Sample records for general distribution function

  1. Generalized plasma dispersion function: One-solve-all treatment, visualizations, and application to Landau damping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hua-Sheng

    2013-09-15

    A unified, fast, and effective approach is developed for numerical calculation of the well-known plasma dispersion function with extensions from Maxwellian distribution to almost arbitrary distribution functions, such as the δ, flat top, triangular, κ or Lorentzian, slowing down, and incomplete Maxwellian distributions. The singularity and analytic continuation problems are also solved generally. Given that the usual conclusion γ∝∂f{sub 0}/∂v is only a rough approximation when discussing the distribution function effects on Landau damping, this approach provides a useful tool for rigorous calculations of the linear wave and instability properties of plasma for general distribution functions. The results are alsomore » verified via a linear initial value simulation approach. Intuitive visualizations of the generalized plasma dispersion function are also provided.« less

  2. Dispersion relations for a general anisotropic distribution function represented as a sum over Legendre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaisultanov, Rashid; Eichler, David

    2011-03-15

    The dielectric tensor is obtained for a general anisotropic distribution function that is represented as a sum over Legendre polynomials. The result is valid over all of k-space. We obtain growth rates for the Weibel instability for some basic examples of distribution functions.

  3. Linear dispersion properties of ring velocity distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandas, Marek, E-mail: marek.vandas@asu.cas.cz; Hellinger, Petr; Institute of Atmospheric Physics, AS CR, Bocni II/1401, CZ-14100 Prague

    2015-06-15

    Linear properties of ring velocity distribution functions are investigated. The dispersion tensor in a form similar to the case of a Maxwellian distribution function, but for a general distribution function separable in velocities, is presented. Analytical forms of the dispersion tensor are derived for two cases of ring velocity distribution functions: one obtained from physical arguments and one for the usual, ad hoc ring distribution. The analytical expressions involve generalized hypergeometric, Kampé de Fériet functions of two arguments. For a set of plasma parameters, the two ring distribution functions are compared. At the parallel propagation with respect to the ambientmore » magnetic field, the two ring distributions give the same results identical to the corresponding bi-Maxwellian distribution. At oblique propagation, the two ring distributions give similar results only for strong instabilities, whereas for weak growth rates their predictions are significantly different; the two ring distributions have different marginal stability conditions.« less

  4. Covariant extension of the GPD overlap representation at low Fock states

    DOE PAGES

    Chouika, N.; Mezrag, C.; Moutarde, H.; ...

    2017-12-26

    Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less

  5. Unraveling hadron structure with generalized parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less

  6. A generalized statistical model for the size distribution of wealth

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  7. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  8. Systems of frequency distributions for water and environmental engineering

    NASA Astrophysics Data System (ADS)

    Singh, Vijay P.

    2018-09-01

    A wide spectrum of frequency distributions are used in hydrologic, hydraulic, environmental and water resources engineering. These distributions may have different origins, are based on different hypotheses, and belong to different generating systems. Review of literature suggests that different systems of frequency distributions employed in science and engineering in general and environmental and water engineering in particular have been derived using different approaches which include (1) differential equations, (2) distribution elasticity, (3) genetic theory, (4) generating functions, (5) transformations, (6) Bessel function, (7) expansions, and (8) entropy maximization. This paper revisits these systems of distributions and discusses the hypotheses that are used for deriving these systems. It also proposes, based on empirical evidence, another general system of distributions and derives a number of distributions from this general system that are used in environmental and water engineering.

  9. Equilibrium Distribution Functions: Another Look.

    ERIC Educational Resources Information Center

    Waite, Boyd A.

    1986-01-01

    Discusses equilibrium distribution functions and provides an alternative "derivation" that allows the student, with the help of a computer, to gain intuitive insight as to the nature of distributions in general and the precise nature of the dominance of the Boltzmann distribution. (JN)

  10. On Interpreting and Extracting Information from the Cumulative Distribution Function Curve: A New Perspective with Applications

    ERIC Educational Resources Information Center

    Balasooriya, Uditha; Li, Jackie; Low, Chan Kee

    2012-01-01

    For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the…

  11. 14 CFR Sec. 2-3 - Distribution of revenues and expenses within entities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATED AIR CARRIERS General Accounting Provisions Sec. 2-3 Distribution of revenues and expenses within.... (c) Expense items contributing to more than one function shall be charged to the general overhead functions to which applicable except that where only incidental contribution is made to more than a single...

  12. Statistics of primordial density perturbations from discrete seed masses

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Bertschinger, Edmund

    1991-01-01

    The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.

  13. Self-Organizing Maps and Parton Distribution Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Holcomb, Simonetta Liuti, D. Z. Perry

    2011-05-01

    We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.

  14. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  15. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma

    2016-07-15

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less

  16. Derivation of Hunt equation for suspension distribution using Shannon entropy theory

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2017-12-01

    In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.

  17. Origin of generalized entropies and generalized statistical mechanics for superstatistical multifractal systems

    NASA Astrophysics Data System (ADS)

    Gadjiev, Bahruz; Progulova, Tatiana

    2015-01-01

    We consider a multifractal structure as a mixture of fractal substructures and introduce a distribution function f (α), where α is a fractal dimension. Then we can introduce g(p)˜ ∫- ln p μe-yf(y)dy and show that the distribution functions f (α) in the form of f(α) = δ(α-1), f(α) = δ(α-θ) , f(α) = 1/α-1 , f(y)= y α-1 lead to the Boltzmann - Gibbs, Shafee, Tsallis and Anteneodo - Plastino entropies conformably. Here δ(x) is the Dirac delta function. Therefore the Shafee entropy corresponds to a fractal structure, the Tsallis entropy describes a multifractal structure with a homogeneous distribution of fractal substructures and the Anteneodo - Plastino entropy appears in case of a power law distribution f (y). We consider the Fokker - Planck equation for a fractal substructure and determine its stationary solution. To determine the distribution function of a multifractal structure we solve the two-dimensional Fokker - Planck equation and obtain its stationary solution. Then applying the Bayes theorem we obtain a distribution function for the entire system in the form of q-exponential function. We compare the results of the distribution functions obtained due to the superstatistical approach with the ones obtained according to the maximum entropy principle.

  18. Collisionless distribution function for the relativistic force-free Harris sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, C. R.; Neukirch, T.

    A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less

  19. On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices

    PubMed Central

    Ye, Xin; Pendyala, Ram M.; Zou, Yajie

    2017-01-01

    A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences. PMID:29073152

  20. On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices.

    PubMed

    Wang, Ke; Ye, Xin; Pendyala, Ram M; Zou, Yajie

    2017-01-01

    A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences.

  1. Towards a model of pion generalized parton distributions from Dyson-Schwinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutarde, H.

    2015-04-10

    We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.

  2. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    NASA Astrophysics Data System (ADS)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  3. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Whipple, E. C.

    1991-01-01

    The present study examines how the changes in the generalized first adiabatic invariant J derived from the separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. A method is proposed for determining distribution functions for an ensemble of particles following interaction with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant. Generalized drift velocities are obtained for a 1D tail configuration by using the generalized first invariant. The invariant remained constant except for the discrete changes caused by chaotic scattering as the particles cross the separatrix.

  4. General Path-Integral Successive-Collision Solution of the Bounded Dynamic Multi-Swarm Problem.

    DTIC Science & Technology

    1983-09-23

    coefficients (i.e., moments of the distribution functions), and/or (il) fnding the distribution functions themselves. The present work is concerned with the...collisions since their first appearance in the system. By definition, a swarm particle sufers a *generalized collision" either when it collides with a...studies6-rand the present work have contributed to- wards making the path-integral successive-collision method a practicable tool of transport theory

  5. Probability Weighting Functions Derived from Hyperbolic Time Discounting: Psychophysical Models and Their Individual Level Testing.

    PubMed

    Takemura, Kazuhisa; Murakami, Hajime

    2016-01-01

    A probability weighting function (w(p)) is considered to be a nonlinear function of probability (p) in behavioral decision theory. This study proposes a psychophysical model of probability weighting functions derived from a hyperbolic time discounting model and a geometric distribution. The aim of the study is to show probability weighting functions from the point of view of waiting time for a decision maker. Since the expected value of a geometrically distributed random variable X is 1/p, we formulized the probability weighting function of the expected value model for hyperbolic time discounting as w(p) = (1 - k log p)(-1). Moreover, the probability weighting function is derived from Loewenstein and Prelec's (1992) generalized hyperbolic time discounting model. The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting function considered by Prelec (1998) and Luce (2001). In this study, we derive a model from the generalized hyperbolic time discounting model assuming Fechner's (1860) psychophysical law of time and a geometric distribution of trials. In addition, we develop median models of hyperbolic time discounting and generalized hyperbolic time discounting. To illustrate the fitness of each model, a psychological experiment was conducted to assess the probability weighting and value functions at the level of the individual participant. The participants were 50 university students. The results of individual analysis indicated that the expected value model of generalized hyperbolic discounting fitted better than previous probability weighting decision-making models. The theoretical implications of this finding are discussed.

  6. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    PubMed

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  7. Universality of Generalized Parton Distributions in Light-Front Holographic QCD

    NASA Astrophysics Data System (ADS)

    de Téramond, Guy F.; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J.; Deur, Alexandre; Hlfhs Collaboration

    2018-05-01

    The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w (x ) which incorporates Regge behavior at small x and inclusive counting rules at x →1 . A simple ansatz for w (x ) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.

  8. Universality of Generalized Parton Distributions in Light-Front Holographic QCD.

    PubMed

    de Téramond, Guy F; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J; Deur, Alexandre

    2018-05-04

    The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and inclusive counting rules at x→1. A simple ansatz for w(x) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.

  9. Human intelligence and brain networks

    PubMed Central

    Colom, Roberto; Karama, Sherif; Jung, Rex E.; Haier, Richard J.

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  10. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    PubMed

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  11. A general framework for updating belief distributions.

    PubMed

    Bissiri, P G; Holmes, C C; Walker, S G

    2016-11-01

    We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.

  12. Product of Ginibre matrices: Fuss-Catalan and Raney distributions

    NASA Astrophysics Data System (ADS)

    Penson, Karol A.; Życzkowski, Karol

    2011-06-01

    Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distributions Ps(x), such that their moments are equal to the Fuss-Catalan numbers of order s. We find a representation of the Fuss-Catalan distributions Ps(x) in terms of a combination of s hypergeometric functions of the type sFs-1. The explicit formula derived here is exact for an arbitrary positive integer s, and for s=1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two-parameter generalization of the Wigner semicircle law.

  13. Product of Ginibre matrices: Fuss-Catalan and Raney distributions.

    PubMed

    Penson, Karol A; Zyczkowski, Karol

    2011-06-01

    Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distributions P(s)(x), such that their moments are equal to the Fuss-Catalan numbers of order s. We find a representation of the Fuss-Catalan distributions P(s)(x) in terms of a combination of s hypergeometric functions of the type (s)F(s-1). The explicit formula derived here is exact for an arbitrary positive integer s, and for s=1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two-parameter generalization of the Wigner semicircle law.

  14. A generalization of the power law distribution with nonlinear exponent

    NASA Astrophysics Data System (ADS)

    Prieto, Faustino; Sarabia, José María

    2017-01-01

    The power law distribution is usually used to fit data in the upper tail of the distribution. However, commonly it is not valid to model data in all the range. In this paper, we present a new family of distributions, the so-called Generalized Power Law (GPL), which can be useful for modeling data in all the range and possess power law tails. To do that, we model the exponent of the power law using a non-linear function which depends on data and two parameters. Then, we provide some basic properties and some specific models of that new family of distributions. After that, we study a relevant model of the family, with special emphasis on the quantile and hazard functions, and the corresponding estimation and testing methods. Finally, as an empirical evidence, we study how the debt is distributed across municipalities in Spain. We check that power law model is only valid in the upper tail; we show analytically and graphically the competence of the new model with municipal debt data in the whole range; and we compare the new distribution with other well-known distributions including the Lognormal, the Generalized Pareto, the Fisk, the Burr type XII and the Dagum models.

  15. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.

    PubMed

    Banik, Suman Kumar; Bag, Bidhan Chandra; Ray, Deb Shankar

    2002-05-01

    Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their coordinates and momenta, we derive a generalized quantum Langevin equation in c numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (the Smoluchowski equation being considered in the overdamped limit).

  16. Exact probability distribution function for the volatility of cumulative production

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Klümper, Andreas

    2018-04-01

    In this paper we study the volatility and its probability distribution function for the cumulative production based on the experience curve hypothesis. This work presents a generalization of the study of volatility in Lafond et al. (2017), which addressed the effects of normally distributed noise in the production process. Due to its wide applicability in industrial and technological activities we present here the mathematical foundation for an arbitrary distribution function of the process, which we expect will pave the future research on forecasting of the production process.

  17. Consistency criteria for generalized Cuddeford systems

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Morganti, Lucia

    2010-01-01

    General criteria to check the positivity of the distribution function (phase-space consistency) of stellar systems of assigned density and anisotropy profile are useful starting points in Jeans-based modelling. Here, we substantially extend previous results, and present the inversion formula and the analytical necessary and sufficient conditions for phase-space consistency of the family of multicomponent Cuddeford spherical systems: the distribution function of each density component of these systems is defined as the sum of an arbitrary number of Cuddeford distribution functions with arbitrary values of the anisotropy radius, but identical angular momentum exponent. The radial trend of anisotropy that can be realized by these models is therefore very general. As a surprising byproduct of our study, we found that the `central cusp-anisotropy theorem' (a necessary condition for consistency relating the values of the central density slope and of the anisotropy parameter) holds not only at the centre but also at all radii in consistent multicomponent generalized Cuddeford systems. This last result suggests that the so-called mass-anisotropy degeneracy could be less severe than what is sometimes feared.

  18. A concise introduction to Colombeau generalized functions and their applications in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the self-energy of a point electric charge is worked out in detail: the Coulomb potential and field are defined as Colombeau generalized functions, and integrals of nonlinear expressions corresponding to products of distributions (such as the square of the Coulomb field and the square of the delta function) are calculated. Finally, the methods introduced in Gsponer (2007 Eur. J. Phys. 28 267, 2007 Eur. J. Phys. 28 1021 and 2007 Eur. J. Phys. 28 1241), to deal with point-like singularities in classical electrodynamics are confirmed.

  19. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  20. An advanced kinetic theory for morphing continuum with inner structures

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  1. EXACT DISTRIBUTIONS OF INTRACLASS CORRELATION AND CRONBACH'S ALPHA WITH GAUSSIAN DATA AND GENERAL COVARIANCE.

