Sample records for general coordinate system

  1. Boundary-fitted coordinate systems for numerical solution of partial differential equations - A review

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.

    1982-01-01

    A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.

  2. Connection forces in deformable multibody dynamics

    NASA Technical Reports Server (NTRS)

    Shabana, A. A.; Chang, C. W.

    1989-01-01

    In the dynamic formulation of holonomic and nonholonomic systems based on D'Alembert-Lagrange equation, the forces of constraints are maintained in the dynamic equations by introducing auxiliary variables, called Lagrange multipliers. This approach introduces a set of generalized reaction forces associated with the system generalized coordinates. Different sets of variables can be used as generalized coordinates and accordingly, the generalized reactions associated with these generalized coordinates may not be the actual reaction forces at the joints. In rigid body dynamics, the generalized reaction forces and the actual reaction forces at the joints represent equipollent systems of forces since they produce the same total forces and moments at and about any point on the rigid body. This is not, however, the case in deformable body analyses wherein the generalized reaction forces depend on the system generalized reference and elastic coordinates. In this paper, a method for determining the actual reaction forces at the joints from the generalized reaction forces in deformable multibody systems is presented.

  3. Thermoelastic-plastic flow equations in general coordinates

    DOE PAGES

    Blaschke, Daniel N.; Preston, Dean L.

    2018-03-28

    The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl- Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates.

  4. Thermoelastic-plastic flow equations in general coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, Daniel N.; Preston, Dean L.

    The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl- Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates.

  5. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  6. General coordinate invariance in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Endlich, Solomon; Monin, Alexander; Penco, Riccardo

    2014-11-01

    We extend the notion of general coordinate invariance to many-body, not necessarily relativistic, systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems. The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Our approach makes it clear that Galilei or Poincaré symmetry is by no means a necessary prerequisite for making the theory invariant under coordinate diffeomorphisms. General covariance merely expresses the freedom to choose spacetime coordinates at will, whereas the true, physical symmetries of the system can be separately implemented as "internal" symmetries within the vielbein formalism. A systematic way to implement such symmetries is provided by the coset construction. We illustrate this point by applying our formalism to nonrelativistic s -wave superfluids.

  7. Analytical Dynamics and Nonrigid Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.

  8. A Research Agenda to Advance the Coordination of Care for General Medical and Substance Use Disorders.

    PubMed

    Quinn, Amity E; Rubinsky, Anna D; Fernandez, Anne C; Hahm, Hyeouk Chris; Samet, Jeffrey H

    2017-04-01

    The separation of addiction care from the general medical care system has a negative impact on patients' receipt of high-quality medical care. Clinical and policy-level strategies to improve the coordination of addiction care and general medical care include identifying and engaging patients with unhealthy substance use in general medical settings, providing effective chronic disease management of substance use disorders in primary care, including patient and family perspectives in care coordination, and implementing pragmatic models to pay for the coordination of addiction and general medical care. This Open Forum discusses practice and research recommendations to advance the coordination of general medical and addiction care. The discussion is based on the proceedings of a national meeting of experts in 2014.

  9. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  10. Strike-parallel and strike-normal coordinate system around geometrically complicated rupture traces: use by NGA-West2 and further improvements

    USGS Publications Warehouse

    Spudich, Paul A.; Chiou, Brian

    2015-01-01

    We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.

  11. Free energy from molecular dynamics with multiple constraints

    NASA Astrophysics Data System (ADS)

    den Otter, W. K.; Briels, W. J.

    In molecular dynamics simulations of reacting systems, the key step to determining the equilibrium constant and the reaction rate is the calculation of the free energy as a function of the reaction coordinate. Intuitively the derivative of the free energy is equal to the average force needed to constrain the reaction coordinate to a constant value, but the metric tensor effect of the constraint on the sampled phase space distribution complicates this relation. The appropriately corrected expression for the potential of mean constraint force method (PMCF) for systems in which only the reaction coordinate is constrained was published recently. Here we will consider the general case of a system with multiple constraints. This situation arises when both the reaction coordinate and the 'hard' coordinates are constrained, and also in systems with several reaction coordinates. The obvious advantage of this method over the established thermodynamic integration and free energy perturbation methods is that it avoids the cumbersome introduction of a full set of generalized coordinates complementing the constrained coordinates. Simulations of n -butane and n -pentane in vacuum illustrate the method.

  12. A space-time tensor formulation for continuum mechanics in general curvilinear, moving, and deforming coordinate systems

    NASA Technical Reports Server (NTRS)

    Avis, L. M.

    1976-01-01

    Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.

  13. 48 CFR 1604.7001 - Coordination of benefits clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Coordination of benefits clause. 1604.7001 Section 1604.7001 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of...

  14. 48 CFR 1604.7001 - Coordination of benefits clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Coordination of benefits clause. 1604.7001 Section 1604.7001 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of...

  15. 48 CFR 1604.7001 - Coordination of benefits clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Coordination of benefits clause. 1604.7001 Section 1604.7001 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of...

  16. 48 CFR 750.7110-2 - Office of General Counsel coordination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Office of General Counsel coordination. 750.7110-2 Section 750.7110-2 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACT MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS Extraordinary Contractual Actions To Protect Foreign Policy Interests of th...

  17. 48 CFR 1604.7001 - Coordination of benefits clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of Benefits 1604.7001 Coordination of benefits clause. OPM expects all FEHBP plans to coordinate benefits... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Coordination of benefits...

  18. 48 CFR 1604.7001 - Coordination of benefits clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of Benefits 1604.7001 Coordination of benefits clause. OPM expects all FEHBP plans to coordinate benefits... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Coordination of benefits...

  19. The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning

    PubMed Central

    2016-01-01

    Abstract The coordinate system in which humans learn novel motor skills is controversial. The representation of sensorimotor skills has been extensively studied by examining generalization after learning perturbations specifically designed to be ambiguous as to their coordinate system. Recent studies have found that learning is not represented in any simple coordinate system and can potentially be accounted for by a mixed representation. Here, instead of probing generalization, which has led to conflicting results, we examine whether novel dynamics can be learned when explicitly and unambiguously presented in particular coordinate systems. Subjects performed center–out reaches to targets in the presence of a force field, while varying the orientation of their hand (i.e., the wrist angle) across trials. Different groups of subjects experienced force fields that were explicitly presented either in Cartesian coordinates (field independent of hand orientation), in object coordinates (field rotated with hand orientation), or in anti-object coordinates (field rotated counter to hand orientation). Subjects learned to represent the dynamics when presented in either Cartesian or object coordinates, learning these as well as an ambiguous force field. However, learning was slower for the object-based dynamics and substantially impaired for the anti-object presentation. Our results show that the motor system is able to tune its representation to at least two natural coordinate systems but is impaired when the representation of the task does not correspond to a behaviorally relevant coordinate system. Our results show that the motor system can sculpt its representation through experience to match those of natural tasks. PMID:27588304

  20. Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator

    PubMed Central

    Omar, Mohamed A.

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732

  1. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

    PubMed

    Omar, Mohamed A

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.

  2. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.

  3. 33 CFR 3.01-1 - General description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration (NOAA) using the NAD 1983 coordinate system and projected to the WGS 1984 grid system. Both coordinate systems are geocentric and similar such that they are Global Positioning System (GPS) compatible... based upon boundaries and points located using the WGS 1984 world grid system. When referenced, the...

  4. Relational coordination promotes quality of chronic care delivery in Dutch disease-management programs.

    PubMed

    Cramm, Jane Murray; Nieboer, Anna Petra

    2012-01-01

    Previous studies have shown that relational coordination is positively associated with the delivery of hospital care, acute care, emergency care, trauma care, and nursing home care. The effect of relational coordination in primary care settings, such as disease-management programs, remains unknown. This study examined relational coordination between general practitioners and other professionals in disease-management programs and assessed the impact of relational coordination on the delivery of chronic illness care. Professionals (n = 188; response rate = 57%) in 19 disease-management programs located throughout the Netherlands completed surveys that assessed relational coordination and chronic care delivery. We used a cross-sectional study design. Our study demonstrated that the delivery of chronic illness care was positively related to relational coordination. We found positive relationships with community linkages (r = .210, p < .01), self-management support (r = .217, p < .01), decision support (r = .190, p < .01), delivery system design (r = .278, p < .001), and clinical information systems (r = .193, p < .01). Organization of the health delivery system was not significantly related to relational coordination. The regression analyses showed that even after controlling for all background variables, relational coordination still significantly affected chronic care delivery (β = .212, p ≤ .01). As expected, our findings showed a lower degree of relational coordination among general practitioners than between general practitioners and other core disease-management team members: practice nurses (M = 2.69 vs. 3.73; p < .001), dieticians (M = 2.69 vs. 3.07; p < .01), physical therapists (M = 2.69 vs. 3.06; p < .01), medical specialists (M = 2.69 vs. 3.16; p < .01), and nurse practitioners (M = 2.69 vs. 3.19; p < .001). The enhancement of relational coordination among core disease-management professionals with different disciplines is expected to improve chronic illness care delivery.

  5. Applications of laser ranging and VLBI observations for selenodetic control

    NASA Technical Reports Server (NTRS)

    Fajemirokun, F. A.

    1971-01-01

    The observation equations necessary to utilize lunar laser ranging and very long baseline interferometry measurements were developed for the establishment of a primary control network on the moon. The network consists of coordinates of moon points in the selenodetic Cartesian coordinate system, which is fixed to the lunar body, oriented along the three principal axes of inertia of the moon, and centered at the lunar center of mass. The observation equations derived are based on a general model in which the unknown parameters included: the selenodetic Cartesian coordinates, the geocentric coordinates of earth stations, parameters of the orientation of the selenodetic coordinate system with respect to a fixed celestial system, the parameters of the orientation of the average terrestrial coordinate system with respect to a fixed celestial coordinate system, and the geocentric coordinates of the center of mass of the moon, given by a lunar ephemeris.

  6. Recommended coordinate systems for thin spherocylindrical lenses.

    PubMed

    Deal, F C; Toop, J

    1993-05-01

    Because the set of thin spherocylindrical lenses forms a vector space, any such lens can be expressed in terms of its cartesian coordinates with respect to whatever set of basis lenses we may choose. Two types of cartesian coordinate systems have become prominent, those having coordinates associated with the lens power matrix and those having coordinates associated with the Humphrey Vision Analyzer. This paper emphasizes the value of a particular cartesian coordinate system of the latter type, and the cylindrical coordinate system related to it, by showing how it can simplify the trigonometry of adding lenses and how it preserves symmetry in depicting the sets of all spherical lenses, all Jackson crossed-cylinders, and all cylindrical lenses. It also discusses appropriate coordinates for keeping statistics on lenses and shows that an easy extension of the lens vector space to include general optical systems is not possible.

  7. Geodetic precession or dragging of inertial frames

    NASA Technical Reports Server (NTRS)

    Ashby, Neil; Shahid-Saless, Bahman

    1989-01-01

    In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions.

  8. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on which...

  9. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on which...

  10. Time-Coordination Strategies and Control Laws for Multi-Agent Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Puig-Navarro, Javier; Hovakimyan, Naira; Allen, B. Danette

    2017-01-01

    Time-critical coordination tools for unmanned systems can be employed to enforce the type of temporal constraints required in terminal control areas, ensure minimum distance requirements among vehicles are satisfied, and successfully perform coordinated missions. In comparison with previous literature, this paper presents an ampler spectrum of coordination and temporal specifications for unmanned systems, and proposes a general control law that can enforce this range of constraints. The constraint classification presented con- siders the nature of the desired arrival window and the permissible coordination errors to define six different types of time-coordination strategies. The resulting decentralized coordination control law allows the vehicles to negotiate their speeds along their paths in response to information exchanged over the communication network. This control law organizes the different members in the fleet hierarchically per their behavior and informational needs as reference agent, leaders, and followers. Examples and simulation results for all the coordination strategies presented demonstrate the applicability and efficacy of the coordination control law for multiple unmanned systems.

  11. 48 CFR 25.801 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false General. 25.801 Section 25.801 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Other International Agreements and Coordination 25.801 General. Treaties and...

  12. Conservation form of the equations of fluid dynamics in general nonsteady coordinates

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Camarero, R.; Kahawita, R.

    1985-11-01

    Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations.

  13. Patient- and family-centered care coordination: a framework for integrating care for children and youth across multiple systems.

    PubMed

    2014-05-01

    Understanding a care coordination framework, its functions, and its effects on children and families is critical for patients and families themselves, as well as for pediatricians, pediatric medical subspecialists/surgical specialists, and anyone providing services to children and families. Care coordination is an essential element of a transformed American health care delivery system that emphasizes optimal quality and cost outcomes, addresses family-centered care, and calls for partnership across various settings and communities. High-quality, cost-effective health care requires that the delivery system include elements for the provision of services supporting the coordination of care across settings and professionals. This requirement of supporting coordination of care is generally true for health systems providing care for all children and youth but especially for those with special health care needs. At the foundation of an efficient and effective system of care delivery is the patient-/family-centered medical home. From its inception, the medical home has had care coordination as a core element. In general, optimal outcomes for children and youth, especially those with special health care needs, require interfacing among multiple care systems and individuals, including the following: medical, social, and behavioral professionals; the educational system; payers; medical equipment providers; home care agencies; advocacy groups; needed supportive therapies/services; and families. Coordination of care across settings permits an integration of services that is centered on the comprehensive needs of the patient and family, leading to decreased health care costs, reduction in fragmented care, and improvement in the patient/family experience of care. Copyright © 2014 by the American Academy of Pediatrics.

  14. Coordinate transformations and gauges in the relativistic astronomical reference systems

    NASA Astrophysics Data System (ADS)

    Tao, J.-H.; Huang, T.-Y.; Han, C.-H.

    2000-11-01

    This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.

  15. Review on the Celestial Sphere Positioning of FITS Format Image Based on WCS and Research on General Visualization

    NASA Astrophysics Data System (ADS)

    Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.

    2017-11-01

    Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.

  16. Users manual for coordinate generation code CRDSRA

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.

    1985-01-01

    Generation of a viable coordinate system represents an important component of an isolated airfoil Navier-Stokes calculation. The manual describes a computer code for generation of such a coordinate system. The coordinate system is a general nonorthogonal one in which high resolution normal to the airfoil is obtained in the vicinity of the airfoil surface, and high resolution along the airfoil surface is obtained in the vicinity of the airfoil leading edge. The method of generation is a constructive technique which leads to a C type coordinate grid. The method of construction as well as input and output definitions are contained herein. The computer code itself as well as a sample output is being submitted to COSMIC.

  17. Deflection of light to second order: A tool for illustrating principles of general relativity

    NASA Astrophysics Data System (ADS)

    Bodenner, Jeremiah; Will, Clifford M.

    2003-08-01

    We calculate the deflection of light by a spherically symmetric body in general relativity, to second order in the quantity GM/dc2, where M is the mass of the body and d is a measure of the distance of closest approach of the ray. Using three different coordinate systems for the Schwarzschild metric we show that the answers for the deflection, while the same at order GM/dc2, differ at order (GM/dc2)2. We demonstrate that all three expressions are really the same by expressing them in terms of measurable, coordinate-independent quantities. These results provide concrete illustrations of the meaning of coordinates and coordinate invariance, which may be useful in teaching general relativity.

  18. Redesigning the Practice Model for General Internal Medicine. A Proposal for Coordinated Care

    PubMed Central

    2007-01-01

    General Internal Medicine (GIM) faces a burgeoning crisis in the United States, while patients with chronic illness confront a disintegrating health care system. Reimbursement that rewards using procedures and devices rather than thoughtful examination and management, plus onerous administrative burdens, are prompting physicians to pursue specialties other than GIM. This monograph promotes 9 principles supporting the concept of Coordinated Care—a strategy to sustain quality and enhance the attractiveness and viability of care delivered by highly trained General Internists who specialize in the longitudinal care of adult patients with acute and chronic illness. This approach supplements and extends the concept of the Advanced Medical Home set forth by the American College of Physicians. Specific components of Coordinated Care include clinical support, information management, and access and scheduling. Success of the model will require changes in the payment system that fairly reimburse physicians who provide leadership to teams that deliver high quality, coordinated care. PMID:17356976

  19. Generalized Entropies and Legendre Duality

    DTIC Science & Technology

    2012-04-22

    region because of their one-to-one functional relationship. The standard algorithm using projection of a polyhedron [29, 6] commonly works well to...coordinate system is chosen to realize the corresponding Voronoi diagrams. In this coordinate system with one extra complementary coordinate the polyhedron is...dually flat. Using this property, α-Voronoi diagrams on Rn+1+ is discussed in [31]. While both of the above methods require computation of the polyhedrons

  20. 48 CFR 633.102 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false General. 633.102 Section 633.102 Federal Acquisition Regulations System DEPARTMENT OF STATE GENERAL CONTRACTING REQUIREMENTS... with the Government Accountability Office (GAO) shall be coordinated with the Office of the Legal...

  1. 48 CFR 1203.301 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false General. 1203.301 Section 1203.301 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION GENERAL IMPROPER BUSINESS... violations, except reports of suspected antitrust violations shall be coordinated with legal counsel for...

  2. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  3. Equations of motion of slung-load systems, including multilift systems

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1992-01-01

    General simulation equations are derived for the rigid body motion of slung-load systems. This work is motivated by an interest in trajectory control for slung loads carried by two or more helicopters. An approximation of these systems consists of several rigid bodies connected by straight-line cables or links. The suspension can be assumed elastic or inelastic. Equations for the general system are obtained from the Newton-Euler rigid-body equations with the introduction of generalized velocity coordinates. Three forms are obtained: two generalize previous case-specific results for single-helicopter systems with elastic and inelastic suspensions, respectively; and the third is a new formulation for inelastic suspensions. The latter is derived from the elastic suspension equations by choosing the generalized coordinates so that motion induced by cable stretching is separated from motion with invariant cable lengths, and by then nulling the stretching coordinates to get a relation for the suspension forces. The result is computationally more efficient than the conventional formulation, is readily integrated with the elastic suspension formulation, and is easily applied to the complex dual-lift and multilift systems. Results are given for two-helicopter systems; three configurations are included and these can be integrated in a single simulation. Equations are also given for some single-helicopter systems, for comparison with the previous literature, and for a multilift system. Equations for degenerate-body approximations (point masses, rigid rods) are also formulated and results are given for dual-lift and multilift systems. Finally, linearlized equations of motion are given for general slung-load systems are presented along with results for the two-helicopter system with a spreader bar.

  4. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  5. Distributions in Spherical Coordinates with Applications to Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2007-01-01

    A general and rigorous method to deal with singularities at the origin of a polar coordinate system is presented. Its power derives from a clear distinction between the radial distance and the radial coordinate variable, which makes that all delta functions and their derivatives are automatically generated, and ensures that the Gauss theorem is…

  6. The Equivalence of Precession Phenomena in Metric Theories of Gravity

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1996-01-01

    The requirement of general covariance imparts to metric theories of gravity, such as general relativity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates. This coordinate independence property, in turn, can lead to an equivalence of apparently different physical effects.

  7. A Study of the Coordination of the Higher Adult Education Function Within State Systems.

    ERIC Educational Resources Information Center

    Parker, Robert

    The paper reports the findings of a two-tier data survey involving the chief executive officers of State systems of higher education in determining the extent of their coordination-control of higher adult education. The first general phase of the study indicated that 42 of the 50 systems surveyed had responsibility for higher adult education. In…

  8. The 2008-2009 Pennsylvania System of School Assessment Handbook for Assessment Coordinators: Writing, Reading and Mathematics, Science

    ERIC Educational Resources Information Center

    Pennsylvania Department of Education, 2010

    2010-01-01

    This handbook describes the responsibilities of district and school assessment coordinators in the administration of the Pennsylvania System of School Assessment (PSSA). This updated guidebook contains the following sections: (1) General Assessment Guidelines for All Assessments; (2) Writing Specific Guidelines; (3) Reading and Mathematics…

  9. Combined distribution functions: A powerful tool to identify cation coordination geometries in liquid systems

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; D'Angelo, Paola; Migliorati, Valentina

    2018-01-01

    In this work we have developed an analytical procedure to identify metal ion coordination geometries in liquid media based on the calculation of Combined Distribution Functions (CDFs) starting from Molecular Dynamics (MD) simulations. CDFs provide a fingerprint which can be easily and unambiguously assigned to a reference polyhedron. The CDF analysis has been tested on five systems and has proven to reliably identify the correct geometries of several ion coordination complexes. This tool is simple and general and can be efficiently applied to different MD simulations of liquid systems.

  10. The generalized formula for angular velocity vector of the moving coordinate system

    NASA Astrophysics Data System (ADS)

    Ermolin, Vladislav S.; Vlasova, Tatyana V.

    2018-05-01

    There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.

  11. Calculating Free Energies Using Average Force

    NASA Technical Reports Server (NTRS)

    Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.

  12. Infant Vocal-Motor Coordination: Precursor to the Gesture-Speech System?

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Fagan, Mary K.

    2004-01-01

    This study was designed to provide a general picture of infant vocal-motor coordination and test predictions generated by Iverson and Thelen's (1999) model of the development of the gesture-speech system. Forty-seven 6- to 9-month-old infants were videotaped with a primary caregiver during rattle and toy play. Results indicated an age-related…

  13. The coordinating evaluation and spatial correlation analysis of CSGC: A case study of Henan province, China.

    PubMed

    Xie, Mingxia; Wang, Jiayao; Chen, Ke

    2017-01-01

    This study investigates the basic characteristics and proposes a concept for the complex system of geographical conditions (CSGC). By analyzing the DPSIR model and its correlation with the index system, we selected indexes for geographical conditions according to the resources, ecology, environment, economy and society parameters to build a system. This system consists of four hierarchies: index, classification, element and target levels. We evaluated the elements or indexes of the complex system using the TOPSIS method and a general model coordinating multiple complex systems. On this basis, the coordination analysis experiment of geographical conditions is applied to cities in the Henan province in China. The following conclusions were reached: ①According to the pressure, state and impact of geographical conditions, relatively consistent measures are taken around the city, but with conflicting results. ②The coordination degree of geographical conditions is small among regions showing large differences in classification index value. The degree of coordination of such regions is prone to extreme values; however, the smaller the difference the larger the coordination degree. ③The coordinated development of geographical conditions in the Henan province is at the stage of the point axis.

  14. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  15. 47 CFR 95.1113 - Frequency coordinator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a... with radio astronomy observatories and Federal Government radar systems as specified in §§ 95.1119 and...

  16. 47 CFR 95.1113 - Frequency coordinator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a... with radio astronomy observatories and Federal Government radar systems as specified in §§ 95.1119 and...

  17. Assessment of Hybrid Coordinate Model Velocity Fields During Agulhas Return Current 2012 Cruise

    DTIC Science & Technology

    2013-06-01

    Forecasts GDEM Generalized Digital Environmental Model GPS Global Positioning System HYCOM HYbrid Coordinate Ocean Model MICOM Miami Isopycnal...speed profiles was climatology from the Generalized Digital Environmental Model ( GDEM ; Teague et al. 1990). Made operational in 1999, the Modular... GDEM was the only tool a naval oceanographer had at his or her disposal to characterize ocean conditions where in-situ observations could not be

  18. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  19. Calculation of three-dimensional compressible laminar and turbulent boundary flows. Three-dimensional compressible boundary layers of reacting gases over realistic configurations

    NASA Technical Reports Server (NTRS)

    Kendall, R. M.; Bonnett, W. S.; Nardo, C. T.; Abbett, M. J.

    1975-01-01

    A three-dimensional boundary-layer code was developed for particular application to realistic hypersonic aircraft. It is very general and can be applied to a wide variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows of compressible, reacting gases are efficiently calculated by use of the code. A body-oriented orthogonal coordinate system is used for the calculation and the user has complete freedom in specifying the coordinate system within the restrictions that one coordinate must be normal to the surface and the three coordinates must be mutually orthogonal.

  20. Using a Family of Dividing Surfaces Normal to the Minimum EnergyPath for Quantum Instanton Rate Constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yimin; Miller, Wlliam H.

    2006-02-22

    One of the outstanding issues in the quantum instanton (QI) theory (or any transition state-type theory) for thermal rate constants of chemical reactions is the choice of an appropriate ''dividing surface'' (DS) that separates reactants and products. (In the general version of the QI theory, there are actually two dividing surfaces involved.) This paper shows one simple and general way for choosing DS's for use in QI Theory, namely using the family of (hyper) planes normal to the minimum energy path (MEP) on the potential energy surface at various distances s along it. Here the reaction coordinate is not onemore » of the dynamical coordinates of the system (which will in general be the Cartesian coordinates of the atoms), but rather simply a parameter which specifies the DS. It is also shown how this idea can be implemented for an N-atom system in 3d space in a way that preserves overall translational and rotational invariance. Numerical application to a simple system (the colliner H + H{sub 2} reaction) is presented to illustrate the procedure.« less

  1. Equations of motion of slung load systems with results for dual lift

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1990-01-01

    General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.

  2. A general-purpose approach to computer-aided dynamic analysis of a flexible helicopter

    NASA Technical Reports Server (NTRS)

    Agrawal, Om P.

    1988-01-01

    A general purpose mathematical formulation is described for dynamic analysis of a helicopter consisting of flexible and/or rigid bodies that undergo large translations and rotations. Rigid body and elastic sets of generalized coordinates are used. The rigid body coordinates define the location and the orientation of a body coordinate frame (global frame) with respect to an inertial frame. The elastic coordinates are introduced using a finite element approach in order to model flexible components. The compatibility conditions between two adjacent elements in a flexible body are imposed using a Boolean matrix, whereas the compatibility conditions between two adjacent bodies are imposed using the Lagrange multiplier approach. Since the form of the constraint equations depends upon the type of kinematic joint and involves only the generalized coordinates of the two participating elements, then a library of constraint elements can be developed to impose the kinematic constraint in an automated fashion. For the body constraints, the Lagrange multipliers yield the reaction forces and torques of the bodies at the joints. The virtual work approach is used to derive the equations of motion, which are a system of differential and algebraic equations that are highly nonlinear. The formulation presented is general and is compared with hard-wired formulations commonly used in helicopter analysis.

  3. Electronic palliative care coordination systems: Devising and testing a methodology for evaluating documentation

    PubMed Central

    Allsop, Matthew J; Kite, Suzanne; McDermott, Sarah; Penn, Naomi; Millares-Martin, Pablo; Bennett, Michael I

    2016-01-01

    Background: The need to improve coordination of care at end of life has driven electronic palliative care coordination systems implementation across the United Kingdom and internationally. No approaches for evaluating electronic palliative care coordination systems use in practice have been developed. Aim: This study outlines and applies an evaluation framework for examining how and when electronic documentation of advance care planning is occurring in end of life care services. Design: A pragmatic, formative process evaluation approach was adopted. The evaluation drew on the Project Review and Objective Evaluation methodology to guide the evaluation framework design, focusing on clinical processes. Setting/participants: Data were extracted from electronic palliative care coordination systems for 82 of 108 general practices across a large UK city. All deaths (n = 1229) recorded on electronic palliative care coordination systems between April 2014 and March 2015 were included to determine the proportion of all deaths recorded, median number of days prior to death that key information was recorded and observations about routine data use. Results: The evaluation identified 26.8% of all deaths recorded on electronic palliative care coordination systems. The median number of days to death was calculated for initiation of an electronic palliative care coordination systems record (31 days), recording a patient’s preferred place of death (8 days) and entry of Do Not Attempt Cardiopulmonary Resuscitation decisions (34 days). Where preferred and actual place of death was documented, these were matching for 75% of patients. Anomalies were identified in coding used during data entry on electronic palliative care coordination systems. Conclusion: This study reports the first methodology for evaluating how and when electronic palliative care coordination systems documentation is occurring. It raises questions about what can be drawn from routine data collected through electronic palliative care coordination systems and outlines considerations for future evaluation. Future evaluations should consider work processes of health professionals using electronic palliative care coordination systems. PMID:27507636

  4. Electronic palliative care coordination systems: Devising and testing a methodology for evaluating documentation.

    PubMed

    Allsop, Matthew J; Kite, Suzanne; McDermott, Sarah; Penn, Naomi; Millares-Martin, Pablo; Bennett, Michael I

    2017-05-01

    The need to improve coordination of care at end of life has driven electronic palliative care coordination systems implementation across the United Kingdom and internationally. No approaches for evaluating electronic palliative care coordination systems use in practice have been developed. This study outlines and applies an evaluation framework for examining how and when electronic documentation of advance care planning is occurring in end of life care services. A pragmatic, formative process evaluation approach was adopted. The evaluation drew on the Project Review and Objective Evaluation methodology to guide the evaluation framework design, focusing on clinical processes. Data were extracted from electronic palliative care coordination systems for 82 of 108 general practices across a large UK city. All deaths ( n = 1229) recorded on electronic palliative care coordination systems between April 2014 and March 2015 were included to determine the proportion of all deaths recorded, median number of days prior to death that key information was recorded and observations about routine data use. The evaluation identified 26.8% of all deaths recorded on electronic palliative care coordination systems. The median number of days to death was calculated for initiation of an electronic palliative care coordination systems record (31 days), recording a patient's preferred place of death (8 days) and entry of Do Not Attempt Cardiopulmonary Resuscitation decisions (34 days). Where preferred and actual place of death was documented, these were matching for 75% of patients. Anomalies were identified in coding used during data entry on electronic palliative care coordination systems. This study reports the first methodology for evaluating how and when electronic palliative care coordination systems documentation is occurring. It raises questions about what can be drawn from routine data collected through electronic palliative care coordination systems and outlines considerations for future evaluation. Future evaluations should consider work processes of health professionals using electronic palliative care coordination systems.

  5. A Novel Group Coordination Protocol for Collaborative Multimedia Systems

    DTIC Science & Technology

    1998-01-01

    technology have advanced considerably, ef- ficient group coordination support for applications characterized by synchronous and wide-area groupwork is...As a component within a general coordination architecture for many-to-many groupwork , floor control coexists with proto- cols for reliable ordered...multicast and media synchronization at a sub-application level. Orchestration of multiparty groupwork with fine-grained and fair floor control is an

  6. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  7. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    NASA Astrophysics Data System (ADS)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  8. Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2005-01-01

    Tensor analysis is one of the more abstruse, even if one of the more useful, higher math subjects enjoined by students of physics and engineering. It is abstruse because of the intellectual gap that exists between where most physics and engineering mathematics leave off and where tensor analysis traditionally begins. It is useful because of its great generality, computational power, and compact, easy to use, notation. This paper bridges the intellectual gap. It is divided into three parts: algebra, calculus, and relativity. Algebra: In tensor analysis, coordinate independent quantities are sought for applications in physics and engineering. Coordinate independence means that the quantities have such coordinate transformations as to leave them invariant relative to a particular observer s coordinate system. Calculus: Non-zero base vector derivatives contribute terms to dynamical equations that correspond to pseudoaccelerations in accelerated coordinate systems and to curvature or gravity in relativity. These derivatives have a specific general form in tensor analysis. Relativity: Spacetime has an intrinsic geometry. Light is the tool for investigating that geometry. Since the observed geometry of spacetime cannot be made to match the classical geometry of Euclid, Einstein applied another more general geometry differential geometry. The merger of differential geometry and cosmology was accomplished in the theory of relativity. In relativity, gravity is equivalent to curvature.

