in ensuring reliable supply of dies to the assembly interface. To overcome the aforementioned challenges this process was modified to assemble the dies by sinking them onto the receiving substrate with a stencil mask on top, demonstrating LED assembly with a very low error rate but at a lower speed. A solder-assisted self-alignment is used to further improve placement precision and to ensure the proper orientation of the dies. The second approach involves self-assembly of dies in an air medium by levitating them in a periodic magnetic field. Using only vibration in z-direction with properly selected waveforms, both high-yield and high-speed DSA was demonstrated. Magnetostatic simulations were used to demonstrate scaling of DSA process with the die size while a model based on a 2D random walk was used to show how the assembly time scales with the number of dies and how this scaling law can be improved. These results indicate that this process can scale well both with the die size and with the number of assembled dies. Through this thesis work, it was demonstrated that assembly in liquid using ferromagnetic dies can be done either with high speed or with high yield, but not with both at the same time. DSA using diamagnetic levitation offers a way to achieve both through a careful design of magnetic field, thickness and quality of diamagnetic material (graphite) as well as proper selection of vibration pattern. This DSA process can enable large-area parallel assembly of millimeter and sub-millimeter components for manufacturing of LED panels, displays and microcell photovoltaics.
NASA Technical Reports Server (NTRS)
Rasche, R. W.
1979-01-01
General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.
49 CFR 572.131 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Assembly 880105-300 Lower Torso Assembly 880105-450 Complete Leg Assembly—left 880105-560-1 Complete Leg Assembly—right 880105-560-2 Complete Arm Assembly—left 880105-728-1 Complete Arm Assembly—right 880105-728...
49 CFR 572.131 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Assembly 880105-300 Lower Torso Assembly 880105-450 Complete Leg Assembly—left 880105-560-1 Complete Leg Assembly—right 880105-560-2 Complete Arm Assembly—left 880105-728-1 Complete Arm Assembly—right 880105-728...
Ten steps to get started in Genome Assembly and Annotation
Dominguez Del Angel, Victoria; Hjerde, Erik; Sterck, Lieven; Capella-Gutierrez, Salvadors; Notredame, Cederic; Vinnere Pettersson, Olga; Amselem, Joelle; Bouri, Laurent; Bocs, Stephanie; Klopp, Christophe; Gibrat, Jean-Francois; Vlasova, Anna; Leskosek, Brane L.; Soler, Lucile; Binzer-Panchal, Mahesh; Lantz, Henrik
2018-01-01
As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR). PMID:29568489
Photovoltaic building sheathing element with anti-slide features
Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.
2015-09-08
The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.
Multi-position photovoltaic assembly
Dinwoodie, Thomas L.
2003-03-18
The invention is directed to a PV assembly, for use on a support surface, comprising a base, a PV module, a multi-position module support assembly, securing the module to the base at shipping and inclined-use angles, a deflector, a multi-position deflector support securing the deflector to the base at deflector shipping and deflector inclined-use angles, the module and deflector having opposed edges defining a gap therebetween. The invention permits transport of the PV assemblies in a relatively compact form, thus lowering shipping costs, while facilitating installation of the PV assemblies with the PV module at the proper inclination.
Fuel cell with electrolyte matrix assembly
Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.
1988-01-01
This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.
ERIC Educational Resources Information Center
New Jersey State Office of Legislative Services, Trenton. Assembly Education Committee.
The Assembly Education Committee of the New Jersey Office of Legislative Services held a hearing pursuant to Assembly Resolution 113, a proposal directing the Committee to investigate the skills testing program developed and administered to New Jersey children by the State Department of Education. The Committee was interested in the eighth-grade…
Bourdeau, Moise; Winter, Ronald; Marshall, Robert
2013-10-01
The Rhode Island General Assembly considers nearly 3000 bills yearly--spanning the entire range of issues related to state government and legislative policy. This review analyzes the modest number of 40 "health-related" bills introduced during the 2009 session. It is often not clear to what extent these proposals consistently received analysis by both informed and independent organizations or experts regarding their "evidence-based" foundations. Only 25 of these bills received a committee hearing, and eventually become law. Hence, there may be a reasonable opportunity for expert, non-partisan organizations to provide the General Assembly with information related to proposed legislation on a routine or "as requested" basis. This study provides a systematic analysis of this degree of effort based on data regarding health- related legislation proposed during the 2009 session of the RI General Assembly.
Machine learning assembly landscapes from particle tracking data.
Long, Andrew W; Zhang, Jie; Granick, Steve; Ferguson, Andrew L
2015-11-07
Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways.
NASA Astrophysics Data System (ADS)
Ali-Alvarez, S.; Ferdinand, P.; Magne, S.; Nogueira, R. P.