    PubMed

    Kistner, Emily O; Muller, Keith E

    2004-09-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact results allow calculating the exact distribution function and other properties of intraclass correlation and Cronbach's alpha, for Gaussian data with any covariance pattern, not just compound symmetry. Probabilities are computed in terms of the distribution function of a weighted sum of independent chi-square random variables. New F approximations for the distribution functions of intraclass correlation and Cronbach's alpha are much simpler and faster to compute than the exact forms. Assuming the covariance matrix is known, the approximations typically provide sufficient accuracy, even with as few as ten observations. Either the exact or approximate distributions may be used to create confidence intervals around an estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly assuming that the covariance matrix is compound symmetric leads to accurate confidence intervals, as was expected from previously known results. However, assuming and estimating a general covariance matrix produces somewhat optimistically narrow confidence intervals with 10 observations. Increasing sample size to 100 gives essentially unbiased coverage. Incorrectly assuming compound symmetry leads to pessimistically large confidence intervals, with pessimism increasing with sample size. In contrast, incorrectly assuming general covariance introduces only a modest optimistic bias in small samples. Hence the new methods seem preferable for creating confidence intervals, except when compound symmetry definitely holds.

  2. A Poisson process approximation for generalized K-5 confidence regions

    NASA Technical Reports Server (NTRS)

    Arsham, H.; Miller, D. R.

    1982-01-01

    One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.

  3. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    PubMed

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  4. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  5. The construction of general basis functions in reweighting ensemble dynamics simulations: Reproduce equilibrium distribution in complex systems from multiple short simulation trajectories

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Biao; Ming, Li; Xin, Zhou

    2015-12-01

    Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex systems such as biomolecules much more efficiently. The re-weighted ensemble dynamics (RED) is designed to combine these short trajectories to reconstruct the global equilibrium distribution. In the RED, a number of conformational functions, named as basis functions, are applied to relate these trajectories to each other, then a detailed-balance-based linear equation is built, whose solution provides the weights of these trajectories in equilibrium distribution. Thus, the sufficient and efficient selection of basis functions is critical to the practical application of RED. Here, we review and present a few possible ways to generally construct basis functions for applying the RED in complex molecular systems. Especially, for systems with less priori knowledge, we could generally use the root mean squared deviation (RMSD) among conformations to split the whole conformational space into a set of cells, then use the RMSD-based-cell functions as basis functions. We demonstrate the application of the RED in typical systems, including a two-dimensional toy model, the lattice Potts model, and a short peptide system. The results indicate that the RED with the constructions of basis functions not only more efficiently sample the complex systems, but also provide a general way to understand the metastable structure of conformational space. Project supported by the National Natural Science Foundation of China (Grant No. 11175250).

  6. lsjk—a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions

    NASA Astrophysics Data System (ADS)

    Kalmykov, M. Yu.; Sheplyakov, A.

    2005-10-01

    Generalized log-sine functions Lsj(k)(θ) appear in higher order ɛ-expansion of different Feynman diagrams. We present an algorithm for the numerical evaluation of these functions for real arguments. This algorithm is implemented as a C++ library with arbitrary-precision arithmetics for integer 0⩽k⩽9 and j⩾2. Some new relations and representations of the generalized log-sine functions are given. Program summaryTitle of program:lsjk Catalogue number:ADVS Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVS Program obtained from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing terms: GNU General Public License Computers:all Operating systems:POSIX Programming language:C++ Memory required to execute:Depending on the complexity of the problem, at least 32 MB RAM recommended No. of lines in distributed program, including testing data, etc.:41 975 No. of bytes in distributed program, including testing data, etc.:309 156 Distribution format:tar.gz Other programs called:The CLN library for arbitrary-precision arithmetics is required at version 1.1.5 or greater External files needed:none Nature of the physical problem:Numerical evaluation of the generalized log-sine functions for real argument in the region 0<θ<π. These functions appear in Feynman integrals Method of solution:Series representation for the real argument in the region 0<θ<π Restriction on the complexity of the problem:Limited up to Lsj(9)(θ), and j is an arbitrary integer number. Thus, all function up to the weight 12 in the region 0<θ<π can be evaluated. The algorithm can be extended up to higher values of k(k>9) without modification Typical running time:Depending on the complexity of problem. See text below.

  7. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    PubMed

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  8. The application of the principles of invariance to the radiative transfer equation in plant canopies

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.; Myneni, R. B.

    1992-01-01

    Solutions of the radiative transfer equation describing photon interactions with vegetation canopies are important in remote sensing since they provide the canopy reflectance distribution required in the interpretation of satellite acquired information. The general one-dimensional two-angle transport problem for a finite copy of arbitrary leaf angle distribution is considered. Analytical solutions are obtained in terms of generalized Chandrasekhar's X- and Y-functions by invoking the principles of invariance. A critical step in the formulation involves the decomposition of the integral of the scattering phase function into a product of known functions of the incident and scattered photon directions. Several simplified cases previously considered in the literature are derived from the generalized solution. Various symmetries obeyed by the scattering operator and reciprocity relations are formally proved.

  9. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.

    1983-01-01

    Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  10. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.H.

    1980-01-01

    Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  11. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...

  12. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...

  13. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...

  14. MaxEnt, second variation, and generalized statistics

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2015-10-01

    There are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis' tools, that for lower bound Hamiltonians, the second variation's analysis of the entropic functional guarantees that the heavy tail q-distribution constitutes a maximum of Tsallis' entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.

  15. A bivariate gamma probability distribution with application to gust modeling. [for the ascent flight of the space shuttle

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.

    1982-01-01

    A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.

  16. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  17. Requirements analysis for a hardware, discrete-event, simulation engine accelerator

    NASA Astrophysics Data System (ADS)

    Taylor, Paul J., Jr.

    1991-12-01

    An analysis of a general Discrete Event Simulation (DES), executing on the distributed architecture of an eight mode Intel PSC/2 hypercube, was performed. The most time consuming portions of the general DES algorithm were determined to be the functions associated with message passing of required simulation data between processing nodes of the hypercube architecture. A behavioral description, using the IEEE standard VHSIC Hardware Description and Design Language (VHDL), for a general DES hardware accelerator is presented. The behavioral description specifies the operational requirements for a DES coprocessor to augment the hypercube's execution of DES simulations. The DES coprocessor design implements the functions necessary to perform distributed discrete event simulations using a conservative time synchronization protocol.

  18. Whistler Waves With Electron Temperature Anisotropy And Non-Maxwellian Distribution Functions

    NASA Astrophysics Data System (ADS)

    Masood, W.

    2017-12-01

    Low frequency waves (˜ 100Hz), popularly known as Lion roars, are ubiquitously observed by satellites in terrestrial magnetosheath. By dint of both wave and electron data from the Cluster spacecraft and employing the linear kinetic theory for the electromagnetic waves, Masood et. al. (Ann. Geophysicae. 24, 1725-1735 (2006)) examined the conjecture made by Thorne and Tsurutani (Nature, 93, 384 (1981)) that whistler waves with electron temperature anisotropy are the progenitors of lion roars. It turned out that the study based upon the bi-Maxwellian distribution function did not come up with a satisfactory explanation of certain disagreements between theory and data. In this paper, we revisit the problem using the generalized (r, q) distribution to carry out the linear stability analysis. It is shown that good qualitative and quantitative agreements are found between theory and data using this distribution. Whistler waves with electron temperature anisotropy are also investigated with other non-Maxwellian distribution functions and general comparison is made in the end and differences in each case are highlighted. The possible applications in space plasmas are also pointed out.

  19. Application of the weibull distribution function to the molecular weight distribution of cellulose

    Treesearch

    A. Broido; Hsiukang Yow

    1977-01-01

    The molecular weight distribution of a linear homologous polymer is usually obtained empirically for any particular sample. Sample-to-sample comparisons are made in terms of the weight- or number-average molecular weights and graphic displays of the distribution curves. Such treatment generally precludes data interpretations in which a distribution can be described in...

  20. A Concise Introduction to Colombeau Generalized Functions and Their Applications in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the…

  1. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power source capacity and distribution. (a) Each installation whose functioning is required for type...

  2. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power source capacity and distribution. (a) Each installation whose functioning is required for type...

  3. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power source capacity and distribution. (a) Each installation whose functioning is required for type...

  4. Best Statistical Distribution of flood variables for Johor River in Malaysia

    NASA Astrophysics Data System (ADS)

    Salarpour Goodarzi, M.; Yusop, Z.; Yusof, F.

    2012-12-01

    A complex flood event is always characterized by a few characteristics such as flood peak, flood volume, and flood duration, which might be mutually correlated. This study explored the statistical distribution of peakflow, flood duration and flood volume at Rantau Panjang gauging station on the Johor River in Malaysia. Hourly data were recorded for 45 years. The data were analysed based on water year (July - June). Five distributions namely, Log Normal, Generalize Pareto, Log Pearson, Normal and Generalize Extreme Value (GEV) were used to model the distribution of all the three variables. Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests were used to evaluate the best fit. Goodness-of-fit tests at 5% level of significance indicate that all the models can be used to model the distribution of peakflow, flood duration and flood volume. However, Generalize Pareto distribution is found to be the most suitable model when tested with the Anderson-Darling test and the, Kolmogorov-Smirnov suggested that GEV is the best for peakflow. The result of this research can be used to improve flood frequency analysis. Comparison between Generalized Extreme Value, Generalized Pareto and Log Pearson distributions in the Cumulative Distribution Function of peakflow

  5. Queues with Dropping Functions and General Arrival Processes

    PubMed Central

    Chydzinski, Andrzej; Mrozowski, Pawel

    2016-01-01

    In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171

  6. Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics.

    PubMed

    Hoover, Brian G; Gamiz, Victor L

    2006-02-01

    The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence theory on the assumption of a random reflective phase screen and an expansion valid for large effective roughness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the sum of an incoherent component and a nonspecular coherent component proportional to an integral of the plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with previously published data in the examination of variations with incident angle, roughness, illumination wavelength, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic autocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results of the linear and parabolic approximations.

  7. Orbit Tomography: A Method for Determining the Population of Individual Fast-ion Orbits from Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-10-01

    Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  8. Comment on "Troublesome aspects of the Renyi-MaxEnt treatment"

    NASA Astrophysics Data System (ADS)

    Oikonomou, Thomas; Bagci, G. Baris

    2017-11-01

    Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016), 10.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.

  9. mrpy: Renormalized generalized gamma distribution for HMF and galaxy ensemble properties comparisons

    NASA Astrophysics Data System (ADS)

    Murray, Steven G.; Robotham, Aaron S. G.; Power, Chris

    2018-02-01

    mrpy calculates the MRP parameterization of the Halo Mass Function. It calculates basic statistics of the truncated generalized gamma distribution (TGGD) with the TGGD class, including mean, mode, variance, skewness, pdf, and cdf. It generates MRP quantities with the MRP class, such as differential number counts and cumulative number counts, and offers various methods for generating normalizations. It can generate the MRP-based halo mass function as a function of physical parameters via the mrp_b13 function, and fit MRP parameters to data in the form of arbitrary curves and in the form of a sample of variates with the SimFit class. mrpy also calculates analytic hessians and jacobians at any point, and allows the user to alternate parameterizations of the same form via the reparameterize module.

  10. Distributed Nash Equilibrium Seeking for Generalized Convex Games with Shared Constraints

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Hu, Guoqiang

    2018-05-01

    In this paper, we deal with the problem of finding a Nash equilibrium for a generalized convex game. Each player is associated with a convex cost function and multiple shared constraints. Supposing that each player can exchange information with its neighbors via a connected undirected graph, the objective of this paper is to design a Nash equilibrium seeking law such that each agent minimizes its objective function in a distributed way. Consensus and singular perturbation theories are used to prove the stability of the system. A numerical example is given to show the effectiveness of the proposed algorithms.

  11. Wigner functions for nonclassical states of a collection of two-level atoms

    NASA Technical Reports Server (NTRS)

    Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.

    1993-01-01

    The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.

  12. Soliton sustainable socio-economic distribution

    NASA Astrophysics Data System (ADS)

    Dresvyannikov, M. A.; Petrova, M. V.; Tshovrebov, A. M.

    2017-11-01

    In the work presented, from close positions, we consider: 1) the question of the stability of socio-economic distributions; 2) the question of the possible mechanism for the formation of fractional power-law dependences in the Cobb/Douglas production function; 3) the introduction of a fractional order derivative for a general analysis of a fractional power function; 4) bringing in a state of mutual matching of the interest rate and the production function of Cobb/Douglas.

  13. An estimation of distribution method for infrared target detection based on Copulas

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhang, Yiqun

    2015-10-01

    Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.

  14. PARTONS: PARtonic Tomography Of Nucleon Software. A computing framework for the phenomenology of Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Berthou, B.; Binosi, D.; Chouika, N.; Colaneri, L.; Guidal, M.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.; Sabatié, F.; Sznajder, P.; Wagner, J.

    2018-06-01

    We describe the architecture and functionalities of a C++ software framework, coined PARTONS, dedicated to the phenomenology of Generalized Parton Distributions. These distributions describe the three-dimensional structure of hadrons in terms of quarks and gluons, and can be accessed in deeply exclusive lepto- or photo-production of mesons or photons. PARTONS provides a necessary bridge between models of Generalized Parton Distributions and experimental data collected in various exclusive production channels. We outline the specification of the PARTONS framework in terms of practical needs, physical content and numerical capacity. This framework will be useful for physicists - theorists or experimentalists - not only to develop new models, but also to interpret existing measurements and even design new experiments.

  15. Generalized spherical and simplicial coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Wolf-Dieter

    2007-12-01

    Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.

  16. Statistical thermodynamics of a two-dimensional relativistic gas.

    PubMed

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  17. Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-09-01

    Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.

  18. Differential memory in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1991-01-01

    The process of 'differential memory' in the earth's magnetotail is studied in the framework of the modified Harris magnetotail geometry. It is verified that differential memory can generate non-Maxwellian features in the modified Harris field model. The time scales and the potentially observable distribution functions associated with the process of differential memory are investigated, and it is shown that non-Maxwelllian distributions can evolve as a test particle response to distribution function boundary conditions in a Harris field magnetotail model. The non-Maxwellian features which arise from distribution function mapping have definite time scales associated with them, which are generally shorter than the earthward convection time scale but longer than the typical Alfven crossing time.

  19. HYPERDIRE-HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function FC of three variables

    NASA Astrophysics Data System (ADS)

    Bytev, Vladimir V.; Kniehl, Bernd A.

    2016-09-01

    We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.

  20. Comment on "Troublesome aspects of the Renyi-MaxEnt treatment".

    PubMed

    Oikonomou, Thomas; Bagci, G Baris

    2017-11-01

    Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016)1539-375510.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.

  1. Maps on statistical manifolds exactly reduced from the Perron-Frobenius equations for solvable chaotic maps

    NASA Astrophysics Data System (ADS)

    Goto, Shin-itiro; Umeno, Ken

    2018-03-01

    Maps on a parameter space for expressing distribution functions are exactly derived from the Perron-Frobenius equations for a generalized Boole transform family. Here the generalized Boole transform family is a one-parameter family of maps, where it is defined on a subset of the real line and its probability distribution function is the Cauchy distribution with some parameters. With this reduction, some relations between the statistical picture and the orbital one are shown. From the viewpoint of information geometry, the parameter space can be identified with a statistical manifold, and then it is shown that the derived maps can be characterized. Also, with an induced symplectic structure from a statistical structure, symplectic and information geometric aspects of the derived maps are discussed.