  9. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  10. Lower fragmentation of coordination in primary care is associated with lower prescribing drug costs-lessons from chronic illness care in Hungary.

    PubMed

    Lublóy, Ágnes; Keresztúri, Judit Lilla; Benedek, Gábor

    2017-10-01

    Improving patient care coordination is critical for achieving better health outcome measures at reduced cost. However, assessing the results of patient care coordination at system level is lacking. In this report, based on administrative healthcare data, a provider-level care coordination measure is developed to assess the function of primary care at system level. In a sample of 31 070 patients with diabetes we find that the type of collaborative relationship general practitioners build up with specialists is associated with prescription drug costs. Regulating access to secondary care might result in cost savings through improved care coordination. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  11. A benchmark for reaction coordinates in the transition path ensemble

    PubMed Central

    2016-01-01

    The molecular mechanism of a reaction is embedded in its transition path ensemble, the complete collection of reactive trajectories. Utilizing the information in the transition path ensemble alone, we developed a novel metric, which we termed the emergent potential energy, for distinguishing reaction coordinates from the bath modes. The emergent potential energy can be understood as the average energy cost for making a displacement of a coordinate in the transition path ensemble. Where displacing a bath mode invokes essentially no cost, it costs significantly to move the reaction coordinate. Based on some general assumptions of the behaviors of reaction and bath coordinates in the transition path ensemble, we proved theoretically with statistical mechanics that the emergent potential energy could serve as a benchmark of reaction coordinates and demonstrated its effectiveness by applying it to a prototypical system of biomolecular dynamics. Using the emergent potential energy as guidance, we developed a committor-free and intuition-independent method for identifying reaction coordinates in complex systems. We expect this method to be applicable to a wide range of reaction processes in complex biomolecular systems. PMID:27059559

  12. The Air Force Interactive Meteorological System: A Research Tool for Satellite Meteorology

    DTIC Science & Technology

    1992-12-02

    NFARnet itself is a subnet to the global computer network INTERNET that links nearly all U.S. government research facilities and universi- ties along...required input to a generalized mathematical solution to the satellite/earth coordinate transform used for earth location of GOES sensor data. A direct...capability also exists to convert absolute coordinates to relative coordinates for transformations associated with gridded fields. 3. Spatial objective

  13. Numeric kinetic energy operators for molecules in polyspherical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadri, Keyvan; Meyer, Hans-Dieter; Lauvergnat, David

    Generalized curvilinear coordinates, as, e.g., polyspherical coordinates, are in general better adapted to the resolution of the nuclear Schroedinger equation than rectilinear ones like the normal mode coordinates. However, analytical expressions of the kinetic energy operators (KEOs) for molecular systems in polyspherical coordinates may be prohibitively complicated for large systems. In this paper we propose a method to generate a KEO numerically and bring it to a form practicable for dynamical calculations. To examine the new method we calculated vibrational spectra and eigenenergies for nitrous acid (HONO) and compare it with results obtained with an exact analytical KEO derived previouslymore » [F. Richter, P. Rosmus, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 120, 6072 (2004)]. In a second example we calculated {pi}{yields}{pi}* photoabsorption spectrum and eigenenergies of ethene (C{sub 2}H{sub 4}) and compared it with previous work [M. R. Brill, F. Gatti, D. Lauvergnat, and H.-D. Meyer, Chem. Phys. 338, 186 (2007)]. In this ethene study the dimensionality was reduced from 12 to 6 by freezing six internal coordinates. Results for both molecules show that the proposed method for obtaining an approximate KEO is reliable for dynamical calculations. The error in eigenenergies was found to be below 1 cm{sup -1} for most states calculated.« less

  14. Simulation of the planetary boundary layer with the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1981-01-01

    A planetary boundary layer (PBL) model is presented which employs a mixed layer entrainment formulation to describe the mass exchange between the mixed layer with the upper, laminar atmosphere. A modified coordinate system couples the mixed layer model with large scale and sub-grid scale processes of a general circulation model. The vertical coordinate is configured as a sigma coordinate with the lower boundary, the top of the PBL, and the prescribed pressure level near the tropopause expressed as coordinate surfaces. The entrainment mass flux is parameterized by assuming the dissipation rate of turbulent kinetic energy to be proportional to the positive part of the generation by convection or mechanical production. The results of a simulation of July are presented for the entire globe.

  15. FIDDLE: A Computer Code for Finite Difference Development of Linear Elasticity in Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2005-01-01

    A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.

  16. A General Pressure Gradient Formulation for Ocean Models, Part 1: Scheme Design and Diagnostic Analysis, Part II: Energy, Momentum, and Bottom Torque Consistency

    NASA Technical Reports Server (NTRS)

    Song, Y. T.

    1998-01-01

    A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.

  17. 15 CFR 1170.3 - General policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... extent economically feasible by the end of the fiscal year 1992, use the metric system of measurement in...) Federal agencies shall coordinate and plan for the use of the metric system in their procurements, grants... ADMINISTRATION, DEPARTMENT OF COMMERCE METRIC CONVERSION POLICY FOR FEDERAL AGENCIES § 1170.3 General policy. The...

  18. 15 CFR 1170.3 - General policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... extent economically feasible by the end of the fiscal year 1992, use the metric system of measurement in...) Federal agencies shall coordinate and plan for the use of the metric system in their procurements, grants... ADMINISTRATION, DEPARTMENT OF COMMERCE METRIC CONVERSION POLICY FOR FEDERAL AGENCIES § 1170.3 General policy. The...

  19. 15 CFR 1170.3 - General policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... extent economically feasible by the end of the fiscal year 1992, use the metric system of measurement in...) Federal agencies shall coordinate and plan for the use of the metric system in their procurements, grants... ADMINISTRATION, DEPARTMENT OF COMMERCE METRIC CONVERSION POLICY FOR FEDERAL AGENCIES § 1170.3 General policy. The...

  20. Coordination of frontline defense mechanisms under severe oxidative stress.

    PubMed

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  1. Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance,

    DTIC Science & Technology

    1999-09-01

    open enrollment materials, information was made available to employees on internal Web sites. The Greater Detroit Area Health Council also reported...RAND Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance Elizabeth A. McGlynn, John Adams, Jennifer...Hicks, David Klein DRU-2123-FMC September 1999 Prepared for DaimlerChrysler, Ford Motor Company, General Motors, and the United Auto Workers

  2. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  3. Schwarzschild-de Sitter spacetimes, McVittie coordinates, and trumpet geometries

    NASA Astrophysics Data System (ADS)

    Dennison, Kenneth A.; Baumgarte, Thomas W.

    2017-12-01

    Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat, however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean curvature trumpet slicings of Schwarzschild-de Sitter spacetimes. We then switch to a comoving isotropic radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances from the black hole the resulting metric asymptotes to a Friedmann-Lemaître-Robertson-Walker metric with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a "wormhole" geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in asymptotically de Sitter spacetimes.

  4. Comparison of Flux-Surface Aligned Curvilinear Coordinate Systems and Neoclassical Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2015-11-01

    Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.

  5. Coordinate Families for the Schwarzschild Geometry Based on Radial Timelike Geodesics

    NASA Technical Reports Server (NTRS)

    Finch, Tehani K.

    2015-01-01

    We explore the connections between various coordinate systems associated with observersmoving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon.We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lemaître coordinates as well.

  6. Painleve-gullstrand-type Coordinates for the Five-dimensional Myers-Perry Black Hole

    NASA Technical Reports Server (NTRS)

    Finch, Tehani Kahi

    2013-01-01

    The Painleve-Gullstrand coordinates provide a convenient framework for presenting the Schwarzschild geometry because of their flat constant-time hypersurfaces, and the fact that they are free of coordinate singularities outside r=0. Generalizations of Painlev´e-Gullstrand coordinates suitable for the Kerr geometry have been presented by Doran and Nat´ario. These coordinate systems feature a time coordinate identical to the proper time of zero-angular-momentum observers that are dropped from infinity. Here, the methods of Doran and Nat´ario are extended to the five-dimensional rotating black hole found by Myers and Perry. The result is a new formulation of the Myers-Perry metric. The properties and physical significance of these new coordinates are discussed.

  7. Tailoring Programs for Better Fit. The Key to Coordination.

    ERIC Educational Resources Information Center

    Ferrero, Lee

    1994-01-01

    The most serious problem with the current work force preparation system is that many employment and training programs operate today to serve roughly the same people. Instead, these programs should be coordinated better to lower costs in the face of lowered funding. The General Accounting Office reports that about 125 federal programs do…

  8. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  9. Forebody and afterbody solutions of the Navier-Stokes equations for supersonic flow over blunt bodies in a generalized orthogonal coordinate system

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1978-01-01

    A coordinate transformation, which can approximate many different two-dimensional and axisymmetric body shapes with an analytic function, is used as a basis for solving the Navier-Stokes equations for the purpose of predicting 0 deg angle of attack supersonic flow fields. The transformation defines a curvilinear, orthogonal coordinate system in which coordinate lines are perpendicular to the body and the body is defined by one coordinate line. This system is mapped in to a rectangular computational domain in which the governing flow field equations are solved numerically. Advantages of this technique are that the specification of boundary conditions are simplified and, most importantly, the entire flow field can be obtained, including flow in the wake. Good agreement has been obtained with experimental data for pressure distributions, density distributions, and heat transfer over spheres and cylinders in supersonic flow. Approximations to the Viking aeroshell and to a candidate Jupiter probe are presented and flow fields over these shapes are calculated.

  10. Are joint health plans effective for coordination of health services? An analysis based on theory and Danish pre-reform results

    PubMed Central

    Strandberg-Larsen, Martin; Bernt Nielsen, Mikkel; Krasnik, Allan

    2007-01-01

    Background Since 1994 formal health plans have been used for coordination of health care services between the regional and local level in Denmark. From 2007 a substantial reform has changed the administrative boundaries of the system and a new tool for coordination has been introduced. Purpose To assess the use of the pre-reform health plans as a tool for strengthening coordination, quality and preventive efforts between the regional and local level of health care. Methods A survey addressed to: all counties (n=15), all municipalities (n=271) and a randomised selected sample of general practitioners (n=700). Results The stakeholders at the administrative level agree that health plans have not been effective as a tool for coordination. The development of health plans are dominated by the regional level. At the functional level 27 percent of the general practitioners are not familiar with health plans. Among those familiar with health plans 61 percent report that health plans influence their work to only a lesser degree or not at all. Conclusion Joint health planning is needed to achieve coordination of care. Efforts must be made to overcome barriers hampering efficient whole system planning. Active policies emphasising the necessity of health planning, despite involved cost, are warranted to insure delivery of care that benefits the health of the population. PMID:17925882

  11. Coordinate Families for the Schwarzschild Geometry Based on Radial Timelike Geodesics

    NASA Technical Reports Server (NTRS)

    Finch, Tehani K.

    2015-01-01

    We explore the connections between various coordinate systems associated with observers moving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from in nity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at in nity with non-zero initial inward velocity; Gautreau-Ho mann (GH) time coordinates are adapted to observers dropped from rest from a nite distance from the black hole horizon. We construct from these an LMP family and a propertime family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lema^tre coordinates as well.

  12. Collective coordinates and constrained hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayi, O.F.

    1992-07-01

    A general method of incorporating collective coordinates (transformation of fields into an overcomplete basis) with constrained hamiltonian systems is given where the original phase space variables and collective coordinates can be bosonic or/and fermionic. This method is illustrated by applying it to the SU(2) Yang-Mills-Higgs theory and its BFV-BRST quantization is discussed. Moreover, this formalism is used to give a systematic way of converting second class constraints into effectively first class ones, by considering second class constraints as first class constraints and gauge fixing conditions. This approach is applied to the massive superparticle. Proca lagrangian, and some topological quantum fieldmore » theories.« less

  13. Results of a coordination and shared clinical information programme between primary care and nephrology.

    PubMed

    García García, Manuel; Valenzuela Mújica, Mari Pau; Martínez Ocaña, Juan Carlos; Otero López, María del Sol; Ponz Clemente, Esther; López Alba, Thaïs; Gálvez Hernández, Enrique

    2011-01-01

    The high prevalence of chronic kidney disease (CKD) in the general population has created a need to coordinate specialised nephrology care and primary care. Although several systems have been developed to coordinate this process, published results are scarce and contradictory. To present the results of the application of a coordinated programme between nephrology care and primary care through consultations and a system of shared clinical information to facilitate communication and improve the criteria for referring patients. Elaboration of a coordinated care programme by the primary care management team and the nephrology department, based on the SEN-SEMFYC consensus document and a protocol for the study and management of arterial hypertension (AHT). Explanation and implementation in primary health care units. A directory of specialists’ consultations was created, both in-person and via e-mail. A continuous training programme in kidney disease and arterial hypertension was implemented in the in-person consultation sessions. The programme was progressively implemented over a three-year period (2007-2010) in an area of 426,000 inhabitants with 230 general practitioners. Use of a clinical information system named Salut en Xarxa that allows access to clinical reports, diagnoses, prescriptions, test results and clinical progression. Improved referral criteria between primary care and specialised nephrology service. Improved prioritisation of visits. Progressive increase in referrals denied by specialists (28.5% in 2009), accompanied by an explanatory report including suggestions for patient management. Decrease in first nephrology outpatient visits that have been referred from primary care (15% in 2009). Family doctors were generally satisfied with the improvement in communication and the continuous training programme. The main causes for denying referral requests were: patients >70 years with stage 3 CKD (44.15%); patients <70 years with stage 3a CKD (19.15%); albumin/creatinine ratio <500 mg/g (12.23%); non-secondary, non-refractory, essential AHT (11.17%). The general practitioners included in the programme showed great interest and no complaints were registered. The consultations improve adequacy and prioritisation of nephrology visits, allow for better communication between different levels of the health system, and offer systematic training for general practitioners to improve the management of nephrology patients. This process allows for referring nephrology patients with the most complex profiles to nephrology outpatient clinics.

  14. Coordination of frontline defense mechanisms under severe oxidative stress

    PubMed Central

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-01-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations—this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of γ rays. PMID:20664639

  15. Mathieu Progressive Waves

    NASA Astrophysics Data System (ADS)

    Andrei, B. Utkin

    2011-10-01

    A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.

  16. The Role of the National System of Research Coordinating Units in the Research-to-Practice Continuum.

    ERIC Educational Resources Information Center

    Huber, Jake

    Intended to stimulate and foster better communication, cooperation, and understanding between the National Institute of Education (NIE) and Research Coordinating Units (RCU) personnel, this report documents the compatibility between NIE's objectives and the current activities of the RCU's. In both general and specific terms, the activities of NIE…

  17. Control systems and coordination protocols of the secretory pathway.

    PubMed

    Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge

    2014-01-01

    Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.

  18. Dual arm coordination and control

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Tso, Kam; Lee, Thomas

    1989-01-01

    A generalized master/slave technique and experimental results for coordinated control of two arms rigidly grasping an object is described. An interactive program has been developed to allow a user the flexibility to select appropriate control modes for a given experiment. This interface allows for control gain adjustments. The results of several experiments performed on this system to demonstrate its capabilities such as transporting an object with or without induced internal forces and movement of a constrained object are offered. The system is further developed to achieve a so-called shared control mode in which an operator specifies the free motion trajectory for a point on the object of manipulation via a joystick while the autonomous control system is used for coordination and control of the arms.

  19. The 1980-81 AFOSR (Air Force Office of Scientific Research)-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 3. Comparison of Computation with Experiment, and Computors’ Summary Report.

    DTIC Science & Technology

    1981-09-01

    organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square

  20. On the decentralized control of large-scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chong, C.

    1973-01-01

    The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.

  1. [The respiratory system--its self-cleaning system. General mechanisms of clearance].

    PubMed

    Mustajbegović, J; Zuskin, E

    1998-01-01

    The behaviour of particles and deposition in different parts of respiratory system are described. Listed are factors which contribute to the deposition of particles in the lungs and upper areas of the respiratory system. The general mechanisms of lung clearance and their action such as cough, mucociliary transport, alveolar clearance and immunological system are reported. Particularly is stressed the necessity of coordination of all defense mechanisms in order to maintain normal respiratory function.

  2. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  3. Pathways to Lung Cancer Diagnosis: A Qualitative Study of Patients and General Practitioners about Diagnostic and Pretreatment Intervals.

    PubMed

    Rankin, Nicole M; York, Sarah; Stone, Emily; Barnes, David; McGregor, Deborah; Lai, Michelle; Shaw, Tim; Butow, Phyllis N

    2017-05-01

    Pathways to lung cancer diagnosis and treatment are complex. International evidence shows significant variations in pathways. Qualitative research investigating pathways to lung cancer diagnosis rarely considers both patient and general practitioner views simultaneously. To describe the lung cancer diagnostic pathway, focusing on the perspective of patients and general practitioners about diagnostic and pretreatment intervals. This qualitative study of patients with lung cancer and general practitioners in Australia used qualitative interviews or a focus group in which participants responded to a semistructured questionnaire designed to explore experiences of the diagnostic pathway. The Model of Pathways to Treatment (the Model) was used as a framework for analysis, with data organized into (1) events, (2) processes, and (3) contributing factors for variations in diagnostic and pretreatment intervals. Thirty participants (19 patients with lung cancer and 11 general practitioners) took part. Nine themes were identified during analysis. For the diagnostic interval, these were: (1) taking patient concerns seriously, (2) a sense of urgency, (3) advocacy that is doctor-driven or self-motivated, and (4) referral: "knowing who to refer to." For the pretreatment interval, themes were: (5) uncertainty, (6) psychosocial support for the patient and family before treatment, and (7) communication among the multidisciplinary team and general practitioners. Two cross-cutting themes were: (8) coordination of care and "handing over" the patient, and (9) general practitioner knowledge about lung cancer. Events were perceived as complex, with diagnosis often being revealed over time, rather than as a single event. Contributing factors at patient, system, and disease levels are described for both intervals. Patients and general practitioners expressed similar themes across the diagnostic and pretreatment intervals. Significant improvements could be made to health systems to facilitate better patient and general practitioner experiences of the diagnostic pathway. This novel presentation of patient and general practitioner perspectives indicates that systemic interventions have a role in timely and appropriate referrals to specialist care and coordination of investigations. Systemic interventions may alleviate concerns about urgency of diagnostic workup, communication, and coordination of care as patients transition from primary to specialist care.

  4. Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Titov, V. S.

    2007-01-01

    The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the footpoints. This implies that the basic characteristic of magnetic connectivity-the squashing degree or factor Q of elemental flux tubes, according to Titov and coworkers-must be rewritten in covariant form. Such a covariant expression of Q is derived in this work. The derived expression is very flexible and highly efficient for describing the global magnetic connectivity in the solar corona. In addition, a general expression for a new characteristic Q1, which defines a squashing of the flux tubes in the directions perpendicular to the field lines, is determined. This new quantity makes it possible to filter out the quasi-separatrix layers whose large values of Q are caused by a projection effect at the field lines nearly touching the photosphere. Thus, the value Q1 provides a much more precise description of the volumetric properties of the magnetic field structure. The difference between Q and Q1 is illustrated by comparing their distributions for two configurations, one of which is the Titov-Demoulin model of a twisted magnetic field.

  5. 49 CFR 1580.201 - Rail security coordinator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system that is not operating on track that is part of the general railroad system of transportation... SECURITY Passenger Rail Including Passenger Railroad Carriers, Rail Transit Systems, Tourist, Scenic.... This section applies to: (1) Each passenger railroad carrier, including each carrier operating light...

  6. Optimal Sampling of a Reaction Coordinate in Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Estimating how free energy changes with the state of a system is a central goal in applications of statistical mechanics to problems of chemical or biological interest. From these free energy changes it is possible, for example, to establish which states of the system are stable, what are their probabilities and how the equilibria between these states are influenced by external conditions. Free energies are also of great utility in determining kinetics of transitions between different states. A variety of methods have been developed to compute free energies of condensed phase systems. Here, I will focus on one class of methods - those that allow for calculating free energy changes along one or several generalized coordinates in the system, often called reaction coordinates or order parameters . Considering that in almost all cases of practical interest a significant computational effort is required to determine free energy changes along such coordinates it is hardly surprising that efficiencies of different methods are of great concern. In most cases, the main difficulty is associated with its shape along the reaction coordinate. If the free energy changes markedly along this coordinate Boltzmann sampling of its different values becomes highly non-uniform. This, in turn, may have considerable, detrimental effect on the performance of many methods for calculating free energies.

  7. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    PubMed

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  8. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  9. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    NASA Astrophysics Data System (ADS)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  10. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined bymore » studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.« less

  11. Local and National Effects of a Quality System in Dutch General Practitioner Specialty Training: A Qualitative Study

    ERIC Educational Resources Information Center

    Buwalda, Nienke; Braspenning, Jozé; van Dijk, Nynke; Visser, Mechteld

    2018-01-01

    A quality system (named GEAR; acronym for Combined Evaluation Audit Round in English), has been introduced in eight institutes of the Dutch general practitioner specialty training. This paper focuses on the local and national effects of GEAR. Seventeen semi-structured interviews were conducted with the directors and quality co-ordinators. At a…

  12. A stationary bulk planar ideal flow solution for the double shearing model

    NASA Astrophysics Data System (ADS)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  13. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  14. Generalization of the Ehrenfest theorem to quantum systems with periodical boundary conditions

    NASA Astrophysics Data System (ADS)

    Sanin, Andrey L.; Bagmanov, Andrey T.

    2005-04-01

    A generalization of Ehrenfest's theorem is discussed. For this purpose the quantum systems with periodical boundary conditions are being revised. The relations for time derivations of mean coordinate and momentum are derived once again. In comparison with Ehrenfest's theorem and its conventional quantities, the additional local terms occur which are caused boundaries. Because of this, the obtained new relations can be named as generalized. An example for using these relations is given.

  15. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezzacappa, Anthony; Endeve, Eirik; Hauck, Cory D.

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and themore » use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.« less

  16. Relationship between general and specific coordination in 8- to 17-year-old male basketball players.

    PubMed

    Kamandulis, Sigitas; Venckūnas, Tomas; Masiulis, Nerijus; Matulaitis, Kestutis; Balciūnas, Mindaugas; Peters, Derek; Skurvydas, Albertas

    2013-12-01

    The purpose of the present study was to investigate the relationships between general coordination, sport-specific coordination, and sport-specific fitness of 8- to 17-year-old male basketball players. 312 males with training experience ranging from one year in the 8-year-old cohort up to 10 years for the 17-year-olds performed basketball-specific fitness (20 m sprint, Illinois, countermovement jump), general coordination (20 m run with three obstacles), semi-basketball-specific coordination (20 m sprint dribbling two balls, countermovement jump with arm swing) and basketball-specific coordination (Illinois ball dribbling) tests. There were moderate to large correlations between the results of both general and basketball-specific coordination with the results of most basketball-specific coordination tests in all age groups. Correlations between general and basketball-specific coordination were large in four age groups (11-14 yr., r = .52 to r = .76), moderate in five groups (8-10, 15 & 16 yr., r = .37 to r = .46), while not significant in the 17-year-olds. These results suggest that the importance of general coordination for sport-specific skills improvements during a sports-specific skill acquisition phase, remains high at the skill refinement phase, and decreases when sport-specific skills have been mastered to near-perfection.

  17. Doctors' experience of coordination across care levels and associated factors. A cross-sectional study in public healthcare networks of six Latin American countries.

    PubMed

    Vázquez, María-Luisa; Vargas, Ingrid; Garcia-Subirats, Irene; Unger, Jean-Pierre; De Paepe, Pierre; Mogollón-Pérez, Amparo Susana; Samico, Isabella; Eguiguren, Pamela; Cisneros, Angelica-Ivonne; Huerta, Adriana; Muruaga, María-Cecilia; Bertolotto, Fernando

    2017-06-01

    Improving coordination between primary care (PC) and secondary care (SC) has become a policy priority in recent years for many Latin American public health systems looking to reinforce a healthcare model based on PC. However, despite being a longstanding concern, it has scarcely been analyzed in this region. This paper analyses the level of clinical coordination between PC and SC experienced by doctors and explores influencing factors in public healthcare networks of Argentina, Brazil, Chile, Colombia, Mexico and Uruguay. A cross-sectional study was carried out based on a survey of doctors working in the study networks (348 doctors per country). The COORDENA questionnaire was applied to measure their experiences of clinical management and information coordination, and their related factors. Descriptive analyses were conducted and a multivariate logistic regression model was generated to assess the relationship between general perception of care coordination and associated factors. With some differences between countries, doctors generally reported limited care coordination, mainly in the transfer of information and communication for the follow-up of patients and access to SC for referred patients, especially in the case of PC doctors and, to a lesser degree, inappropriate clinical referrals and disagreement over treatments, in the case of SC doctors. Factors associated with a better general perception of coordination were: being a SC doctor, considering that there is enough time for coordination within consultation hours, job and salary satisfaction, identifying the PC doctor as the coordinator of patient care across levels, knowing the doctors of the other care level and trusting in their clinical skills. These results provide evidence of problems in the implementation of a primary care-based model that require changes in aspects of employment, organization and interaction between doctors, all key factors for coordination. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The Equivalence of Precession Phenomena in Metric Theories of Gravity

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1997-01-01

    The requirement of general covariance imparts to metric theories of gravity, such as general relavity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates.

  19. Global Coordinates and Exact Aberration Calculations Applied to Physical Optics Modeling of Complex Optical Systems

    NASA Astrophysics Data System (ADS)

    Lawrence, G.; Barnard, C.; Viswanathan, V.

    1986-11-01

    Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by "unfolding" the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidence optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly.

  20. Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation.

    PubMed

    Van Gorder, Robert A

    2013-04-01

    We provide a formulation of the local induction approximation (LIA) for the motion of a vortex filament in the Cartesian reference frame (the extrinsic coordinate system) which allows for scaling of the reference coordinate. For general monotone scalings of the reference coordinate, we derive an equation for the planar solution to the derivative nonlinear Schrödinger equation governing the LIA. We proceed to solve this equation perturbatively in small amplitude through an application of multiple-scales analysis, which allows for accurate computation of the period of the planar vortex filament. The perturbation result is shown to agree strongly with numerical simulations, and we also relate this solution back to the solution obtained in the arclength reference frame (the intrinsic coordinate system). Finally, we discuss nonmonotone coordinate scalings and their application for finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely unstable and collapse into other structures or dissipate completely.

  1. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Dhabaleswar Kumar; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system throughmore » fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.« less

  2. 48 CFR 246.103 - Contracting office responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Contracting office... SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE General 246.103 Contracting office responsibilities. (1) The contracting office must coordinate with the quality assurance activity before changing...

  3. Time scales in the context of general relativity.

    PubMed

    Guinot, Bernard

    2011-10-28

    Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers.

  4. Regional Multiteam Systems in Cancer Care Delivery

    PubMed Central

    Monson, John R.T.; Rizvi, Irfan; Savastano, Ann; Green, James S.A.; Sevdalis, Nick

    2016-01-01

    Teamwork is essential for addressing many of the challenges that arise in the coordination and delivery of cancer care, especially for the problems that are presented by patients who cross geographic boundaries and enter and exit multiple health care systems at various times during their cancer care journeys. The problem of coordinating the care of patients with cancer is further complicated by the growing number of treatment options and modalities, incompatibilities among the vast variety of technology platforms that have recently been adopted by the health care industry, and competing and misaligned incentives for providers and systems. Here we examine the issue of regional care coordination in cancer through the prism of a real patient journey. This article will synthesize and elaborate on existing knowledge about coordination approaches for complex systems, in particular, in general and cancer care multidisciplinary teams; define elements of coordination derived from organizational psychology and human factors research that are applicable to team-based cancer care delivery; and suggest approaches for improving multidisciplinary team coordination in regional cancer care delivery and avenues for future research. The phenomenon of the mobile, multisystem patient represents a growing challenge in cancer care. Paradoxically, development of high-quality, high-volume centers of excellence and the ease of virtual communication and data sharing by using electronic medical records have introduced significant barriers to effective team-based cancer care. These challenges urgently require solutions. PMID:27650833

  5. Individual Differences in Algebraic Cognition: Relation to the Approximate Number and Sematic Memory Systems

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.

    2015-01-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604

  6. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... network control center which will have the responsibility to do the following: (1) Monitor space-to-Earth transmissions in its system (thus indirectly monitoring uplink earth station transmissions in its system) and (2... and correct the problem promptly. (b) [Reserved] (c) The transmitting earth station licensee shall...

  7. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... network control center which will have the responsibility to do the following: (1) Monitor space-to-Earth transmissions in its system (thus indirectly monitoring uplink earth station transmissions in its system) and (2... issues. (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on...

  8. 48 CFR 203.070 - Reporting of violations and suspected violations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL..., Coordination of Remedies for Fraud and Corruption Related to Procurement Activities: (a) Certificate of...

  9. Spherical shock waves in general relativity

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1991-11-01

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.

  10. [Networks, disease management programs, GP coordinator: analysis of recent ambulatory reforms in Germany].

    PubMed

    Giovanella, Ligia

    2011-01-01

    Strengthening the role of the general practitioner in the conduction and coordination of specialized, inpatient and social care to ensure the continuity is a trend observed in recent health reforms in European countries. In Germany, from the second half of the 1990s, driven by economic pressures, a specific legislation and initiatives of the providers themselves have developed new organizational structures and care models for the purpose of the integration of the health care system and the coordination of health care in the form of: physicians networks, practitioner coordinator model, diseases management programs and integrated care. From a literature review, document analysis, visits to services and interviews with key informants, this paper analyzes the dynamics of these organizational changes in the German outpatient sector. The mechanisms of integration and coordination proposed are examined, and the potential impacts on the efficiency and quality of new organizational arrangements are discussed. Also it is analyzed the reasons and interests involved that point out the obstacles to the implementation. It was observed the process of an incremental reform with a tendency of diversification of the healthcare panorama in Germany with the presence of integrated models of care and strengthening the role of general practitioners in the coordination of patient care.