2013-04-01
Corrosion of reinforced bar (rebar) in concrete structures represents a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. In this work, we present a new methodology to corrosion detection in reinforced concrete structures, by combining Fiber Bragg Grating (FBG) sensors with the electrochemical and physical properties of rebar in a simplified assembly. Tests in electrolytic solutions and concrete were performed for pitting and general corrosion. The proposed Structural Health Monitoring (SHM) methodology constitutes a direct corrosion measurement potentially useful to implement or improve Condition-Based Maintenance (CBM) program for civil engineering concrete structures.
Nuclear Physics Made Very, Very Easy
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1968-01-01
The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Schoen, A. H. (Inventor)
1973-01-01
Expandable space frames having essentially infinite periodicity limited only by practical considerations, are described. Each expandable space frame comprises a plurality of hinge joint assemblies having arms that extend outwardly in predetermined symmetrically related directions from a central or vertex point. The outer ends of the arms form one part of a hinge point. The outer expandable space frame also comprises a plurality of struts. The outer ends of the struts from the other part of the hinged joint. The struts interconnect the plurality of hinge point in sychronism, the spaceframes can be expanded or collapsed. Three-dimensional as well as two-dimensional spaceframes of this general nature are described.
Materials Design for Block Copolymer Lithography
NASA Astrophysics Data System (ADS)
Sweat, Daniel Patrick
Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.
Modeling Viral Capsid Assembly
2014-01-01
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722
NASA Astrophysics Data System (ADS)
Lv, Wenping; Wu, Ren'an
2013-03-01
A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions. Electronic supplementary information (ESI) available: The evolution of interaction energy for two graphene nanosheets assembly in stacking (a) and sliding (b) pathway was plotted in Fig. S1. The time evolution of three dimension distance for stacking assembly of two graphene nanosheets with the edge-edge orientation of 45° was plotted in Fig. S2. The initial orientations of graphene nanosheets in three simulations (edge-edge distance in x-direction (dx) was 0.3 nm, but in z-direction (dz) was 0.0 nm, 0.4 nm and 0.7 nm, respectively) were shown in Fig. S3. The snapshots of the evolution of hydration shells during the sliding assembly of nanographene were shown in Fig. S4, with the separation of two graphene nanosheets in z-direction is (a) 0 nm and (b) 0.7 nm, respectively. The process of two graphene nanosheets assembly in stacking pathway was shown in Movie S1 as video. The process of two graphene nanosheets (with a separation of 0.7 nm in normal direction) assembly in sliding pathway was shown in Movie S2 as video. The dynamical evolution of interfacial water during the sliding assembly of nanographene was shown in Movie S3 as video. The process of extruding the monolayer water film (MWF) out of the interplate of two graphene nanosheets was shown in Movie S4 as video. Movie S5 displays that the graphene-water-graphene sandwiched structure was successfully maintained during a 10 ns MD simulation. See DOI: 10.1039/c3nr33447c
Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms
NASA Astrophysics Data System (ADS)
Toth-Fejel, Tihamer T.
2000-06-01
Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.
Computation of three-dimensional nozzle-exhaust flow fields with the GIM code
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Anderson, P. G.
1978-01-01
A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.
General view of the Aft Solid Rocket Motor Segment mated ...
General view of the Aft Solid Rocket Motor Segment mated with the Aft Skirt Assembly and External Tank Attach Ring in the Rotation Processing and Surge Facility at Kennedy Space Center and awaiting transfer to the Vehicle Assembly Building where it will be mounted onto the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
ERIC Educational Resources Information Center
Virginia State Council of Higher Education, Richmond.
This is a summary of the 120 bills and resolutions related to higher education and passed by the 1996 session of the Virginia General Assembly. Bills address issues affecting all of Virginia higher education as well as those specifically affecting the Council of Higher Education. Brief summaries of each bill follow a listing of all the higher…
2008-09-30
participated in EGU General Assembly , Vienna Austria 13-18 April 2008, giving a poster presentation. Bogumil Jakubiak, University of Warsaw...participated in EGU General Assembly , Vienna Austria 13-18 April 2008, giving two posters presentation. Mikolaj Sierzega, University of Warwick – participated...model forecast to generate background error statistics. This helps us to identify and understand the uncertainties in high-resolution NWP forecasts
General view in the transfer aisle of the Vehicle Assembly ...
General view in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center looking at one of a pair of Aft Center Segments of the Solid Rocket Motor of the Solid Rocket Booster awaiting hoisting and mating to the Solid Rocket Booster's Aft Segment on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.
Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand
2016-08-24
Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.
Cone penetrometer fiber optic raman spectroscopy probe assembly
Kyle, Kevin R.; Brown, Steven B.
2000-01-01
A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.
Protein-directed self-assembly of a fullerene crystal.
Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg
2016-04-26
Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fang; Yager, Kevin G.; Zhang, Yugang
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less
Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules
Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris
2015-01-01
Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532
The bipolar assembly domain of the mitotic motor kinesin-5
Acar, Seyda; Carlson, David B.; Budamagunta, Madhu S.; Yarov-Yarovoy, Vladimir; Correia, John J.; Niñonuevo, Milady R.; Jia, Weitao; Tao, Li; Leary, Julie A.; Voss, John C.; Evans, James E.; Scholey, Jonathan M.
2013-01-01
An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5’s bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil ‘BASS’ (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments. PMID:23299893
Trapped field internal dipole superconducting motor generator
Hull, John R.
2001-01-01
A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.
Virus templated plasmonic nanoclusters with icosahedral symmetry via directed assembly
NASA Astrophysics Data System (ADS)
Ratna, Banahalli; Fontana, Jake; Dressick, Walter; Phelps, Jamie; Johnson, John; Sampson, Travian; Rendell, Ronald; Soto, Carissa
2015-03-01
Controlling the spatial and orientational order of plasmonic nanoparticles may lead to structures with novel electromagnetic properties and applications such as sub-wavelength imaging and ultra-sensitive chemical sensors. Here we report the directed assembly of three-dimensional, icosahedral plasmonic nanoclusters with resonances at visible wavelengths. We show using transmission electron microcopy and in situ dynamic light scattering the nanoclusters consist of twelve gold nanospheres attached to thiol groups at predefined locations on the surface of a genetically engineered cowpea mosaic virus with icosahedral symmetry. We measured the bulk absorbance from aqueous suspensions of nanoclusters and reproduced the major features of the spectrum using finite-element simulations. Furthermore, because the viruses are easily produced in gram quantities the directed assembly approach is capable of high-throughput, providing a strategy to realize large quantities for applications. NRL summer intern under the HBCU/MI Summer Research Program.
NASA Astrophysics Data System (ADS)
Kim, Pilnam; Kang, Tae June
2017-12-01
We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).
Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.
Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich
2016-01-01
Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.
Front lighted optical tooling method and apparatus
Stone, W.J.
1983-06-30
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.
NASA Astrophysics Data System (ADS)
Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo
2017-09-01
Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.
Self Assembled Structures by Directional Solidification of Eutectics
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2004-01-01
Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.
NASA Technical Reports Server (NTRS)
Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth
2015-01-01
Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. ALL PLATFORMS-ARCHITECTURAL, GENERAL ARRANGEMENT, EAST-WEST ELEVATIONS. Sheet 12 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Molecular pathways for defect annihilation in directed self-assembly
Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.
2015-01-01
Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095
Molecular pathways for defect annihilation in directed self-assembly.
Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; ...
2015-11-17
Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less
Mihailescu, Carmen-Marinela; Stan, Dana; Iosub, Rodica; Moldovan, Carmen; Savin, Mihaela
2015-01-01
The fabrication of a capacitive interdigitated immunosensor (CID) based on a mixed self-assembled monolayer (mSAM) film for the direct detection of heart fatty-acid binding protein (h-FABP) without any labeling is described. The capacitance changes of mSAMs vs. homogenous ordered self-assembled monolayers (hSAMs) on gold work electrodes/covalently bonded antibodies/buffered medium are utilized for monitoring the specific antibody-antigen interaction. Capacitance measurements in the absence and presence of Faradaic currents were performed. The electrochemical properties of mixed monolayers were compared with those of a pure monolayer of 11-mercaptoundecanoic acid (MUA) self-assembled on gold surfaces. Taking into account the stability of the studied monolayers during the electrochemical experiments with the Faradaic process, the best SAM functionalization method was used for developing a sensitive capacitive immunosensor with a non-Faradaic process for direct immune detection of human h-FABP. Under the optimized conditions, the proposed mixed self-assembled monolayer (mSAM1) on gold electrode exhibited good insulating properties such as a capacitive behavior when detecting h-FABP from human serum in the range of 98 pg ml(-1)-100 ng ml(-1), with a detection limit of 0.836 ng ml(-1) comparative with a homogenous self-assembled monolayer (hSAM). Copyright © 2014 Elsevier B.V. All rights reserved.
An Assembly Funnel Makes Biomolecular Complex Assembly Efficient
Zenk, John; Schulman, Rebecca
2014-01-01
Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818
Wireline system for multiple direct push tool usage
Bratton, Wesley L.; Farrington, Stephen P.; Shinn, II, James D.; Nolet, Darren C.
2003-11-11
A tool latching and retrieval system allows the deployment and retrieval of a variety of direct push subsurface characterization tools through an embedded rod string during a single penetration without requiring withdrawal of the string from the ground. This enables the in situ interchange of different tools, as well as the rapid retrieval of soil core samples from multiple depths during a single direct push penetration. The system includes specialized rods that make up the rod string, a tool housing which is integral to the rod string, a lock assembly, and several tools which mate to the lock assembly.