  2. Generalized hamming networks and applications.

    PubMed

    Koutroumbas, Konstantinos; Kalouptsidis, Nicholas

    2005-09-01

    In this paper the classical Hamming network is generalized in various ways. First, for the Hamming maxnet, a generalized model is proposed, which covers under its umbrella most of the existing versions of the Hamming Maxnet. The network dynamics are time varying while the commonly used ramp function may be replaced by a much more general non-linear function. Also, the weight parameters of the network are time varying. A detailed convergence analysis is provided. A bound on the number of iterations required for convergence is derived and its distribution functions are given for the cases where the initial values of the nodes of the Hamming maxnet stem from the uniform and the peak distributions. Stabilization mechanisms aiming to prevent the node(s) with the maximum initial value diverging to infinity or decaying to zero are described. Simulations demonstrate the advantages of the proposed extension. Also, a rough comparison between the proposed generalized scheme as well as the original Hamming maxnet and its variants is carried out in terms of the time required for convergence, in hardware implementations. Finally, the other two parts of the Hamming network, namely the competitors generating module and the decoding module, are briefly considered in the framework of various applications such as classification/clustering, vector quantization and function optimization.

  3. Exact Distributions of Intraclass Correlation and Cronbach's Alpha with Gaussian Data and General Covariance

    ERIC Educational Resources Information Center

    Kistner, Emily O.; Muller, Keith E.

    2004-01-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact…

  4. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.

    PubMed

    Impelluso, Thomas J

    2003-06-01

    An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.

  5. Generalized Pearson distributions for charged particles interacting with an electric and/or a magnetic field

    NASA Astrophysics Data System (ADS)

    Rossani, A.; Scarfone, A. M.

    2009-06-01

    The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.

  6. Topology of Collisionless Relaxation

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2013-04-01

    Using extensive molecular dynamics simulations we explore the fine-grained phase space structure of systems with long-range interactions. We find that if the initial phase space particle distribution has no holes, the final stationary distribution will also contain a compact simply connected region. The microscopic holes created by the filamentation of the initial distribution function are always restricted to the outer regions of the phase space. In general, for complex multilevel distributions it is very difficult to a priori predict the final stationary state without solving the full dynamical evolution. However, we show that, for multilevel initial distributions satisfying a generalized virial condition, it is possible to predict the particle distribution in the final stationary state using Casimir invariants of the Vlasov dynamics.

  7. Generalized Boltzmann-Type Equations for Aggregation in Gases

    NASA Astrophysics Data System (ADS)

    Adzhiev, S. Z.; Vedenyapin, V. V.; Volkov, Yu. A.; Melikhov, I. V.

    2017-12-01

    The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker-Döring-type equation). The transition to a continuum description is performed.

  8. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    USGS Publications Warehouse

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.

  9. Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.

    PubMed

    Ginzburg, D; Mann, A

    2014-03-10

    A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.

  10. TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less

  11. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  12. A novel generalized normal distribution for human longevity and other negatively skewed data.

    PubMed

    Robertson, Henry T; Allison, David B

    2012-01-01

    Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution.

  13. A Novel Generalized Normal Distribution for Human Longevity and other Negatively Skewed Data

    PubMed Central

    Robertson, Henry T.; Allison, David B.

    2012-01-01

    Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution. PMID:22623974

  14. A Non-Parametric Probability Density Estimator and Some Applications.

    DTIC Science & Technology

    1984-05-01

    distributions, which are assumed to be representa- tive of platykurtic , mesokurtic, and leptokurtic distribu- tions in general. The dissertation is... platykurtic distributions. Consider, for example, the uniform distribution shown in Figure 4. 34 o . 1., Figure 4 -Sensitivity to Support Estimation The...results of the density function comparisons indicate that the new estimator is clearly -Z superior for platykurtic distributions, equal to the best 59

  15. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGES

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  16. Functional brain networks develop from a "local to distributed" organization.

    PubMed

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways.

  17. The perturbed Sparre Andersen model with a threshold dividend strategy

    NASA Astrophysics Data System (ADS)

    Gao, Heli; Yin, Chuancun

    2008-10-01

    In this paper, we consider a Sparre Andersen model perturbed by diffusion with generalized Erlang(n)-distributed inter-claim times and a threshold dividend strategy. Integro-differential equations with certain boundary conditions for the moment-generation function and the mth moment of the present value of all dividends until ruin are derived. We also derive integro-differential equations with boundary conditions for the Gerber-Shiu functions. The special case where the inter-claim times are Erlang(2) distributed and the claim size distribution is exponential is considered in some details.

  18. MaxEnt alternatives to pearson family distributions

    NASA Astrophysics Data System (ADS)

    Stokes, Barrie J.

    2012-05-01

    In a previous MaxEnt conference [11] a method of obtaining MaxEnt univariate distributions under a variety of constraints was presented. The Mathematica function Interpolation[], normally used with numerical data, can also process "semi-symbolic" data, and Lagrange Multiplier equations were solved for a set of symbolic ordinates describing the required MaxEnt probability density function. We apply a more developed version of this approach to finding MaxEnt distributions having prescribed β1 and β2 values, and compare the entropy of the MaxEnt distribution to that of the Pearson family distribution having the same β1 and β2. These MaxEnt distributions do have, in general, greater entropy than the related Pearson distribution. In accordance with Jaynes' Maximum Entropy Principle, these MaxEnt distributions are thus to be preferred to the corresponding Pearson distributions as priors in Bayes' Theorem.

  19. A comparative study of single-leg ground reaction forces in running lizards.

    PubMed

    McElroy, Eric J; Wilson, Robbie; Biknevicius, Audrone R; Reilly, Stephen M

    2014-03-01

    The role of different limbs in supporting and propelling the body has been studied in many species with animals appearing to have either similarity in limb function or differential limb function. Differential hindlimb versus forelimb function has been proposed as a general feature of running with a sprawling posture and as benefiting sprawled postured animals by enhancing maneuvering and minimizing joint moments. Yet only a few species have been studied and thus the generality of differential limb function in running animals with sprawled postures is unknown. We measured the limb lengths of seven species of lizard and their single-limb three-dimensional ground reaction forces during high-speed running. We found that all species relied on the hindlimb for producing accelerative forces. Braking forces were forelimb dominated in four species and equally distributed between limbs in the other three. Vertical forces were dominated by the hindlimb in three species and equally distributed between the forelimb and hindlimb in the other four. Medial forces were dominated by the hindlimb in four species and equally distributed in the other three, with all Iguanians exhibiting hindlimb-biased medial forces. Relative hindlimb to forelimb length of each species was related to variation in hindlimb versus forelimb medial forces; species with relatively longer hindlimbs compared with forelimbs exhibited medial forces that were more biased towards the hindlimbs. These results suggest that the function of individual limbs in lizards varies across species with only a single general pattern (hindlimb-dominated accelerative force) being present.

  20. Lindley frailty model for a class of compound Poisson processes

    NASA Astrophysics Data System (ADS)

    Kadilar, Gamze Özel; Ata, Nihal

    2013-10-01

    The Lindley distribution gain importance in survival analysis for the similarity of exponential distribution and allowance for the different shapes of hazard function. Frailty models provide an alternative to proportional hazards model where misspecified or omitted covariates are described by an unobservable random variable. Despite of the distribution of the frailty is generally assumed to be continuous, it is appropriate to consider discrete frailty distributions In some circumstances. In this paper, frailty models with discrete compound Poisson process for the Lindley distributed failure time are introduced. Survival functions are derived and maximum likelihood estimation procedures for the parameters are studied. Then, the fit of the models to the earthquake data set of Turkey are examined.

  1. Performance of different theories for the angular distribution of bremsstrahlung produced by keV electrons incident upon a target

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Andreo, Pedro; Poludniowski, Gavin

    2018-07-01

    Different theories of the intrinsic bremsstrahlung angular distribution (i.e., the shape function) have been evaluated using Monte Carlo calculations for various target materials and incident electron energies between 20 keV and 300 keV. The shape functions considered were the plane-wave first Born approximation cross sections (i) 2BS [high-energy result, screened nucleus], (ii) 2BN [general result, bare nucleus], (iii) KM [2BS modified to emulate 2BN], and (iv) SIM [leading term of 2BN]; (v) expression based on partial-waves expansion, KQP; and (vi) a uniform spherical distribution, UNI [a common approximation in certain analytical models]. The shape function was found to have an important impact on the bremsstrahlung emerging from thin foil targets in which the incident electrons undergo few elastic scatterings before exiting the target material. For thick transmission and reflection targets the type of shape function had less importance, as the intrinsic bremsstrahlung angular distribution was masked by the diffuse directional distribution of multiple scattered electrons. Predictions made using the 2BN and KQP theories were generally in good agreement, suggesting that the effect of screening and the constraints of the Born approximation on the intrinsic angular distribution may be acceptable. The KM and SIM shape functions deviated notably from KQP for low electron energies (< 50 keV), while 2BS and UNI performed poorly over most of the energy range considered; the 2BS shape function was found to be too forward-focused in emission, while UNI was not forward-focused enough. The results obtained emphasize the importance of the intrinsic bremsstrahlung angular distribution for theoretical predictions of x-ray emission, which is relevant in various applied disciplines, including x-ray crystallography, electron-probe microanalysis, security and industrial inspection, medical imaging, as well as low- and medium (orthovoltage) energy radiotherapy.

  2. The multicategory case of the sequential Bayesian pixel selection and estimation procedure

    NASA Technical Reports Server (NTRS)

    Pore, M. D.; Dennis, T. B. (Principal Investigator)

    1980-01-01

    A Bayesian technique for stratified proportion estimation and a sampling based on minimizing the mean squared error of this estimator were developed and tested on LANDSAT multispectral scanner data using the beta density function to model the prior distribution in the two-class case. An extention of this procedure to the k-class case is considered. A generalization of the beta function is shown to be a density function for the general case which allows the procedure to be extended.

  3. A lower bound on the Milky Way mass from general phase-space distribution function models

    NASA Astrophysics Data System (ADS)

    Bratek, Łukasz; Sikora, Szymon; Jałocha, Joanna; Kutschera, Marek

    2014-02-01

    We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ≈150-200 kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4 × 1011 M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A134

  4. The production function

    NASA Astrophysics Data System (ADS)

    Fioretti, Guido

    2007-02-01

    The productions function maps the inputs of a firm or a productive system onto its outputs. This article expounds generalizations of the production function that include state variables, organizational structures and increasing returns to scale. These extensions are needed in order to explain the regularities of the empirical distributions of certain economic variables.

  5. Robust, Adaptive Functional Regression in Functional Mixed Model Framework.

    PubMed

    Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S

    2011-09-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.

  6. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015

  7. Electron acoustic nonlinear structures in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  8. On the Wigner law in dilute random matrices

    NASA Astrophysics Data System (ADS)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  9. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan

    2018-04-01

    We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.

  10. Hazard function analysis for flood planning under nonstationarity

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-05-01

    The field of hazard function analysis (HFA) involves a probabilistic assessment of the "time to failure" or "return period," T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine, actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probability distribution function (pdf) of the return period always follows an exponential distribution, the same is not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrological applications. After a general introduction to HFA, we describe a new mathematical linkage between the magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the probabilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution provides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative approach to characterize the probabilistic properties of both nonstationary flood series and the resulting pdf of T.

  11. Generalized t-statistic for two-group classification.

    PubMed

    Komori, Osamu; Eguchi, Shinto; Copas, John B

    2015-06-01

    In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.

  12. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme

    NASA Astrophysics Data System (ADS)

    Cheng, Qin-Bo; Chen, Xi; Xu, Chong-Yu; Reinhardt-Imjela, Christian; Schulte, Achim

    2014-11-01

    In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and improved through the following steps: (1) the equivalent relationship between the Nash-Sutcliffe Efficiency coefficient (NSE) and the likelihood function with Gaussian independent and identically distributed residuals is proved; (2) a new estimation method of the Box-Cox transformation (BC) parameter is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3) three likelihood functions-NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized Error Distribution with BC (BC-SGED)-are applied for SWAT-WB-VSA (Soil and Water Assessment Tool - Water Balance - Variable Source Area) model calibration in the Baocun watershed, Eastern China. Performances of calibrated models are compared using the observed river discharges and groundwater levels. The result shows that the minimum variance constraint can effectively estimate the BC parameter. The form of the likelihood function significantly impacts on the calibrated parameters and the simulated results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well, but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of the large error is low, but the small error around zero approximates equiprobability. By contrast, SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary, because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach.

  13. Generalized formula for electron emission taking account of the polaron effect

    NASA Astrophysics Data System (ADS)

    Barengolts, Yu A.; Beril, S. I.; Barengolts, S. A.

    2018-01-01

    A generalized formula is derived for the electron emission current as a function of temperature, field, and electron work function in a metal-dielectric system that takes account of the quantum nature of the image forces. In deriving the formula, the Fermi-Dirac distribution for electrons in a metal and the quantum potential of the image obtained in the context of electron polaron theory are used.

  14. Internal force field in proteins seen by divergence entropy

    PubMed Central

    Marchewka, Damian; Banach, Mateusz; Roterman, Irena

    2011-01-01

    The characteristic distribution of non-binding interactions in a protein is described. It establishes that hydrophobic interactions can be characterized by suitable 3D Gauss functions while electrostatic interactions generally follow a random distribution. The implementation of this observation suggests differentiated optimization procedure for these two types of interactions. The electrostatic interaction may follow traditional energy optimization while the criteria for convergence shall measure the accordance with 3-D Gauss function. PMID:21769190

  15. On Born's Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal

    NASA Astrophysics Data System (ADS)

    Bétermin, Laurent; Knüpfer, Hans

    2018-04-01

    We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born's conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results hold for a class of completely monotone interaction potentials which includes Coulomb-type interactions for d≥3 . In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.

  16. On the distribution of a product of N Gaussian random variables

    NASA Astrophysics Data System (ADS)

    Stojanac, Željka; Suess, Daniel; Kliesch, Martin

    2017-08-01

    The product of Gaussian random variables appears naturally in many applications in probability theory and statistics. It has been known that the distribution of a product of N such variables can be expressed in terms of a Meijer G-function. Here, we compute a similar representation for the corresponding cumulative distribution function (CDF) and provide a power-log series expansion of the CDF based on the theory of the more general Fox H-functions. Numerical computations show that for small values of the argument the CDF of products of Gaussians is well approximated by the lowest orders of this expansion. Analogous results are also shown for the absolute value as well as the square of such products of N Gaussian random variables. For the latter two settings, we also compute the moment generating functions in terms of Meijer G-functions.

  17. Bernstein-Greene-Kruskal theory of electron holes in superthermal space plasma

    NASA Astrophysics Data System (ADS)

    Aravindakshan, Harikrishnan; Kakad, Amar; Kakad, Bharati

    2018-05-01

    Several spacecraft missions have observed electron holes (EHs) in Earth's and other planetary magnetospheres. These EHs are modeled with the stationary solutions of Vlasov-Poisson equations, obtained by adopting the Bernstein-Greene-Kruskal (BGK) approach. Through the literature survey, we find that the BGK EHs are modelled by using either thermal distribution function or any statistical distribution derived from particular spacecraft observations. However, Maxwell distributions are quite rare in space plasmas; instead, most of these plasmas are superthermal in nature and generally described by kappa distribution. We have developed a one-dimensional BGK model of EHs for space plasma that follows superthermal kappa distribution. The analytical solution of trapped electron distribution function for such plasmas is derived. The trapped particle distribution function in plasma following kappa distribution is found to be steeper and denser as compared to that for Maxwellian distribution. The width-amplitude relation of perturbation for superthermal plasma is derived and allowed regions of stable BGK solutions are obtained. We find that the stable BGK solutions are better supported by superthermal plasmas compared to that of thermal plasmas for small amplitude perturbations.