  11. Existence of frozen-in coordinate systems

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.

  12. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  13. Design of Deformation Monitoring System for Volcano Mitigation

    NASA Astrophysics Data System (ADS)

    Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal

    2016-08-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.

  14. 49 CFR 1580.101 - Rail security coordinator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system of transportation, when notified by TSA in writing, that a threat exists concerning that operation.... This section applies to: (1) Each freight railroad carrier that operates rolling equipment on track that is part of the general railroad system of transportation. (2) Each rail hazardous materials...

  15. Generalized spherical and simplicial coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Wolf-Dieter

    2007-12-01

    Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.

  16. Coordinate Time and Proper Time in the GPS

    ERIC Educational Resources Information Center

    Matolcsi, T.; Matolcsi, M.

    2008-01-01

    The global positioning system (GPS) provides an excellent educational example of how the theory of general relativity is put into practice and becomes part of our everyday life. This paper gives a short and instructive derivation of an important formula used in the GPS, and is aimed at graduate students and general physicists. The authors…

  17. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  18. 78 FR 32699 - Shipping Coordinating Committee; Notice of Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...)) --Revision of the Guidelines for the onboard operational use of shipborne automatic identification systems... transportation is not generally available). However, parking in the vicinity of the building is limited...

  19. Stakeholder perceptions of aid coordination implementation in the Zambian health sector.

    PubMed

    Sundewall, Jesper; Jönsson, Kristina; Cheelo, Caesar; Tomson, Göran

    2010-05-01

    In this study, we analysed stakeholder perceptions of the process of implementing the coordination of health-sector aid in Zambia, Africa. The aim of coordination of health aid is to increase the effectiveness of health systems and to ensure that donors comply with national priorities. With increases in the number of donors involved and resources available for health aid globally, the attention devoted to coordination worldwide has risen. While the theoretical basis of coordination has been relatively well-explored, less research has been carried out on the practicalities of how such coordination is to be implemented. In our study, we focused on potential differences between the views of the stakeholders, both government and donors, on the systems by which health aid is coordinated. A qualitative case study was conducted comprising interviews with government and donor stakeholders in the health sector, as well as document review and observations of meetings. Results suggested that stakeholders are generally satisfied with the implementation of health-sector aid coordination in Zambia. However, there were differences in perceptions of the level of coordination of plans and agreements, which can be attributed to difficulties in harmonizing and aligning organizational requirements with the Zambian health-sector plans. In order to achieve the aims of the Paris Declaration; to increase harmonization, alignment and ownership--resources from donors must be better coordinated in the health sector planning process. This requires careful consideration of contextual constraints surrounding each donor. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  20. New nonlinear control algorithms for multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, X.

    1988-01-01

    Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.

  1. Pulsar timing and general relativity

    NASA Technical Reports Server (NTRS)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  2. Biological Movement and Laws of Physics.

    PubMed

    Latash, Mark L

    2017-07-01

    Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.

  3. 76 FR 19176 - Shipping Coordinating Committee; Notice of Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... (SOLAS) regulation V/22 --Development of policy and new symbols for Automatic Identification System (AIS... transportation is not generally available). However, parking in the vicinity of the building is extremely limited...

  4. Spherical shock waves in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1991-11-15

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less

  5. Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Healy, John J.; Muniraj, Inbarasan; Cui, Xiao-Guang; Malallah, Ra'ed; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.

  6. Outline of a general theory of behavior and brain coordination.

    PubMed

    Kelso, J A Scott; Dumas, Guillaume; Tognoli, Emmanuelle

    2013-01-01

    Much evidence suggests that dynamic laws of neurobehavioral coordination are sui generis: they deal with collective properties that are repeatable from one system to another and emerge from microscopic dynamics but may not (even in principle) be deducible from them. Nevertheless, it is useful to try to understand the relationship between different levels while all the time respecting the autonomy of each. We report a program of research that uses the theoretical concepts of coordination dynamics and quantitative measurements of simple, well-defined experimental model systems to explicitly relate neural and behavioral levels of description in human beings. Our approach is both top-down and bottom-up and aims at ending up in the same place: top-down to derive behavioral patterns from neural fields, and bottom-up to generate neural field patterns from bidirectional coupling between astrocytes and neurons. Much progress can be made by recognizing that the two approaches--reductionism and emergentism--are complementary. A key to understanding is to couch the coordination of very different things--from molecules to thoughts--in the common language of coordination dynamics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Outline of a General Theory of Behavior and Brain Coordination

    PubMed Central

    Kelso, J. A. Scott; Dumas, Guillaume; Tognoli, Emmanuelle

    2012-01-01

    Much evidence suggests that dynamic laws of neurobehavioral coordination are sui generis: they deal with collective properties that are repeatable from one system to another and emerge from microscopic dynamics but may not (even in principle) be deducible from them. Nevertheless, it is useful to try to understand the relationship between different levels while all the time respecting the autonomy of each. We report a program of research that uses the theoretical concepts of coordination dynamics and quantitative measurements of simple, well-defined experimental model systems to explicitly relate neural and behavioral levels of description in human beings. Our approach is both top-down and bottom-up and aims at ending up in the same place: top-down to derive behavioral patterns from neural fields, and bottom-up to generate neural field patterns from bidirectional coupling between astrocytes and neurons. Much progress can be made by recognizing that the two approaches —reductionism and emergentism— are complementary. A key to understanding is to couch the coordination of very different things —from molecules to thoughts— in the common language of coordination dynamics. PMID:23084845

  8. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle.

    PubMed

    Chang, Jeremy B; Ferrell, James E

    2013-08-29

    Despite the large size of the Xenopus laevis egg (approximately 1.2 mm diameter), a fertilized egg rapidly proceeds through mitosis in a spatially coordinated fashion. Mitosis is initiated by a bistable system of regulatory proteins centred on Cdk1 (refs 1, 2), raising the possibility that this spatial coordination could be achieved through trigger waves of Cdk1 activity. Using an extract system that performs cell cycles in vitro, here we show that mitosis does spread through Xenopus cytoplasm via trigger waves, propagating at a linear speed of approximately 60 µm min(-1). Perturbing the feedback loops that give rise to the bistability of Cdk1 changes the speed and dynamics of the waves. Time-lapse imaging of intact eggs argues that trigger waves of Cdk1 activation are responsible for surface contraction waves, ripples in the cell cortex that precede cytokinesis. These findings indicate that Cdk1 trigger waves help ensure the spatiotemporal coordination of mitosis in large eggs. Trigger waves may be an important general mechanism for coordinating biochemical events over large distances.

  9. 48 CFR 1203.405 - Misrepresentations or violations of the Covenant Against Contingent Fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Misrepresentations or... System DEPARTMENT OF TRANSPORTATION GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF... violations of the covenant against contingent fees shall be coordinated with legal counsel for referral to...

  10. Oklahoma's Mobile Computer Graphics Laboratory.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…

  11. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the system control center, and those responsible for long term engineering and technical design issues... network control center which will have the responsibility to monitor space-to-Earth transmissions in its... the licensee is authorized to transmit, contact telephone numbers for the control center of the earth...

  12. Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems.

    PubMed

    Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N

    2015-12-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Costs of coordinated versus uncoordinated care in Germany: results of a routine data analysis in Bavaria

    PubMed Central

    Schneider, Antonius; Donnachie, Ewan; Tauscher, Martin; Gerlach, Roman; Maier, Werner; Mielck, Andreas; Linde, Klaus; Mehring, Michael

    2016-01-01

    Objectives The efficiency of a gatekeeping system for a health system, as in Germany, remains unclear particularly as access to specialist ambulatory care is not restricted. The aim was to compare the costs of coordinated versus uncoordinated patients (UP) in ambulatory care; with additional subgroup analysis of patients with mental disorders. Design Retrospective routine data analysis of patients with statutory health insurance, using claims data held by the Bavarian Association of Statutory Health Insurance Physicians. A patient was defined as uncoordinated if he or she visited at least 1 specialist without a referral from a general practitioner within a quarter. Outcomes were compared with propensity score matching analysis. Participants The study encompassed all statutorily insured patients in Bavaria contacting at least 1 ambulatory specialist in the first quarter of 2011 (n=3 616 510). Primary and secondary outcome measures Primary outcome was total costs of ambulatory care; secondary outcomes were financial claims of general physicians, specialists and for medication. Results The average age was 55.3 years for coordinated patients (CP, n=1 629 302), 48.3 years for UP (n=1 825 840). CP more frequently had chronic diseases (85.4%) as compared with UP (67.5%). The total unadjusted financial claim per patient was higher for UP (€234.52) than for CP (€224.41); the total adjusted difference was −€9.65 (95% CI −11.64 to −7.67), indicating lower costs for CP. The cost differences increased with increasing age. Total adjusted difference per patient with mental diseases as documented with an International Classification of Diseases (ICD)-10 F-diagnosis, was −€20.31 (95% CI −26.43 to −14.46). Conclusions Coordination of care is associated with lower ambulatory healthcare expenditures and is of particular importance for patients who are more vulnerable to medical interventions, especially for elderly and patients with mental disorders. The role of general practitioners as coordinators should be strengthened to improve care for these patients as this could also help to frame a more efficient health system. PMID:27288386

  14. Corrigendum: New Form of Kane's Equations of Motion for Constrained Systems

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Bajodah, Abdulrahman H.; Hodges, Dewey H.; Chen, Ye-Hwa

    2007-01-01

    A correction to the previously published article "New Form of Kane's Equations of Motion for Constrained Systems" is presented. Misuse of the transformation matrix between time rates of change of the generalized coordinates and generalized speeds (sometimes called motion variables) resulted in a false conclusion concerning the symmetry of the generalized inertia matrix. The generalized inertia matrix (sometimes referred to as the mass matrix) is in fact symmetric and usually positive definite when one forms nonminimal Kane's equations for holonomic or simple nonholonomic systems, systems subject to nonlinear nonholonomic constraints, and holonomic or simple nonholonomic systems subject to impulsive constraints according to Refs. 1, 2, and 3, respectively. The mass matrix is of course symmetric when one forms minimal equations for holonomic or simple nonholonomic systems using Kane s method as set forth in Ref. 4.

  15. National General Aviation Roadmap for a Small Aircraft Transportation System (SATS)

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), Federal Aviation Administration, as well as state, industry, and academia partners have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This long-term strategic undertaking has a goal to bring next-generation technologies and improve air access to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing a new generation of single-pilot light planes for personal and business transportation between the nation's 5,400 public use general aviation airports. Current NASA investments in aircraft technologies are enabling industry to bring affordable, safe, and easy-to-use features to the marketplace, including "Highway in the Sky" glass cockpit operating capabilities, affordable crash worthy composite airframes, more efficient IFR flight training, and revolutionary engines. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. State partnerships are proposed to coordinate research support in key public infrastructure areas. Ultimately, SATS may permit more than tripling aviation system throughput capacity by tapping the under-utilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  16. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  17. Development of a table tennis robot for ball interception using visual feedback

    NASA Astrophysics Data System (ADS)

    Parnichkun, Manukid; Thalagoda, Janitha A.

    2016-07-01

    This paper presents a concept of intercepting a moving table tennis ball using a robot. The robot has four degrees of freedom(DOF) which are simplified in such a way that The system is able to perform the task within the bounded limit. It employs computer vision to localize the ball. For ball identification, Colour Based Threshold Segmentation(CBTS) and Background Subtraction(BS) methodologies are used. Coordinate Transformation(CT) is employed to transform the data, which is taken based on camera coordinate frame to the general coordinate frame. The sensory system consisted of two HD Web Cameras. The computation time of image processing from web cameras is long .it is not possible to intercept table tennis ball using only image processing. Therefore the projectile motion model is employed to predict the final destination of the ball.

  18. Spatial Data Transfer Standard (SDTS), part 5 : SDTS raster profile and extensions

    DOT National Transportation Integrated Search

    1999-02-01

    The Spatial Data Transfer Standard (SDTS) defines a general mechanism for the transfer of : geographically referenced spatial data and its supporting metadata, i.e., attributes, data quality reports, : coordinate reference systems, security informati...

  19. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    NASA Astrophysics Data System (ADS)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  20. [Capacity of the legal framework of public health institutions in Mexico to support their functional integration].

    PubMed

    Ibarra, Ignacio; Martínez, Gabriel; Aguilera, Nelly; Orozco, Emanuel; Fajardo-Dolci, Germán E; González-Block, Miguel A

    2013-01-01

    Evaluate the capacity of the federal legal framework to govern financing of health institutions in the public sector through innovative schemes--otherwise known as functional integration--, enabling them to purchase and sell health services to and from other public providers as a strategy to improve their performance. Based on indicators of normative alignment with respect to functional integration across public health provider and governance institutions, content analysis was undertaken of national health programs and relevant laws and guidelines for financial coordination. Significant progress was identified in the implementation of agreements for the coordination of public institutions. While the legal framework provides for a National Health System and a health sector, gaps and contradictions limit their scope. The General Register of Health is also moving forward, yet it lacks the necessary legal foundation to become a comprehensive tool for integration. The medical service exchange agreements are also moving forward based on tariffs and shared guidelines. However, there is a lack of incentives to promote the expansion of these agreements. It is recommended to update the legal framework for the coordination of the National Health System, ensuring a more harmonious and general focus to provide functional integration with the needed impulse.

  1. Coordinated California Corrections: Institutions. Correctional System Study. Final Report.

    ERIC Educational Resources Information Center

    California State Human Relations Agency, Sacramento. Board of Corrections.

    This series of comprehensive task force reports on jails, prisons, and juvenile institutions presents overviews of corrective institutions in California, models, survey findings about the current systems, and a wide range of general and specific recommendations. Various tables and charts illustrate the data, which were collected by a review of the…

  2. The status of accurately locating forest inventory and analysis plots using the Global Positioning System

    Treesearch

    Michael Hoppus; Andrew Lister

    2007-01-01

    Historically, field crews used Global Positioning System (GPS) coordinates to establish and relocate plots, as well as document their general location. During the past 5 years, the increase in Geographic Information System (GIS) capabilities and in customer requests to use the spatial relationships between Forest Inventory and Analysis (FIA) plot data and other GIS...

  3. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  4. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  5. Surgical referral coordination from a first-level hospital: a prospective case study from rural Nepal.

    PubMed

    Fleming, Matthew; King, Caroline; Rajeev, Sindhya; Baruwal, Ashma; Schwarz, Dan; Schwarz, Ryan; Khadka, Nirajan; Pande, Sami; Khanal, Sumesh; Acharya, Bibhav; Benton, Adia; Rogers, Selwyn O; Panizales, Maria; Gyorki, David; McGee, Heather; Shaye, David; Maru, Duncan

    2017-09-25

    Patients in isolated rural communities typically lack access to surgical care. It is not feasible for most rural first-level hospitals to provide a full suite of surgical specialty services. Comprehensive surgical care thus depends on referral systems. There is minimal literature, however, on the functioning of such systems. We undertook a prospective case study of the referral and care coordination process for cardiac, orthopedic, plastic, gynecologic, and general surgical conditions at a district hospital in rural Nepal from 2012 to 2014. We assessed the referral process using the World Health Organization's Health Systems Framework. We followed the initial 292 patients referred for surgical services in the program. 152 patients (52%) received surgery and four (1%) suffered a complication (three deaths and one patient reported complication). The three most common types of surgery performed were: orthopedics (43%), general (32%), and plastics (10%). The average direct and indirect cost per patient referred, including food, transportation, lodging, medications, diagnostic examinations, treatments, and human resources was US$840, which was over 1.5 times the local district's per capita income. We identified and mapped challenges according to the World Health Organization's Health Systems Framework. Given the requirement of intensive human capital, poor quality control of surgical services, and the overall costs of the program, hospital leadership decided to terminate the referral coordination program and continue to build local surgical capacity. The results of our case study provide some context into the challenges of rural surgical referral systems. The high relative costs to the system and challenges in accountability rendered the program untenable for the implementing organization.

  6. Multiple System Atrophy (MSA)

    MedlinePlus

    ... coordination, such as unsteady gait and loss of balance Slurred, slow or low-volume speech (dysarthria) Visual disturbances, such as blurred or double vision and difficulty focusing your eyes Difficulty swallowing (dysphagia) or chewing General signs and symptoms In addition, the primary sign ...

  7. Ensemble-based uncertainty quantification for coordination and control of thermostatically controlled loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan; Lian, Jianming; Engel, Dave

    2017-07-27

    This paper presents a general uncertainty quantification (UQ) framework that provides a systematic analysis of the uncertainty involved in the modeling of a control system, and helps to improve the performance of a control strategy.

  8. Investigation, Modeling, and Analysis of Integrated Metroplex Arrival and Departure Coordination Concepts

    NASA Technical Reports Server (NTRS)

    Clarke, John-Paul B.; Brooks, James; McClain, Evan; Paladhi, Anwesha Roy; Li, Leihong; Schleicher, David; Saraf, Aditya; Timar, Sebastian; Crisp, Don; Bertino, Jason; hide

    2012-01-01

    This work involves the development of a concept that enhances integrated metroplex arrival and departure coordination, determines the temporal (the use of time separation for aircraft sharing the same airspace resources) and spatial (the use of different routes or vertical profiles for aircraft streams at any given time) impact of metroplex traffic coordination within the National Airspace System (NAS), and quantifies the benefits of the most desirable metroplex traffic coordination concept. Researching and developing metroplex concepts is addressed in this work that broadly applies across the range of airspace and airport demand characteristics envisioned for NextGen metroplex operations. The objective of this work is to investigate, formulate, develop models, and analyze an operational concept that mitigates issues specific to the metroplex or that takes advantage of unique characteristics of metroplex airports to improve efficiencies. The concept is an innovative approach allowing the NAS to mitigate metroplex interdependencies between airports, optimize metroplex arrival and departure coordination among airports, maximize metroplex airport throughput, minimize delay due to airport runway configuration changes, increase resiliency to disruptions, and increase the tolerance of the system to degrade gracefully under adverse conditions such as weather, traffic management initiatives, and delays in general.

  9. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence.

    PubMed

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-02-18

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.

  10. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    PubMed Central

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-01-01

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203

  11. General self-concept and life satisfaction for boys with differing levels of physical coordination: the role of goal orientations and leisure participation.

    PubMed

    Poulsen, Anne A; Ziviani, Jenny M; Cuskelly, Monica

    2006-12-01

    Participation in leisure-time activities, self-concept perceptions and individual dispositional goal orientations were examined as mediators of relationships between physical coordination and self-evaluations of life satisfaction and general self-concept for 173 boys aged 10-13 years. Participants completed seven-day activity diaries and 12-month retrospective recall questionnaires recording participation in leisure-time activities. Self-report measures of self-concept, global life satisfaction and dispositional goal orientations were also completed. Results showed that boys with moderate to severe physical coordination difficulties had significantly lower self-concept perceptions of physical ability and appearance, peer and parent relations and general self-concept, as well as lower life satisfaction than boys with medium to high levels of physical coordination. The relationships between boys' physical coordination and their self-perceptions of life satisfaction and general self-concept were significantly influenced by individual self-concept appraisals of physical ability and appearance, peer and parent relations. Adopting task-oriented goals was found to positively change the relationship between physical coordination and both general self-concept and life satisfaction. Team sport participation positively mediated the relationship between physical coordination and life satisfaction. The potential for team sport participation and adoption of task-oriented goals to influence life satisfaction for boys with differing levels of physical coordination was discussed.

  12. Immunology-directed methods for distributed robotics: a novel immunity-based architecture for robust control and coordination

    NASA Astrophysics Data System (ADS)

    Singh, Surya P. N.; Thayer, Scott M.

    2002-02-01

    This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.

  13. MaROS Strategic Relay Planning and Coordination Interfaces

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.

  14. Dolan Grady relations and noncommutative quasi-exactly solvable systems

    NASA Astrophysics Data System (ADS)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2003-11-01

    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.

  15. REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1996-01-01

    In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.

  16. A discrete control model of PLANT

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  17. Boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Panaras, Argyris G.

    1987-01-01

    A set of higher-order boundary-layer equations is derived valid for three-dimensional compressible flows. The equations are written in a generalized curvilinear coordinate system, in which the surface coordinates are nonorthogonal; the third axis is restricted to be normal to the surface. Also, higher-order viscous terms which are retained depend on the surface curvature of the body. Thus, the equations are suitable for the calculation of the boundary layer about arbitrary vehicles. As a starting point, the Navier-Stokes equations are derived in a tensorian notation. Then by means of an order-of-magnitude analysis, the boundary-layer equations are developed. To provide an interface between the analytical partial differentiation notation and the compact tensor notation, a brief review of the most essential theorems of the tensor analysis related to the equations of the fluid dynamics is given. Many useful quantities, such as the contravariant and the covariant metrics and the physical velocity components, are written in both notations.

  18. On the interaction structure of linear multi-input feedback control systems. M.S. Thesis; [problem solving, lattices (mathematics)

    NASA Technical Reports Server (NTRS)

    Wong, P. K.

    1975-01-01

    The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.

  19. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    PubMed

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  20. Calculation of absolute protein-ligand binding free energy using distributed replica sampling

    NASA Astrophysics Data System (ADS)

    Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis

    2008-10-01

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  1. Generalization of Prism Adaptation

    ERIC Educational Resources Information Center

    Redding, Gordon M.; Wallace, Benjamin

    2006-01-01

    Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial…

  2. Stability analysis of multiple-robot control systems

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are of fundamental importance. Three paradigms to study this problem are proposed. They are distinguished by the set of variables used for control design. They are joint torques, arm tip force vectors, and an accelerated generalized coordinate set. Control issues related to each case are discussed. The latter two choices require complete model information, which presents practical modeling, computational, and robustness problems. Therefore, focus is on the joint torque control case to develop relatively model independent motion and internal force control laws. The rigid body assumption allows the motion and force control problems to be independently addressed. By using an energy motivated Lyapunov function, a simple proportional derivative plus gravity compensation type of motion control law is always shown to be stabilizing. The asymptotic convergence of the tracing error to zero requires the use of a generalized coordinate with the contact constraints taken into account. If a non-generalized coordinate is used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward and feedback schemes are analyzed. The feedback control, if proper care has been taken, exhibits better robustness and transient performance.

  3. Decentralized coordinated control of elastic web winding systems without tension sensor.

    PubMed

    Hou, Hailiang; Nian, Xiaohong; Chen, Jie; Xiao, Dengfeng

    2018-06-26

    In elastic web winding systems, precise regulation of web tension in each span is critical to ensure final product quality, and to achieve low cost by reducing the occurrence of web break or fold. Generally, web winding systems use load cells or swing rolls as tension sensors, which add cost, reduce system reliability and increase the difficulty of control. In this paper, a decentralized coordinated control scheme with tension observers is designed for a three-motor web-winding system. First, two tension observers are proposed to estimate the unwinding and winding tension. The designed observers consider the essential dynamic, radius, and inertial variation effects and only require the modest computational effort. Then, using the estimated tensions as feedback signals, a robust decentralized coordinated controller is adopted to reduce the interaction between subsystems. Asymptotic stabilities of the observer error dynamics and the closed-loop winding systems are demonstrated via Lyapunov stability theory. The observer gains and the controller gains can be obtained by solving matrix inequalities. Finally, some simulations and experiments are performed on a paper winding setup to test the performance of the designed observers and the observer-base DCC method, respectively. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. On a New Theory of the System of Reference

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2003-04-01

    A new theory of the system of reference is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular, the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the correct concept of system of reference represents a key to comprehension of many basic logic errors which are in modern physics. The starting point of the theory is represented by the philosophical (dialectical materialistic) principles, in particular, the gnosiological principle. (The gnosiological principle is briefly formulated as follows. The purpose of a science is to know the laws of the Nature. The law is a form of scientific knowledge of the essence and the phenomenon. The essence is the internal basis of the phenomenon, and the phenomenon is the manifestation of the essence. Human practice is a basis of knowledge and a criterion of truth). These principles lead to the following statements. (1) The reality is the dialectical unity of the opposites: the objective reality and the non-objective (subjective) reality. (2) The system mankind + means of knowledge belongs to the subjective reality and is called system of reference. In this wide sense, the system of reference is the universal informational gnostic basis (i.e. the system consisting of natural objects and processes, of constructed devices and instruments, of sum of human knowledge and skills) created and used by mankind for the purpose of knowledge of the world. (3) The opposites are bounds of each other. Hence, the principle of objectivity of the physical laws is formulated as follows: the objective physical laws must not contain mentions of system of reference (in particular, references to procedure of measurement or of calculation). (4) The main informational property of the unitary system set of researches physical objects + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem set of researched physical objects (for example, the coordinates x_M, y_M, zM of the object M); the parameters characterize the system of reference (for example, the system of coordinates). (5) The main gnostic property of the unitary system set of researches physical objects + system of reference is that the system of reference defines (formulates) the physical laws (i.e. creates the theories); the physical laws characterize the system of reference. (6) The parameters which take on values independently of existence of the researched physical objects characterize the system of reference. For example, the clock C, a part of the system of reference S, determines (but it does not measure!) the time t_C; the time tC characterizes the clock C. If all clocks have been synchronized, the universal time tS characterizes the system of reference S. (7) Researched physical object M and a clock are mutually independent objects. Hence, the coordinates x_M, y_M, zM and the time tS are mutually independent parameters. (8) The informational one-to-one correspondence between motion of object M and physical clock-process in clock is established (is defined) by man. For example, it has a form: dx_M/dtS ≡ v_x_M. Consequences: (a) information about the world is an ordered information because the system of reference S is an ordered and universal system. This information is an objective one if it does not depend on a system of reference; (b) mathematical operations on physical quantities with the coordinates and with the time are allowed by the laws of logic because the set of researches physical objects + system of reference is a unitary system; (c) the principle of existence and of transformation of coordinates: there are no coordinates and no transformation of coordinates in general, and there exist the coordinates x_M, y_M, zM and transformation of the coordinates x_M, y_M, zM of the object M only; (d) the special and general theories of relativity are an erroneous theories because their foundations, firstly, do not satisfy the principle of objectivity of the physical laws, secondly, they contradict the principle of transformation of coordinates and, thirdly, they assume mutual dependence between the researched physical object and a clock (i.e. between coordinates and time); (e) quantum mechanics does not satisfy the principle of objectivity of the physical laws.

  5. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  6. Some fundamentals regarding kinematics and generalized forces for multibody dynamics

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.

    1990-01-01

    In order to illustrate the various forms in which generalized forces can arise from diverse subsystem analyses in multibody dynamics, intrinsic dynamical equations for the rotational dynamics of a rigid body are derived from Hamilton's principle. Two types of generalized forces are derived: (1) those associated with the virtual rotation vector in some orthogonal basis, and (2) those associated with varying generalized coordinates. As one physical or kinematical result (such as a frequency or a specific direction cosine) cannot rely on this selection, a 'blind' coupling of two models in which generalized forces are calculated in different ways would be wrong. Both types should use the same rotational coordinates and should denote the virtual rotation on a similar basis according to method 1, or in terms of common rotational coordinates and their diversifications as in method 2. Alternatively, the generalized forces and coordinates of one model may be transformed to those of the other.

  7. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  8. Generalized transformations and coordinates for static spherically symmetric general relativity

    NASA Astrophysics Data System (ADS)

    Hill, James M.; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  9. Generalized transformations and coordinates for static spherically symmetric general relativity.

    PubMed

    Hill, James M; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  10. Generalized transformations and coordinates for static spherically symmetric general relativity

    PubMed Central

    2018-01-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington–Finkelstein transformation and the Kruskal–Szekeres coordinates. PMID:29765624

  11. Family Voice with Informed Choice: Coordinating Wraparound with Research-Based Treatment for Children and Adolescents

    PubMed Central

    Bruns, Eric J.; Walker, Janet S.; Bernstein, Adam; Daleiden, Eric; Pullmann, Michael D.; Chorpita, Bruce F.

    2014-01-01

    The wraparound process is a type of individualized, team-based care coordination that has become central to many state and system efforts to reform children’s mental health service delivery for youths with the most complex needs and their families. Although the emerging wraparound research base is generally positive regarding placements and costs, effect sizes are smaller for clinical and functional outcomes. This paper presents a review of literature on care coordination and wraparound models, with a focus on theory and research that indicates the need to better connect wraparound-enrolled children and adolescents to evidence-based treatment (EBT). The paper goes on to describe how recently developed applications of EBT that are based on quality improvement and flexible application of “common elements” of research-based care may provide a more individualized approach that better aligns with the philosophy and procedures of the wraparound process. Finally, this paper presents preliminary studies that show the feasibility and potential effectiveness of coordinating wraparound with the Managing and Adapting Practice (MAP) system, and discusses intervention development and research options that are currently underway. PMID:24325146

  12. a Numerical Model for Flue Gas Desulfurization System.

    NASA Astrophysics Data System (ADS)

    Kim, Sung Joon

    The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.

  13. On the computer analysis of structures and mechanical systems

    NASA Technical Reports Server (NTRS)

    Bennett, B. E.

    1984-01-01

    The governing equations for the analysis of open branch-chain mechanical systems are developed in a form suitable for implementation in a general purpose finite element computer program. Lagrange's form of d'Alembert's principle is used to derive the system mass matrix and force vector. The generalized coordinates are selected as the unconstrained relative degrees of freedom giving the position and orientation of each slave link with respect to their master link. Each slave link may have from zero to six degrees of freedom relative to the reference frames of its master link. A strategy for automatic generation of the system mass matrix and force vector is described.

  14. 48 CFR 1339.107-70 - Information security.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Information security. 1339... CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY General 1339.107-70 Information security. (a... coordinate with the designated Contracting Officer Representative (COR) to complete the Information Security...

  15. 48 CFR 1339.107-70 - Information security.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Information security. 1339... CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY General 1339.107-70 Information security. (a... coordinate with the designated Contracting Officer Representative (COR) to complete the Information Security...

  16. 48 CFR 1339.107-70 - Information security.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Information security. 1339... CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY General 1339.107-70 Information security. (a... coordinate with the designated Contracting Officer Representative (COR) to complete the Information Security...

  17. 48 CFR 301.602-3 - Ratification of unauthorized commitments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES GENERAL HHS ACQUISITION REGULATION SYSTEM Career Development, Contracting Authority, and... legal review is necessary, the HCA or CCO shall coordinate the request for ratification with the Office...) The Contracting Officer shall review the submitted material and, if the Contracting Officer determines...