  18. New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

    PubMed

    Villéger, Sébastien; Mason, Norman W H; Mouillot, David

    2008-08-01

    Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.

  19. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

    PubMed

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-10-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

  20. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length

    PubMed Central

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-01-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094

  1. Power Laws are Disguised Boltzmann Laws

    NASA Astrophysics Data System (ADS)

    Richmond, Peter; Solomon, Sorin

    Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, w<=wm, the distribution function tends sharply to zero. The origin of this law lies in the random multiplicative process built into the model. Whilst such results have been known since the time of Gibrat, the present framework allows for a stable power law in an arbitrary and irregular global dynamics, so long as the market is ``fair'', i.e., there is no net advantage to any particular group or individual. We further show that the dynamics of relative wealth is independent of the specific nature of the agent interactions and exhibits a universal character even though the total wealth may follow an arbitrary and complicated dynamics. In developing the theory, we draw parallels with conventional thermodynamics and derive for the system some new relations for the ``thermodynamics'' associated with the Generalized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.

  2. Dielectric permeability tensor and linear waves in spin-1/2 quantum kinetics with non-trivial equilibrium spin-distribution functions

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2017-11-01

    A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.

  3. The beta Burr type X distribution properties with application.

    PubMed

    Merovci, Faton; Khaleel, Mundher Abdullah; Ibrahim, Noor Akma; Shitan, Mahendran

    2016-01-01

    We develop a new continuous distribution called the beta-Burr type X distribution that extends the Burr type X distribution. The properties provide a comprehensive mathematical treatment of this distribution. Further more, various structural properties of the new distribution are derived, that includes moment generating function and the rth moment thus generalizing some results in the literature. We also obtain expressions for the density, moment generating function and rth moment of the order statistics. We consider the maximum likelihood estimation to estimate the parameters. Additionally, the asymptotic confidence intervals for the parameters are derived from the Fisher information matrix. Finally, simulation study is carried at under varying sample size to assess the performance of this model. Illustration the real dataset indicates that this new distribution can serve as a good alternative model to model positive real data in many areas.

  4. General formulation of long-range degree correlations in complex networks

    NASA Astrophysics Data System (ADS)

    Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke

    2018-06-01

    We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.

  5. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.

  6. 14 CFR 27.1503 - Airspeed limitations: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Operating Limitations and Information... established. (b) When airspeed limitations are a function of weight, weight distribution, altitude, rotor...

  7. Novel formulation of the ℳ model through the Generalized-K distribution for atmospheric optical channels.

    PubMed

    Garrido-Balsells, José María; Jurado-Navas, Antonio; Paris, José Francisco; Castillo-Vazquez, Miguel; Puerta-Notario, Antonio

    2015-03-09

    In this paper, a novel and deeper physical interpretation on the recently published Málaga or ℳ statistical distribution is provided. This distribution, which is having a wide acceptance by the scientific community, models the optical irradiance scintillation induced by the atmospheric turbulence. Here, the analytical expressions previously published are modified in order to express them by a mixture of the known Generalized-K and discrete Binomial and Negative Binomial distributions. In particular, the probability density function (pdf) of the ℳ model is now obtained as a linear combination of these Generalized-K pdf, in which the coefficients depend directly on the parameters of the ℳ distribution. In this way, the Málaga model can be physically interpreted as a superposition of different optical sub-channels each of them described by the corresponding Generalized-K fading model and weighted by the ℳ dependent coefficients. The expressions here proposed are simpler than the equations of the original ℳ model and are validated by means of numerical simulations by generating ℳ -distributed random sequences and their associated histogram. This novel interpretation of the Málaga statistical distribution provides a valuable tool for analyzing the performance of atmospheric optical channels for every turbulence condition.

  8. An analysis of annual maximum streamflows in Terengganu, Malaysia using TL-moments approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Ummi Nadiah; Shabri, Ani; Zakaria, Zahrahtul Amani

    2013-02-01

    TL-moments approach has been used in an analysis to determine the best-fitting distributions to represent the annual series of maximum streamflow data over 12 stations in Terengganu, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: generalized pareto (GPA), generalized logistic, and generalized extreme value distribution. The influence of TL-moments on estimated probability distribution functions are examined by evaluating the relative root mean square error and relative bias of quantile estimates through Monte Carlo simulations. The boxplot is used to show the location of the median and the dispersion of the data, which helps in reaching the decisive conclusions. For most of the cases, the results show that TL-moments with one smallest value was trimmed from the conceptual sample (TL-moments (1,0)), of GPA distribution was the most appropriate in majority of the stations for describing the annual maximum streamflow series in Terengganu, Malaysia.

  9. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezzacappa, Anthony; Endeve, Eirik; Hauck, Cory D.

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and themore » use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.« less

  10. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  11. Log Normal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of Alpha Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2008-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316

  12. The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhmanov, E A; Suetin, S P

    2013-09-30

    The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the S-property in a harmonic external field. The existence problem for S-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potentialmore » theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the '1/9'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.« less

  13. Analysis of current distribution in a large superconductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa

    An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.

  14. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative

    PubMed Central

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-01-01

    SUMMARY Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence. The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster. Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501–507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients. PMID:23074359

  15. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative.

    PubMed

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-09-01

    Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence.The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster.Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501-507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients.

  16. Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p 3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p 3 z 3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z 3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less

  17. An extension of the Laplace transform to Schwartz distributions

    NASA Technical Reports Server (NTRS)

    Price, D. R.

    1974-01-01

    A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.

  18. Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions

    DOE PAGES

    Radyushkin, Anatoly V.

    2017-08-28

    Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p 3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p 3 z 3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z 3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less

  19. Dynamics of modulated beams in spectral domain

    DOE PAGES

    Yampolsky, Nikolai A.

    2017-07-16

    General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less

  20. Generalized ensemble theory with non-extensive statistics

    NASA Astrophysics Data System (ADS)

    Shen, Ke-Ming; Zhang, Ben-Wei; Wang, En-Ke

    2017-12-01

    The non-extensive canonical ensemble theory is reconsidered with the method of Lagrange multipliers by maximizing Tsallis entropy, with the constraint that the normalized term of Tsallis' q -average of physical quantities, the sum ∑ pjq, is independent of the probability pi for Tsallis parameter q. The self-referential problem in the deduced probability and thermal quantities in non-extensive statistics is thus avoided, and thermodynamical relationships are obtained in a consistent and natural way. We also extend the study to the non-extensive grand canonical ensemble theory and obtain the q-deformed Bose-Einstein distribution as well as the q-deformed Fermi-Dirac distribution. The theory is further applied to the generalized Planck law to demonstrate the distinct behaviors of the various generalized q-distribution functions discussed in literature.

  1. Generalized Courant-Snyder Theory and Kapchinskij-Vladimirskij Distribution For High-intensity Beams In A Coupled Transverse Focusing Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong QIn, Ronald Davidson

    2011-07-18

    The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.« less

  2. Generalized Courant-Snyder theory and Kapchinskij-Vladimirskij distribution for high-intensity beams in a coupled transverse focusing lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026; Davidson, Ronald C.

    2011-05-15

    The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation.« less

  3. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    NASA Astrophysics Data System (ADS)

    Berryman, James G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.

  4. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less

  5. Nucleon form factors in generalized parton distributions at high momentum transfers

    NASA Astrophysics Data System (ADS)

    Sattary Nikkhoo, Negin; Shojaei, Mohammad Reza

    2018-05-01

    This paper aims at calculating the elastic form factors for a nucleon by considering the extended Regge and modified Gaussian ansatzes based on the generalized parton distributions. To reach this goal, we have considered three different parton distribution functions (PDFs) and have compared the obtained results among them for high momentum transfer ranges. Minimum free parameters have been applied in our parametrization. After achieving the form factors, we calculate the electric radius and the transversely unpolarized and polarized densities for the nucleon. Furthermore, we obtain the impact-parameter-dependent PDFs. Finally, we compare our obtained data with the results of previous studies.

  6. Martian aeolian features and deposits - Comparisons with general circulation model results

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Skypeck, A.; Pollack, J. B.

    1993-02-01

    The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.

  7. Geodesics in nonexpanding impulsive gravitational waves with Λ. II

    NASA Astrophysics Data System (ADS)

    Sämann, Clemens; Steinbauer, Roland

    2017-11-01

    We investigate all geodesics in the entire class of nonexpanding impulsive gravitational waves propagating in an (anti-)de Sitter universe using the distributional metric. We extend the regularization approach of part I [Sämann, C. et al., Classical Quantum Gravity 33(11), 115002 (2016)] to a full nonlinear distributional analysis within the geometric theory of generalized functions. We prove global existence and uniqueness of geodesics that cross the impulsive wave and hence geodesic completeness in full generality for this class of low regularity spacetimes. This, in particular, prepares the ground for a mathematically rigorous account on the "physical equivalence" of the continuous form with the distributional "form" of the metric.

  8. Invariance in the recurrence of large returns and the validation of models of price dynamics

    NASA Astrophysics Data System (ADS)

    Chang, Lo-Bin; Geman, Stuart; Hsieh, Fushing; Hwang, Chii-Ruey

    2013-08-01

    Starting from a robust, nonparametric definition of large returns (“excursions”), we study the statistics of their occurrences, focusing on the recurrence process. The empirical waiting-time distribution between excursions is remarkably invariant to year, stock, and scale (return interval). This invariance is related to self-similarity of the marginal distributions of returns, but the excursion waiting-time distribution is a function of the entire return process and not just its univariate probabilities. Generalized autoregressive conditional heteroskedasticity (GARCH) models, market-time transformations based on volume or trades, and generalized (Lévy) random-walk models all fail to fit the statistical structure of excursions.

  9. Functional linear models for zero-inflated count data with application to modeling hospitalizations in patients on dialysis.

    PubMed

    Sentürk, Damla; Dalrymple, Lorien S; Nguyen, Danh V

    2014-11-30

    We propose functional linear models for zero-inflated count data with a focus on the functional hurdle and functional zero-inflated Poisson (ZIP) models. Although the hurdle model assumes the counts come from a mixture of a degenerate distribution at zero and a zero-truncated Poisson distribution, the ZIP model considers a mixture of a degenerate distribution at zero and a standard Poisson distribution. We extend the generalized functional linear model framework with a functional predictor and multiple cross-sectional predictors to model counts generated by a mixture distribution. We propose an estimation procedure for functional hurdle and ZIP models, called penalized reconstruction, geared towards error-prone and sparsely observed longitudinal functional predictors. The approach relies on dimension reduction and pooling of information across subjects involving basis expansions and penalized maximum likelihood techniques. The developed functional hurdle model is applied to modeling hospitalizations within the first 2 years from initiation of dialysis, with a high percentage of zeros, in the Comprehensive Dialysis Study participants. Hospitalization counts are modeled as a function of sparse longitudinal measurements of serum albumin concentrations, patient demographics, and comorbidities. Simulation studies are used to study finite sample properties of the proposed method and include comparisons with an adaptation of standard principal components regression. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Exclusive η electroproduction at W >2 GeV with CLAS and transversity generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Turisini, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yurov, M.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-03-01

    The cross section of the exclusive η electroproduction reaction e p →e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /d t d Q2d xBd ϕη and structure functions σU=σT+ɛ σL,σT T , and σL T, as functions of t , were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t , both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The π0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.

  11. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    NASA Astrophysics Data System (ADS)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  12. Wavelets and distributed approximating functionals

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Kouri, D. J.; Hoffman, D. K.

    1998-07-01

    A general procedure is proposed for constructing father and mother wavelets that have excellent time-frequency localization and can be used to generate entire wavelet families for use as wavelet transforms. One interesting feature of our father wavelets (scaling functions) is that they belong to a class of generalized delta sequences, which we refer to as distributed approximating functionals (DAFs). We indicate this by the notation wavelet-DAFs. Correspondingly, the mother wavelets generated from these wavelet-DAFs are appropriately called DAF-wavelets. Wavelet-DAFs can be regarded as providing a pointwise (localized) spectral method, which furnishes a bridge between the traditional global methods and local methods for solving partial differential equations. They are shown to provide extremely accurate numerical solutions for a number of nonlinear partial differential equations, including the Korteweg-de Vries (KdV) equation, for which a previous method has encountered difficulties (J. Comput. Phys. 132 (1997) 233).

  13. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John

    2007-01-01

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  14. Current collection in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  15. Renewal processes based on generalized Mittag-Leffler waiting times

    NASA Astrophysics Data System (ADS)

    Cahoy, Dexter O.; Polito, Federico

    2013-03-01

    The fractional Poisson process has recently attracted experts from several fields of study. Its natural generalization of the ordinary Poisson process made the model more appealing for real-world applications. In this paper, we generalized the standard and fractional Poisson processes through the waiting time distribution, and showed their relations to an integral operator with a generalized Mittag-Leffler function in the kernel. The waiting times of the proposed renewal processes have the generalized Mittag-Leffler and stretched-squashed Mittag-Leffler distributions. Note that the generalizations naturally provide greater flexibility in modeling real-life renewal processes. Algorithms to simulate sample paths and to estimate the model parameters are derived. Note also that these procedures are necessary to make these models more usable in practice. State probabilities and other qualitative or quantitative features of the models are also discussed.

  16. Price sensitive demand with random sales price - a newsboy problem

    NASA Astrophysics Data System (ADS)

    Sankar Sana, Shib

    2012-03-01

    Up to now, many newsboy problems have been considered in the stochastic inventory literature. Some assume that stochastic demand is independent of selling price (p) and others consider the demand as a function of stochastic shock factor and deterministic sales price. This article introduces a price-dependent demand with stochastic selling price into the classical Newsboy problem. The proposed model analyses the expected average profit for a general distribution function of p and obtains an optimal order size. Finally, the model is discussed for various appropriate distribution functions of p and illustrated with numerical examples.

  17. Spectral properties of four-time fermionic Green's functions

    DOE PAGES

    Shvaika, A. M.

    2016-09-01

    The spectral relations for the four-time fermionic Green's functions are derived in the most general case. The terms which correspond to the zero-frequency anomalies, known before only for the bosonic Green's functions, are separated and their connection with the second cumulants of the Boltzmann distribution function is elucidated. Furthermore, the high-frequency expansions of the four-time fermionic Green's functions are provided for different directions in the frequency space.

  18. Spectral properties of four-time fermionic Green's functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvaika, A. M.

    The spectral relations for the four-time fermionic Green's functions are derived in the most general case. The terms which correspond to the zero-frequency anomalies, known before only for the bosonic Green's functions, are separated and their connection with the second cumulants of the Boltzmann distribution function is elucidated. Furthermore, the high-frequency expansions of the four-time fermionic Green's functions are provided for different directions in the frequency space.