  18. A flexible and cost-effective compensation method for leveling using large-scale coordinate measuring machines and its application in aircraft digital assembly

    NASA Astrophysics Data System (ADS)

    Deng, Zhengping; Li, Shuanggao; Huang, Xiang

    2018-06-01

    In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.

  19. Calculation of three-dimensional compressible laminar and turbulent boundary layers. Calculation of three-dimensional compressible boundary layers on arbitrary wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Ramsey, J.; Moser, A.

    1975-01-01

    A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows.

  20. Exact BPF and FBP algorithms for nonstandard saddle curves.

    PubMed

    Yu, Hengyong; Zhao, Shiying; Ye, Yangbo; Wang, Ge

    2005-11-01

    A hot topic in cone-beam CT research is exact cone-beam reconstruction from a general scanning trajectory. Particularly, a nonstandard saddle curve attracts attention, as this construct allows the continuous periodic scanning of a volume-of-interest (VOI). Here we evaluate two algorithms for reconstruction from data collected along a nonstandard saddle curve, which are in the filtered backprojection (FBP) and backprojection filtration (BPF) formats, respectively. Both the algorithms are implemented in a chord-based coordinate system. Then, a rebinning procedure is utilized to transform the reconstructed results into the natural coordinate system. The simulation results demonstrate that the FBP algorithm produces better image quality than the BPF algorithm, while both the algorithms exhibit similar noise characteristics.

  1. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  2. Contact geometry and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel; Waldron, Andrew

    2018-06-01

    We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.

  3. Canonical equations of Hamilton for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liang, Guo; Guo, Qi; Ren, Zhanmei

    2015-09-01

    We define two different systems of mathematical physics: the second order differential system (SODS) and the first order differential system (FODS). The Newton's second law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which exhibit some kind of symmetry in form and are formally different from the conventional CEH without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison- Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the generalized coordinates for the FODS, but twice the number of the generalized coordinates for the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way.

  4. Relativistic theory for syntonization of clocks in the vicinity of the Earth

    NASA Technical Reports Server (NTRS)

    Wolf, Peter; Petit, G.

    1995-01-01

    A well known prediction of Einstein's general theory of relativity states that two ideal clocks that move with a relative velocity, and are submitted to different gravitational fields will, in general, be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate time of some spacetime reference system is dependent on the velocity of the clock in that reference system and on the gravitational fields it is submitted to. For the syntonization of clocks and the realization of coordinate times (like TAI) this rate shift has to be taken into account at an accuracy level which should be below the frequency stability of the clocks in question, i.e. all terms that are larger than the instability of the clocks should be corrected for. We present a theory for the calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms larger than one part in 10(exp 18). This, together with previous work on clock synchronization (Petit & Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time scales at picosecond synchronization and 10(exp -18) syntonization accuracy, which should be sufficient to accommodate future developments in time transfer and clock technology.

  5. Cluster Randomized Controlled Trial: Clinical and Cost-Effectiveness of a System of Longer-Term Stroke Care.

    PubMed

    Forster, Anne; Young, John; Chapman, Katie; Nixon, Jane; Patel, Anita; Holloway, Ivana; Mellish, Kirste; Anwar, Shamaila; Breen, Rachel; Knapp, Martin; Murray, Jenni; Farrin, Amanda

    2015-08-01

    We developed a new postdischarge system of care comprising a structured assessment covering longer-term problems experienced by patients with stroke and their carers, linked to evidence-based treatment algorithms and reference guides (the longer-term stroke care system of care) to address the poor longer-term recovery experienced by many patients with stroke. A pragmatic, multicentre, cluster randomized controlled trial of this system of care. Eligible patients referred to community-based Stroke Care Coordinators were randomized to receive the new system of care or usual practice. The primary outcome was improved patient psychological well-being (General Health Questionnaire-12) at 6 months; secondary outcomes included functional outcomes for patients, carer outcomes, and cost-effectiveness. Follow-up was through self-completed postal questionnaires at 6 and 12 months. Thirty-two stroke services were randomized (29 participated); 800 patients (399 control; 401 intervention) and 208 carers (100 control; 108 intervention) were recruited. In intention to treat analysis, the adjusted difference in patient General Health Questionnaire-12 mean scores at 6 months was -0.6 points (95% confidence interval, -1.8 to 0.7; P=0.394) indicating no evidence of statistically significant difference between the groups. Costs of Stroke Care Coordinator inputs, total health and social care costs, and quality-adjusted life year gains at 6 months, 12 months, and over the year were similar between the groups. This robust trial demonstrated no benefit in clinical or cost-effectiveness outcomes associated with the new system of care compared with usual Stroke Care Coordinator practice. URL: http://www.controlled-trials.com. Unique identifier: ISRCTN 67932305. © 2015 Bradford Teaching Hospitals NHS Foundation Trust.

  6. Cartographic projection procedures for the UNIX environment; a user's manual

    USGS Publications Warehouse

    Evenden, Gerald I.

    1990-01-01

    A tutorial description of the general usage of the cartographic projection program proj (release 3) along with specic cartographic parameters and illustrations of the ap- proximately 70 cartographic projections supported by the program is presented. The program is designed as a standard Unix lter utility to be employed with other pro- grams in the generation of maps and charts and, in many cases, used in map digitizing applications. Tables and shell scripts are also provided for conversion of State Plane Coordinate Systems to and from geographic coordinates.

  7. Configuration Analysis of the ERS Points in Large-Volume Metrology System

    PubMed Central

    Jin, Zhangjun; Yu, Cijun; Li, Jiangxiong; Ke, Yinglin

    2015-01-01

    In aircraft assembly, multiple laser trackers are used simultaneously to measure large-scale aircraft components. To combine the independent measurements, the transformation matrices between the laser trackers’ coordinate systems and the assembly coordinate system are calculated, by measuring the enhanced referring system (ERS) points. This article aims to understand the influence of the configuration of the ERS points that affect the transformation matrix errors, and then optimize the deployment of the ERS points to reduce the transformation matrix errors. To optimize the deployment of the ERS points, an explicit model is derived to estimate the transformation matrix errors. The estimation model is verified by the experiment implemented in the factory floor. Based on the proposed model, a group of sensitivity coefficients are derived to evaluate the quality of the configuration of the ERS points, and then several typical configurations of the ERS points are analyzed in detail with the sensitivity coefficients. Finally general guidance is established to instruct the deployment of the ERS points in the aspects of the layout, the volume size and the number of the ERS points, as well as the position and orientation of the assembly coordinate system. PMID:26402685

  8. Communication: Coordinate-dependent diffusivity from single molecule trajectories

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Makarov, Dmitrii E.

    2017-11-01

    Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.

  9. Newton's absolute time and space in general relativity

    NASA Astrophysics Data System (ADS)

    Gautreau, Ronald

    2000-04-01

    I describe a reference system in a spherically symmetric gravitational field that is built around times recorded by radially moving geodesic clocks. The geodesic time coordinate t and the curvature spatial radial coordinate R result in spacetime descriptions of the motion of the geodesic clocks that are exactly identical with equations following from Newton's absolute time and space used with his inverse square law. I show how to use the resulting Newtonian/general-relativistic equations for geodesic clocks to generate exact relativistic metric forms in terms of the coordinates (R,t). Newtonian theory does not describe light. However, the motion of light can be determined from the (R,t) general-relativistic metric forms obtained from Newtonian theory by setting ds2(R,t)=0. In this sense, a theory of light can be related to absolute time and space of Newtonian gravitational theory. I illustrate the (R,t) methodology by first solving the equations that result from a Newtonian picture and then examining the exact metric forms for the general-relativistic problems of the Schwarzschild field, gravitational collapse and expansion of a zero-pressure perfect fluid, and zero-pressure big-bang cosmology. I also briefly describe other applications of the Newtonian/general-relativistic formulation to: embedding a Schwarzschild mass into cosmology; continuously following an expanding universe from radiation to matter domination; Dirac's Large Numbers hypothesis; the incompleteness of Kruskal-Szekeres spacetime; double valuedness in cosmology; and the de Sitter universe.

  10. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  11. Publications of the Space Physiology and Countermeasures Program, Neuroscience Discipline: 1980-1990

    NASA Technical Reports Server (NTRS)

    Dickson, Katherine J.; Wallace-Robinson, Janice; Powers, Janet V.; Hess, Elizabeth

    1992-01-01

    A 10-year cumulative bibliography of publications resulting from research supported by the neuroscience discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are space motion sickness; vestibular performance, posture, and motor coordination; vestibular physiology; central and peripheral nervous system physiology; and general performance and methodologies. General physiology references are also included.

  12. The development of performance, interference, sharing and coordination criteria

    NASA Technical Reports Server (NTRS)

    Tillotson, Tom

    1986-01-01

    The criteria for sharing and coordination between the Earth Exploration Satellite service and other radio services is not fully developed at this time. The purpose is to develop a plan showing how the necessary criteria might be developed. Some criteria does exist in the form of general restrictions, protection criteria, and coordination procedures for space and terrestrial services sharing the same bands. Determining suitable criteria for EES bands depends on the use of the band and the shared services. For example the criteria developed for EES passive sensing band will be developed in a manner different than for a telemetry band. In either case the resultant criteria will be related to, and can be referenced from the system noise power or equivalent noise temperature.

  13. 48 CFR 2803.104-70 - Ethics program training requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Ethics program training... GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2803.104-70 Ethics... should be coordinated with the Department's Ethics Official, who is responsible for developing agency...

  14. 48 CFR 2803.104-70 - Ethics program training requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Ethics program training... General IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2803.104-70 Ethics... should be coordinated with the Department's Ethics Official, who is responsible for developing agency...

  15. 48 CFR 2803.104-70 - Ethics program training requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Ethics program training... GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2803.104-70 Ethics... should be coordinated with the Department's Ethics Official, who is responsible for developing agency...

  16. 48 CFR 2803.104-70 - Ethics program training requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Ethics program training... GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2803.104-70 Ethics... should be coordinated with the Department's Ethics Official, who is responsible for developing agency...

  17. 48 CFR 2803.104-70 - Ethics program training requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Ethics program training... GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2803.104-70 Ethics... should be coordinated with the Department's Ethics Official, who is responsible for developing agency...

  18. [Effects of sports and media consumption on the trunk muscle strength, posture and flexibility of the spine in 12- to 14- year-old adolescents].

    PubMed

    Küster, M

    2004-06-01

    Back pain and posture deficits get more common in childhood and adolescents. Lack of movement, insufficient physical education and high amounts of TV and PC are known as risk factors for chronic low back pain in later life. In a cross-sectional study, trunk muscle strength, posture and spinal flexibility were assessed in 200 untrained schoolchildren (117 girls, 83 boys). Independent variables, collected by a standardized questionnaire: age, height, weight, gender, weekly scope of TV, PC and sports (conditional, conditional-coordinative, coordinative). spinal parameter, tested by the Zebris CMS-System and IPN Back Check. PC and TV-consumption had negative effects on the spinal parameter, whereas esp. conditional-coordinative sports correlated positively. For general health and preventive reasons, children need a daily minimum of 30 minutes of movement. Conditional-coordinative sports are suited best because of their multifactorial load.

  19. Evaluation of the effect of elastic joints on the auto-oscillation of spacecraft with gas-reactive direction systems

    NASA Technical Reports Server (NTRS)

    Sasin, G. G.

    1979-01-01

    A mathematical model was obtained, on the basis of the method of mixed coordinates, of a generalized flexible spacecraft at one end of which was appended the directive action of a system of gas reactive nozzles. Various structural forms were obtained functionally describing flexible spacecraft, as systems consisting of a solid central body with flexible structural elements joined to it.

  20. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  1. Equivalent model of a dually-fed machine for electric drive control systems

    NASA Astrophysics Data System (ADS)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  2. 28 CFR 30.5 - What is the Attorney General's obligation with respect to Federal interagency coordination?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false What is the Attorney General's obligation... the Attorney General's obligation with respect to Federal interagency coordination? The Attorney General, to the extent practicable, consults with and seeks advice from all other substantially affected...

  3. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-10-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3-12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

  4. Nonlinear dynamical systems for theory and research in ergonomics.

    PubMed

    Guastello, Stephen J

    2017-02-01

    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.

  5. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  6. 47 CFR 95.1113 - Frequency coordinator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a) The Commission will designate a frequency coordinator(s) to manage the usage of the frequency bands for the operation of medical telemetry devices. (b) The frequency coordinator shall (1) Review and...

  7. Thermal field theory and generalized light front quantization

    NASA Astrophysics Data System (ADS)

    Weldon, H. Arthur

    2003-04-01

    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.

  8. Relativistic chaos is coordinate invariant.

    PubMed

    Motter, Adilson E

    2003-12-05

    The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.

  9. The Neural Network In Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Urusan, Ahmet Yucel

    2011-12-01

    In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.

  10. The Atmospheric Data Acquisition And Interpolation Process For Center-TRACON Automation System

    NASA Technical Reports Server (NTRS)

    Jardin, M. R.; Erzberger, H.; Denery, Dallas G. (Technical Monitor)

    1995-01-01

    The Center-TRACON Automation System (CTAS), an advanced new air traffic automation program, requires knowledge of spatial and temporal atmospheric conditions such as the wind speed and direction, the temperature and the pressure in order to accurately predict aircraft trajectories. Real-time atmospheric data is available in a grid format so that CTAS must interpolate between the grid points to estimate the atmospheric parameter values. The atmospheric data grid is generally not in the same coordinate system as that used by CTAS so that coordinate conversions are required. Both the interpolation and coordinate conversion processes can introduce errors into the atmospheric data and reduce interpolation accuracy. More accurate algorithms may be computationally expensive or may require a prohibitively large amount of data storage capacity so that trade-offs must be made between accuracy and the available computational and data storage resources. The atmospheric data acquisition and processing employed by CTAS will be outlined in this report. The effects of atmospheric data processing on CTAS trajectory prediction will also be analyzed, and several examples of the trajectory prediction process will be given.

  11. CELFE: Coupled Eulerian-Lagrangian Finite Element program for high velocity impact. Part 1: Theory and formulation. [hydroelasto-viscoplastic model

    NASA Technical Reports Server (NTRS)

    Lee, C. H.

    1978-01-01

    A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.

  12. Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual

    NASA Technical Reports Server (NTRS)

    Brauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; Stevenson, R.

    1975-01-01

    A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization.

  13. Generalized Boltzmann-Type Equations for Aggregation in Gases

    NASA Astrophysics Data System (ADS)

    Adzhiev, S. Z.; Vedenyapin, V. V.; Volkov, Yu. A.; Melikhov, I. V.

    2017-12-01

    The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker-Döring-type equation). The transition to a continuum description is performed.

  14. Cluster Randomized Controlled Trial

    PubMed Central

    Young, John; Chapman, Katie; Nixon, Jane; Patel, Anita; Holloway, Ivana; Mellish, Kirste; Anwar, Shamaila; Breen, Rachel; Knapp, Martin; Murray, Jenni; Farrin, Amanda

    2015-01-01

    Background and Purpose— We developed a new postdischarge system of care comprising a structured assessment covering longer-term problems experienced by patients with stroke and their carers, linked to evidence-based treatment algorithms and reference guides (the longer-term stroke care system of care) to address the poor longer-term recovery experienced by many patients with stroke. Methods— A pragmatic, multicentre, cluster randomized controlled trial of this system of care. Eligible patients referred to community-based Stroke Care Coordinators were randomized to receive the new system of care or usual practice. The primary outcome was improved patient psychological well-being (General Health Questionnaire-12) at 6 months; secondary outcomes included functional outcomes for patients, carer outcomes, and cost-effectiveness. Follow-up was through self-completed postal questionnaires at 6 and 12 months. Results— Thirty-two stroke services were randomized (29 participated); 800 patients (399 control; 401 intervention) and 208 carers (100 control; 108 intervention) were recruited. In intention to treat analysis, the adjusted difference in patient General Health Questionnaire-12 mean scores at 6 months was −0.6 points (95% confidence interval, −1.8 to 0.7; P=0.394) indicating no evidence of statistically significant difference between the groups. Costs of Stroke Care Coordinator inputs, total health and social care costs, and quality-adjusted life year gains at 6 months, 12 months, and over the year were similar between the groups. Conclusions— This robust trial demonstrated no benefit in clinical or cost-effectiveness outcomes associated with the new system of care compared with usual Stroke Care Coordinator practice. Clinical Trial Registration— URL: http://www.controlled-trials.com. Unique identifier: ISRCTN 67932305. PMID:26152298

  15. Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method.

    PubMed Central

    Mathiowetz, A. M.; Goddard, W. A.

    1995-01-01

    Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better. PMID:7549885

  16. Schwarzschild solution from Weyl transverse gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2017-01-01

    We study classical solutions in the Weyl-transverse (WTDiff) gravity. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeomorphisms (Diff) (transverse diffeomorphisms (TDiff)) and is known to be equivalent to general relativity at least at the classical level. In particular, we find that in a general spacetime dimension, the Schwarzschild metric is a classical solution in the WTDiff gravity when it is expressed in the Cartesian coordinate system.

  17. The role of general dynamic coordination in the handwriting skills of children

    PubMed Central

    Scordella, Andrea; Di Sano, Sergio; Aureli, Tiziana; Cerratti, Paola; Verratti, Vittore; Fanò-Illic, Giorgio; Pietrangelo, Tiziana

    2015-01-01

    Difficulties in handwriting are often reported in children with developmental coordination disorder, and they represent an important element in the diagnosis. The present study was aimed at investigating the relation between motor coordination and handwriting skills, and to identify differences in handwriting between children without and with coordination difficulties. In particular, we asked whether visual–spatial skills have a role as mediating variables between motor coordination and handwriting. We assessed motor coordination as well as graphic abilities in children aged 7–10 years. Moreover, we evaluated their visual–motor integration, visual–spatial skills, and other cognitive abilities (memory and planning). We found no relation between motor coordination and handwriting skills, while visual–spatial skills (measured by a visual-constructive task) were related with both. Our conclusion is that visual–spatial skills are involved both in general motor coordination and in handwriting, but the relationship involves different aspects in the two cases. PMID:25999893

  18. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  19. Sub-domain decomposition methods and computational controls for multibody dynamical systems. [of spacecraft structures

    NASA Technical Reports Server (NTRS)

    Menon, R. G.; Kurdila, A. J.

    1992-01-01

    This paper presents a concurrent methodology to simulate the dynamics of flexible multibody systems with a large number of degrees of freedom. A general class of open-loop structures is treated and a redundant coordinate formulation is adopted. A range space method is used in which the constraint forces are calculated using a preconditioned conjugate gradient method. By using a preconditioner motivated by the regular ordering of the directed graph of the structures, it is shown that the method is order N in the total number of coordinates of the system. The overall formulation has the advantage that it permits fine parallelization and does not rely on system topology to induce concurrency. It can be efficiently implemented on the present generation of parallel computers with a large number of processors. Validation of the method is presented via numerical simulations of space structures incorporating large number of flexible degrees of freedom.

  20. Integrating a Trusted Computing Base Extension Server and Secure Session Server into the LINUX Operating System

    DTIC Science & Technology

    2001-09-01

    Readily Available Linux has been copyrighted under the terms of the GNU General Public 5 License (GPL)1. This is a license written by the Free...GNOME and KDE . d. Portability Linux is highly compatible with many common operating systems. For...using suitable libraries, Linux is able to run programs written for other operating systems. [Ref. 8] 1 The GNU Project is coordinated by the

  1. Exact BPF and FBP algorithms for nonstandard saddle curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Hengyong; Zhao Shiying; Ye Yangbo

    2005-11-15

    A hot topic in cone-beam CT research is exact cone-beam reconstruction from a general scanning trajectory. Particularly, a nonstandard saddle curve attracts attention, as this construct allows the continuous periodic scanning of a volume-of-interest (VOI). Here we evaluate two algorithms for reconstruction from data collected along a nonstandard saddle curve, which are in the filtered backprojection (FBP) and backprojection filtration (BPF) formats, respectively. Both the algorithms are implemented in a chord-based coordinate system. Then, a rebinning procedure is utilized to transform the reconstructed results into the natural coordinate system. The simulation results demonstrate that the FBP algorithm produces better imagemore » quality than the BPF algorithm, while both the algorithms exhibit similar noise characteristics.« less

  2. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Palumbo, Dan (Technical Monitor)

    2002-01-01

    It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.

  3. Periodic motions of generalized conservative mechanical systems whose equations of motion contain a large parameter

    NASA Astrophysics Data System (ADS)

    Sazonov, V. V.

    An analysis is made of a generalized conservative mechanical system whose equations of motion contain a large parameter characterizing local forces acting along certain generalized coordinates. It is shown that the equations have periodic solutions which are close to periodic solutions to the corresponding degenerate equations. As an example, the periodic motions of a satellite with respect to its center of mass due to gravitational and restoring aerodynamic moments are examined for the case where the aerodynamic moment is much larger than the gravitational moment. Such motions can be treated as nominal unperturbed motions of a satellite under conditions of single-axis aerodynamic attitude control.

  4. Simulation Exploration through Immersive Parallel Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas J; Bush, Brian W; Gruchalla, Kenny M

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  5. Simulation Exploration through Immersive Parallel Planes: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  6. 46 CFR 111.51-1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Purpose. 111.51-1 Section 111.51-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-1 Purpose. The purpose of this subpart is to provide...

  7. 46 CFR 111.51-3 - Protection of vital equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Protection of vital equipment. 111.51-3 Section 111.51-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-3 Protection of vital...

  8. 46 CFR 111.51-3 - Protection of vital equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Protection of vital equipment. 111.51-3 Section 111.51-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-3 Protection of vital...

  9. 46 CFR 111.51-3 - Protection of vital equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Protection of vital equipment. 111.51-3 Section 111.51-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-3 Protection of vital...

  10. 46 CFR 111.51-1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Purpose. 111.51-1 Section 111.51-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-1 Purpose. The purpose of this subpart is to provide...

  11. 46 CFR 111.51-1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Purpose. 111.51-1 Section 111.51-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-1 Purpose. The purpose of this subpart is to provide...

  12. 46 CFR 111.51-3 - Protection of vital equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Protection of vital equipment. 111.51-3 Section 111.51-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-3 Protection of vital...

  13. 46 CFR 111.51-1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Purpose. 111.51-1 Section 111.51-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-1 Purpose. The purpose of this subpart is to provide...

  14. Feeling the Crunch: Education Policy and Economic Crisis

    ERIC Educational Resources Information Center

    Stevenson, Howard

    2009-01-01

    The global capitalist crisis is impacting dramatically across nation states and their economies. Although a complete collapse of the system appears to have been avoided by decisions to take co-ordinated interventionist action to shore up short term demand, governments have generally rejected the more radical actions required to address the…

  15. Three-dimensional implicit lambda methods

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Dadone, A.

    1983-01-01

    This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.

  16. 48 CFR 30.606 - Resolving cost impacts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Resolving cost impacts. 30... impacts. (a) General. (1) The CFAO shall coordinate with the affected contracting officers before negotiating and resolving the cost impact when the estimated cost impact on any of their contracts is at least...

  17. Artificial Intelligence Methodologies in Flight Related Differential Game, Control and Optimization Problems

    DTIC Science & Technology

    1993-01-31

    28 Controllability and Observability ............................. .32 ’ Separation of Learning and Control ... ... 37 Linearization via... Linearization via Transformation of Coordinates and Nonlinear Fedlback . .1 Main Result ......... .............................. 13 Discussion...9 2.1 Basic Structure of a NLM........................ .󈧟 2.2 General Structure of NNLM .......................... .28 2.3 Linear System

  18. 77 FR 2514 - National Ocean Council-National Ocean Policy Draft Implementation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... for users, more efficient and coordinated decision-making, and improved sharing of data and technology... the preparation of the final plan. We welcome your general input, and also pose the following...: Strengthen and integrate Federal and non-Federal ocean observing systems, sensors, data collection platforms...

  19. Telerobotic control of a mobile coordinated robotic server

    NASA Technical Reports Server (NTRS)

    Lee, Gordon

    1991-01-01

    Results from the Master's Degree Thesis of Mr. Robert Stanley, a graduate student supervised by the principal investigator on this project is reported. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, a fuzzy logic controller has been developed in which model structure as well as parameter constraints are not required for compensation. A general rule base is formulated using quantized linguistic terms; it is then augmented to a traditional integral control. The resulting hybrid fuzzy controller stabilizes the structure over a broad range of uncertainties, including unknown initial conditions. An off-line tuning approach using phase portraits gives further insight into the algorithm. The approach was applied to a three-degree-of-freedom manipulator system - the prototype of the coordinated flexible manipulator system currently being designed and built at North Carolina State University.

  20. A model to study finite-size and magnetic effects on the phase transition of a fermion interacting system

    NASA Astrophysics Data System (ADS)

    Corrêa, Emerson B. S.; Linhares, César A.; Malbouisson, Adolfo P. C.

    2018-03-01

    We present a model to study the effects from external magnetic field, chemical potential and finite size on the phase structures of a massive four- and six-fermion interacting systems. These effects are introduced by a method of compactification of coordinates, a generalization of the standard Matsubara prescription. Through the compactification of the z-coordinate and of imaginary time, we describe a heated system with the shape of a film of thickness L, at temperature β-1 undergoing first- or second-order phase transition. We have found a strong dependence of the temperature transition on the coupling constants λ and η. Besides inverse magnetic catalysis and symmetry breaking for both kinds of transition, we have found an inverse symmetry breaking phenomenon with respect to first-order phase transition.

  1. Price schedules coordination for electricity pool markets

    NASA Astrophysics Data System (ADS)

    Legbedji, Alexis Motto

    2002-04-01

    We consider the optimal coordination of a class of mathematical programs with equilibrium constraints, which is formally interpreted as a resource-allocation problem. Many decomposition techniques were proposed to circumvent the difficulty of solving large systems with limited computer resources. The considerable improvement in computer architecture has allowed the solution of large-scale problems with increasing speed. Consequently, interest in decomposition techniques has waned. Nonetheless, there is an important class of applications for which decomposition techniques will still be relevant, among others, distributed systems---the Internet, perhaps, being the most conspicuous example---and competitive economic systems. Conceptually, a competitive economic system is a collection of agents that have similar or different objectives while sharing the same system resources. In theory, constructing a large-scale mathematical program and solving it centrally, using currently available computing power can optimize such systems of agents. In practice, however, because agents are self-interested and not willing to reveal some sensitive corporate data, one cannot solve these kinds of coordination problems by simply maximizing the sum of agent's objective functions with respect to their constraints. An iterative price decomposition or Lagrangian dual method is considered best suited because it can operate with limited information. A price-directed strategy, however, can only work successfully when coordinating or equilibrium prices exist, which is not generally the case when a weak duality is unavoidable. Showing when such prices exist and how to compute them is the main subject of this thesis. Among our results, we show that, if the Lagrangian function of a primal program is additively separable, price schedules coordination may be attained. The prices are Lagrange multipliers, and are also the decision variables of a dual program. In addition, we propose a new form of augmented or nonlinear pricing, which is an example of the use of penalty functions in mathematical programming. Applications are drawn from mathematical programming problems of the form arising in electric power system scheduling under competition.

  2. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability

    PubMed Central

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.

    2017-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125

  3. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.

    PubMed

    Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R

    2016-07-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  4. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    NASA Technical Reports Server (NTRS)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  5. Participation and coordination in Dutch health care policy-making. A network analysis of the system of intermediate organizations in Dutch health care.

    PubMed

    Lamping, Antonie J; Raab, Jörg; Kenis, Patrick

    2013-06-01

    This study explores the system of intermediate organizations in Dutch health care as the crucial system to understand health care policy-making in the Netherlands. We argue that the Dutch health care system can be understood as a system consisting of distinct but inter-related policy domains. In this study, we analyze four such policy domains: Finances, quality of care, manpower planning and pharmaceuticals. With the help of network analytic techniques, we describe how this highly differentiated system of >200 intermediate organizations is structured and coordinated and what (policy) consequences can be observed with regard to its particular structure and coordination mechanisms. We further analyze the extent to which this system of intermediate organizations enables participation of stakeholders in policy-making using network visualization tools. The results indicate that coordination between the different policy domains within the health care sector takes place not as one would expect through governmental agencies, but through representative organizations such as the representative organizations of the (general) hospitals, the health care consumers and the employers' association. We further conclude that the system allows as well as denies a large number of potential participants access to the policy-making process. As a consequence, the representation of interests is not necessarily balanced, which in turn affects health care policy. We find that the interests of the Dutch health care consumers are well accommodated with the national umbrella organization NPCF in the lead. However, this is no safeguard for the overall community values of good health care since, for example, the interests of the public health sector are likely to be marginalized.

  6. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Jen-San, E-mail: jen-san.tsai@verizon.net; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotationalmore » axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was within {+-} 4.5 mm coordinates shifting. IGRT using XVIcbs is critical to IMRT for prostate and H and N, especially SRT, SRS, and SBRT. To optimize this modality of IGRT, a vigilant QA program is indispensable. Prostate IGRT reveals treatment accuracy as subject to coordinates' adjustments; otherwise a 4.5-mm margin is required to allow for full dose coverage of the clinical target volume, notwithstanding toxicity to normal tissues.« less

  7. Product Distribution Theory and Semi-Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Airiau, Stephane; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for doing distributed adaptive control of a multiagent system (MAS). We introduce the technique of "coordinate transformations" in PD theory gradient descent. These transformations selectively couple a few agents with each other into "meta-agents". Intuitively, this can be viewed as a generalization of forming binding contracts between those agents. Doing this sacrifices a bit of the distributed nature of the MAS, in that there must now be communication from multiple agents in determining what joint-move is finally implemented However, as we demonstrate in computer experiments, these transformations improve the performance of the MAS.

  8. Coordination analysis of players' distribution in football using cross-correlation and vector coding techniques.

    PubMed

    Moura, Felipe Arruda; van Emmerik, Richard E A; Santana, Juliana Exel; Martins, Luiz Eduardo Barreto; Barros, Ricardo Machado Leite de; Cunha, Sergio Augusto

    2016-12-01

    The purpose of this study was to investigate the coordination between teams spread during football matches using cross-correlation and vector coding techniques. Using a video-based tracking system, we obtained the trajectories of 257 players during 10 matches. Team spread was calculated as functions of time. For a general coordination description, we calculated the cross-correlation between the signals. Vector coding was used to identify the coordination patterns between teams during offensive sequences that ended in shots on goal or defensive tackles. Cross-correlation showed that opponent teams have a tendency to present in-phase coordination, with a short time lag. During offensive sequences, vector coding results showed that, although in-phase coordination dominated, other patterns were observed. We verified that during the early stages, offensive sequences ending in shots on goal present greater anti-phase and attacking team phase periods, compared to sequences ending in tackles. Results suggest that the attacking team may seek to present a contrary behaviour of its opponent (or may lead the adversary behaviour) in the beginning of the attacking play, regarding to the distribution strategy, to increase the chances of a shot on goal. The techniques allowed detecting the coordination patterns between teams, providing additional information about football dynamics and players' interaction.