  19. Design distributed simulation platform for vehicle management system

    NASA Astrophysics Data System (ADS)

    Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua

    2006-11-01

    Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.

  20. PIC simulations of a three component plasma described by Kappa distribution functions as observed in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando

    2016-04-01

    In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  1. Generalized Cross Entropy Method for estimating joint distribution from incomplete information

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Yan; Kuo, Shyh-Hao; Li, Guoqi; Legara, Erika Fille T.; Zhao, Daxuan; Monterola, Christopher P.

    2016-07-01

    Obtaining a full joint distribution from individual marginal distributions with incomplete information is a non-trivial task that continues to challenge researchers from various domains including economics, demography, and statistics. In this work, we develop a new methodology referred to as ;Generalized Cross Entropy Method; (GCEM) that is aimed at addressing the issue. The objective function is proposed to be a weighted sum of divergences between joint distributions and various references. We show that the solution of the GCEM is unique and global optimal. Furthermore, we illustrate the applicability and validity of the method by utilizing it to recover the joint distribution of a household profile of a given administrative region. In particular, we estimate the joint distribution of the household size, household dwelling type, and household home ownership in Singapore. Results show a high-accuracy estimation of the full joint distribution of the household profile under study. Finally, the impact of constraints and weight on the estimation of joint distribution is explored.

  2. Analysis of extreme precipitation characteristics in low mountain areas based on three-dimensional copulas—taking Kuandian County as an example

    NASA Astrophysics Data System (ADS)

    Wang, Cailin; Ren, Xuehui; Li, Ying

    2017-04-01

    We defined the threshold of extreme precipitation using detrended fluctuation analysis based on daily precipitation during 1955-2013 in Kuandian County, Liaoning Province. Three-dimensional copulas were introduced to analyze the characteristics of four extreme precipitation factors: the annual extreme precipitation day, extreme precipitation amount, annual average extreme precipitation intensity, and extreme precipitation rate of contribution. The results show that (1) the threshold is 95.0 mm, extreme precipitation events generally occur 1-2 times a year, the average extreme precipitation intensity is 100-150 mm, and the extreme precipitation amount is 100-270 mm accounting for 10 to 37 % of annual precipitation. (2) The generalized extreme value distribution, extreme value distribution, and generalized Pareto distribution are suitable for fitting the distribution function for each element of extreme precipitation. The Ali-Mikhail-Haq (AMH) copula function reflects the joint characteristics of extreme precipitation factors. (3) The return period of the three types has significant synchronicity, and the joint return period and co-occurrence return period have long delay when the return period of the single factor is long. This reflects the inalienability of extreme precipitation factors. The co-occurrence return period is longer than that of the single factor and joint return period. (4) The single factor fitting only reflects single factor information of extreme precipitation but is unrelated to the relationship between factors. Three-dimensional copulas represent the internal information of extreme precipitation factors and are closer to the actual. The copula function is potentially widely applicable for the multiple factors of extreme precipitation.

  3. Spatio-temporal analysis of aftershock sequences in terms of Non Extensive Statistical Physics.

    NASA Astrophysics Data System (ADS)

    Chochlaki, Kalliopi; Vallianatos, Filippos

    2017-04-01

    Earth's seismicity is considered as an extremely complicated process where long-range interactions and fracturing exist (Vallianatos et al., 2016). For this reason, in order to analyze it, we use an innovative methodological approach, introduced by Tsallis (Tsallis, 1988; 2009), named Non Extensive Statistical Physics. This approach introduce a generalization of the Boltzmann-Gibbs statistical mechanics and it is based on the definition of Tsallis entropy Sq, which maximized leads the the so-called q-exponential function that expresses the probability distribution function that maximizes the Sq. In the present work, we utilize the concept of Non Extensive Statistical Physics in order to analyze the spatiotemporal properties of several aftershock series. Marekova (Marekova, 2014) suggested that the probability densities of the inter-event distances between successive aftershocks follow a beta distribution. Using the same data set we analyze the inter-event distance distribution of several aftershocks sequences in different geographic regions by calculating non extensive parameters that determine the behavior of the system and by fitting the q-exponential function, which expresses the degree of non-extentivity of the investigated system. Furthermore, the inter-event times distribution of the aftershocks as well as the frequency-magnitude distribution has been analyzed. The results supports the applicability of Non Extensive Statistical Physics ideas in aftershock sequences where a strong correlation exists along with memory effects. References C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487. doi:10.1007/BF01016429 C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world, 2009. doi:10.1007/978-0-387-85359-8. E. Marekova, Analysis of the spatial distribution between successive earthquakes in aftershocks series, Annals of Geophysics, 57, 5, doi:10.4401/ag-6556, 2014 F. Vallianatos, G. Papadakis, G. Michas, Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497, 2016.

  4. Empirical estimation of a distribution function with truncated and doubly interval-censored data and its application to AIDS studies.

    PubMed

    Sun, J

    1995-09-01

    In this paper we discuss the non-parametric estimation of a distribution function based on incomplete data for which the measurement origin of a survival time or the date of enrollment in a study is known only to belong to an interval. Also the survival time of interest itself is observed from a truncated distribution and is known only to lie in an interval. To estimate the distribution function, a simple self-consistency algorithm, a generalization of Turnbull's (1976, Journal of the Royal Statistical Association, Series B 38, 290-295) self-consistency algorithm, is proposed. This method is then used to analyze two AIDS cohort studies, for which direct use of the EM algorithm (Dempster, Laird and Rubin, 1976, Journal of the Royal Statistical Association, Series B 39, 1-38), which is computationally complicated, has previously been the usual method of the analysis.

  5. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Foudriat, E. C.

    1991-01-01

    A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant.

  6. Galaxy Selection and the Surface Brightness Distribution

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  7. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model

    NASA Astrophysics Data System (ADS)

    Jun, Suckjoon; Zhang, Haiyang; Bechhoefer, John

    2005-01-01

    Motivated by a recent application of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model to the study of DNA replication, we consider the one-dimensional (1D) version of this model. We generalize previous work to the case where the nucleation rate is an arbitrary function I(t) and obtain analytical results for the time-dependent distributions of various quantities (such as the island distribution). We also present improved computer simulation algorithms to study the 1D KJMA model. The analytical results and simulations are in excellent agreement.

  9. A modified weighted function method for parameter estimation of Pearson type three distribution

    NASA Astrophysics Data System (ADS)

    Liang, Zhongmin; Hu, Yiming; Li, Binquan; Yu, Zhongbo

    2014-04-01

    In this paper, an unconventional method called Modified Weighted Function (MWF) is presented for the conventional moment estimation of a probability distribution function. The aim of MWF is to estimate the coefficient of variation (CV) and coefficient of skewness (CS) from the original higher moment computations to the first-order moment calculations. The estimators for CV and CS of Pearson type three distribution function (PE3) were derived by weighting the moments of the distribution with two weight functions, which were constructed by combining two negative exponential-type functions. The selection of these weight functions was based on two considerations: (1) to relate weight functions to sample size in order to reflect the relationship between the quantity of sample information and the role of weight function and (2) to allocate more weights to data close to medium-tail positions in a sample series ranked in an ascending order. A Monte-Carlo experiment was conducted to simulate a large number of samples upon which statistical properties of MWF were investigated. For the PE3 parent distribution, results of MWF were compared to those of the original Weighted Function (WF) and Linear Moments (L-M). The results indicate that MWF was superior to WF and slightly better than L-M, in terms of statistical unbiasness and effectiveness. In addition, the robustness of MWF, WF, and L-M were compared by designing the Monte-Carlo experiment that samples are obtained from Log-Pearson type three distribution (LPE3), three parameter Log-Normal distribution (LN3), and Generalized Extreme Value distribution (GEV), respectively, but all used as samples from the PE3 distribution. The results show that in terms of statistical unbiasness, no one method possesses the absolutely overwhelming advantage among MWF, WF, and L-M, while in terms of statistical effectiveness, the MWF is superior to WF and L-M.

  10. The Time-Dependent Wavelet Spectrum of HH 1 and 2

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Reipurth, B.; Esquivel, A.; González-Gómez, D.; Riera, A.

    2018-04-01

    We have calculated the wavelet spectra of four epochs (spanning ≍20 yr) of Hα and [S II] HST images of HH 1 and 2. From these spectra we calculated the distribution functions of the (angular) radii of the emission structures. We found that the size distributions have maxima (corresponding to the characteristic sizes of the observed structures) with radii that are logarithmically spaced with factors of ≍2→3 between the successive peaks. The positions of these peaks generally showed small shifts towards larger sizes as a function of time. This result indicates that the structures of HH 1 and 2 have a general expansion (seen at all scales), and/or are the result of a sequence of merging events resulting in the formation of knots with larger characteristic sizes.

  11. Cryptographic Boolean Functions with Biased Inputs

    DTIC Science & Technology

    2015-07-31

    theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the

  12. Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Baluev, R. V.

    2018-04-01

    Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.

  13. How learning might strengthen existing visual object representations in human object-selective cortex.

    PubMed

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Generalization of multifractal theory within quantum calculus

    NASA Astrophysics Data System (ADS)

    Olemskoi, A.; Shuda, I.; Borisyuk, V.

    2010-03-01

    On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq=Dq(q-1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples.

  15. A new method for calculating differential distributions directly in Mellin space

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2006-12-01

    We present a new method for the calculation of differential distributions directly in Mellin space without recourse to the usual momentum-fraction (or z-) space. The method is completely general and can be applied to any process. It is based on solving the integration-by-parts identities when one of the powers of the propagators is an abstract number. The method retains the full dependence on the Mellin variable and can be implemented in any program for solving the IBP identities based on algebraic elimination, like Laporta. General features of the method are: (1) faster reduction, (2) smaller number of master integrals compared to the usual z-space approach and (3) the master integrals satisfy difference instead of differential equations. This approach generalizes previous results related to fully inclusive observables like the recently calculated three-loop space-like anomalous dimensions and coefficient functions in inclusive DIS to more general processes requiring separate treatment of the various physical cuts. Many possible applications of this method exist, the most notable being the direct evaluation of the three-loop time-like splitting functions in QCD.

  16. Beyond mean functional traits: Influence of functional trait profiles on forest structure, production, and mortality across the eastern US

    Treesearch

    Matthew B. Russell; Christopher W. Woodall; Anthony W. D' Amato; Grant M. Domke; Sassan S. Saatchi

    2014-01-01

    Plant functional traits (PFTs) have increased in popularity in recent years to describe various ecosystems and biological phenomena while advancing general ecological principles. To date, few have investigated distributional attributes of individual PFTs and their relationship with key attributes and processes of forest ecosystems. The objective of this study was to...

  17. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  18. Shape functions for velocity interpolation in general hexahedral cells

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2002-01-01

    Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

  19. Further Progress Applying the Generalized Wigner Distribution to Analysis of Vicinal Surfaces

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Richards, Howard L.; Cohen, S. D.

    2001-03-01

    Terrace width distributions (TWDs) can be well fit by the generalized Wigner distribution (GWD), generally better than by conventional Gaussians, and thus offers a convenient way to estimate the dimensionless elastic repulsion strength tildeA from σ^2, the TWD variance.(T.L. Einstein and O. Pierre-Louis, Surface Sci. 424), L299 (1999) The GWD σ^2 accurately reproduces values for the two exactly soluble cases at small tildeA and in the asymptotic limit. Taxing numerical simulations show that the GWD σ^2 interpolates well between these limits. Extensive applications have been made to experimental data, esp. on Cu.(M. Giesen and T.L. Einstein, Surface Sci. 449), 191 (2000) Recommended analysis procedures are catalogued.(H.L. Richards, S.D. Cohen, TLE, & M. Giesen, Surf Sci 453), 59 (2000) Extensions of the GWD for multistep distributions are tested, with good agreement for second-neighbor distributions, less good for third.(TLE, HLR, SDC, & OP-L, Proc ISSI-PDSC2000, cond-mat/0012xxxxx) Alternatively, step-step correlation functions, about which there is more theoretical information, should be measured.

  20. A New Insight into the Earthquake Recurrence Studies from the Three-parameter Generalized Exponential Distributions

    NASA Astrophysics Data System (ADS)

    Pasari, S.; Kundu, D.; Dikshit, O.

    2012-12-01

    Earthquake recurrence interval is one of the important ingredients towards probabilistic seismic hazard assessment (PSHA) for any location. Exponential, gamma, Weibull and lognormal distributions are quite established probability models in this recurrence interval estimation. However, they have certain shortcomings too. Thus, it is imperative to search for some alternative sophisticated distributions. In this paper, we introduce a three-parameter (location, scale and shape) exponentiated exponential distribution and investigate the scope of this distribution as an alternative of the afore-mentioned distributions in earthquake recurrence studies. This distribution is a particular member of the exponentiated Weibull distribution. Despite of its complicated form, it is widely accepted in medical and biological applications. Furthermore, it shares many physical properties with gamma and Weibull family. Unlike gamma distribution, the hazard function of generalized exponential distribution can be easily computed even if the shape parameter is not an integer. To contemplate the plausibility of this model, a complete and homogeneous earthquake catalogue of 20 events (M ≥ 7.0) spanning for the period 1846 to 1995 from North-East Himalayan region (20-32 deg N and 87-100 deg E) has been used. The model parameters are estimated using maximum likelihood estimator (MLE) and method of moment estimator (MOME). No geological or geophysical evidences have been considered in this calculation. The estimated conditional probability reaches quite high after about a decade for an elapsed time of 17 years (i.e. 2012). Moreover, this study shows that the generalized exponential distribution fits the above data events more closely compared to the conventional models and hence it is tentatively concluded that generalized exponential distribution can be effectively considered in earthquake recurrence studies.

  1. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  2. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE PAGES

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni; ...

    2017-01-10

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  3. Discriminating topology in galaxy distributions using network analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl

    2016-07-01

    The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.

  4. Eddington's demon: inferring galaxy mass functions and other distributions from uncertain data

    NASA Astrophysics Data System (ADS)

    Obreschkow, D.; Murray, S. G.; Robotham, A. S. G.; Westmeier, T.

    2018-03-01

    We present a general modified maximum likelihood (MML) method for inferring generative distribution functions from uncertain and biased data. The MML estimator is identical to, but easier and many orders of magnitude faster to compute than the solution of the exact Bayesian hierarchical modelling of all measurement errors. As a key application, this method can accurately recover the mass function (MF) of galaxies, while simultaneously dealing with observational uncertainties (Eddington bias), complex selection functions and unknown cosmic large-scale structure. The MML method is free of binning and natively accounts for small number statistics and non-detections. Its fast implementation in the R-package dftools is equally applicable to other objects, such as haloes, groups, and clusters, as well as observables other than mass. The formalism readily extends to multidimensional distribution functions, e.g. a Choloniewski function for the galaxy mass-angular momentum distribution, also handled by dftools. The code provides uncertainties and covariances for the fitted model parameters and approximate Bayesian evidences. We use numerous mock surveys to illustrate and test the MML method, as well as to emphasize the necessity of accounting for observational uncertainties in MFs of modern galaxy surveys.

  5. flexsurv: A Platform for Parametric Survival Modeling in R

    PubMed Central

    Jackson, Christopher H.