  9. Case Study on Project Risk Management Planning Based on Soft System Methodology

    NASA Astrophysics Data System (ADS)

    Lifang, Xie; Jun, Li

    This paper analyzed the soft system characters of construction projects and the applicability on using Soft System Methodology (SSM) for risk analysis after a brief review of SSM. Taking a hydropower project as an example, it constructed the general frame of project risk management planning (PRMP) and established the Risk Management Planning (RMP) system from the perspective of the interests of co-ordination. This paper provided the ideas and methods for construction RMP under the win-win situation through the practice of SSM.

  10. Coordination Procedures between the Scientific Integrity Official and the Office of Inspector General regarding Scientific Misconduct Allegations

    EPA Pesticide Factsheets

    Coordination Procedures between the Scientific Integrity Official and the Office of Inspector General regarding Scientific Misconduct Allegations written March 30, 2015 by the Office of the Science Advisor

  11. Designing for adaptation to novelty and change: functional information, emergent feature graphics, and higher-level control.

    PubMed

    Hajdukiewicz, John R; Vicente, Kim J

    2002-01-01

    Ecological interface design (EID) is a theoretical framework that aims to support worker adaptation to change and novelty in complex systems. Previous evaluations of EID have emphasized representativeness to enhance generalizability of results to operational settings. The research presented here is complementary, emphasizing experimental control to enhance theory building. Two experiments were conducted to test the impact of functional information and emergent feature graphics on adaptation to novelty and change in a thermal-hydraulic process control microworld. Presenting functional information in an interface using emergent features encouraged experienced participants to become perceptually coupled to the interface and thereby to exhibit higher-level control and more successful adaptation to unanticipated events. The absence of functional information or of emergent features generally led to lower-level control and less success at adaptation, the exception being a minority of participants who compensated by relying on analytical reasoning. These findings may have practical implications for shaping coordination in complex systems and fundamental implications for the development of a general unified theory of coordination for the technical, human, and social sciences. Actual or potential applications of this research include the design of human-computer interfaces that improve safety in complex sociotechnical systems.

  12. [The coordination betwen health and social services in the care of people with severe mental disorders].

    PubMed

    López Alvarez, Marcelino; Laviana Cuetos, Margarita

    2016-01-01

    Coordination between health and social services is a key point in caring for an increasing number of people affected by different types of health problems. The change in demographic and epidemiological patterns in our societies evidences the need of this coordination, usually not covered by our care systems. A sector in which the coordination is particularly important is the care of people with disabilities related to the suffering from severe mental disorders. This is a field that has been too long on the sidelines of the general health and social care systems as a result of the social stigma and traditional psychiatric institutions, setting in motion a vicious circle that must be broken in order to identify and to respond to the needs of such persons. In fact, the processes of change towards community care, with targets for recovery and not mere palliative or marginalizing care, necessarily incorporate this coordination as a cornerstone strategy for social inclusion and citizenship. Although there are still significant gaps in this regard, especially in Spain. However, there are experiences of change, such as that of Andalusia, which set the tone for the development of a strategy for integrated care, whose foundations and main elements we try to summarize in the present article. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  13. Special Education and General Education--Coordinated or Separated? A Study of Curriculum Planning for Pupils with Special Educational Needs

    ERIC Educational Resources Information Center

    Nilsen, Sven

    2017-01-01

    The central issue of this article is the coordination between special and general education in curriculum planning for pupils with special educational needs. The focus is on individual education plans (IEPs) in special education and work plans in general education. This is also viewed in relation to how special and general education teachers…

  14. GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI,J.

    2001-06-18

    Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].

  15. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  16. Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces

    PubMed Central

    Miall, R. C.; Woolley, D. G.

    2007-01-01

    Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error. PMID:17703286

  17. Switched Systems and Motion Coordination: Combinatorial Challenges

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    Problems of routing commercial air traffic in a terminal airspace encounter different constraints: separation assurance, aircraft performance limitations, regulations. The general setting of these problems is that of a switched control system. Such a system combines the differentiable motion of the aircraft with the combinatorial choices of choosing precedence when traffic routes merge and choosing branches when the routes diverge. This presentation gives an overview of the problem, the ATM context, related literature, and directions for future research.

  18. Module theoretic zero structures for system matrices

    NASA Technical Reports Server (NTRS)

    Wyman, Bostwick F.; Sain, Michael K.

    1987-01-01

    The coordinate-free module-theoretic treatment of transmission zeros for MIMO transfer functions developed by Wyman and Sain (1981) is generalized to include noncontrollable and nonobservable linear dynamical systems. Rational, finitely-generated-modular, and torsion-divisible interpretations of the Rosenbrock system matrix are presented; Gamma-zero and Omega-zero modules are defined and shown to contain the output-decoupling and input-decoupling zero modules, respectively, as submodules; and the cases of left and right invertible transfer functions are considered.

  19. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    NASA Astrophysics Data System (ADS)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model supramolecular system involving four redox centers.

  20. Using social network analysis to understand Missouri's system of public health emergency planners.

    PubMed

    Harris, Jenine K; Clements, Bruce

    2007-01-01

    Effective response to large-scale public health threats requires well-coordinated efforts among individuals and agencies. While guidance is available to help states put emergency planning programs into place, little has been done to evaluate the human infrastructure that facilitates successful implementation of these programs. This study examined the human infrastructure of the Missouri public health emergency planning system in 2006. The Center for Emergency Response and Terrorism (CERT) at the Missouri Department of Health and Senior Services has responsibility for planning, guiding, and funding statewide emergency response activities. Thirty-two public health emergency planners working primarily in county health departments contract with CERT to support statewide preparedness. We surveyed the planners to determine whom they communicate with, work with, seek expertise from, and exchange guidance with regarding emergency preparedness in Missouri. Most planners communicated regularly with planners in their region but seldom with planners outside their region. Planners also reported working with an average of 12 local entities (e.g., emergency management, hospitals/ clinics). Planners identified the following leaders in Missouri's public health emergency preparedness system: local public health emergency planners, state epidemiologists, the state vaccine and grant coordinator, regional public health emergency planners, State Emergency Management Agency area coordinators, the state Strategic National Stockpile coordinator, and Federal Bureau of Investigation Weapons of Mass Destruction coordinators. Generally, planners listed few federal-level or private-sector individuals in their emergency preparedness networks. While Missouri public health emergency planners maintain large and varied emergency preparedness networks, there are opportunities for strengthening existing ties and seeking additional connections.

  1. 24 CFR 700.130 - Service coordinator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... service coordinator may be employed directly by the grantee, or employed under a contract with a case... the case management agency providing service coordination shall not provide supportive services under... services to the grantee for CHSP. (d) The service coordinator shall: (1) Provide general case management...

  2. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  3. Multiple scaling power in liquid gallium under pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renfeng; Wang, Luhong; Li, Liangliang

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less

  4. 77 FR 40489 - Amendment of Class E Airspace; Memphis, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... geographic coordinates of General DeWitt Spain Airport and makes a minor correction to the regulatory text... adjusts the geographic coordinates of General DeWitt Spain Airport to be in concert with the FAAs... Airport (Lat. 34[deg]58'44'' N., long. 89[deg]47'13'' W.) General DeWitt Spain Airport [[Page 40490

  5. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2016-04-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.

  6. 49 CFR 33.40 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Priorities Assistance § 33.40 General provisions. (a) TPAS is designed to be largely self-executing. However... immediately contact DOT's Defense Production Act Activities Coordinator, Office of Intelligence, Security, and... rule) to the Defense Production Act Activities Coordinator, Office of Intelligence, Security, and...

  7. 49 CFR 33.40 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Priorities Assistance § 33.40 General provisions. (a) TPAS is designed to be largely self-executing. However... immediately contact DOT's Defense Production Act Activities Coordinator, Office of Intelligence, Security, and... rule) to the Defense Production Act Activities Coordinator, Office of Intelligence, Security, and...

  8. Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets

    NASA Technical Reports Server (NTRS)

    Farah, Jeffrey J.; Kelley, Robert B.

    1992-01-01

    Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived.

  9. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE PAGES

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...

    2016-08-22

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  10. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  11. Functional design to support CDTI/DABS flight experiments

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1982-01-01

    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.

  12. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES

    PubMed Central

    Seth, Ajay; Delp, Scott L.

    2015-01-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms. PMID:25905111

  13. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES.

    PubMed

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    2013-08-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is "muscle moment arm," a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.

  14. Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu

    2018-01-01

    To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.

  15. Schrödinger and Dirac solutions to few-body problems

    NASA Astrophysics Data System (ADS)

    Muolo, Andrea; Reiher, Markus

    We elaborate on the variational solution of the Schrödinger and Dirac equations for small atomic and molecular systems without relying on the Born-Oppenheimer approximation. The all-particle equations of motion are solved in a numerical procedure that relies on the variational principle, Cartesian coordinates and parametrized explicitly correlated Gaussians functions. A stochastic optimization of the variational parameters allows the calculation of accurate wave functions for ground and excited states. Expectation values such as the radial and angular distribution functions or the dipole moment can be calculated. We developed a simple strategy for the elimination of the global translation that allows to generally adopt laboratory-fixed cartesian coordinates. Simple expressions for the coordinates and operators are then preserved throughout the formalism. For relativistic calculations we devised a kinetic-balance condition for explicitly correlated basis functions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation between all components of the spinor of an N-fermion system. ETH Zürich, Laboratorium für Physikalische Chemie, CH-8093 Zürich, Switzerland.

  16. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    PubMed

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  17. Coordinating medical education and health care systems: the power of the social accountability approach.

    PubMed

    Boelen, Charles

    2018-01-01

    As the purpose of medical education is to produce graduates able to most effectively address people's health concerns, there is general agreement that coordination with the health care system is essential. For too long, coordination has been dealt with in a subjective manner with only few landmarks to ensure objective and measurable achievements. Over the last 30 years, since the Edinburgh Declaration on medical education, progress has been made, namely with the concept of social accountability. The social accountability approach provides a way to plan, deliver and assess medical education with the explicit aim to contribute to effective, equitable and sustainable health system development. It is based on a system-wide scope exploring issues from identification of people's and society's health needs to verification of the effects of medical education in meeting those needs. A wide international consultation among medical education leaders led to the adoption of the Global Consensus on Social Accountability of Medical Schools. Benchmarks of social accountability are in the process of being conceived and tested, enabling medical schools to steer medical education in a more purposeful way in relation to determinants of health. A sample of schools using the social accountability approach claims to have had a positive influence on health care system performance and people's health status. Improved coordination of medical education and other key stakeholders in the health system is an important challenge for medical schools as well as for countries confronted with an urgent need for optimal use of their health workforce. There is growing interest worldwide in defining policies and strategies and supporting experiences in this regard. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  18. Massive parallelization of serial inference algorithms for a complex generalized linear model

    PubMed Central

    Suchard, Marc A.; Simpson, Shawn E.; Zorych, Ivan; Ryan, Patrick; Madigan, David

    2014-01-01

    Following a series of high-profile drug safety disasters in recent years, many countries are redoubling their efforts to ensure the safety of licensed medical products. Large-scale observational databases such as claims databases or electronic health record systems are attracting particular attention in this regard, but present significant methodological and computational concerns. In this paper we show how high-performance statistical computation, including graphics processing units, relatively inexpensive highly parallel computing devices, can enable complex methods in large databases. We focus on optimization and massive parallelization of cyclic coordinate descent approaches to fit a conditioned generalized linear model involving tens of millions of observations and thousands of predictors in a Bayesian context. We find orders-of-magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in high-dimensional statistics and the algorithms we propose open up exciting new methodological possibilities with the potential to significantly improve drug safety. PMID:25328363

  19. Spacetime symmetries and Kepler's third law

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre

    2012-11-01

    The curved spacetime geometry of a system of two point masses moving on a circular orbit has a helical symmetry. We show how Kepler’s third law for circular motion, and its generalization in post-Newtonian theory, can be recovered from a simple, covariant condition on the norm of the associated helical Killing vector field. This unusual derivation can be used to illustrate some concepts of prime importance in a general relativity course, including those of Killing field, covariance, coordinate dependence and gravitational redshift.

  20. Extended H2 synthesis for multiple degree-of-freedom controllers

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Knospe, Carl R.

    1992-01-01

    H2 synthesis techniques are developed for a general multiple-input-multiple-output (MIMO) system subject to both stochastic and deterministic disturbances. The H2 synthesis is extended by incorporation of anticipated disturbances power-spectral-density information into the controller-design process, as well as by frequency weightings of generalized coordinates and control inputs. The methodology is applied to a simple single-input-multiple-output (SIMO) problem, analogous to the type of vibration isolation problem anticipated in microgravity research experiments.

  1. The turbulent mean-flow, Reynolds-stress, and heat flux equations in mass-averaged dependent variables

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Rose, W. C.

    1973-01-01

    The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.

  2. Relativistic time transfer in the vicinity of the Earth and in the solar system

    NASA Astrophysics Data System (ADS)

    Nelson, Robert A.

    2011-08-01

    The algorithms for relativistic time transfer in the vicinity of the Earth and in the solar system are derived. The concepts of proper time and coordinate time are distinguished. The coordinate time elapsed during the transport of a clock and the propagation of an electromagnetic signal is analysed in three coordinate systems: an Earth-Centred Inertial (ECI) coordinate system, an Earth-Centred Earth-Fixed (ECEF) coordinate system and a barycentric coordinate system. The timescales of Geocentric Coordinate Time (TCG), Terrestrial Time (TT) and Barycentric Coordinate Time (TCB) are defined and their relationships are discussed. Some numerical examples are provided to illustrate the magnitudes of the effects.

  3. Where are the NGOs and why? The distribution of health and development NGOs in Bolivia.

    PubMed

    Galway, Lindsay P; Corbett, Kitty K; Zeng, Leilei

    2012-11-23

    The presence and influence of nongovernmental organizations (NGOs) in the landscape of global health and development have dramatically increased over the past several decades. The distribution of NGO activity and the ways in which contextual factors influence the distribution of NGO activity across geographies merit study. This paper explores the distribution of NGO activity, using Bolivia as a case study, and identifies local factors that are related to the distribution of NGO activity across municipalities in Bolivia. The research question is addressed using a geographic information system (GIS) and multiple regression analyses of count data. We used count data of the total number of NGO projects across Bolivian municipalities to measure NGO activity both in general and in the health sector specifically and national census data for explanatory variables of interest. This study provides one of the first empirical analyses exploring factors related to the distribution of NGO activity at the national scale. Our analyses show that NGO activity in Bolivia, both in general and health-sector specific, is distributed unevenly across the country. Results indicate that NGO activity is related to population size, extent of urbanization, size of the indigenous population, and health system coverage. Results for NGO activity in general and health-sector specific NGO activity were similar. The uneven distribution of NGO activity may suggest a lack of co-ordination among NGOs working in Bolivia as well as a lack of co-ordination among NGO funders. Co-ordination of NGO activity is most needed in regions characterized by high NGO activity in order to avoid duplication of services and programmes and inefficient use of limited resources. Our findings also indicate that neither general nor health specific NGO activity is related to population need, when defined as population health status or education level or poverty levels. Considering these results we discuss broader implications for global health and development and make several recommendations relevant for development and health practice and research.

  4. Where are the NGOs and why? The distribution of health and development NGOs in Bolivia

    PubMed Central

    2012-01-01

    Background The presence and influence of nongovernmental organizations (NGOs) in the landscape of global health and development have dramatically increased over the past several decades. The distribution of NGO activity and the ways in which contextual factors influence the distribution of NGO activity across geographies merit study. This paper explores the distribution of NGO activity, using Bolivia as a case study, and identifies local factors that are related to the distribution of NGO activity across municipalities in Bolivia. Methods The research question is addressed using a geographic information system (GIS) and multiple regression analyses of count data. We used count data of the total number of NGO projects across Bolivian municipalities to measure NGO activity both in general and in the health sector specifically and national census data for explanatory variables of interest. Results This study provides one of the first empirical analyses exploring factors related to the distribution of NGO activity at the national scale. Our analyses show that NGO activity in Bolivia, both in general and health-sector specific, is distributed unevenly across the country. Results indicate that NGO activity is related to population size, extent of urbanization, size of the indigenous population, and health system coverage. Results for NGO activity in general and health-sector specific NGO activity were similar. Conclusions The uneven distribution of NGO activity may suggest a lack of co-ordination among NGOs working in Bolivia as well as a lack of co-ordination among NGO funders. Co-ordination of NGO activity is most needed in regions characterized by high NGO activity in order to avoid duplication of services and programmes and inefficient use of limited resources. Our findings also indicate that neither general nor health specific NGO activity is related to population need, when defined as population health status or education level or poverty levels. Considering these results we discuss broader implications for global health and development and make several recommendations relevant for development and health practice and research. PMID:23173815

  5. Flexibility and Coordination among Acts of Visualization and Analysis in a Pattern Generalization Activity

    ERIC Educational Resources Information Center

    Nilsson, Per; Juter, Kristina

    2011-01-01

    This study aims at exploring processes of flexibility and coordination among acts of visualization and analysis in students' attempt to reach a general formula for a three-dimensional pattern generalizing task. The investigation draws on a case-study analysis of two 15-year-old girls working together on a task in which they are asked to calculate…

  6. 26 CFR 1.1502-98A - Coordination with section 383 generally applicable for testing dates (or members joining or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... business credits from a pre-change consolidated return year to a post-change consolidated return year, the... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Coordination with section 383 generally.... Similarly, in the case of net capital losses, general business credits, and excess foreign taxes that are...

  7. DFTB+ and lanthanides

    NASA Astrophysics Data System (ADS)

    Hourahine, B.; Aradi, B.; Frauenheim, T.

    2010-07-01

    DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.

  8. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  9. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, M.; Wieseman, C. D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few a priori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  10. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  11. First and second energy derivative analyses for open-shell self-consistent field wavefunctions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III; Frenking, Gernot

    A study of first and second derivatives of the orbital, electronic, nuclear and total energies for the self-consistent field (SCF) wavefunction has been applied to general open-shell SCF systems. The diagonal elements of the Lagrangian matrix for the general open-shell SCF wavefunction are adapted as the 'oŕbital' energies. The first and second derivatives of the orbital energies in terms of the normal coordinates are determined via the finite difference method, while those of the electronic, nuclear and total energies are obtained by analytical techniques. Using three low lying states of the CH2 and H2CO molecules as examples, it is demonstrated that the derivatives of the SCF energetic quantities with respect to the normal coordinates provide useful chemical information concerning the respective molecular structures and reactivities. The conventional concept of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) has been extended to the molecular vibrational motion, and the terminology of vibrationally active MOs (va-MOs), va-HOMO and va-LUMO has been introduced for each normal coordinate. The energy derivative analysis method may be used as a powerful semi-quantitative modelin understanding and interpreting various chemical phenomena.

  12. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  13. Central tracker for BM@N experiment based on double side Si-microstrip detectors

    NASA Astrophysics Data System (ADS)

    Kovalev, Yu.; Kapishin, M.; Khabarov, S.; Shafronovskaia, A.; Tarasov, O.; Makankin, A.; Zamiatin, N.; Zubarev, E.

    2017-07-01

    Design of central tracker system based on Double-Sided Silicon Detectors (DSSD) for BM@N experiment is described. A coordinate plane with 10240 measuring channels, pitch adapter, reading electronics was developed. Each element was tested and assembled into a coordinate plane. The first tests of the plane with 106Ru source were carried out before installation for the BM@N experiment. The results of the study indicate that noisy channels and inefficient channels are less than 3%. In general, single clusters 87% (one group per module of consecutive strips) and 75% of clusters with a width equal to one strip.

  14. Nonlinear Equations of Equilibrium for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deformation

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Friedmann, P. P.

    1978-01-01

    A set of nonlinear equations of equilibrium for an elastic wind turbine or helicopter blades are presented. These equations are derived for the case of small strains and moderate rotations (slopes). The derivation includes several assumptions which are carefully stated. For the convenience of potential users the equations are developed with respect to two different systems of coordinates, the undeformed and the deformed coordinates of the blade. Furthermore, the loads acting on the blade are given in a general form so as to make them suitable for a variety of applications. The equations obtained in the study are compared with those obtained in previous studies.

  15. Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates

    NASA Astrophysics Data System (ADS)

    Sittel, Florian; Jain, Abhinav; Stock, Gerhard

    2014-07-01

    Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.

  16. Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates.

    PubMed

    Sittel, Florian; Jain, Abhinav; Stock, Gerhard

    2014-07-07

    Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.

  17. Dynamic System Coupler Program (DYSCO 4.1). Volume 1. Theoretical Manual

    DTIC Science & Technology

    1989-01-01

    present analysis is as follows: 1. Triplet X, Y, Z represents an inertia frame, R. The R system coordinates are the rotor shaft axes when there is...small perturbation analysis . 2.5 3-D MODAL STRUCTURE - CFM3 A three-dimensional structure is represented as a linear combination of orth­ ogonal modes...Include rotor blade damage modeling, Elgen analysis development, general time history solution development, frequency domain solution development

  18. Gyro-gauge-independent formulation of the guiding-center reduction to arbitrary order in the Larmor radius

    NASA Astrophysics Data System (ADS)

    de Guillebon, L.; Vittot, M.

    2013-10-01

    Guiding-center reduction is studied using gyro-gauge-independent coordinates. The Lagrangian 1-form of charged particle dynamics is Lie transformed without introducing a gyro-gauge, but using directly the unit vector of the component of the velocity perpendicular to the magnetic field as the coordinate corresponding to Larmor gyration. The reduction is shown to provide a maximal reduction for the Lagrangian and to work for all orders in the Larmor radius, following exactly the same procedure as when working with the standard gauge-dependent coordinate. The gauge-dependence is removed from the coordinate system by using a constrained variable for the gyro-angle. The closed 1-form dθ is replaced by a more general non-closed 1-form, which is equal to dθ in the gauge-dependent case. The gauge vector is replaced by a more general connection in the definition of the gradient, which behaves as a covariant derivative, in perfect agreement with the circle-bundle picture. This explains some results of previous works, whose gauge-independent expressions did not correspond to gauge fixing but did indeed correspond to connection fixing. In addition, some general results are obtained for the guiding-center reduction. The expansion is polynomial in the cotangent of the pitch-angle as an effect of the structure of the Lagrangian, preserved by Lie derivatives. The induction for the reduction is shown to rely on the inversion of a matrix, which is the same for all orders higher than three. It is inverted and explicit induction relations are obtained to go to an arbitrary order in the perturbation expansion. The Hamiltonian and symplectic representations of the guiding-center reduction are recovered, but conditions for the symplectic representation at each order are emphasized.

  19. A novel method of robot location using RFID and stereo vision

    NASA Astrophysics Data System (ADS)

    Chen, Diansheng; Zhang, Guanxin; Li, Zhen

    2012-04-01

    This paper proposed a new global localization method for mobile robot based on RFID (Radio Frequency Identification Devices) and stereo vision, which makes the robot obtain global coordinates with good accuracy when quickly adapting to unfamiliar and new environment. This method uses RFID tags as artificial landmarks, the 3D coordinate of the tags under the global coordinate system is written in the IC memory. The robot can read it through RFID reader; meanwhile, using stereo vision, the 3D coordinate of the tags under the robot coordinate system is measured. Combined with the robot's attitude coordinate system transformation matrix from the pose measuring system, the translation of the robot coordinate system to the global coordinate system is obtained, which is also the coordinate of the robot's current location under the global coordinate system. The average error of our method is 0.11m in experience conducted in a 7m×7m lobby, the result is much more accurate than other location method.

  20. Evolutionary Agent-based Models to design distributed water management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a synthetic case study, representing a Y-shaped system composed by two regulated lakes, whose releases merge just upstream of a city. Each reservoir is operated by an agent in order to prevent floods along the lake shores (local objective). However, the optimal operation of the reservoirs with respect to the local objectives is conflicting with the minimization of floods in the city (global objective). The evolution of the Agent-based Model from individualistic management strategies of the reservoirs toward a global compromise that reduces the costs for the city is analysed.

  1. Dioptric power: its nature and its representation in three- and four-dimensional space.

    PubMed

    Harris, W F

    1997-06-01

    Dioptric power expressed in the familiar three-component form of sphere, cylinder, and axis is unsuited to mathematical and statistical treatments; there is a particular class of power that cannot be represented in the familiar form; and it is possible that sphere, cylinder, and axis will prove inadequate in future clinical and research applications in optometry and ophthalmology. Dioptric power expressed as the four-component dioptric power matrix, however, overcomes these shortcomings. The intention in this paper is to provide a definitive statement on the nature, function, and mathematical representation of dioptric power in terms of the matrix and within the limitations of paraxial or linear optics. The approach is universal in the sense that its point of departure is not power of the familiar form (that is, of thin systems) but of systems in general (thick or thin). Familiar types of power are then seen within the context of power in general. Dioptric power is defined, for systems that may be thick and astigmatic, in terms of the ray transfer matrix. A functional definition is presented for dioptric power and its components: it defines the additive contribution of incident position to emergent direction of a ray passing through the system. For systems that are thin (or thin-equivalent) it becomes possible to describe an alternative and more familiar function; for such systems dioptric power can be regarded as the increase in reduced surface curvature of a wavefront brought about by the system as the wavefront passes through it. The curvital and torsional components of the power are explored in some detail. Dioptric power, at its most general, defines a four-dimensional inner product space called dioptric power space. The familiar types of power define a three-dimensional subspace called symmetric dioptric power space. For completeness a one-dimensional antisymmetric power space is also defined: it is orthogonal in four dimensions to symmetric dioptric power space. Various bases are defined for the spaces as are coordinate vectors with respect to them. Vectorial representations of power in the literature apply only to thin systems and are not obviously generalizable to systems in general. They are shown to be merely different coordinate representations of the same subspace, the space of symmetric powers. Some of the uses and disadvantages of the different representations are described. None of the coordinate vectors fully represent, by themselves, the essential character of dioptric power. Their use is limited to applications, such as finding a mean, where addition and scalar multiplication are involved. The full character of power is represented by the dioptric power matrix; it is in this form that power is appropriate for all mathematical relationships.

  2. Automation of internal library operations in academic health sciences libraries: a state of the art report.

    PubMed Central

    Grefsheim, S F; Larson, R H; Bader, S A; Matheson, N W

    1982-01-01

    A survey of automated records management in the United States and Canada was developed to identify existing on-line library systems and technical expertise. Follow-up interviews were conducted with ten libraries. Tables compare the features and availability of four main frame and four minicomputer systems. Results showed: a trend toward vendor-supplied systems; little coordination of efforts among schools; current system developments generally on a universitywide basis; and the importance of having the cooperation of campus computer facilities to the success of automation efforts. PMID:7066571

  3. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  4. Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Xu, Ming; Zhong, Rui

    2017-10-01

    Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.

  5. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  6. 11 CFR 109.30 - How are political party committees treated for purposes of coordinated and independent expenditures?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purposes of coordinated and independent expenditures? 109.30 Section 109.30 Federal Elections FEDERAL ELECTION COMMISSION GENERAL COORDINATED AND INDEPENDENT EXPENDITURES (2 U.S.C. 431(17), 441a(a) AND (d... political party committees treated for purposes of coordinated and independent expenditures? Political party...

  7. Conversion of DST Group Shape Optimisation Software for Increased Portability across Computing Platforms

    DTIC Science & Technology

    2016-05-01

    reduction achieved is small due to the starting shape being near optimal. The general arrangement and x-y coordinate system are shown in Figure 23...Optimization, Vol. 28, pp. 55–68, 2004. [3] M Heller, J Calero, S Barter , RJ Wescott, J Choi. Fatigue life extension program for LAU-7 missile launcher

  8. Calculating Dynamics Of Helicopters And Slung Loads

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi; Kanning, Gerd

    1991-01-01

    General equations derived for numerical simulations of motions of multiple-lift, slung-load systems consisting of two or more lifting helicopters and loads slung from them by various combinations of spreader bars, cables, nets, and attaching hardware. Equations readily programmable for efficient computation of motions and lend themselves well to analysis and design of control strategies for stabilization and coordination.

  9. Meeting Early Intervention Challenges: Issues from Birth to Three. Second Edition.

    ERIC Educational Resources Information Center

    Johnson, Lawrence J., Ed.; And Others

    This text presents 12 chapters on the development of coordinated systems of service delivery to infants and toddlers who have disabilities or are at risk for disabilities and their families, as mandated by Part H of the Individuals with Disabilities Education Act (IDEA). An introductory chapter by Lawrence J. Johnson presents a general overview of…

  10. Enhancing communication by using the Coordinated Care Classification System.

    PubMed

    O'Neal, P V; Kozeny, D K; Garland, P P; Gaunt, S M; Gordon, S C

    1998-07-01

    Because of the changes in our healthcare system, some clinical nurse specialists (CNSs) are having to expand their traditional roles of clinician, educator, consultant, leader, and researcher to include case management activities. The CNSs at Promina Gwinnett Health System in Lawrenceville, Georgia, have combined CNS and case manager activities and have adopted the title "CNS/Outcomes Coordinator." The CNS/Outcomes Coordinator is responsible for coordinating patient care, promoting team collaboration, and facilitating communication. To inform the healthcare team of the CNS/Outcomes Coordinator's patient responsibilities, the CNS/Outcomes Coordinators developed a Coordinated Care Classification System. This article describes how coordinating patient care, promoting team collaboration, and facilitating communication can be enhanced by the use of a classification system.

  11. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2016-08-01

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH4 and H2CO are given, together with a comparison with previous results.

  12. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using amore » multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.« less

  13. 40 CFR 300.120 - On-scene coordinators and remedial project managers: general responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false On-scene coordinators and remedial project managers: general responsibilities. 300.120 Section 300.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...

  14. 40 CFR 300.120 - On-scene coordinators and remedial project managers: general responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false On-scene coordinators and remedial project managers: general responsibilities. 300.120 Section 300.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...

  15. 40 CFR 300.120 - On-scene coordinators and remedial project managers: general responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false On-scene coordinators and remedial project managers: general responsibilities. 300.120 Section 300.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...

  16. 40 CFR 300.120 - On-scene coordinators and remedial project managers: general responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false On-scene coordinators and remedial project managers: general responsibilities. 300.120 Section 300.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...