    2018-01-01

    flexsurv is an R package for fully-parametric modeling of survival data. Any parametric time-to-event distribution may be fitted if the user supplies a probability density or hazard function, and ideally also their cumulative versions. Standard survival distributions are built in, including the three and four-parameter generalized gamma and F distributions. Any parameter of any distribution can be modeled as a linear or log-linear function of covariates. The package also includes the spline model of Royston and Parmar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting function, flexsurvreg, uses the familiar syntax of survreg from the standard survival package (Therneau 2016). Censoring or left-truncation are specified in ‘Surv’ objects. The models are fitted by maximizing the full log-likelihood, and estimates and confidence intervals for any function of the model parameters can be printed or plotted. flexsurv also provides functions for fitting and predicting from fully-parametric multi-state models, and connects with the mstate package (de Wreede, Fiocco, and Putter 2011). This article explains the methods and design principles of the package, giving several worked examples of its use. PMID:29593450

  6. FUNSTAT and statistical image representations

    NASA Technical Reports Server (NTRS)

    Parzen, E.

    1983-01-01

    General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.

  7. Zero-truncated negative binomial - Erlang distribution

    NASA Astrophysics Data System (ADS)

    Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana

    2017-11-01

    The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.

  8. Adaptation, Growth, and Resilience in Biological Distribution Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.

  9. Theory of a general class of dissipative processes.

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Lasalle, J. P.; Slemrod, M.

    1972-01-01

    Development of a theory of periodic processes that is of sufficient generality for being applied to systems defined by partial differential equations (distributed parameter systems) and functional differential equations of the retarded and neutral type (hereditary systems), as well as to systems arising in the theory of elasticity. In particular, the attempt is made to develop a meaningful general theory of dissipative periodic systems with a wide range of applications.

  10. Modelling road accident blackspots data with the discrete generalized Pareto distribution.

    PubMed

    Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María

    2014-10-01

    This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Network dysfunction predicts speech production after left hemisphere stroke.

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2016-03-09

    To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. © 2016 American Academy of Neurology.

  12. Network dysfunction predicts speech production after left hemisphere stroke

    PubMed Central

    Leech, Robert; Wise, Richard J.S.

    2016-01-01

    Objective: To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. Methods: We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Results: Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Conclusions: Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. PMID:26962070

  13. Variation Principles and Applications in the Study of Cell Structure and Aging

    NASA Technical Reports Server (NTRS)

    Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.

    1981-01-01

    In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that similar general statistical principles and mechanisms may be operative in biological and technological systems. Despite the common belief that most biological and technological characteristics of interest have a symmetric bell-shaped (normal or Gaussian) distribution, we have shown that more often than not, distributions tend to be asymmetric and often resemble a so-called log-normal distribution. We saw that at least three general mechanisms may be operative, i.e., nonadditivity of influencing factors, competition among individuals for a common resource, and existence of an "optimum" value for a studied characteristic; more such mechanisms could exist.

  14. Combined distribution functions: A powerful tool to identify cation coordination geometries in liquid systems

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; D'Angelo, Paola; Migliorati, Valentina

    2018-01-01

    In this work we have developed an analytical procedure to identify metal ion coordination geometries in liquid media based on the calculation of Combined Distribution Functions (CDFs) starting from Molecular Dynamics (MD) simulations. CDFs provide a fingerprint which can be easily and unambiguously assigned to a reference polyhedron. The CDF analysis has been tested on five systems and has proven to reliably identify the correct geometries of several ion coordination complexes. This tool is simple and general and can be efficiently applied to different MD simulations of liquid systems.

  15. Derivation of the chemical-equilibrium rate coefficient using scattering theory

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1977-01-01

    Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.

  16. Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.

    PubMed

    Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A

    2015-11-01

    The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.

  17. Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

    PubMed Central

    Han, Fang; Wang, Zhijie; Fan, Hong

    2017-01-01

    This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760

  18. Nonparametric Bayesian inference for mean residual life functions in survival analysis.

    PubMed

    Poynor, Valerie; Kottas, Athanasios

    2018-01-19

    Modeling and inference for survival analysis problems typically revolves around different functions related to the survival distribution. Here, we focus on the mean residual life (MRL) function, which provides the expected remaining lifetime given that a subject has survived (i.e. is event-free) up to a particular time. This function is of direct interest in reliability, medical, and actuarial fields. In addition to its practical interpretation, the MRL function characterizes the survival distribution. We develop general Bayesian nonparametric inference for MRL functions built from a Dirichlet process mixture model for the associated survival distribution. The resulting model for the MRL function admits a representation as a mixture of the kernel MRL functions with time-dependent mixture weights. This model structure allows for a wide range of shapes for the MRL function. Particular emphasis is placed on the selection of the mixture kernel, taken to be a gamma distribution, to obtain desirable properties for the MRL function arising from the mixture model. The inference method is illustrated with a data set of two experimental groups and a data set involving right censoring. The supplementary material available at Biostatistics online provides further results on empirical performance of the model, using simulated data examples. © The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. scoringRules - A software package for probabilistic model evaluation

    NASA Astrophysics Data System (ADS)

    Lerch, Sebastian; Jordan, Alexander; Krüger, Fabian

    2016-04-01

    Models in the geosciences are generally surrounded by uncertainty, and being able to quantify this uncertainty is key to good decision making. Accordingly, probabilistic forecasts in the form of predictive distributions have become popular over the last decades. With the proliferation of probabilistic models arises the need for decision theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way. Various scoring rules have been developed over the past decades to address this demand. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. As such, they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This poster presents the software package scoringRules for the statistical programming language R, which contains functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. Two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, Bayesian forecasts produced via Markov Chain Monte Carlo take this form. Thereby, the scoringRules package provides a framework for generalized model evaluation that both includes Bayesian as well as classical parametric models. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices.

  20. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  1. Coupling Behavior and Vertical Distribution of Pteropods in Coastal Waters Using Data from the Video Plankton Recorder

    DTIC Science & Technology

    1997-09-30

    COUPLING BEHAVIOR AND VERTICAL DISTRIBUTION OF PTEROPODS IN COASTAL WATERS USING DATA FROM THE VIDEO PLANKTON RECORDER Scott M. Gallager Woods Hole...OBJECTIVES The general hypothesis being tested is that the vertical distribution of the pteropod Limacina retroversa is predictable as a function of light...the plankton, to a dynamic description of its instantaneous swimming behavior. 3) To couple objectives 1 and 2 through numerical modeling of pteropod

  2. Four Theorems on the Psychometric Function

    PubMed Central

    May, Keith A.; Solomon, Joshua A.

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, . This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull “slope” parameter, , can be approximated by , where is the of the Weibull function that fits best to the cumulative noise distribution, and depends on the transducer. We derive general expressions for and , from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when , . We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4–0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian. PMID:24124456

  3. Inference of relativistic electron spectra from measurements of inverse Compton radiation

    NASA Astrophysics Data System (ADS)

    Craig, I. J. D.; Brown, J. C.

    1980-07-01

    The inference of relativistic electron spectra from spectral measurement of inverse Compton radiation is discussed for the case where the background photon spectrum is a Planck function. The problem is formulated in terms of an integral transform that relates the measured spectrum to the unknown electron distribution. A general inversion formula is used to provide a quantitative assessment of the information content of the spectral data. It is shown that the observations must generally be augmented by additional information if anything other than a rudimentary two or three parameter model of the source function is to be derived. It is also pointed out that since a similar equation governs the continuum spectra emitted by a distribution of black-body radiators, the analysis is relevant to the problem of stellar population synthesis from galactic spectra.

  4. General well function for soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  5. A versatile test for equality of two survival functions based on weighted differences of Kaplan-Meier curves.

    PubMed

    Uno, Hajime; Tian, Lu; Claggett, Brian; Wei, L J

    2015-12-10

    With censored event time observations, the logrank test is the most popular tool for testing the equality of two underlying survival distributions. Although this test is asymptotically distribution free, it may not be powerful when the proportional hazards assumption is violated. Various other novel testing procedures have been proposed, which generally are derived by assuming a class of specific alternative hypotheses with respect to the hazard functions. The test considered by Pepe and Fleming (1989) is based on a linear combination of weighted differences of the two Kaplan-Meier curves over time and is a natural tool to assess the difference of two survival functions directly. In this article, we take a similar approach but choose weights that are proportional to the observed standardized difference of the estimated survival curves at each time point. The new proposal automatically makes weighting adjustments empirically. The new test statistic is aimed at a one-sided general alternative hypothesis and is distributed with a short right tail under the null hypothesis but with a heavy tail under the alternative. The results from extensive numerical studies demonstrate that the new procedure performs well under various general alternatives with a caution of a minor inflation of the type I error rate when the sample size is small or the number of observed events is small. The survival data from a recent cancer comparative study are utilized for illustrating the implementation of the process. Copyright © 2015 John Wiley & Sons, Ltd.

  6. - XSUMMER- Transcendental functions and symbolic summation in FORM

    NASA Astrophysics Data System (ADS)

    Moch, S.; Uwer, P.

    2006-05-01

    Harmonic sums and their generalizations are extremely useful in the evaluation of higher-order perturbative corrections in quantum field theory. Of particular interest have been the so-called nested sums, where the harmonic sums and their generalizations appear as building blocks, originating for example, from the expansion of generalized hypergeometric functions around integer values of the parameters. In this paper we discuss the implementation of several algorithms to solve these sums by algebraic means, using the computer algebra system FORM. Program summaryTitle of program:XSUMMER Catalogue identifier:ADXQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXQ_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland License:GNU Public License and FORM License Computers:all Operating system:all Program language:FORM Memory required to execute:Depending on the complexity of the problem, recommended at least 64 MB RAM No. of lines in distributed program, including test data, etc.:9854 No. of bytes in distributed program, including test data, etc.:126 551 Distribution format:tar.gz Other programs called:none External files needed:none Nature of the physical problem:Systematic expansion of higher transcendental functions in a small parameter. The expansions arise in the calculation of loop integrals in perturbative quantum field theory. Method of solution:Algebraic manipulations of nested sums. Restrictions on complexity of the problem:Usually limited only by the available disk space. Typical running time:Dependent on the complexity of the problem.

  7. A Further Note on Generalized Hyperexponential Distributions

    DTIC Science & Technology

    1989-11-15

    functions. The inverse transform of each of m factors is of the form The requirement that 0, < r7 thus yields a mixture of an atom at the origin and a...real and (0, + 0,+,)/2 < Re(r/,) when (7h, 77t4) are a complex conjugate pair. Then the inverse transform of f*(s) is a probability distribution. To

  8. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    PubMed

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  9. A survey of kernel-type estimators for copula and their applications

    NASA Astrophysics Data System (ADS)

    Sumarjaya, I. W.

    2017-10-01

    Copulas have been widely used to model nonlinear dependence structure. Main applications of copulas include areas such as finance, insurance, hydrology, rainfall to name but a few. The flexibility of copula allows researchers to model dependence structure beyond Gaussian distribution. Basically, a copula is a function that couples multivariate distribution functions to their one-dimensional marginal distribution functions. In general, there are three methods to estimate copula. These are parametric, nonparametric, and semiparametric method. In this article we survey kernel-type estimators for copula such as mirror reflection kernel, beta kernel, transformation method and local likelihood transformation method. Then, we apply these kernel methods to three stock indexes in Asia. The results of our analysis suggest that, albeit variation in information criterion values, the local likelihood transformation method performs better than the other kernel methods.

  10. An integrative architecture for general intelligence and executive function revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393

  11. Induced Ellipticity for Inspiraling Binary Systems

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Xianyu, Zhong-Zhi

    2018-01-01

    Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.

  12. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhang; Chen, Wei

    Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.

  13. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis

    DOE PAGES

    Jiang, Zhang; Chen, Wei

    2017-11-03

    Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.

  14. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  15. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  16. Sea-quark distributions in the pion

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.; Speth, J.

    1992-05-01

    Using Sullivan processes with ρππ, K*+K¯ 0π, and K¯ *0K+π vertices, we describe how the sea-quark distributions of a pion may be generated in a quantitative manner. The input valence-quark distributions are obtained using the leading Fock component of the light-cone wave function, which is in accord with results obtained from the QCD sum rules. The sample numerical results appear to be reasonable as far as the existing Drell-Yan production data are concerned, although the distributions as a function of x differs slightly from those obtained by imposing counting rules for x-->0 and x-->1. Our results lend additional support toward the conjecture of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes.

  17. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions

    NASA Astrophysics Data System (ADS)

    Su, Zhu; Jin, Guoyong; Ye, Tiangui

    2016-06-01

    The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.

  18. Excitation functions of parameters extracted from three-source (net-)proton rapidity distributions in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    NASA Astrophysics Data System (ADS)

    Gao, Li-Na; Liu, Fu-Hu; Sun, Yan; Sun, Zhu; Lacey, Roy A.

    2017-03-01

    Experimental results of the rapidity spectra of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a three-source distribution. The values of the distribution width σC and fraction kC of the central rapidity region, and the distribution width σF and rapidity shift Δ y of the forward/backward rapidity regions, are then obtained. The excitation function of σC increases generally with increase of the center-of-mass energy per nucleon pair √{s_{NN}}. The excitation function of σF shows a saturation at √{s_{NN}}=8.8 GeV. The excitation function of kC shows a minimum at √{s_{NN}}=8.8 GeV and a saturation at √{s_{NN}} ≈ 17 GeV. The excitation function of Δ y increases linearly with ln(√{s_{NN}}) in the considered energy range.

  19. Effects of the financial crisis on the wealth distribution of Korea's companies

    NASA Astrophysics Data System (ADS)

    Lim, Kyuseong; Kim, Soo Yong; Swanson, Todd; Kim, Jooyun

    2017-02-01

    We investigated the distribution functions of Korea's top-rated companies during two financial crises. A power-law scaling for rank distribution, as well as cumulative probability distribution, was found and observed as a general pattern. Similar distributions can be shown in other studies of wealth and income distributions. In our study, the Pareto exponents designating the distribution differed before and after the crisis. The companies covered in this research are divided into two subgroups during a period when the subprime mortgage crisis occurred. Various industrial sectors of Korea's companies were found to respond differently during the two financial crises, especially the construction sector, financial sectors, and insurance groups.

  20. Distribution function of random strains in an elastically anisotropic continuum and defect strengths of T m3 + impurity ions in crystals with zircon structure

    NASA Astrophysics Data System (ADS)

    Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.

    2017-07-01

    We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.

  1. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  2. Optimal dynamic control of resources in a distributed system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang

    1989-01-01

    The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.

  3. Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations

    NASA Astrophysics Data System (ADS)

    Bovy Jo; Hogg, David W.; Roweis, Sam T.

    2011-06-01

    We generalize the well-known mixtures of Gaussians approach to density estimation and the accompanying Expectation-Maximization technique for finding the maximum likelihood parameters of the mixture to the case where each data point carries an individual d-dimensional uncertainty covariance and has unique missing data properties. This algorithm reconstructs the error-deconvolved or "underlying" distribution function common to all samples, even when the individual data points are samples from different distributions, obtained by convolving the underlying distribution with the heteroskedastic uncertainty distribution of the data point and projecting out the missing data directions. We show how this basic algorithm can be extended with conjugate priors on all of the model parameters and a "split-and-"erge- procedure designed to avoid local maxima of the likelihood. We demonstrate the full method by applying it to the problem of inferring the three-dimensional veloc! ity distribution of stars near the Sun from noisy two-dimensional, transverse velocity measurements from the Hipparcos satellite.