  17. 40 CFR 300.120 - On-scene coordinators and remedial project managers: general responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false On-scene coordinators and remedial project managers: general responsibilities. 300.120 Section 300.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...

  18. The nontriviality of trivial general covariance: How electrons restrict 'time' coordinates, spinors (almost) fit into tensor calculus, and 7/16 of a tetrad is surplus structure

    NASA Astrophysics Data System (ADS)

    Brian Pitts, J.

    2012-02-01

    It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics literature often claims that spinors as such cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed spinors in coordinates in 1965, enhancing the unity of physics and helping to spawn particle physicists' concept of nonlinear group representations. Roughly and locally, these spinors resemble the orthonormal basis or "tetrad" formalism in the symmetric gauge, but they are conceptually self-sufficient and more economical. The typical tetrad formalism is de-Ockhamized, with six extra field components and six compensating gauge symmetries to cancel them out. The Ogievetsky-Polubarinov formalism, by contrast, is (nearly) Ockhamized, with most of the fluff removed. As developed nonperturbatively by Bilyalov, it admits any coordinates at a point, but "time" must be listed first. Here "time" is defined in terms of an eigenvalue problem involving the metric components and the matrix diag(-1,1,1,1), the product of which must have no negative eigenvalues in order to yield a real symmetric square root that is a function of the metric. Thus even formal general covariance requires reconsideration; the atlas of admissible coordinate charts should be sensitive to the types and values of the fields involved. Apart from coordinate order and the usual spinorial two-valuedness, (densitized) Ogievetsky-Polubarinov spinors form, with the (conformal part of the) metric, a nonlinear geometric object, for which important results on Lie and covariant differentiation are recalled. Such spinors avoid a spurious absolute object in the Anderson-Friedman analysis of substantive general covariance. They also permit the gauge-invariant localization of the infinite-component gravitational energy in General Relativity. Density-weighted spinors exploit the conformal invariance of the massless Dirac equation to show that the volume element is absent. Thus instead of an arbitrary nonsingular matrix with 16 components, six of which are gauged away by a new local O(1,3) gauge group and one of which is irrelevant due to conformal covariance, one can, and presumably should, use density-weighted Ogievetsky-Polubarinov spinors coupled to the nine-component symmetric unimodular square root of the part of the metric that fixes null cones. Thus 7/16 of the orthonormal basis is eliminated as surplus structure. Greater unity between spinors (related to fermions, with half-integral spin) and tensors and the like (related to bosons, with integral spin) is achieved, such as regarding conservation laws. Regarding the conventionality of simultaneity, an unusually wide range of ɛ values is admissible, but some extreme values are inadmissible. Standard simultaneity uniquely makes the spinor transformation law linear and independent of the metric, because transformations among the standard Cartesian coordinate systems fall within the conformal group, for which the spinor transformation law is linear. The surprising mildness of the restrictions on coordinate order as applied to the Schwarzschild solution is exhibited.

  19. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

    PubMed

    Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia

    2012-12-15

    The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.

  20. Dynamics of essential collective motions in proteins: Theory

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2007-11-01

    A general theoretical background is introduced for characterization of conformational motions in protein molecules, and for building reduced coarse-grained models of proteins, based on the statistical analysis of their phase trajectories. Using the projection operator technique, a system of coupled generalized Langevin equations is derived for essential collective coordinates, which are generated by principal component analysis of molecular dynamic trajectories. The number of essential degrees of freedom is not limited in the theory. An explicit analytic relation is established between the generalized Langevin equation for essential collective coordinates and that for the all-atom phase trajectory projected onto the subspace of essential collective degrees of freedom. The theory introduced is applied to identify correlated dynamic domains in a macromolecule and to construct coarse-grained models representing the conformational motions in a protein through a few interacting domains embedded in a dissipative medium. A rigorous theoretical background is provided for identification of dynamic correlated domains in a macromolecule. Examples of domain identification in protein G are given and employed to interpret NMR experiments. Challenges and potential outcomes of the theory are discussed.

  1. A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis

    NASA Astrophysics Data System (ADS)

    Hoffarth, Canio

    Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNARTM, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo's T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.

  2. The three-body problem with short-range interactions

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Fedorov, D. V.; Jensen, A. S.; Garrido, E.

    2001-06-01

    The quantum mechanical three-body problem is studied for general short-range interactions. We work in coordinate space to facilitate accurate computations of weakly bound and spatially extended systems. Hyperspherical coordinates are used in both the interpretation and as an integral part of the numerical method. Universal properties and model independence are discussed throughout the report. We present an overview of the hyperspherical adiabatic Faddeev equations. The wave function is expanded on hyperspherical angular eigenfunctions which in turn are found numerically using the Faddeev equations. We generalize the formalism to any dimension of space d greater or equal to two. We present two numerical techniques for solving the Faddeev equations on the hypersphere. These techniques are effective for short and intermediate/large distances including use for hard core repulsive potentials. We study the asymptotic limit of large hyperradius and derive the analytic behaviour of the angular eigenvalues and eigenfunctions. We discuss four applications of the general method. We first analyze the Efimov and Thomas effects for arbitrary angular momenta and for arbitrary dimensions d. Second we apply the method to extract the general behaviour of weakly bound three-body systems in two dimensions. Third we illustrate the method in three dimensions by structure computations of Borromean halo nuclei, the hypertriton and helium molecules. Fourth we investigate in three dimensions three-body continuum properties of Borromean halo nuclei and recombination reactions of helium atoms as an example of direct relevance for the stability of Bose-Einstein condensates.

  3. Positive solutions of advanced differential systems.

    PubMed

    Diblík, Josef; Kúdelčíková, Mária

    2013-01-01

    We study asymptotic behavior of solutions of general advanced differential systems y(t) = F(t, y(t)), where F : Ω → [Symbol: see text] (n) is a continuous quasi-bounded functional which satisfies a local Lipschitz condition with respect to the second argument and Ω is a subset in [Symbol: see text] × C(r)(n), C(r)(n) := C([0, r], [Symbol: see text] (n)), y t [Symbol: see text]C(r)(n), and y t (θ) = y(t + θ), θ [Symbol: see text] [0, r]. A monotone iterative method is proposed to prove the existence of a solution defined for t → ∞ with the graph coordinates lying between graph coordinates of two (lower and upper) auxiliary vector functions. This result is applied to scalar advanced linear differential equations. Criteria of existence of positive solutions are given and their asymptotic behavior is discussed.

  4. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The study deals with 165 inadvertent operations on or into inappropriate portions of the aircraft areas at controlled airports. Pilot-initiated and controller-initiated incursions are described and discussed. It was found that a majority of the pilot-initiated occurrences involved operation without a clearance; controller-initiated occurrences usually involved failure to maintain assured separation. The factors associated with these occurrences are analyzed. It appears that a major problem in these occurrences is inadequate coordination among the various system participants. Reasons for this, and some possible solutions to various aspects of the problem, are discussed. A sample of reports from pilots and controllers is presented. These relate to undesired occurrences in air transport, general aviation, and air traffic control operations; to ATC coordination problems; and to a recurrent problem in ASRS reports, parachuting operations. A sample of alert bulletins and responses to them is presented.

  5. An Intercultural Education for Mexico: Career and Contributions of Sylvia Schmelkes

    ERIC Educational Resources Information Center

    Evans, Ma. Cecilia Fierro; Pons, Flavio Rojo

    2012-01-01

    This article introduces Sylvia Schmelkes's contributions in the field of intercultural education. An outstanding Mexican educational researcher, Schmelkes was General Coordinator of the Intercultural and Bilingual General Coordination (GCIBE) at the Mexican Ministry of Public Education from its inception in 2001 until 2007. This article provides a…

  6. About the coordinate time for photons in Lifshitz space-times

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Vásquez, Yerko

    2013-10-01

    In this paper we studied the behavior of radial photons from the point of view of the coordinate time in (asymptotically) Lifshitz space-times, and we found a generalization to the result reported in previous works by Cruz et al. (Eur. Phys. J. C 73:7, 2013), Olivares et al. (Astrophys. Space Sci. 347:83-89, 2013), and Olivares et al. (arXiv:1306.5285). We demonstrate that all asymptotically Lifshitz space-times characterized by a lapse function f( r) which tends to one when r→∞, present the same behavior, in the sense that an external observer will see that photons arrive at spatial infinity in a finite coordinate time. Also, we show that radial photons in the proper system cannot determine the presence of the black hole in the region r +< r<∞, because the proper time as a result is independent of the lapse function f( r).

  7. A fully vectorized numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Patel, N.

    1983-01-01

    A vectorizable algorithm is presented for the implicit finite difference solution of the incompressible Navier-Stokes equations in general curvilinear coordinates. The unsteady Reynolds averaged Navier-Stokes equations solved are in two dimension and non-conservative primitive variable form. A two-layer algebraic eddy viscosity turbulence model is used to incorporate the effects of turbulence. Two momentum equations and a Poisson pressure equation, which is obtained by taking the divergence of the momentum equations and satisfying the continuity equation, are solved simultaneously at each time step. An elliptic grid generation approach is used to generate a boundary conforming coordinate system about an airfoil. The governing equations are expressed in terms of the curvilinear coordinates and are solved on a uniform rectangular computational domain. A checkerboard SOR, which can effectively utilize the computer architectural concept of vector processing, is used for iterative solution of the governing equations.

  8. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero-point energy.

    PubMed

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2005-08-22

    An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.

  9. Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.

    NASA Astrophysics Data System (ADS)

    Papachristou, Costas J.

    The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.

  10. Development of a fractional-step method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel

    1992-01-01

    A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell. The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with the consistent approximations of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases.

  11. Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Toro, Kenneth G.; Parker, Peter A.

    2017-01-01

    Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.

  12. Coordinated Path-Following in the Presence of Communication Losses and Time Delays

    DTIC Science & Technology

    2009-01-01

    of Type I or Type II. The results are quite general in that they apply to a large class of PF control systems satisfying a certain input-to-state...Maggiore, State agreement for continuous- time coupled nonlinear systems , SIAM J. Control Optim., 46 (2007), pp. 288–307. [39] M. Mesbahi and F...40] L. Moreau, Stability of continuous- time distributed consensus algorithm, in Proceedings of the 43rd IEEE Conference on Decision and Control

  13. D Coordinate Transformation Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Konakoglu, B.; Cakır, L.; Gökalp, E.

    2016-10-01

    Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.

  14. Practical applications of the geographic coordinate data base in Arkansas

    Treesearch

    Mickie Warwick; Don C. Bragg

    2005-01-01

    Though not intended for these applications, the General Land Office (GLO) survey notes are a primary source of historical, ecological, and cultural information, making it imperative that their spatial coordinates be as reliable as possible. The Geographic Coordinate Data Base (GCDB) is a statistically-based coordinate fitting program that uses the GLO notes and other...

  15. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... notify the frequency coordinator whenever a medical telemetry device is permanently taken out of service... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  16. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... notify the frequency coordinator whenever a medical telemetry device is permanently taken out of service... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  17. Effects of coordinate system choice on measured regional myocardial function in short-axis cine electron-beam tomography

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Following myocardial infarction, the size of the infarcted region and the systolic functioning of the noninfarcted region are commonly assessed by various cross- sectional imaging techniques. A series of images representing successive phases of the cardiac cycle can be acquired by several imaging modalities including electron beam computed tomography, magnetic resonance imaging, and echocardiography. For the assessment of patterns of ventricular contraction, images are commonly acquired of ventricular cross-sections normal to the 'long' axis of the heart and parallel to the mitral valve plane. The endocardial and epicardial surfaces of the myocardium are identified. Then the ventricle is divided into sectors and the volumes of blood and myocardium within each sector at multiple phases of the cardiac cycle are measured. Regional function parameters are derived from these measurements. This generally mandates the use of a polar or cylindrical coordinate system. Various algorithms have been used to select the origin of this coordinate system. These include the centroid of the endocardial surface, the epicardial surface, or of a polygon whose vertices lie midway between the epicardial and endocardial surfaces of the myocardium (centerline method). Another algorithm has been developed in our laboratory. This uses the centroid (or center of mass) of the myocardium exclusive of the ventricular cavity. Each of these choices for origin of coordinate system can be derived from the end- diastolic image or from the end-systolic image. Alternately, new coordinate systems can be selected for each phase of the cardiac cycle. These are referred to as 'floating' coordinate systems. A series of computer models have been developed in our laboratory to study the effects of each of these choices on the regional function parameters of normal ventricles and how these choices effect the quantification of regional abnormalities after myocardial infarction. The most sophisticated of these is an interactive program with a graphical user interface which facilitates the simulation of a wide variety of dynamic ventricular cross sections. Analysis of these simulations has led to a better understanding of how polar coordinate system placement influences the results of quantitative regional ventricular function assessment. It has also created new insight into how the appropriateness of the placement of such a polar coordinate systems can be objectively assessed. The validity of the conclusions drawn from the analysis of simulated ventricular shapes was validated through the analysis of outlines extracted from cine electron beam computed tomographic images. This was done using another interactive software tool developed specifically for this purpose. With this tool, the effects on regional function parameters of various choices for origin placement can be directly observed. This has proven to reinforce the conclusions drawn from the simulations and has led to the modification of the procedures used in our laboratory. Conclusions: The so-called floating coordinate systems are superior to fixed ones for quantification of regional left ventricular contraction in almost every respect. The use of regional ejection fractions with a coordinate system origin located at the centroid of the endocardial surface can lead to 180 degree errors in identifying the location of a myocardial infarction. This problem is less pronounced with midline and epicardium- based centroids and does not occur when the centroid of the myocardium is used. The quantified migration of myocardial mass across sector boundaries is a useful indicator of an inappropriate choice of coordinate system origin. When the centroid of the myocardium falls well within the ventricular cavity, as it usually does, it is a better location for the origin for regional analysis than any of the other centroids analyzed.

  18. General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations.

    PubMed

    Doktorov, Alexander B; Kipriyanov, Alexey A

    2014-05-14

    General matrix approach to the consideration of multistage geminate reactions of isolated pairs of reactants depending on reactant mobility is formulated on the basis of the concept of "effective" particles. Various elementary reactions (stages of multistage reaction including physicochemical processes of internal quantum state changes) proceeding with the participation of isolated pairs of reactants (or isolated reactants) are taken into account. Investigation has been made in terms of kinetic approach implying the derivation of general (matrix) kinetic equations for local and mean probabilities of finding any of the reaction species in the sample under study (or for local and mean concentrations). The recipes for the calculation of kinetic coefficients of the equations for mean quantities in terms of relative coordinates of reactants have been formulated in the general case of inhomogeneous reacting systems. Important specific case of homogeneous reacting systems is considered.

  19. On the concept of a filtered bundle

    NASA Astrophysics Data System (ADS)

    Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz

    We present the notion of a filtered bundle as a generalization of a graded bundle. In particular, we weaken the necessity of the transformation laws for local coordinates to exactly respect the weight of the coordinates by allowing more general polynomial transformation laws. The key examples of such bundles include affine bundles and various jet bundles, both of which play fundamental roles in geometric mechanics and classical field theory. We also present the notion of double filtered bundles which provide natural generalizations of double vector bundles and double affine bundles. Furthermore, we show that the linearization of a filtered bundle — which can be seen as a partial polarization of the admissible changes of local coordinates — is well defined.

  20. New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4

    NASA Astrophysics Data System (ADS)

    Kozin, Igor N.; Law, Mark M.; Tennyson, Jonathan; Hutson, Jeremy M.

    2004-11-01

    A general computational method for the accurate calculation of rotationally and vibrationally excited states of tetraatomic molecules is developed. The resulting program is particularly appropriate for molecules executing wide-amplitude motions and isomerizations. The program offers a choice of coordinate systems based on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method includes all six vibrational dimensions plus three rotational dimensions. Vibration-rotation calculations with reduced dimensionality in the radial degrees of freedom are easily tackled via constraints imposed on the radial coordinates via the input file. Program summaryTitle of program: WAVR4 Catalogue number: ADUN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC nonprofit use license Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun Unix Operating systems under which the program has been tested: Tru64 Unix, Microsoft Windows, Sun Unix Programming language used: Fortran 90 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 11 937 No. of bytes in distributed program, including test data, etc.: 84 770 Distribution format: tar.gz Nature of physical problem: WAVR4 calculates the bound ro-vibrational levels and wavefunctions of a tetraatomic system using body-fixed coordinates based on generalised orthogonal vectors. Method of solution: The angular coordinates are treated using a finite basis representation (FBR) based on products of spherical harmonics. A discrete variable representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator functions [2] is used for the radial coordinates. Matrix elements are computed using an efficient Gaussian quadrature in the angular coordinates and the DVR approximation in the radial coordinates. The solution of the secular problem is carried through a series of intermediate diagonalisations and truncations. Restrictions on the complexity of the problem: (1) The size of the final Hamiltonian matrix that can be practically diagonalised; (2) The DVR approximation for a radial coordinate fails for values of the coordinate near zero—this is remedied only for one radial coordinate by using analytical integration. Typical running time: problem-dependent Unusual features of the program: A user-supplied subroutine to evaluate the potential energy is a program requirement. External routines: BLAS and LAPACK are required. References: [1] J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 92 (1985) 1400. [2] J.R. Henderson, C.R. Le Sueur, J. Tennyson, Comp. Phys. Comm. 75 (1993) 379.

  1. Changes in measured vector magnetic fields when transformed into heliographic coordinates

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.

    1987-01-01

    The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.

  2. Post-Flight Estimation of Motion of Space Structures: Part 2

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    A computer program related to the one described in the immediately preceding article estimates the relative position of two space structures that are hinged to each other. The input to the program consists of time-series data on distances, measured by two range finders at different positions on one structure, to a corner-cube retroreflector on the other structure. Given a Cartesian (x,y,z) coordinate system and the known x coordinate of the retroreflector relative to the y,z plane that contains the range finders, the program estimates the y and z coordinates of the retroreflector. The estimation process involves solving for the y,z coordinates of the intersection between (1) the y,z plane that contains the retroreflector and (2) spheres, centered on the range finders, having radii equal to the measured distances. In general, there are two such solutions and the program chooses the one consistent with the design of the structures. The program implements a Kalman filter. The output of the program is a time series of estimates of the relative position of the structures.

  3. Penalized nonparametric scalar-on-function regression via principal coordinates

    PubMed Central

    Reiss, Philip T.; Miller, David L.; Wu, Pei-Shien; Hua, Wen-Yu

    2016-01-01

    A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This paper introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call principal coordinate ridge regression, one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model. PMID:29217963

  4. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency coordination. 95.1111 Section 95.1111... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  5. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency coordination. 95.1111 Section 95.1111... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  6. 44 CFR 5.22 - Coordination of publication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Coordination of publication..., DEPARTMENT OF HOMELAND SECURITY GENERAL PRODUCTION OR DISCLOSURE OF INFORMATION Publication of or... of publication. The Chief Counsel, FEMA, is responsible for coordination of FEMA materials required...

  7. 44 CFR 5.22 - Coordination of publication.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Coordination of publication..., DEPARTMENT OF HOMELAND SECURITY GENERAL PRODUCTION OR DISCLOSURE OF INFORMATION Publication of or... of publication. The Chief Counsel, FEMA, is responsible for coordination of FEMA materials required...

  8. 33 CFR 167.3 - Geographic coordinates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Geographic coordinates. 167.3 Section 167.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY OFFSHORE TRAFFIC SEPARATION SCHEMES General § 167.3 Geographic coordinates...

  9. 47 CFR 15.307 - Coordination with fixed microwave service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Coordination with fixed microwave service. 15.307 Section 15.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.307 Coordination with fixed microwave service. Each...

  10. 47 CFR 15.307 - Coordination with fixed microwave service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Coordination with fixed microwave service. 15.307 Section 15.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.307 Coordination with fixed microwave service. Each...

  11. 47 CFR 15.307 - Coordination with fixed microwave service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Coordination with fixed microwave service. 15.307 Section 15.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.307 Coordination with fixed microwave service. Each...

  12. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  13. Archimedes' Principle in General Coordinates

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Archimedes' principle is well known to state that a body submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body. Herein, Archimedes' principle is derived from first principles by using conservation of the stress-energy-momentum tensor in general coordinates. The resulting expression for the force is…

  14. 78 FR 57264 - Final Waiver and Extension of the Project Period for the Technical Assistance Coordination Center

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ...: 84.326Z.] Final Waiver and Extension of the Project Period for the Technical Assistance Coordination... project period. SUMMARY: The Secretary waives the requirements in the Education Department General Administrative Regulations that generally prohibit project periods exceeding five years and extensions of project...

  15. 18 CFR 2.25 - Ratemaking treatment of the cost of emissions allowances in coordination transactions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Ratemaking treatment of the cost of emissions allowances in coordination transactions. 2.25 Section 2.25 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL...

  16. 18 CFR 2.25 - Ratemaking treatment of the cost of emissions allowances in coordination transactions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Ratemaking treatment of the cost of emissions allowances in coordination transactions. 2.25 Section 2.25 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL...

  17. 18 CFR 2.25 - Ratemaking treatment of the cost of emissions allowances in coordination transactions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Ratemaking treatment of the cost of emissions allowances in coordination transactions. 2.25 Section 2.25 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL...

  18. 18 CFR 2.25 - Ratemaking treatment of the cost of emissions allowances in coordination transactions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Ratemaking treatment of the cost of emissions allowances in coordination transactions. 2.25 Section 2.25 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL...

  19. Generalized M-factor of hollow Gaussian beams through a hard-edge circular aperture

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei

    2005-06-01

    Based on the generalized truncated second-order moments, the generalized M-factor (MG2-factor) of three-dimensional hollow Gaussian beams (HGBs) through a hard-edge circular aperture is studied in cylindrical coordinate system analytically and numerically. The closed-form expression for the MG2-factor of the truncated HGBs, which is dependent on the truncation parameter β and the beam order n, can be simplified to that of the truncated, the untruncated Gaussian beams and the untruncated HGBs. Also, the power fraction is demonstrated analytically and numerically, which shows that the area of the dark region across the HGBs increases as n increasing.

  20. General aviation IFR operational problems

    NASA Technical Reports Server (NTRS)

    Bolz, E. H.; Eisele, J. E.

    1979-01-01

    Operational problems of general aviation IFR operators (particularly single pilot operators) were studied. Several statistical bases were assembled and utilized to identify the more serious problems and to demonstrate their magnitude. These bases include official activity projections, historical accident data and delay data, among others. The GA operating environment and cockpit environment were analyzed in detail. Solutions proposed for each of the problem areas identified are based on direct consideration of currently planned enhancements to the ATC system, and on a realistic assessment of the present and future limitations of general aviation avionics. A coordinated set of research program is suggested which would provide the developments necessary to implement the proposed solutions.

  1. Trajectory NG: portable, compressed, general molecular dynamics trajectories.

    PubMed

    Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David

    2011-10-01

    We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.

  2. Documentation of program AFTBDY to generate coordinate system for 3D after body using body fitted curvilinear coordinates, part 1

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.

  3. Kinematically redundant arm formulations for coordinated multiple arm implementations

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Quiocho, Leslie J.; Cleghorn, Timothy F.

    1990-01-01

    Although control laws for kinematically redundant robotic arms were presented as early as 1969, redundant arms have only recently become recognized as viable solutions to limitations inherent to kinematically sufficient arms. The advantages of run-time control optimization and arm reconfiguration are becoming increasingly attractive as the complexity and criticality of robotic systems continues to progress. A generalized control law for a spatial arm with 7 or more degrees of freedom (DOF) based on Whitney's resolved rate formulation is given. Results from a simulation implementation utilizing this control law are presented. Furthermore, results from a two arm simulation are presented to demonstrate the coordinated control of multiple arms using this formulation.

  4. Some requirements and suggestions for a methodology to develop knowledge based systems.

    PubMed

    Green, D W; Colbert, M; Long, J

    1989-11-01

    This paper describes an approach to the creation of a methodology for the development of knowledge based systems. It specifies some requirements and suggests how these requirements might be met. General requirements can be satisfied using a systems approach. More specific ones can be met by viewing an organization as a network of consultations for coordinating expertise. The nature of consultations is described and the form of a possible cognitive model using a blackboard architecture is outlined. The value of the approach is illustrated in terms of certain knowledge elicitation methods.

  5. Cooperation in two-person evolutionary games with complex personality profiles.

    PubMed

    Płatkowski, Tadeusz

    2010-10-21

    We propose a theory of evolution of social systems which generalizes the standard proportional fitness rule of the evolutionary game theory. The formalism is applied to describe the dynamics of two-person one-shot population games. In particular it predicts the non-zero level of cooperation in the long run for the Prisoner's Dilemma games, the increase of the fraction of cooperators for general classes of the Snow-Drift game, and stable nonzero cooperation level for coordination games. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    den Otter, W. K.

    2000-05-01

    A generalized formulation of the thermodynamic integration (TI) method for calculating the free energy along a reaction coordinate is derived. Molecular dynamics simulations with a constrained reaction coordinate are used to sample conformations. These are then projected onto conformations with a higher value of the reaction coordinate by means of a vector field. The accompanying change in potential energy plus the divergence of the vector field constitute the derivative of the free energy. Any vector field meeting some simple requirements can be used as the basis of this TI expression. Two classes of vector fields are of particular interest here. The first recovers the conventional TI expression, with its cumbersome dependence on a full set of generalized coordinates. As the free energy is a function of the reaction coordinate only, it should in principle be possible to derive an expression depending exclusively on the definition of the reaction coordinate. This objective is met by the second class of vector fields to be discussed. The potential of mean constraint force (PMCF) method, after averaging over the unconstrained momenta, falls in this second class. The new method is illustrated by calculations on the isomerization of n-butane, and is compared with existing methods.

  7. 'Scalp coordinate system': a new tool to accurately describe cutaneous lesions on the scalp: a pilot study.

    PubMed

    Alexander, William; Miller, George; Alexander, Preeya; Henderson, Michael A; Webb, Angela

    2018-06-12

    Skin cancers are extremely common and the incidence increases with age. Care for patients with multiple or complicated skin cancers often require multidisciplinary input involving a general practitioner, dermatologist, plastic surgeon and/or radiation oncologist. Timely, efficient care of these patients relies on precise and effective communication between all parties. Until now, descriptions regarding the location of lesions on the scalp have been inaccurate, which can lead to error with the incorrect lesion being excised or biopsied. A novel technique for accurately and efficiently describing the location of lesions on the scalp, using a coordinate system, is described (the 'scalp coordinate system' (SCS)). This method was tested in a pilot study by clinicians typically involved in the care of patients with cutaneous malignancies. A mannequin scalp was used in the study. The SCS significantly improved the accuracy in the ability to both describe and locate lesions on the scalp. This improved accuracy comes at a minor time cost. The direct and indirect costs arising from poor communication between medical subspecialties (particularly relevant in surgical procedures) are immense. An effective tool used by all involved clinicians is long overdue particularly in patients with scalps with extensive actinic damage, scarring or innocuous biopsy sites. The SCS provides the opportunity to improve outcomes for both the patient and healthcare system. © 2018 Royal Australasian College of Surgeons.

  8. Multipole Structure and Coordinate Systems

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…

  9. NASA EPSCoR Nebraska Preparation Grant: Year 1. Research Cluster: Small Aircraft Transportation System/Nebraska Implementation Template (SATS-NIT)

    NASA Technical Reports Server (NTRS)

    Bartle, John R.; Bowen, Brent D.; Gogos, George; Hinton, David W.; Holmes, Bruce J.; Lehrer, Henry R.; Moussavi, Massoum; Reed, B. J.; Schaaf, Michaela M.; Smith, Russell L.

    2000-01-01

    NASA, the U.S. Department of Transportation/Federal Aviation Administration, industry stakeholders, and academia have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to improve air access and bring next-generation technologies to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, SATS stakeholders must plan, coordinate, and implement a comprehensive upgrade of public infrastructure within the framework of the national air transportation system. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the under-utilized airspace and general aviation facilities. The SATS investments, which begin in FY 2001, are designed to support the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  10. 40 CFR 123.3 - Coordination with other programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Coordination with other programs. 123.3 Section 123.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS General § 123.3 Coordination with other programs. Issuance of State permits...

  11. 28 CFR 0.102 - Drug enforcement policy coordination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Drug enforcement policy coordination. 0... JUSTICE Drug Enforcement Administration § 0.102 Drug enforcement policy coordination. The Administrator of the Drug Enforcement Administration shall report to the Attorney General, through the Deputy Attorney...

  12. 28 CFR 0.102 - Drug enforcement policy coordination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Drug enforcement policy coordination. 0... JUSTICE Drug Enforcement Administration § 0.102 Drug enforcement policy coordination. The Administrator of the Drug Enforcement Administration shall report to the Attorney General, through the Deputy Attorney...

  13. 28 CFR 0.102 - Drug enforcement policy coordination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Drug enforcement policy coordination. 0... JUSTICE Drug Enforcement Administration § 0.102 Drug enforcement policy coordination. The Administrator of the Drug Enforcement Administration shall report to the Attorney General, through the Deputy Attorney...

  14. 40 CFR 123.3 - Coordination with other programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Coordination with other programs. 123.3 Section 123.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS General § 123.3 Coordination with other programs. Issuance of State permits...

  15. 40 CFR 123.3 - Coordination with other programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Coordination with other programs. 123.3 Section 123.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS General § 123.3 Coordination with other programs. Issuance of State permits...

  16. 28 CFR Appendix A to Part 41 - Leadership and Coordination of Nondiscrimination Laws

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nondiscrimination Laws A Appendix A to Part 41 Judicial Administration DEPARTMENT OF JUSTICE IMPLEMENTATION OF... effective implementation of various laws prohibiting discriminatory practices in Federal programs and.... Coordination of Nondiscrimination Provisions. 1-201. The Attorney General shall coordinate the implementation...

  17. Long-range memory and non-Markov statistical effects in human sensorimotor coordination

    NASA Astrophysics Data System (ADS)

    M. Yulmetyev, Renat; Emelyanova, Natalya; Hänggi, Peter; Gafarov, Fail; Prokhorov, Alexander

    2002-12-01

    In this paper, the non-Markov statistical processes and long-range memory effects in human sensorimotor coordination are investigated. The theoretical basis of this study is the statistical theory of non-stationary discrete non-Markov processes in complex systems (Phys. Rev. E 62, 6178 (2000)). The human sensorimotor coordination was experimentally studied by means of standard dynamical tapping test on the group of 32 young peoples with tap numbers up to 400. This test was carried out separately for the right and the left hand according to the degree of domination of each brain hemisphere. The numerical analysis of the experimental results was made with the help of power spectra of the initial time correlation function, the memory functions of low orders and the first three points of the statistical spectrum of non-Markovity parameter. Our observations demonstrate, that with the regard to results of the standard dynamic tapping-test it is possible to divide all examinees into five different dynamic types. We have introduced the conflict coefficient to estimate quantitatively the order-disorder effects underlying life systems. The last one reflects the existence of disbalance between the nervous and the motor human coordination. The suggested classification of the neurophysiological activity represents the dynamic generalization of the well-known neuropsychological types and provides the new approach in a modern neuropsychology.

  18. Orbital motion (3rd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Roy, A. E.

    The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.

  19. Electronic Health Record System Contingency Plan Coordination: A Strategy for Continuity of Care Considering Users' Needs.

    PubMed

    Fernández, Marcela T; Gómez, Adrián R; Santojanni, Américo M; Cancio, Alfredo H; Luna, Daniel R; Benítez, Sonia E

    2015-01-01

    Electronic Health Record system downtimes may have a great impact on patient care continuity. This paper describes the analysis and actions taken to redesign the Contingency Plan Procedure for the Electronic Health Record System of Hospital Italiano de Buenos Aires. After conducting a thorough analysis of the data gathered at post-contingency meetings, weaknesses were identified in the procedure; thus, strategic actions were recommended to redesign the Contingency Plan to secure an effective communications channel, as well as a formal structure for functions that may support the decision-making process. The main actions were: 1) to incorporate the IT Contingencies Committee (Plan management); 2) to incorporate the Coordinator (general supervision of the procedure); and 3) to redefine the role of the Clinical Informatics Resident, who will be responsible for managing communication between the technical team and Electronic Health Record users. As users need the information for continuity of care, key users evaluated the impact of the new strategy with an adapted survey.

  20. Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaolu; Steele, Ryan P., E-mail: ryan.steele@utah.edu

    This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behavedmore » spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.« less

  1. Need for reaction coordinates to ensure a complete basis set in an adiabatic representation of ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Rabli, Djamal; McCarroll, Ronald

    2018-02-01

    This review surveys the different theoretical approaches, used to describe inelastic and rearrangement processes in collisions involving atoms and ions. For a range of energies from a few meV up to about 1 keV, the adiabatic representation is expected to be valid and under these conditions, inelastic and rearrangement processes take place via a network of avoided crossings of the potential energy curves of the collision system. In general, such avoided crossings are finite in number. The non-adiabatic coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic and nuclear variables, depends on the ratio of the electron mass to the nuclear mass terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to first order in the electron to nuclear mass ratio, a system of reaction coordinates is found which allows for a correct description of both inelastic channels. The connection between the use of reaction coordinates in the quantum description and the electron translation factors of the impact parameter approach is established. A major result is that only when reaction coordinates are used, is it possible to introduce the notion of a minimal basis set. Such a set must include all avoided crossings including both radial coupling and long range Coriolis coupling. But, only when reactive coordinates are used, can such a basis set be considered as complete. In particular when the centre of nuclear mass is used as centre of coordinates, rather than the correct reaction coordinates, it is shown that erroneous results are obtained. A few results to illustrate this important point are presented: one concerning a simple two-state Landau-Zener type avoided crossing, the other concerning a network of multiple crossings in a typical electron capture process involving a highly charged ion with a neutral atom.

  2. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  4. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  5. NASA Lewis Research Center's Program on Icing Research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.

  6. How precise are reported protein coordinate data?

    PubMed

    Konagurthu, Arun S; Allison, Lloyd; Abramson, David; Stuckey, Peter J; Lesk, Arthur M

    2014-03-01

    Atomic coordinates in the Worldwide Protein Data Bank (wwPDB) are generally reported to greater precision than the experimental structure determinations have actually achieved. By using information theory and data compression to study the compressibility of protein atomic coordinates, it is possible to quantify the amount of randomness in the coordinate data and thereby to determine the realistic precision of the reported coordinates. On average, the value of each C(α) coordinate in a set of selected protein structures solved at a variety of resolutions is good to about 0.1 Å.

  7. Artificial equilibrium points for a generalized sail in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Aliasi, Generoso; Mengali, Giovanni; Quarta, Alessandro A.

    2012-10-01

    Different types of propulsion systems with continuous and purely radial thrust, whose modulus depends on the distance from a massive body, may be conveniently described within a single mathematical model by means of the concept of generalized sail. This paper discusses the existence and stability of artificial equilibrium points maintained by a generalized sail within an elliptic restricted three-body problem. Similar to the classical case in the absence of thrust, a generalized sail guarantees the existence of equilibrium points belonging only to the orbital plane of the two primaries. The geometrical loci of existing artificial equilibrium points are shown to coincide with those obtained for the circular three body problem when a non-uniformly rotating and pulsating coordinate system is chosen to describe the spacecraft motion. However, the generalized sail has to provide a periodically variable acceleration to maintain a given artificial equilibrium point. A linear stability analysis of the artificial equilibrium points is provided by means of the Floquet theory.

  8. Spectral Rate Theory for Two-State Kinetics

    NASA Astrophysics Data System (ADS)

    Prinz, Jan-Hendrik; Chodera, John D.; Noé, Frank

    2014-02-01

    Classical rate theories often fail in cases where the observable(s) or order parameter(s) used is a poor reaction coordinate or the observed signal is deteriorated by noise, such that no clear separation between reactants and products is possible. Here, we present a general spectral two-state rate theory for ergodic dynamical systems in thermal equilibrium that explicitly takes into account how the system is observed. The theory allows the systematic estimation errors made by standard rate theories to be understood and quantified. We also elucidate the connection of spectral rate theory with the popular Markov state modeling approach for molecular simulation studies. An optimal rate estimator is formulated that gives robust and unbiased results even for poor reaction coordinates and can be applied to both computer simulations and single-molecule experiments. No definition of a dividing surface is required. Another result of the theory is a model-free definition of the reaction coordinate quality. The reaction coordinate quality can be bounded from below by the directly computable observation quality, thus providing a measure allowing the reaction coordinate quality to be optimized by tuning the experimental setup. Additionally, the respective partial probability distributions can be obtained for the reactant and product states along the observed order parameter, even when these strongly overlap. The effects of both filtering (averaging) and uncorrelated noise are also examined. The approach is demonstrated on numerical examples and experimental single-molecule force-probe data of the p5ab RNA hairpin and the apo-myoglobin protein at low pH, focusing here on the case of two-state kinetics.

  9. Improved segmentation of abnormal cervical nuclei using a graph-search based approach

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan

    2015-03-01

    Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.

  10. Principles of dynamical modularity in biological regulatory networks

    PubMed Central

    Deritei, Dávid; Aird, William C.; Ercsey-Ravasz, Mária; Regan, Erzsébet Ravasz

    2016-01-01

    Intractable diseases such as cancer are associated with breakdown in multiple individual functions, which conspire to create unhealthy phenotype-combinations. An important challenge is to decipher how these functions are coordinated in health and disease. We approach this by drawing on dynamical systems theory. We posit that distinct phenotype-combinations are generated by interactions among robust regulatory switches, each in control of a discrete set of phenotypic outcomes. First, we demonstrate the advantage of characterizing multi-switch regulatory systems in terms of their constituent switches by building a multiswitch cell cycle model which points to novel, testable interactions critical for early G2/M commitment to division. Second, we define quantitative measures of dynamical modularity, namely that global cell states are discrete combinations of switch-level phenotypes. Finally, we formulate three general principles that govern the way coupled switches coordinate their function. PMID:26979940

  11. 32 CFR 1801.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... UNDER THE PRIVACY ACT OF 1974 General § 1801.2 Definitions. For purposes of this part, the following... acting through the NACIC Information and Privacy Coordinator; Days means calendar days when NACIC is...; Coordinator means the NACIC Information and Privacy Coordinator who serves as the NACIC manager of the...

  12. Multicriteria hierarchical iterative interactive algorithm for organizing operational modes of large heat supply systems

    NASA Astrophysics Data System (ADS)

    Korotkova, T. I.; Popova, V. I.

    2017-11-01

    The generalized mathematical model of decision-making in the problem of planning and mode selection providing required heat loads in a large heat supply system is considered. The system is multilevel, decomposed into levels of main and distribution heating networks with intermediate control stages. Evaluation of the effectiveness, reliability and safety of such a complex system is carried out immediately according to several indicators, in particular pressure, flow, temperature. This global multicriteria optimization problem with constraints is decomposed into a number of local optimization problems and the coordination problem. An agreed solution of local problems provides a solution to the global multicriterion problem of decision making in a complex system. The choice of the optimum operational mode of operation of a complex heat supply system is made on the basis of the iterative coordination process, which converges to the coordinated solution of local optimization tasks. The interactive principle of multicriteria task decision-making includes, in particular, periodic adjustment adjustments, if necessary, guaranteeing optimal safety, reliability and efficiency of the system as a whole in the process of operation. The degree of accuracy of the solution, for example, the degree of deviation of the internal air temperature from the required value, can also be changed interactively. This allows to carry out adjustment activities in the best way and to improve the quality of heat supply to consumers. At the same time, an energy-saving task is being solved to determine the minimum required values of heads at sources and pumping stations.

  13. Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes

    NASA Astrophysics Data System (ADS)

    Urban, Kevin D.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Weatherwax, Allan T.

    2016-09-01

    The day-to-day evolution and statistical features of Pc3-Pc7 band ultralow frequency (ULF) power throughout the southern polar cap suggest that the corrected geomagnetic (CGM) coordinates do not adequately organize the observed hydromagnetic spatial structure. It is shown that that the local-time distribution of ULF power at sites along CGM latitudinal parallels exhibit fundamental differences and that the CGM latitude of a site in general is not indicative of the site's projection into the magnetosphere. Thus, ULF characteristics observed at a single site in the polar cap cannot be freely generalized to other sites of similar CGM latitude but separated in magnetic local time, and the inadequacy of CGM coordinates in the polar cap has implications for conjugacy/mapping studies in general. In seeking alternative, observationally motivated systems of "polar cap latitudes," it is found that eccentric dipole (ED) coordinates have several strengths in organizing the hydromagnetic spatial structure in the polar cap region. ED latitudes appear to better classify the local-time ULF power in both magnitude and morphology and better differentiate the "deep polar cap" (where the ULF power is largely UT dependent and nearly free of local-time structure) from the "peripheral polar cap" (where near-magnetic noon pulsations dominate at lower and lower frequencies as one increases in ED latitude). Eccentric local time is shown to better align the local-time profiles in the magnetic east component over several PcX bands but worsen in the magnetic north component. It is suggested that a hybrid ED-CGM coordinate system might capture the strengths of both CGM and ED coordinates. It is shown that the local-time morphology of median ULF power at high-latitude sites is dominantly driven by where they project into the magnetosphere, which is best quantified by their proximity to the low-altitude cusp on the dayside (which is not necessarily quantified by a site's CGM latitude), and that variations in the local-time morphology at sites similar in ED latitude are due to both geographic local-time control (relative amplification or dampening by the diurnal variation in the local ionospheric conductivity) and geomagnetic coastal effects (enhanced power in a coastally mediated direction). Regardless of cause, it is emphasized that the application of CGM latitudes in the polar cap region is not entirely meaningful and likely should be dispensed with in favor of a scheme that is in better accord with the observed hydromagnetic spatial structure.

  14. A method of indirect registration of the coordinates of condylar points with a six-degree-of-freedom jaw tracker.

    PubMed

    Huang, B Y; Durrant, C J; Johnson, C W L; Murray, G M

    2002-06-30

    Previous studies have indicated that the location of a condylar point can significantly influence its trajectory. The aim of this investigation was to develop a method of registering the location of radiographically defined condylar points in the coordinate system of a six-degree-of-freedom jaw-tracking device and to determine the accuracy of this method by using a perspex model in one experiment and a dry skull in another. A direct measurement ('the gold standard') of condylar point coordinates in the coordinate system of JAWS3D was done using a three-dimensional (3D) digitizer (MicroScribe-3DX). The indirect measurement used a distributed fiducial marker as the interface between the coordinate system of MicroScribe-3DX (which was used to register the fiducial marker and the JAWS3D coordinate system) and the coordinate system of the CT scans (used to define condyle anatomy and the relation with the fiducial marker). The coordinates of condylar points could then be calculated in the coordinate system of JAWS3D. The results showed that the indirect method could register condylar point coordinates on either side to an accuracy of approximately 0.5 mm.

  15. The requirements and challenges in preventing of road traffic injury in Iran. A qualitative study.

    PubMed

    Khorasani-Zavareh, Davoud; Mohammadi, Reza; Khankeh, Hamid Reza; Laflamme, Lucie; Bikmoradi, Ali; Haglund, Bo J A

    2009-12-23

    Road traffic injuries (RTIs) are a major public health problem, especially in low- and middle-income countries. Among middle-income countries, Iran has one of the highest mortality rates from RTIs. Action is critical to combat this major public health problem. Stakeholders involved in RTI control are of key importance and their perceptions of barriers and facilitators are a vital source of knowledge. The aim of this study was to explore barriers to the prevention of RTIs and provide appropriate suggestions for prevention, based on the perceptions of stakeholders, victims and road-users as regards RTIs. Thirty-eight semi-structured interviews were conducted with informants in the field of RTI prevention including: police officers; public health professionals; experts from the road administrators; representatives from the General Governor, the car industry, firefighters; experts from Emergency Medical Service and the Red Crescent; and some motorcyclists and car drivers as well as victims of RTIs. A qualitative approach using grounded theory method was employed to analyze the material gathered. The core variable was identified as "The lack of a system approach to road-user safety". The following barriers in relation to RTI prevention were identified as: human factors; transportation system; and organizational coordination. Suggestions for improvement included education (for the general public and targeted group training), more effective legislation, more rigorous law enforcement, improved engineering in road infrastructure, and an integrated organization to supervise and coordinate preventive activities. The major barriers identified in this study were human factors and efforts to change human behaviour were suggested by means of public education campaigns and stricter law enforcement. However, the lack of a system approach to RTI prevention was also an important concern. There is an urgent need for both an integrated system to coordinate RTI activities and prevention and a major change in stakeholders' attitudes towards RTI prevention. The focus of all activities should take place on road users' safety.

  16. Quantum motion on a torus as a submanifold problem in a generalized Dirac's theory of second-class constraints

    NASA Astrophysics Data System (ADS)

    Xun, D. M.; Liu, Q. H.; Zhu, X. M.

    2013-11-01

    A generalization of Dirac's canonical quantization scheme for a system with second-class constraints is proposed, in which the fundamental commutation relations are constituted by all commutators between positions, momenta and Hamiltonian, so they are simultaneously quantized in a self-consistent manner, rather than by those between merely positions and momenta which leads to ambiguous forms of the Hamiltonian and the momenta. The application of the generalized scheme to the quantum motion on a torus leads to a remarkable result: the quantum theory is inconsistent if built up in an intrinsic geometric manner, whereas it becomes consistent within an extrinsic examination of the torus as a submanifold in three dimensional flat space with the use of the Cartesian coordinate system. The geometric momentum and potential are then reasonably reproduced.

  17. Ellipsoidal analysis of coordination polyhedra

    PubMed Central

    Cumby, James; Attfield, J. Paul

    2017-01-01

    The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun

    We present a newly developed moving-mesh technique for the multi-dimensional Boltzmann-Hydro code for the simulation of core-collapse supernovae (CCSNe). What makes this technique different from others is the fact that it treats not only hydrodynamics but also neutrino transfer in the language of the 3 + 1 formalism of general relativity (GR), making use of the shift vector to specify the time evolution of the coordinate system. This means that the transport part of our code is essentially general relativistic, although in this paper it is applied only to the moving curvilinear coordinates in the flat Minknowski spacetime, since the gravity partmore » is still Newtonian. The numerical aspect of the implementation is also described in detail. Employing the axisymmetric two-dimensional version of the code, we conduct two test computations: oscillations and runaways of proto-neutron star (PNS). We show that our new method works fine, tracking the motions of PNS correctly. We believe that this is a major advancement toward the realistic simulation of CCSNe.« less

  19. A common neural hub resolves syntactic and non-syntactic conflict through cooperation with task-specific networks

    PubMed Central

    Hsu, Nina S.; Jaeggi, Susanne M.; Novick, Jared M.

    2017-01-01

    Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG’s function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict —one syntactic, three non-syntactic— while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution “hub” that cooperates with specialized neural systems according to information content. PMID:28110105

  20. A Nonequilibrium Rate Formula for Collective Motions of Complex Molecular Systems

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2010-09-01

    We propose a compact reaction rate formula that accounts for a non-equilibrium distribution of residence times of complex molecules, based on a detailed study of the coarse-grained phase space of a reaction coordinate. We take the structural transition dynamics of a six-atom Morse cluster between two isomers as a prototype of multi-dimensional molecular reactions. Residence time distribution of one of the isomers shows an exponential decay, while that of the other isomer deviates largely from the exponential form and has multiple peaks. Our rate formula explains such equilibrium and non-equilibrium distributions of residence times in terms of the rates of diffusions of energy and the phase of the oscillations of the reaction coordinate. Rapid diffusions of energy and the phase generally give rise to the exponential decay of residence time distribution, while slow diffusions give rise to a non-exponential decay with multiple peaks. We finally make a conjecture about a general relationship between the rates of the diffusions and the symmetry of molecular mass distributions.

  1. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning.

    PubMed

    Andersen, Flemming; Watanabe, Hideaki; Bjarkam, Carsten; Danielsen, Erik H; Cumming, Paul

    2005-07-15

    The analysis of physiological processes in brain by position emission tomography (PET) is facilitated when images are spatially normalized to a standard coordinate system. Thus, PET activation studies of human brain frequently employ the common stereotaxic coordinates of Talairach. We have developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland as identified on the average MRI template. The orthogonal planes were imposed using the line between stereotaxic zero and the optic chiasm. A series of mean MR images in the coronal, sagittal and horizontal planes were generated. To test the utility of the common coordinate system for functional imaging studies of minipig brain, we calculated cerebral blood flow (CBF) maps from normal minipigs and from minipigs with a syndrome of parkisonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-poisoning. These maps were transformed from the native space into the common stereotaxic space. After global normalization of these maps, an undirected search for differences between the groups was then performed using statistical parametric mapping. Using this method, we detected a statistically significant focal increase in CBF in the left cerebellum of the MPTP-lesioned group. We expect the present approach to be of general use in the statistical parametric mapping of CBF and other physiological parameters in living pig brain.

  2. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  3. Coordinating Units at the Candy Depot

    ERIC Educational Resources Information Center

    Norton, Anderson; Boyce, Steven; Hatch, Jennifer

    2015-01-01

    In general, units coordination refers to the relationships that students can maintain between various units when working within a numerical situation. It is critical that middle school students learn to coordinate three levels of units not only because of their importance in understanding fractions but also because of their implications for…

  4. 40 CFR 8.12 - Coordination of reviews from other Parties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Coordination of reviews from other Parties. 8.12 Section 8.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL IMPACT ASSESSMENT OF NONGOVERNMENTAL ACTIVITIES IN ANTARCTICA § 8.12 Coordination of reviews from other...

  5. 34 CFR 673.6 - Coordination with BIA grants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION GENERAL PROVISIONS FOR THE FEDERAL PERKINS LOAN PROGRAM, FEDERAL WORK... Federal Perkins Loan, FWS, and FSEOG Programs § 673.6 Coordination with BIA grants. (a) Coordination of BIA grants with Federal Perkins loans, FWS awards, or FSEOGs. To determine the amount of a Federal...

  6. 34 CFR 673.6 - Coordination with BIA grants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION GENERAL PROVISIONS FOR THE FEDERAL PERKINS LOAN PROGRAM, FEDERAL WORK... Federal Perkins Loan, FWS, and FSEOG Programs § 673.6 Coordination with BIA grants. (a) Coordination of BIA grants with Federal Perkins loans, FWS awards, or FSEOGs. To determine the amount of a Federal...

  7. 45 CFR 98.12 - Coordination and consultation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Coordination and consultation. 98.12 Section 98.12 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT... local government during the development of the Plan; and (c) Coordinate, to the maximum extent feasible...

  8. 45 CFR 98.12 - Coordination and consultation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Coordination and consultation. 98.12 Section 98.12 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT... local government during the development of the Plan; and (c) Coordinate, to the maximum extent feasible...

  9. 45 CFR 98.12 - Coordination and consultation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Coordination and consultation. 98.12 Section 98.12 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT... local government during the development of the Plan; and (c) Coordinate, to the maximum extent feasible...

  10. 45 CFR 98.12 - Coordination and consultation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Coordination and consultation. 98.12 Section 98.12 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT... local government during the development of the Plan; and (c) Coordinate, to the maximum extent feasible...

  11. 45 CFR 98.12 - Coordination and consultation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Coordination and consultation. 98.12 Section 98.12 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT... local government during the development of the Plan; and (c) Coordinate, to the maximum extent feasible...

  12. 32 CFR 1901.02 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRIVACY ACT OF 1974 General § 1901.02 Definitions. For purposes of this part, the following terms have the... the CIA Information and Privacy Coordinator; (b) Days means calendar days when the Agency is operating...) Coordinator means the CIA Information and Privacy Coordinator who serves as the Agency manager of the...

  13. [Coupling coordinated development of ecological-economic system in Loess Plateau].

    PubMed

    Zhang, Qing-Feng; Wu, Fa-Qi; Wang, Li; Wang, Jian

    2011-06-01

    Based on system theory, a coupling coordinated development model of ecological-economic system in Loess Plateau was established, and the evaluation criteria and basic types of the coordinated development of the ecological-economic system were proposed. The county-level coupling coordinated development of the ecological-economic system was also discussed, based on the local characteristics. The interactions between the ecological and economic systems in Loess Plateau could be divided into four stages, i.e., seriously disordered development stage, mild-disordered development stage, low-level coordinated development stage, and high level well-coordinated development stage. At each stage, there existed a cyclic process of profit and loss-antagonist-running-dominant-synchronous development. The coupling development degree of the ecological-economic system in Loess Plateau was overall at a lower level, being about 62.7% of the counties at serious disorder, 30.1% of the counties at mild disorder, and 7.1% of the counties at low but coordinated level. The coupling development degree based on the model established in this study could better reflect the current social-economic and ecological environment situations, especially the status of coordination. To fully understand the coupling of ecological-economic system and to adopt appropriate development mode would be of significance to promote the county-level coordinated development in Loess Plateau.

  14. Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives

    PubMed Central

    Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios. PMID:25140328

  15. Sensor/Response Coordination In A Tactical Self-Protection System

    NASA Astrophysics Data System (ADS)

    Steinberg, Alan N.

    1988-08-01

    This paper describes a model for integrating information acquisition functions into a response planner within a tactical self-defense system. This model may be used in defining requirements in such applications for sensor systems and for associated processing and control functions. The goal of information acquisition in a self-defense system is generally not that of achieving the best possible estimate of the threat environment; but rather to provide resolution of that environment sufficient to support response decisions. We model the information acquisition problem as that of achieving a partition among possible world states such that the final partition maps into the system's repertoire of possible responses.

  16. Cyberspace and Posse Comitatus: Legal Implications of a Borderless Domain

    DTIC Science & Technology

    2010-03-01

    technology infrastructures, including the Internet , telecommunications networks, computer systems, and embedded processors and controllers.” 9 This...the people, and stopped just short of shutting down economic markets . 2 Though never admitted, all indications point to a coordinated attack from...control orders transit many of the same, generally commercially-owned, routers, switches, computers, and wires, each with the goal of passing information

  17. Welfare Dependency: Coordinated Community Efforts Can Better Serve Young At-Risk Teen Girls. Report to the Ranking Minority Member, Committee on Finance, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Health, Education, and Human Services Div.

    This General Accounting Office study, commissioned by Daniel Patrick Moynihan, reflects concerns about rising caseloads and long-term dependence on welfare programs, such as Aid to Families with Dependent Children (AFDC). Attention has been focused the United State's welfare system, particularly on the rising number of teenage mothers. The forces…

  18. Restoring oak ecosystems on national forest system lands in the eastern region: an adaptive management approach

    Treesearch

    Gregory Nowacki; Michael Ablutz; Dan Yaussy; Thomas Schuler; Dan Dey

    2009-01-01

    The U.S. Forest Service has recently completed an ecosystem restoration framework and enacted accompanying policy to help guide its nationwide efforts. The Eastern Region is in the midst of translating the general guidance set forth in these documents to actual on-the-ground restoration. We envision a set of coordinated field demonstrations that will initially focus on...

  19. Understanding and Modeling Teams As Dynamical Systems

    PubMed Central

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  20. Ultrasonic Attenuation in Normal and Superconducting Indium.

    DTIC Science & Technology

    1980-05-22

    dimension x space coordinate, dislocation displacement dislocation displacement y space coordinate.1z space coordinate x ACKNOWLEDGMENTS The author...The driving force on the dislocation is given by: F=bO (2.7) In general, the dislocation displacement will be a function of three space coordinates...mm diameter, 50 Q impedance coaxial conductors 47 * made of stainless steel and teflon . The cavity button is soldered * directly to the rigid

  1. Views of Dental Providers on Primary Care Coordination at Chairside: A Pilot Study.

    PubMed

    Northridge, Mary E; Birenz, Shirley; Gomes, Danni M; Golembeski, Cynthia A; Greenblatt, Ariel Port; Shelley, Donna; Russell, Stefanie L

    2016-06-01

    There is a need for research to facilitate the widespread implementation, dissemination and sustained utilization of evidence-based primary care screening, monitoring and care coordination guidelines, thereby increasing the impact of dental hygienists' actions on patients' oral and general health. The aims of this formative study are to explore dental hygienists' and dentists' perspectives regarding the integration of primary care activities into routine dental care, and assess the needs of dental hygienists and dentists regarding primary care coordination activities and use of information technology to obtain clinical information at chairside. This qualitative study recruited 10 dental hygienists and 6 dentists from 10 New York City area dental offices with diverse patient mixes and volumes. A New York University faculty dental hygienist conducted semi-structured, in-depth interviews, which were digitally recorded and transcribed verbatim. Data analysis consisted of multilevel coding based on the Consolidated Framework for Implementation Research, resulting in emergent themes with accompanying categories. The dental hygienists and dentists interviewed as part of this study do not use evidence-based guidelines to screen their patients for primary care sensitive conditions. Overwhelmingly, dental providers believe that tobacco use and poor diet contribute to oral disease, and report using electronic devices at chairside to obtain web-based health information. Dental hygienists are well positioned to help facilitate greater integration of oral and general health care. Challenges include lack of evidence-based knowledge, coordination between dental hygienists and dentists, and systems-level support, with opportunities for improvement based upon a theory-driven framework. Copyright © 2016 The American Dental Hygienists’ Association.

  2. Views of Dental Providers on Primary Care Coordination at Chairside: A Pilot Study

    PubMed Central

    Northridge, Mary E.; Birenz, Shirley; Gomes, Danni; Golembeski, Cynthia A.; Greenblatt, Ariel Port; Shelley, Donna; Russell, Stefanie L.

    2016-01-01

    Purpose There is a need for research to facilitate the widespread implementation, dissemination, and sustained utilization of evidence-based primary care screening, monitoring, and care coordination guidelines, thereby increasing the impact of dental hygienists’ actions on patients’ oral and general health. The aims of this formative study are to: (1) explore dental hygienists’ and dentists’ perspectives regarding the integration of primary care activities into routine dental care; and (2) assess the needs of dental hygienists and dentists regarding primary care coordination activities and use of information technology to obtain clinical information at chairside. Methods This qualitative study recruited ten hygienists and six dentists from ten New York City area dental offices with diverse patient mixes and volumes. A New York University faculty hygienist conducted semi-structured, in-depth interviews, which were digitally recorded and transcribed verbatim. Data analysis consisted of multilevel coding based on the Consolidated Framework for Implementation Research, resulting in emergent themes with accompanying categories. Results The dental hygienists and dentists interviewed as part of this study fail to use evidence-based guidelines to screen their patients for primary care sensitive conditions. Overwhelmingly, dental providers believe that tobacco use and poor diet contribute to oral disease, and report using electronic devices at chairside to obtain web-based health information. Conclusion Dental hygienists are well positioned to help facilitate greater integration of oral and general health care. Challenges include lack of evidence-based knowledge, coordination between dental hygienists and dentists, and systems-level support, with opportunities for improvement based upon a theory-driven framework. PMID:27340183

  3. Force Control and Its Relation to Timing. Cognitive Science Program, Technical Report No. 86-4.

    ERIC Educational Resources Information Center

    Keele, Steven W.; And Others

    Timing and speed are suggested to be the two general factors of coordination that differentiate people across a variety of motor movements. This study provides evidence for a third general factor of coordination, that of force control. Subjects that exhibit low variability in reproducing a target force with one effector, such as the finger, show…

  4. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    NASA Astrophysics Data System (ADS)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for the two magnetometers. Once the angle of rotation and the direction of the rotation axis for each couple of CYG and no. 1 and of CYG and no. 2 estimated, we rotated the measured time series of vectors using quaternion rotation to get 3 time series of magnetic fields all on geographical coordinate system, which were used for tracing the moving magnetic bodies along time in that area.

  5. Building Student and Family-Centered Care Coordination Through Ongoing Delivery System Design.

    PubMed

    Baker, Dian; Anderson, Lori; Johnson, Jody

    2017-01-01

    In 2016 the National Association of School Nurses released an updated framework for school nurse practice. One highlight of the new framework is 21st century care coordination. That is, moving beyond basic case management to a systems-level approach for delivery of school health services. The framework broadly applies the term care coordination to include direct care and communication across systems. School nurses are often engaged in efforts to create school health care homes that serve as an axis of coordination for students and families between primary care offices and the schools. Effective care coordination requires that the school nurses not only know the principles of traditional case management but also understand complex systems that drive effective care coordination. The outcome of a system-level approach is enhanced access to services in an integrated health care delivery system that includes the school nurse as an integral member of the school's health care team. This article presents a comprehensive, system-level model of care coordination for school nurse leadership and practice.