  4. [Data distribution and transformation in population based sampling survey of viral load in HIV positive men who have sex with men in China].

    PubMed

    Dou, Z; Chen, J; Jiang, Z; Song, W L; Xu, J; Wu, Z Y

    2017-11-10

    Objective: To understand the distribution of population viral load (PVL) data in HIV infected men who have sex with men (MSM), fit distribution function and explore the appropriate estimating parameter of PVL. Methods: The detection limit of viral load (VL) was ≤ 50 copies/ml. Box-Cox transformation and normal distribution tests were used to describe the general distribution characteristics of the original and transformed data of PVL, then the stable distribution function was fitted with test of goodness of fit. Results: The original PVL data fitted a skewed distribution with the variation coefficient of 622.24%, and had a multimodal distribution after Box-Cox transformation with optimal parameter ( λ ) of-0.11. The distribution of PVL data over the detection limit was skewed and heavy tailed when transformed by Box-Cox with optimal λ =0. By fitting the distribution function of the transformed data over the detection limit, it matched the stable distribution (SD) function ( α =1.70, β =-1.00, γ =0.78, δ =4.03). Conclusions: The original PVL data had some censored data below the detection limit, and the data over the detection limit had abnormal distribution with large degree of variation. When proportion of the censored data was large, it was inappropriate to use half-value of detection limit to replace the censored ones. The log-transformed data over the detection limit fitted the SD. The median ( M ) and inter-quartile ranger ( IQR ) of log-transformed data can be used to describe the centralized tendency and dispersion tendency of the data over the detection limit.

  5. Efficient polarimetric BRDF model.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.

  6. The Applicability of Confidence Intervals of Quantiles for the Generalized Logistic Distribution

    NASA Astrophysics Data System (ADS)

    Shin, H.; Heo, J.; Kim, T.; Jung, Y.

    2007-12-01

    The generalized logistic (GL) distribution has been widely used for frequency analysis. However, there is a little study related to the confidence intervals that indicate the prediction accuracy of distribution for the GL distribution. In this paper, the estimation of the confidence intervals of quantiles for the GL distribution is presented based on the method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) and the asymptotic variances of each quantile estimator are derived as functions of the sample sizes, return periods, and parameters. Monte Carlo simulation experiments are also performed to verify the applicability of the derived confidence intervals of quantile. As the results, the relative bias (RBIAS) and relative root mean square error (RRMSE) of the confidence intervals generally increase as return period increases and reverse as sample size increases. And PWM for estimating the confidence intervals performs better than the other methods in terms of RRMSE when the data is almost symmetric while ML shows the smallest RBIAS and RRMSE when the data is more skewed and sample size is moderately large. The GL model was applied to fit the distribution of annual maximum rainfall data. The results show that there are little differences in the estimated quantiles between ML and PWM while distinct differences in MOM.

  7. Electron velocity distributions near the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Anderson, R. C.; Bame, S. J.; Gary, S. P.; Gosling, J. T.; Mccomas, D. J.; Thomsen, M. F.; Paschmann, G.; Hoppe, M. M.

    1983-01-01

    New information is presented on the general characteristics of electron distribution functions upstream, within, and downstream of the earth's bow shock, thereby providing new insights into the instabilities in collisionless shocks. The results presented are from a survey of electron velocity distributions measured near the earth's bow shock between October 1977 and December 1978 using the Los Alamos/Garching plasma instrumentation aboard ISEE 2. A wide variety of distribution shapes is found within the different plasma regions in close proximity to the bow shock. It is found that these shapes can be classified into general types that are characteristic of three different plasma regions, namely the upstream region or electron foreshock, the shock proper where most of the heating occurs, and the downstream region or the magnetosheath. Evidence is provided that field-aligned, rather than cross-field, instabilities are the major source of electron dissipation in the earth's bow shock.

  8. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  9. Removing the Impact of Correlated PSF Uncertainties in Weak Lensing

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-05-01

    Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.

  10. Generalised quasiprobability distribution for Hermite polynomial squeezed states

    NASA Astrophysics Data System (ADS)

    Datta, Sunil; D'Souza, Richard

    1996-02-01

    Generalized quasiprobability distributions (QPD) for Hermite polynomial states are presented. These states are solutions of an eigenvalue equation which is quadratic in creation and annihilation operators. Analytical expressions for the QPD are presented for some special cases of the eigenvalues. For large squeezing these analytical expressions for the QPD take the form of a finite series in even Hermite functions. These expressions very transparently exhibit the transition between, P, Q and W functions corresponding to the change of the s-parameter of the QPD. Further, they clearly show the two-photon nature of the processes involved in the generation of these states.

  11. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  12. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  13. The decline and fall of Type II error rates

    Treesearch

    Steve Verrill; Mark Durst

    2005-01-01

    For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.

  14. Generalized Wishart Mixtures for Unsupervised Classification of PolSAR Data

    NASA Astrophysics Data System (ADS)

    Li, Lan; Chen, Erxue; Li, Zengyuan

    2013-01-01

    This paper presents an unsupervised clustering algorithm based upon the expectation maximization (EM) algorithm for finite mixture modelling, using the complex wishart probability density function (PDF) for the probabilities. The mixture model enables to consider heterogeneous thematic classes which could not be better fitted by the unimodal wishart distribution. In order to make it fast and robust to calculate, we use the recently proposed generalized gamma distribution (GΓD) for the single polarization intensity data to make the initial partition. Then we use the wishart probability density function for the corresponding sample covariance matrix to calculate the posterior class probabilities for each pixel. The posterior class probabilities are used for the prior probability estimates of each class and weights for all class parameter updates. The proposed method is evaluated and compared with the wishart H-Alpha-A classification. Preliminary results show that the proposed method has better performance.

  15. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  16. Regional intensity-duration-frequency analysis in the Eastern Black Sea Basin, Turkey, by using L-moments and regression analysis

    NASA Astrophysics Data System (ADS)

    Ghiaei, Farhad; Kankal, Murat; Anilan, Tugce; Yuksek, Omer

    2018-01-01

    The analysis of rainfall frequency is an important step in hydrology and water resources engineering. However, a lack of measuring stations, short duration of statistical periods, and unreliable outliers are among the most important problems when designing hydrology projects. In this study, regional rainfall analysis based on L-moments was used to overcome these problems in the Eastern Black Sea Basin (EBSB) of Turkey. The L-moments technique was applied at all stages of the regional analysis, including determining homogeneous regions, in addition to fitting and estimating parameters from appropriate distribution functions in each homogeneous region. We studied annual maximum rainfall height values of various durations (5 min to 24 h) from seven rain gauge stations located in the EBSB in Turkey, which have gauging periods of 39 to 70 years. Homogeneity of the region was evaluated by using L-moments. The goodness-of-fit criterion for each distribution was defined as the ZDIST statistics, depending on various distributions, including generalized logistic (GLO), generalized extreme value (GEV), generalized normal (GNO), Pearson type 3 (PE3), and generalized Pareto (GPA). GLO and GEV determined the best distributions for short (5 to 30 min) and long (1 to 24 h) period data, respectively. Based on the distribution functions, the governing equations were extracted for calculation of intensities of 2, 5, 25, 50, 100, 250, and 500 years return periods (T). Subsequently, the T values for different rainfall intensities were estimated using data quantifying maximum amount of rainfall at different times. Using these T values, duration, altitude, latitude, and longitude values were used as independent variables in a regression model of the data. The determination coefficient ( R 2) value indicated that the model yields suitable results for the regional relationship of intensity-duration-frequency (IDF), which is necessary for the design of hydraulic structures in small and medium sized catchments.

  17. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  18. Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz

    NASA Astrophysics Data System (ADS)

    Vanicat, Matthieu

    2018-04-01

    We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.

  19. Generalized time evolution of the homogeneous cooling state of a granular gas with positive and negative coefficient of normal restitution

    NASA Astrophysics Data System (ADS)

    Khalil, Nagi

    2018-04-01

    The homogeneous cooling state (HCS) of a granular gas described by the inelastic Boltzmann equation is reconsidered. As usual, particles are taken as inelastic hard disks or spheres, but now the coefficient of normal restitution α is allowed to take negative values , which is a simple way of modeling more complicated inelastic interactions. The distribution function of the HCS is studied at the long-time limit, as well as intermediate times. At the long-time limit, the relevant information of the HCS is given by a scaling distribution function , where the time dependence occurs through a dimensionless velocity c. For , remains close to the Gaussian distribution in the thermal region, its cumulants and exponential tails being well described by the first Sonine approximation. In contrast, for , the distribution function becomes multimodal, its maxima located at , and its observable tails algebraic. The latter is a consequence of an unbalanced relaxation–dissipation competition, and is analytically demonstrated for , thanks to a reduction of the Boltzmann equation to a Fokker–Plank-like equation. Finally, a generalized scaling solution to the Boltzmann equation is also found . Apart from the time dependence occurring through the dimensionless velocity, depends on time through a new parameter β measuring the departure of the HCS from its long-time limit. It is shown that describes the time evolution of the HCS for almost all times. The relevance of the new scaling is also discussed.

  20. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  1. Double density dynamics: realizing a joint distribution of a physical system and a parameter system

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo; Moritsugu, Kei

    2015-11-01

    To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.

  2. Remarkable features in lattice-parameter ratios of crystals. II. Monoclinic and triclinic crystals.

    PubMed

    de Gelder, R; Janner, A

    2005-06-01

    The frequency distributions of monoclinic crystals as a function of the lattice-parameter ratios resemble the corresponding ones of orthorhombic crystals: an exponential component, with more or less pronounced sharp peaks, with in general the most important peak at the ratio value 1. In addition, the distribution as a function of the monoclinic angle beta has a sharp peak at 90 degrees and decreases sensibly at larger angles. Similar behavior is observed for the three triclinic angular parameters alpha, beta and gamma, with characteristic differences between the organic and metal-organic, bio-macromolecular and inorganic crystals, respectively. The general behavior observed for the hexagonal, tetragonal, orthorhombic, monoclinic and triclinic crystals {in the first part of this series [de Gelder & Janner (2005). Acta Cryst. B61, 287-295] and in the present case} is summarized and commented. The data involved represent 366 800 crystals, with lattice parameters taken from the Cambridge Structural Database, CSD (294 400 entries), the Protein Data Bank, PDB (18 800 entries), and the Inorganic Crystal Structure Database, ICSD (53 600 entries). A new general structural principle is suggested.

  3. Optimum design of structures subject to general periodic loads

    NASA Technical Reports Server (NTRS)

    Reiss, Robert; Qian, B.

    1989-01-01

    A simplified version of Icerman's problem regarding the design of structures subject to a single harmonic load is discussed. The nature of the restrictive conditions that must be placed on the design space in order to ensure an analytic optimum are discussed in detail. Icerman's problem is then extended to include multiple forcing functions with different driving frequencies. And the conditions that now must be placed upon the design space to ensure an analytic optimum are again discussed. An important finding is that all solutions to the optimality condition (analytic stationary design) are local optima, but the global optimum may well be non-analytic. The more general problem of distributing the fixed mass of a linear elastic structure subject to general periodic loads in order to minimize some measure of the steady state deflection is also considered. This response is explicitly expressed in terms of Green's functional and the abstract operators defining the structure. The optimality criterion is derived by differentiating the response with respect to the design parameters. The theory is applicable to finite element as well as distributed parameter models.

  4. [Good drug distribution practice and its implementation in drug distribution companies].

    PubMed

    Draksiene, Gailute

    2002-01-01

    Good Distribution Practice is based on the Directive of the Board of the European Community 92/25/EEC regarding the wholesale distribution of drugs for human consumption. It is stated in the Directive that the whole drug distribution channel is to be controlled from the point of drug production or import down to the supplies to the end user. In order to reach the goal, the drug distribution company must create the quality assurance system and facilitate its correct functioning. This aim requires development of the rules of the Good Distribution Practice. Those rules set the general requirements of the Good Distribution Practice for distribution companies that they must conduct. The article explains main requirements postulated in the rules of the Good Distribution Practice and implementation of the Good Distribution Practice requirements in drug distribution companies.

  5. Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain

    PubMed Central

    Barrett, Lisa Feldman; Satpute, Ajay

    2013-01-01

    Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. PMID:23352202

  6. Stochastic theory of size exclusion chromatography by the characteristic function approach.

    PubMed

    Dondi, Francesco; Cavazzini, Alberto; Remelli, Maurizio; Felinger, Attila; Martin, Michel

    2002-01-18

    A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamental role of the 'ergodic' hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models. Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.

  7. The Effects of Scattered Light from Optical Components on Visual Function

    DTIC Science & Technology

    2016-02-01

    zones (e.g., 0-5° vs 5-10°) occurs, then the general distribution of scatter, uniform or not, or that some ratio of scatter between different angular...affect the sensitivity of the eye and none reported having refractive surgery within the past year (photorefractive keratectomy ( PRK ) or laser...assisted in situ keratomileusis ( LASIK )). They performed all the visual function tasks monocularly, using the right eye. 2.3 Visual Function Assessment

  8. Origin of the violation of the Gottfried sum rule

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.; Speth, J.

    1992-08-01

    Using generalized Sullivan processes to generate sea-quark distributions of a nucleon at Q2=4 GeV2, we find that the recent finding by the New Muon Collaboration on the violation of the Gottfried sum rule can be understood quantitatively, including the shape of Fp2(x)-Fn2(x) as a function of x. The agreement may be seen as a clear evidence toward the validity of a recent suggestion of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes.

  9. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    NASA Astrophysics Data System (ADS)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  10. A Distributed Representation of Remembered Time

    DTIC Science & Technology

    2015-11-19

    hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...The hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...accomplished this goal by developing a computational framework that describes a wide range of functional cellular correlates in the hippocampus and

  11. FAST TRACK COMMUNICATION: General approach to \\mathfrak {SU}(n) quasi-distribution functions

    NASA Astrophysics Data System (ADS)

    Klimov, Andrei B.; de Guise, Hubert

    2010-10-01

    We propose an operational form for the kernel of a mapping between an operator acting in a Hilbert space of a quantum system with an \\mathfrak {SU}(n) symmetry group and its symbol in the corresponding classical phase space. For symmetric irreps of \\mathfrak {SU}(n) , this mapping is bijective. We briefly discuss complications that will occur in the general case.

  12. Transverse momentum dependent (TMD) parton distribution functions generated in the modified DGLAP formalism based on the valence-like distributions

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, H.; Modarres, M.; Olanj, N.