  6. Features in chemical kinetics. III. Attracting subspaces in a hyper-spherical representation of the reactive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceccato, Alessandro; Frezzato, Diego, E-mail: diego.frezzato@unipd.it; Nicolini, Paolo

    In this work, we deal with general reactive systems involving N species and M elementary reactions under applicability of the mass-action law. Starting from the dynamic variables introduced in two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys. 138(23), 234101 (2013); 138(23), 234102 (2013)], we turn to a new representation in which the system state is specified in a (N × M){sup 2}-dimensional space by a point whose coordinates have physical dimension of inverse-of-time. By adopting hyper-spherical coordinates (a set of dimensionless “angular” variables and a single “radial” one with physical dimension of inverse-of-time) and by examining themore » properties of their evolution law both formally and numerically on model kinetic schemes, we show that the system evolves towards the equilibrium as being attracted by a sequence of fixed subspaces (one at a time) each associated with a compact domain of the concentration space. Thus, we point out that also for general non-linear kinetics there exist fixed “objects” on the global scale, although they are conceived in such an abstract and extended space. Moreover, we propose a link between the persistence of the belonging of a trajectory to such subspaces and the closeness to the slow manifold which would be perceived by looking at the bundling of the trajectories in the concentration space.« less

  7. Nonlinear ideal magnetohydrodynamics instabilities

    NASA Astrophysics Data System (ADS)

    Pfirsch, D.; Sudan, R. N.

    1993-07-01

    Explosive phenomena such as internal disruptions in toroidal discharges and solar flares are difficult to explain in terms of linear instabilities. A plasma approaching a linear stability limit can, however, become nonlinearly and explosively unstable, with noninfinitesimal perturbations even before the marginal state is reached. For such investigations, a nonlinear extension of the usual MHD (magnetohydrodynamic) energy principle is helpful. (This was obtained by Merkel and Schlüter, Sitzungsberichted. Bayer. Akad. Wiss., Munich, 1976, No. 7, for Cartesian coordinate systems.) A coordinate system independent Eulerian formulation for the Lagrangian allowing for equilibria with flow and with built-in conservation laws for mass, magnetic flux, and entropy is developed in this paper which is similar to Newcomb's Lagrangian method of 1962 [Nucl. Fusion, Suppl., Pt. II, 452 (1962)]. For static equilibria nonlinear stability is completely determined by the potential energy. For a potential energy which contains second- and nth order or some more general contributions only, it is shown in full generality that linearly unstable and marginally stable systems are explosively unstable even for infinitesimal perturbations; linearly absolutely stable systems require finite initial perturbations. For equilibria with Abelian symmetries symmetry breaking initial perturbations are needed, which should be observed in numerical simulations. Nonlinear stability is proved for two simple examples, m=0 perturbations of a Bennet Z-pinch and z-independent perturbations of a θ pinch. The algebra for treating these cases reduces considerably if symmetries are taken into account from the outset, as suggested by M. N. Rosenbluth (private communication, 1992).

  8. The Coordinated Ocean Wave Climate Project

    NASA Astrophysics Data System (ADS)

    Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan

    2016-04-01

    Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.

  9. Intelligent system of coordination and control for manufacturing

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2016-08-01

    This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.

  10. A topological coordinate system for the diamond cubic grid.

    PubMed

    Čomić, Lidija; Nagy, Benedek

    2016-09-01

    Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.

  11. Students' challenges with polar functions: covariational reasoning and plotting in the polar coordinate system

    NASA Astrophysics Data System (ADS)

    Habre, Samer

    2017-01-01

    Covariational reasoning has been the focus of many studies but only a few looked into this reasoning in the polar coordinate system. In fact, research on student's familiarity with polar coordinates and graphing in the polar coordinate system is scarce. This paper examines the challenges that students face when plotting polar curves using the corresponding plot in the Cartesian plane. In particular, it examines how students coordinate the covariation in the polar coordinate system with the covariation in the Cartesian one. The research, which was conducted in a sophomore level Calculus class at an American university operating in Lebanon, investigates in addition the challenges when students synchronize the reasoning between the two coordinate systems. For this, the mental actions that students engage in when performing covariational tasks are examined. Results show that coordinating the value of one polar variable with changes in the other was well achieved. Coordinating the direction of change of one variable with changes in the other variable was more challenging for students especially when the radial distance r is negative.

  12. Algorithm for transforming the coordinates of lunar objects while changing from various coordinate systems into the selenocentric one

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Mikhaylov, Aleksandr

    2013-04-01

    The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.

  13. GENASIS: General Astrophysical Simulation System. I. Refinable Mesh and Nonrelativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony

    2014-02-01

    GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.

  14. Brief Report: Randomized Test of the Efficacy of Picture Exchange Communication System on Highly Generalized Picture Exchanges in Children with ASD

    PubMed Central

    Lieberman, Rebecca G.

    2014-01-01

    A randomized control trial comparing two social-communication interventions in young children with autism examined far-transfer of the use of picture exchange to communicate. Thirty-six children were randomly assigned to one of two treatment conditions, one of which was the Picture Exchange Communication System (PECS). All children had access to picture symbols during assessments. Post-treatment measurement of the number of picture exchanges in a far-transfer, assessment context favored the PECS intervention. These findings were interpreted as support for the hypothesis that the PECS curriculum can successfully teach a generalized means of showing coordinated attention to object and person without requiring eye contact to children with ASD. PMID:19904596

  15. Brief Report: Randomized test of the efficacy of picture exchange communication system on highly generalized picture exchanges in children with ASD.

    PubMed

    Yoder, Paul J; Lieberman, Rebecca G

    2010-05-01

    A randomized control trial comparing two social-communication interventions in young children with autism examined far-transfer of the use of picture exchange to communicate. Thirty-six children were randomly assigned to one of two treatment conditions, one of which was the Picture Exchange Communication System (PECS). All children had access to picture symbols during assessments. Post-treatment measurement of the number of picture exchanges in a far-transfer, assessment context favored the PECS intervention. These findings were interpreted as support for the hypothesis that the PECS curriculum can successfully teach a generalized means of showing coordinated attention to object and person without requiring eye contact to children with ASD.

  16. 28 CFR Appendix A to Part 41 - Leadership and Coordination of Nondiscrimination Laws

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Leadership and Coordination of.... A Appendix A to Part 41—Leadership and Coordination of Nondiscrimination Laws Executive Order 12250... Code, and in order to provide, under the leadership of the Attorney General, for the consistent and...

  17. Coordinating Federal Assistance Programs for the Economically Disadvantaged: Recommendations and Background Materials. Special Report No. 31.

    ERIC Educational Resources Information Center

    National Commission for Employment Policy (DOL), Washington, DC.

    This special report from the National Commission for Employment Policy on coordinating federal assistance programs for the economically disadvantaged contains two parts. Part 1 includes recommendations for improving public assistance coordination programs in general and employment and training programs in particular. Eight recommendations focus on…

  18. 34 CFR 412.1 - What is the National Network for Curriculum Coordination in Vocational and Technical Education?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the National Network for Curriculum... EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.1 What is the National Network for Curriculum Coordination in Vocational and Technical Education? The...

  19. 34 CFR 412.1 - What is the National Network for Curriculum Coordination in Vocational and Technical Education?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the National Network for Curriculum... EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.1 What is the National Network for Curriculum Coordination in Vocational and Technical Education? The...

  20. 28 CFR Appendix A to Part 41 - Leadership and Coordination of Nondiscrimination Laws

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Leadership and Coordination of.... A Appendix A to Part 41—Leadership and Coordination of Nondiscrimination Laws Executive Order 12250... Code, and in order to provide, under the leadership of the Attorney General, for the consistent and...

  1. 28 CFR Appendix A to Part 41 - Leadership and Coordination of Nondiscrimination Laws

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Leadership and Coordination of.... A Appendix A to Part 41—Leadership and Coordination of Nondiscrimination Laws Executive Order 12250... Code, and in order to provide, under the leadership of the Attorney General, for the consistent and...

  2. 28 CFR Appendix A to Part 41 - Leadership and Coordination of Nondiscrimination Laws

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Leadership and Coordination of.... A Appendix A to Part 41—Leadership and Coordination of Nondiscrimination Laws Executive Order 12250... Code, and in order to provide, under the leadership of the Attorney General, for the consistent and...

  3. 42 CFR 438.208 - Coordination and continuity of care.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Coordination and continuity of care. 438.208... Improvement Access Standards § 438.208 Coordination and continuity of care. (a) Basic requirement—(1) General... individual with special health care needs, as specified in paragraph (c) of this section. (3) Exception for...

  4. 42 CFR 438.208 - Coordination and continuity of care.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Coordination and continuity of care. 438.208... Improvement Access Standards § 438.208 Coordination and continuity of care. (a) Basic requirement—(1) General... individual with special health care needs, as specified in paragraph (c) of this section. (3) Exception for...

  5. 42 CFR 438.208 - Coordination and continuity of care.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Coordination and continuity of care. 438.208... Improvement Access Standards § 438.208 Coordination and continuity of care. (a) Basic requirement—(1) General... individual with special health care needs, as specified in paragraph (c) of this section. (3) Exception for...

  6. Adult Basic Education: Aligning Adult Basic Education and Postsecondary Education

    ERIC Educational Resources Information Center

    Texas Higher Education Coordinating Board, 2008

    2008-01-01

    In 2007, the 80th Texas Legislature included a rider to the General Appropriations Act for the Texas Higher Education Coordinating Board. The rider directed the agency to coordinate with the Texas Education Agency to develop and implement plans to align adult basic education with postsecondary education. The Coordinating Board, in collaboration…

  7. Cephalometric landmark detection in dental x-ray images using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.

  8. Effects of rain and fog on the Shuttle Ku-band microwave scanning beam landing system range and accuracy performance

    NASA Technical Reports Server (NTRS)

    Butler, D.

    1981-01-01

    The microwave Scanning Beam Landing System's (MSBLS) performance in fog and rain was studied. The fog and rain effects on the Shuttle Ku-band system were determined. Specifically, microwave attenuation, beam distortion, and coordinate errors resulting from operation of the MSBLS in poor weather conditions were evaluated. The main physical processes giving rise to microwave attenuation were found to be absorption and scattering by water droplets. The general theory of scattering and absorption used is discussed and a listing of applicable computer programs is provided.

  9. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  10. Nonlocal approach to the analysis of the stress distribution in granular systems. I. Theoretical framework

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Scott, J. E.; Pease, E. A.; Hurd, A. J.

    1998-05-01

    A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study of a generally non-Markoffian, i.e., memory-possessing (nonlocal) propagation equation. Previous treatments are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be used to obtain desired features such as a prescribed stress distribution within the compact.

  11. [Between individuality and "evidence-based medicine"--the role of the general practitioner within the scope of disease management programs].

    PubMed

    Szecsenyi, Joachim; Schneider, Antonius

    2003-06-01

    In Germany, the change from the "traditional", experience-based general practitioner (GP) to the evidence-based practising co-ordinator may be accelerated by the introduction of disease management programmes. Here, we will discuss some tools that can help to meet this challenge. Also, a set of requirements will be defined that the health care system will have to provide in support of GPs. Maintaining the relationship between doctor and patient and also allowing for individual care on the basis of evidence-based medicine will remain a challenge.

  12. Assessment of Survivability against Laser Threats. The ASALT-I Computer Program

    DTIC Science & Technology

    1981-09-01

    NUM4ER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. I - f ~ ~ ’ECUftITt CL.inWCATOM Or TII PAGEL Cu18.. De 3Sawe no"___VISA__________1""I REPORT...subsection. COORDINATE SYSTEMS The four coordinate systems used in the ASALT-I Model are de -I picted in Figure 2-1, where the subscripts on each axis identify...centroid in the Enc,’, inter Coordinate System 2i z-coordinate of the component centroid in the Encounter Coordinate System gy width of the component

  13. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics.

    PubMed

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  14. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics

    NASA Astrophysics Data System (ADS)

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  15. Functional Assessment of Corticospinal System Excitability in Karate Athletes.

    PubMed

    Moscatelli, Fiorenzo; Messina, Giovanni; Valenzano, Anna; Monda, Vincenzo; Viggiano, Andrea; Messina, Antonietta; Petito, Annamaria; Triggiani, Antonio Ivano; Ciliberti, Michela Anna Pia; Monda, Marcellino; Capranica, Laura; Cibelli, Giuseppe

    2016-01-01

    To investigate the involvement of the primary motor cortex (M1) in the coordination performance of karate athletes through transcranial magnetic stimulation (TMS). Thirteen right-handed male karate athletes (25.0±5.0 years) and 13 matched non-athlete controls (26.7±6.2 years) were enrolled. A single-pulse TMS was applied using a figure-eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyography was recorded from the first dorsal interosseous muscle. Motor evoked potential (MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Functional assessment of the coordination performance was assessed by in-phase (IP) and anti-phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180 bpm. Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01) and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between rMT and MEP latency. Coordination decreased with increasing velocity, and better IP performances emerged compared to AP ones (p<0.001). In general, a high correlation between rMT and coordination tasks was found for both IP and AP conditions. With respect to controls, karate athletes present a higher corticospinal excitability indicating the presence of an activity-dependent alteration in the balance and interactions between inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the high correlation between corticospinal excitability and coordination performance could support sport-specific neurophysiological arrangements.

  16. The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution.

    PubMed

    Schmidt, Thorsten; Pasternak, Taras; Liu, Kun; Blein, Thomas; Aubry-Hivet, Dorothée; Dovzhenko, Alexander; Duerr, Jasmin; Teale, William; Ditengou, Franck A; Burkhardt, Hans; Ronneberger, Olaf; Palme, Klaus

    2014-03-01

    To achieve a detailed understanding of processes in biological systems, cellular features must be quantified in the three-dimensional (3D) context of cells and organs. We described use of the intrinsic root coordinate system (iRoCS) as a reference model for the root apical meristem of plants. iRoCS enables direct and quantitative comparison between the root tips of plant populations at single-cell resolution. The iRoCS Toolbox automatically fits standardized coordinates to raw 3D image data. It detects nuclei or segments cells, automatically fits the coordinate system, and groups the nuclei/cells into the root's tissue layers. The division status of each nucleus may also be determined. The only manual step required is to mark the quiescent centre. All intermediate outputs may be refined if necessary. The ability to learn the visual appearance of nuclei by example allows the iRoCS Toolbox to be easily adapted to various phenotypes. The iRoCS Toolbox is provided as an open-source software package, licensed under the GNU General Public License, to make it accessible to a broad community. To demonstrate the power of the technique, we measured subtle changes in cell division patterns caused by modified auxin flux within the Arabidopsis thaliana root apical meristem. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr; Harmandaris, Vagelis, E-mail: harman@uoc.gr; Institute of Applied and Computational Mathematics

    Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse grainingmore » mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.« less

  18. Horizontal high speed stacking for batteries with prismatic cans

    DOEpatents

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  19. Rotating full- and reduced-dimensional quantum chemical models of molecules

    NASA Astrophysics Data System (ADS)

    Fábri, Csaba; Mátyus, Edit; Császár, Attila G.

    2011-02-01

    A flexible protocol, applicable to semirigid as well as floppy polyatomic systems, is developed for the variational solution of the rotational-vibrational Schrödinger equation. The kinetic energy operator is expressed in terms of curvilinear coordinates, describing the internal motion, and rotational coordinates, characterizing the orientation of the frame fixed to the nonrigid body. Although the analytic form of the kinetic energy operator might be very complex, it does not need to be known a priori within this scheme as it is constructed automatically and numerically whenever needed. The internal coordinates can be chosen to best represent the system of interest and the body-fixed frame is not restricted to an embedding defined with respect to a single reference geometry. The features of the technique mentioned make it especially well suited to treat large-amplitude nuclear motions. Reduced-dimensional rovibrational models can be defined straightforwardly by introducing constraints on the generalized coordinates. In order to demonstrate the flexibility of the protocol and the associated computer code, the inversion-tunneling of the ammonia (14NH3) molecule is studied using one, two, three, four, and six active vibrational degrees of freedom, within both vibrational and rovibrational variational computations. For example, the one-dimensional inversion-tunneling model of ammonia is considered also for nonzero rotational angular momenta. It turns out to be difficult to significantly improve upon this simple model. Rotational-vibrational energy levels are presented for rotational angular momentum quantum numbers J = 0, 1, 2, 3, and 4.

  20. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer.

    PubMed

    Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A

    2016-10-15

    Machine learning algorithms have been demonstrated to predict atomistic properties approaching the accuracy of quantum chemical calculations at significantly less computational cost. Difficulties arise, however, when attempting to apply these techniques to large systems, or systems possessing excessive conformational freedom. In this article, the machine learning method kriging is applied to predict both the intra-atomic and interatomic energies, as well as the electrostatic multipole moments, of the atoms of a water molecule at the center of a 10 water molecule (decamer) cluster. Unlike previous work, where the properties of small water clusters were predicted using a molecular local frame, and where training set inputs (features) were based on atomic index, a variety of feature definitions and coordinate frames are considered here to increase prediction accuracy. It is shown that, for a water molecule at the center of a decamer, no single method of defining features or coordinate schemes is optimal for every property. However, explicitly accounting for the structure of the first solvation shell in the definition of the features of the kriging training set, and centring the coordinate frame on the atom-of-interest will, in general, return better predictions than models that apply the standard methods of feature definition, or a molecular coordinate frame. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  1. Systems for the Storage of Molecular Oxygen - A Study.

    DTIC Science & Technology

    1980-11-25

    form adducts with certain chemical compounds . This process, which will be called chemical absorption, generally uses a transition metal coordination... compound as the absorber. The study of oxygen binding to metal complexes has become of great interest over the past three decades (21), and some...for iron, most notably cobalt (33-35) manganese (36,37) and ruthenium (38), usually to serve as model compounds for biologically important heme

  2. Producibility and Production Aspects of the Market Analysis Process

    DTIC Science & Technology

    1989-06-01

    for most TROSCOM general purpose systems and equipment are the U.S. Army Quartermaster Center and School, Fort Lee, VA ( fuels handling and storage...established a Mission Area Proponency Branch staffed with military R&D Coordinator Officers (formerly TRISOs - Technical Requirements Integration Staff...time is spent reacting, rather than acting, i.e., the amount of work required to supply numerous reports on delinquent contractors and on Technical

  3. Coordinated Displays to Assist Cyber Defenders

    DTIC Science & Technology

    2016-09-23

    suspicious activity, such as the occurrence of a network event that is similar to a known attack signature, the system generates an alert which is then...presented to a human computer network defense analyst, or more succinctly, a network analyst, who must evaluate the veracity of that alert . To...display and select an alert to investigate further. Though alerts generally include some information about the nature of a potential threat, the

  4. Load flows and faults considering dc current injections

    NASA Technical Reports Server (NTRS)

    Kusic, G. L.; Beach, R. F.

    1991-01-01

    The authors present novel methods for incorporating current injection sources into dc power flow computations and determining network fault currents when electronic devices limit fault currents. Combinations of current and voltage sources into a single network are considered in a general formulation. An example of relay coordination is presented. The present study is pertinent to the development of the Space Station Freedom electrical generation, transmission, and distribution system.

  5. 33 CFR 110.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83...

  6. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2018-01-01

    Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.

  7. Postgraduate training for general practice in the United Kingdom.

    PubMed

    Eisenberg, J M

    1979-04-01

    Although the role of general practice is well established in the United Kingdom's National Health Service, formal postgraduate training for primary care practice is a recent development. Trainees may enter three-year programs of coordinated inpatient and outpatient training or may select a series of independent posts. Programs have been developed to train general practitioners as teachers, and innovative courses have been established. Nevertheless, there is a curious emphasis on inpatient experiences, especially since British general practitioners seldom treat patients in the hospital. In their outpatient experiences trainees are provided with little variety in their instructors, practice settings, and medical problems. The demands on this already strained system will soon be increased due to recent legislation requiring postgraduate training for all new general practitioners. With a better understanding of training for primary care in the National Health Service, those planning American primary care training may avoid the problems and incorporate the attributes of British training for general practice.

  8. On the absence of reverse running waves in general displacement of lattice vibration in popular books on solid state theory

    NASA Astrophysics Data System (ADS)

    Xia, Shangda; Lou, Liren

    2018-05-01

    In this article we point out that there is a deficiency in the presentation of the general solution of harmonic lattice vibration, the omission of half of the allowed running waves, in many popular textbooks published since 1940, e.g. O Madelung’s 1978 Introduction to Solid-State Theory and J Solyom’s 2007 Fundamentals of the Physics of Solids, vol 1. So we provide a revised presentation, which gives a complete general solution and demonstrates clearly that the conventional complex normal coordinate should be a superposition of two coordinates (multiplied by a factor \\sqrt{1/2}) of running waves travelling oppositely along q and -q, not only a coordinate of a unidirectional running wave as many books considered. It is noticed that the book, Quantum Theory of the Solid State: An Introduction, by L Kantorovich, published in 2004, and the review article, ‘Phonons in perfect crystals’ by W Cochran and R A Cowly, published in 1967, for a one-dimensional single-atom chain gave correct (but not normalized) formulae for the general solution of lattice vibration and the normal coordinate. However, both of them stated still that each normal coordinate describes an independent mode of vibration, which in our opinion needs to be further discussed. Moreover, in books such as Fundamentals of the Physics of Solids, vol 1, by J Solyom, and The Physics and Chemistry of Solids, by S R Elliott, published in 2006 and 2007, respectively, the reverse waves were still lost. Hence, we also discuss a few related topics. In quantization of the lattice vibration, the introduction of the conventional two (not one) independent phonon operators in a normal coordinate is closely related to the ‘independence’ of the two constituent waves mentioned above, and we propose a simple propositional relation between the phonon operator and the corresponding running wave coordinate. Moreover, only the coordinate of the superposition wave (not the running wave), as the normal coordinate can give the correct quantization commutation relations. In addition, there is an interference between the direct and reverse running waves in kinetic and potential energies, which also questions the popular term ‘normal mode’ for a running wave mode. Therefore we have made a few suggestions and discuss the terms of relative quantities.

  9. Quality of care for people with multimorbidity - a case series.

    PubMed

    Schiøtz, Michaela L; Høst, Dorte; Christensen, Mikkel B; Domínguez, Helena; Hamid, Yasmin; Almind, Merete; Sørensen, Kim L; Saxild, Thomas; Holm, Rikke Høgsbro; Frølich, Anne

    2017-11-18

    Multimorbidity is becoming increasingly prevalent and presents challenges for healthcare providers and systems. Studies examining the relationship between multimorbidity and quality of care report mixed findings. The purpose of this study was to investigate quality of care for people with multimorbidity in the publicly funded healthcare system in Denmark. To investigate the quality of care for people with multimorbidity different groups of clinicians from the hospital, general practice and the municipality reviewed records from 23 persons with multimorbidity and discussed them in three focus groups. Before each focus group, clinicians were asked to review patients' medical records and assess their care by responding to a questionnaire. Medical records from 2013 from hospitals, general practice, and health centers in the local municipality were collected and linked for the 23 patients. Further, two clinical pharmacologists reviewed the appropriateness of medications listed in patient records. The review of the patients' records conducted by three groups of clinicians revealed that around half of the patients received adequate care for the single condition which prompted the episode of care such as a hospitalization, a visit to an outpatient clinic or the general practitioner. Further, the care provided to approximately two-thirds of the patients did not take comorbidities into account and insufficiently addressed more diffuse symptoms or problems. The review of the medication lists revealed that the majority of the medication lists contained inappropriate medications and that there were incongruity in medication listed in the primary and secondary care sector. Several barriers for providing high quality care were identified. These included relative short consultation times in general practice and outpatient clinics, lack of care coordinators, and lack of shared IT-system proving an overview of the treatment. Our findings reveal quality of care deficiencies for people with multimorbidity. Suggestions for care improvement for people with multimorbidity includes formally assigned responsibility for care coordination, a change in the financial incentive structure towards a system rewarding high quality care and care focusing on prevention of disease exacerbation, as well as implementing shared medical record systems.

  10. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  11. Avoiding fraud risks associated with EHRs.

    PubMed

    Helton, Jeffrey R

    2010-07-01

    Fraud associated with electronic health records (EHRs) generally falls into two categories: inappropriate billing by healthcare providers and inappropriate access by a system's users. A provider's EHR system requires controls to be of any significant help in detecting such fraudulent activity, or in gathering transactional evidence should such activity be identified. To protect against potential EHR-related healthcare fraud, providers should follow the recommendations established in 2007 by RTI International for the Office of the National Coordinator for Health Information Technology of the U.S. Department of Health and Human Services.

  12. A Technology Solution Strengthens Comprehensive Environmental Management

    DTIC Science & Technology

    2012-05-23

    General Navigation  Chemical Approval Example  NEPA Coordination Example  Safety PPE Example  Summary Marine Corps Support Facility...coordination, completion and documentation through automated workflows of various business processes  Chemical Approval  NEPA Coordination  Safety ...Completion Diagram Government Employee/M CMC MCMC Chemical Manager MCMC HS&E Specialist IMO Chemical Safety Specialist IMO Chemical Environmental

  13. 47 CFR 27.303 - Upper 700 MHz commercial and public safety coordination zone.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... safety coordinator. (1) The description must include, at a minimum; (i) The frequency or frequencies on... 47 Telecommunication 2 2011-10-01 2011-10-01 false Upper 700 MHz commercial and public safety... Rules for WCS § 27.303 Upper 700 MHz commercial and public safety coordination zone. (a) General. CMRS...

  14. 11 CFR 109.20 - What does “coordinated” mean?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false What does âcoordinatedâ mean? 109.20 Section 109.20 Federal Elections FEDERAL ELECTION COMMISSION GENERAL COORDINATED AND INDEPENDENT EXPENDITURES (2 U.S.C. 431(17), 441a(a) AND (d), AND PUB. L. 107-155 SEC. 214(c)) Coordination § 109.20 What does...

  15. 11 CFR 109.20 - What does “coordinated” mean?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false What does âcoordinatedâ mean? 109.20 Section 109.20 Federal Elections FEDERAL ELECTION COMMISSION GENERAL COORDINATED AND INDEPENDENT EXPENDITURES (2 U.S.C. 431(17), 441a(a) AND (d), AND PUB. L. 107-155 SEC. 214(c)) Coordination § 109.20 What does...

  16. The generator coordinate Dirac-Fock method for open-shell atomic systems

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.; Ishikawa, Yasuyuki

    1998-11-01

    Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.

  17. Coordination of short-term and long-term mitigation measures of hydro-meteorological risks: the importance of establishing a link between emergency management and spatial planning

    NASA Astrophysics Data System (ADS)

    Prenger-Berninghoff, Kathrin; Cortes, V. Juliette; Aye, Zar Chi; Sprague, Teresa

    2013-04-01

    The management of natural hazards involves, as generally known, the four stages of the risk management cycle: Prevention, preparedness, response and recovery. Accordingly, the mitigation of disasters can be performed in terms of short-term and long-term purposes. Whereas emergency management or civil protection helps to strengthen a community's capacity to be better prepared for natural hazards and to better respond in case a disaster strikes, thus addressing the short-term perspective, spatial planning serves long-term planning goals and can therefore implement long-term prevention measures. A purposefully applied risk mitigation strategy requires coordination of short-term and long-term mitigation measures and thus an effective coordination of emergency management and spatial planning. Several actors are involved in risk management and should consequently be linked throughout the whole risk management cycle. However, these actors, partly because of a historically fragmented administrative system, are hardly connected to each other, with spatial planning only having a negligible role compared to other actors1, a problem to which Young (2002) referred to as the "problem of interplay". In contrast, information transfer and decision-taking happen at the same time and are not coordinated among different actors. This applies to the prevention and preparedness phase as well as to the recovery phase, which basically constitutes the prevention phase for the next disaster2. Since investments in both risk prevention and emergency preparedness and response are considered necessary, a better coordination of the two approaches is required. In this regard, Decision Support Systems (DSS) can be useful in order to provide support in the decision-making aspect of risk management. The research work currently undertaken examines the problem of interplay in the four case study areas of the Marie Curie ITN, CHANGES3. The link between different risk management actors will be explored by means of exploratory questionnaires and interviews with government agencies, local administrations, community and research organizations on each study site. First results provided will address the general role of spatial planning in risk management. Additionally, preliminary observations are made in regard to the coordination of emergency preparedness and long-term spatial planning activities. The observations consider that integration facilitates proactive strategies that aim at preventing disaster occurrence and promote interaction between involved parties. Finally, consideration is given to the potential use of a DSS tool to cover both aspects of spatial planning and emergency management in the risk management cycle.

  18. A formulation for studying dynamics of N connected flexible deployable members

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. M.; Modi, V. J.

    A relatively general formulation for studying dynamics of a system, consisting of N connected flexible deployable members (beams, plates, shells, membranes, strings) forming a topological tree or a closed configuration, is presented. The mathematical description of the system can be, in general, a combination of discrete and distributed coordinates. Joints, elastic and dissipative, permit relative rotation and translation between bodies. The elastic deformations (lateral, axial, and torsional) can be discretized using admissible functions, finite elements or lumped mass method. Rotations of the members, as well as of the entire system, can be described using a set of orientation angles, Euler parameters or Rodrigues vectors. The formulation accounts for: the presence of momentum or reaction wheels (gimballed or fixed); thrusters distributed over the flexible and rigid portions; and any prescribed forms of energy dissipation mechanisms. Of course, the generalized forces can simulate desired environmental effects. The formulation is valid for orbiting as well as ground based and marine systems. Application of the formulation is illustrated through several examples, in spacecraft dynamics, which are of contemporary interest.

  19. An update to the analysis of the Canadian Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Ferland, R.; Piraszewski, M.; Craymer, M.

    2015-12-01

    The primary objective of the Canadian Spatial Reference System (CSRS) is to provide users access to a consistent geo-referencing infrastructure over the Canadian landmass. Global Navigation Satellite System (GNSS) positioning accuracy requirements ranges from meter level to mm level (e.g.: crustal deformation). The highest level of the Canadian infrastructure consist of a network of continually operating GPS and GNSS receivers, referred to as active control stations. The network includes all Canadian public active control stations, some bordering US CORS and Alaska stations, Greenland active control stations, as well as a selection of IGS reference frame stations. The Bernese analysis software is used for the daily processing and the combination into weekly solutions which form the basis for this analysis. IGS weekly final orbit, Earth Rotation parameters (ERP's) and coordinates products are used in the processing. For the more demanding users, the time dependant changes of station coordinates is often more important.All station coordinate estimates and related covariance information is used in this analysis. For each input solution, variance factor, translation, rotation and scale (and if needed their rates) or subsets of these are estimated. In the combination of these weekly solutions, station positions and velocities are estimated. Since the time series from the stations in these networks often experience changes in behavior, new (or reuse of) parameters are generally used in these situations. As is often the case with real data, unrealistic coordinates may occur. Automatic detection and removal of outliers is used in these cases. For the transformation, position and velocity parameters loose apriori estimates and uncertainties are provided. Alignment using the usual Helmert transformation to the latest IGb08 realization of ITRF is also performed during the adjustment.

  20. DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu

    Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less

Top