    2017-07-01

    Transverse momentum dependent (TMD) parton distributions, also referred to as unintegrated parton distribution functions (UPDFs), are produced via the Kimber-Martin-Ryskin (KMR) prescription. The GJR08 set of parton distribution functions (PDFs) which are based on the valence-like distributions is used, at the leading order (LO) and the next-to-leading order (NLO) approximations, as inputs of the KMR formalism. The general and the relative behaviors of the generated TMD PDFs at LO and NLO and their ratios in a wide range of the transverse momentum values, i.e. kt2 = 10, 102, 104 and 108GeV2 are investigated. It is shown that the properties of the parent valence-like PDFs are imprinted on the daughter TMD PDFs. Imposing the angular ordering constraint (AOC) leads to the dynamical variable limits on the integrals which in turn increase the contributions from the lower scales at lower kt2. The results are compared with our previous studies based on the MSTW2008 input PDFs and it is shown that the present calculation gives flatter TMD PDFs. Finally, a comparison of longitudinal structure function (FL) is made by using the produced TMD PDFs and those that were generated through the MSTW2008-LO PDF from our previous work and the corresponding data from H1 and ZEUS collaborations and a reasonable agreement is found.

  13. Modeling Fractal Structure of City-Size Distributions Using Correlation Functions

    PubMed Central

    Chen, Yanguang

    2011-01-01

    Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences. PMID:21949753

  14. A generalized threshold model for computing bed load grain size distribution

    NASA Astrophysics Data System (ADS)

    Recking, Alain

    2016-12-01

    For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.

  15. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    PubMed

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems.

    PubMed

    Tang, Ying; Yuan, Ruoshi; Ma, Yian

    2013-01-01

    Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.

  17. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Yuan, Ruoshi; Ma, Yian

    2013-01-01

    Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.

  18. Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements

    NASA Astrophysics Data System (ADS)

    Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.

    2017-07-01

    Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Finally we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.

  19. Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements

    DOE PAGES

    Briceno, Raul A.; Hansen, Maxwell T.; Monahan, Christopher J.

    2017-07-11

    Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate thatmore » the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Lastly, we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Hansen, Maxwell T.; Monahan, Christopher J.

    Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate thatmore » the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Lastly, we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.« less

  1. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  2. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  3. Models and algorithm of optimization launch and deployment of virtual network functions in the virtual data center

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2017-10-01

    The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.

  4. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.

    PubMed

    Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin

    2018-05-01

    Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Spacecraft observations of a Maxwell Demon coating the separatrix of asymmetric magnetic reconnection with crescent-shaped electron distributions

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Le, A.; Daughton, W.; Wetherton, B.; Cassak, Pa; Chen, Lj; Lavraud, B.; Dorell, J.; Avanov, L.; Gershman, D.

    2016-10-01

    During asymmetric magnetic reconnection in the dayside magnetopause in situ spacecraft mea- surements show that electrons from the high density inflow penetrate some distance into the low density inflow. Supported by a kinetic simulation, we present a general derivation of an exclusion energy parameter, which provides a lower kinetic energy bound for an electron to jump across the reconnection region from one inflow region to the other. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, strongly impacting the form of the electron distribution function observed along the low density side separatrix. The dynamics produce two distinct flavors of crescent-shaped electron distributions in a thin boundary layer along the separatrix between the magnetospheric inflow and the reconnection exhaust. The analytical model presented relates these salient details of the distribution function to the electron dynamics in the inner reconnection region.

  6. Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems.

    PubMed

    Varga, Imre; Pipek, János

    2003-08-01

    We discuss some properties of the generalized entropies, called Rényi entropies, and their application to the case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent; however, their differences are free from these divergences, thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corroborate our expectations.

  7. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    NASA Astrophysics Data System (ADS)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  8. Single-diffractive production of dijets within the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    Łuszczak, Marta; Maciuła, Rafał; Szczurek, Antoni; Babiarz, Izabela

    2017-09-01

    We discuss single-diffractive production of dijets. The cross section is calculated within the resolved Pomeron picture, for the first time in the kt-factorization approach, neglecting transverse momentum of the Pomeron. We use Kimber-Martin-Ryskin unintegrated parton (gluon, quark, antiquark) distributions in both the proton as well as in the Pomeron or subleading Reggeon. The unintegrated parton distributions are calculated based on conventional mmht2014nlo parton distribution functions in the proton and H1 Collaboration diffractive parton distribution functions used previously in the analysis of diffractive structure function and dijets at HERA. For comparison, we present results of calculations performed within the collinear-factorization approach. Our results remain those obtained in the next-to-leading-order approach. The calculation is (must be) supplemented by the so-called gap survival factor, which may, in general, depend on kinematical variables. We try to describe the existing data from Tevatron and make detailed predictions for possible LHC measurements. Several differential distributions are calculated. The E¯T, η ¯ and xp ¯ distributions are compared with the Tevatron data. A reasonable agreement is obtained for the first two distributions. The last one requires introducing a gap survival factor which depends on kinematical variables. We discuss how the phenomenological dependence on one kinematical variable may influence dependence on other variables such as E¯T and η ¯. Several distributions for the LHC are shown.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  10. Periodic Solution and Stationary Distribution of Stochastic Predator-Prey Models with Higher-Order Perturbation

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing

    2018-04-01

    In this paper, two stochastic predator-prey models with general functional response and higher-order perturbation are proposed and investigated. For the nonautonomous periodic case of the system, by using Khasminskii's theory of periodic solution, we show that the system admits a nontrivial positive T-periodic solution. For the system disturbed by both white and telegraph noises, sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution to the solutions are established. The existence of stationary distribution implies stochastic weak stability to some extent.

  11. Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model.

    PubMed

    Semenov, Yuri S; Novozhilov, Artem S

    2015-08-01

    We reformulate the eigenvalue problem for the selection-mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations. Copyright © 2015. Published by Elsevier Inc.

  12. Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation.

    PubMed

    Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique

    2017-02-01

    The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.

  13. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., single-break, signal control circuits using a grounded common, and alternating current power distribution... TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR... General § 236.2 Grounds. Each circuit, the functioning of which affects the safety of train operations...

  14. Maximally Informative Stimuli and Tuning Curves for Sigmoidal Rate-Coding Neurons and Populations

    NASA Astrophysics Data System (ADS)

    McDonnell, Mark D.; Stocks, Nigel G.

    2008-08-01

    A general method for deriving maximally informative sigmoidal tuning curves for neural systems with small normalized variability is presented. The optimal tuning curve is a nonlinear function of the cumulative distribution function of the stimulus and depends on the mean-variance relationship of the neural system. The derivation is based on a known relationship between Shannon’s mutual information and Fisher information, and the optimality of Jeffrey’s prior. It relies on the existence of closed-form solutions to the converse problem of optimizing the stimulus distribution for a given tuning curve. It is shown that maximum mutual information corresponds to constant Fisher information only if the stimulus is uniformly distributed. As an example, the case of sub-Poisson binomial firing statistics is analyzed in detail.

  15. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  16. Path probability of stochastic motion: A functional approach

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Abe, Sumiyoshi

    2016-06-01

    The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.

  17. Maximum entropy approach to H -theory: Statistical mechanics of hierarchical systems

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Giovani L.; Salazar, Domingos S. P.; Macêdo, A. M. S.

    2018-02-01

    A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem—representing the region where the measurements are made—in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017), 10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

  18. Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems.

    PubMed

    Vasconcelos, Giovani L; Salazar, Domingos S P; Macêdo, A M S

    2018-02-01

    A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

  19. nth-Nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: a hierarchical approach.

    PubMed

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a nu-dimensional space. The nth-NND functions, W(n,r) (for n=1,2,3, em leader) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  20. nth-nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: A hierarchical approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a ν-dimensional space. The nth-NND functions, W(n,r¯) (for n=1,2,3,…) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r¯) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  1. Average symbol error rate for M-ary quadrature amplitude modulation in generalized atmospheric turbulence and misalignment errors

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhat Kumar

    2016-11-01

    A framework is presented for the analysis of average symbol error rate (SER) for M-ary quadrature amplitude modulation in a free-space optical communication system. The standard probability density function (PDF)-based approach is extended to evaluate the average SER by representing the Q-function through its Meijer's G-function equivalent. Specifically, a converging power series expression for the average SER is derived considering the zero-boresight misalignment errors in the receiver side. The analysis presented here assumes a unified expression for the PDF of channel coefficient which incorporates the M-distributed atmospheric turbulence and Rayleigh-distributed radial displacement for the misalignment errors. The analytical results are compared with the results obtained using Q-function approximation. Further, the presented results are supported by the Monte Carlo simulations.

  2. Relationship between the spectral line based weighted-sum-of-gray-gases model and the full spectrum k-distribution model

    NASA Astrophysics Data System (ADS)

    Chu, Huaqiang; Liu, Fengshan; Consalvi, Jean-Louis

    2014-08-01

    The relationship between the spectral line based weighted-sum-of-gray-gases (SLW) model and the full-spectrum k-distribution (FSK) model in isothermal and homogeneous media is investigated in this paper. The SLW transfer equation can be derived from the FSK transfer equation expressed in the k-distribution function without approximation. It confirms that the SLW model is equivalent to the FSK model in the k-distribution function form. The numerical implementation of the SLW relies on a somewhat arbitrary discretization of the absorption cross section whereas the FSK model finds the spectrally integrated intensity by integration over the smoothly varying cumulative-k distribution function using a Gaussian quadrature scheme. The latter is therefore in general more efficient as a fewer number of gray gases is required to achieve a prescribed accuracy. Sample numerical calculations were conducted to demonstrate the different efficiency of these two methods. The FSK model is found more accurate than the SLW model in radiation transfer in H2O; however, the SLW model is more accurate in media containing CO2 as the only radiating gas due to its explicit treatment of ‘clear gas.’

  3. A maximum entropy principle for inferring the distribution of 3D plasmoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingam, Manasvi; Comisso, Luca

    The principle of maximum entropy, a powerful and general method for inferring the distribution function given a set of constraints, is applied to deduce the overall distribution of 3D plasmoids (flux ropes/tubes) for systems where resistive MHD is applicable and large numbers of plasmoids are produced. The analysis is undertaken for the 3D case, with mass, total flux, and velocity serving as the variables of interest, on account of their physical and observational relevance. The distribution functions for the mass, width, total flux, and helicity exhibit a power-law behavior with exponents of -4/3, -2, -3, and -2, respectively, for smallmore » values, whilst all of them display an exponential falloff for large values. In contrast, the velocity distribution, as a function of v=|v|, is shown to be flat for v→0, and becomes a power law with an exponent of -7/3 for v→∞. Most of these results are nearly independent of the free parameters involved in this specific problem. In conclusion, a preliminary comparison of our results with the observational evidence is presented, and some of the ensuing space and astrophysical implications are briefly discussed.« less

  4. A maximum entropy principle for inferring the distribution of 3D plasmoids

    DOE PAGES

    Lingam, Manasvi; Comisso, Luca

    2018-01-18

    The principle of maximum entropy, a powerful and general method for inferring the distribution function given a set of constraints, is applied to deduce the overall distribution of 3D plasmoids (flux ropes/tubes) for systems where resistive MHD is applicable and large numbers of plasmoids are produced. The analysis is undertaken for the 3D case, with mass, total flux, and velocity serving as the variables of interest, on account of their physical and observational relevance. The distribution functions for the mass, width, total flux, and helicity exhibit a power-law behavior with exponents of -4/3, -2, -3, and -2, respectively, for smallmore » values, whilst all of them display an exponential falloff for large values. In contrast, the velocity distribution, as a function of v=|v|, is shown to be flat for v→0, and becomes a power law with an exponent of -7/3 for v→∞. Most of these results are nearly independent of the free parameters involved in this specific problem. In conclusion, a preliminary comparison of our results with the observational evidence is presented, and some of the ensuing space and astrophysical implications are briefly discussed.« less

  5. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis.

    PubMed

    Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu

    2014-07-26

    The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments.

  6. Calculating Formulae of Proportion Factor and Mean Neutron Exposure in the Exponential Expression of Neutron Exposure Distribution

    NASA Astrophysics Data System (ADS)

    Feng-Hua, Zhang; Gui-De, Zhou; Kun, Ma; Wen-Juan, Ma; Wen-Yuan, Cui; Bo, Zhang

    2016-07-01

    Previous studies have shown that, for the three main stages of the development and evolution of asymptotic giant branch (AGB) star s-process models, the neutron exposure distribution (DNE) in the nucleosynthesis region can always be considered as an exponential function, i.e., ρAGB(τ) = C/τ0 exp(-τ/τ0) in an effective range of the neutron exposure values. However, the specific expressions of the proportion factor C and the mean neutron exposure τ0 in the exponential distribution function for different models are not completely determined in the related literature. Through dissecting the basic method to obtain the exponential DNE, and systematically analyzing the solution procedures of neutron exposure distribution functions in different stellar models, the general formulae, as well as their auxiliary equations, for calculating C and τ0 are derived. Given the discrete neutron exposure distribution Pk, the relationships of C and τ0 with the model parameters can be determined. The result of this study has effectively solved the problem to analytically calculate the DNE in the current low-mass AGB star s-process nucleosynthesis model of 13C-pocket radiative burning.

  7. Perturbational formulation of principal component analysis in molecular dynamics simulation.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Tomoda, Shuji; Ueda, Hiroki R

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.

  8. Perturbational formulation of principal component analysis in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.

  9. An annular superposition integral for axisymmetric radiators.

    PubMed

    Kelly, James F; McGough, Robert J

    2007-02-01

    A fast integral expression for computing the nearfield pressure is derived for axisymmetric radiators. This method replaces the sum of contributions from concentric annuli with an exact double integral that converges much faster than methods that evaluate the Rayleigh-Sommerfeld integral or the generalized King integral. Expressions are derived for plane circular pistons using both continuous wave and pulsed excitations. Several commonly used apodization schemes for the surface velocity distribution are considered, including polynomial functions and a "smooth piston" function. The effect of different apodization functions on the spectral content of the wave field is explored. Quantitative error and time comparisons between the new method, the Rayleigh-Sommerfeld integral, and the generalized King integral are discussed. At all error levels considered, the annular superposition method achieves a speed-up of at least a factor of 4 relative to the point-source method and a factor of 3 relative to the generalized King integral without increasing the computational complexity.

  10. A Powerful Test for Comparing Multiple Regression Functions.

    PubMed

    Maity, Arnab

    2012-09-01

    In this article, we address the important problem of comparison of two or more population regression functions. Recently, Pardo-Fernández, Van Keilegom and González-Manteiga (2007) developed test statistics for simple nonparametric regression models: Y(ij) = θ(j)(Z(ij)) + σ(j)(Z(ij))∊(ij), based on empirical distributions of the errors in each population j = 1, … , J. In this paper, we propose a test for equality of the θ(j)(·) based on the concept of generalized likelihood ratio type statistics. We also generalize our test for other nonparametric regression setups, e.g, nonparametric logistic regression, where the loglikelihood for population j is any general smooth function [Formula: see text]. We describe a resampling procedure to obtain the critical values of the test. In addition, we present a simulation study to evaluate the performance of the proposed test and compare our results to those in Pardo-Fernández et al. (2007).

  11. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  12. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  13. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.

    2012-09-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  14. Software For Integer Programming

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1992-01-01

    Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.

  15. Four theorems on the psychometric function.

    PubMed

    May, Keith A; Solomon, Joshua A

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise) x β(Transducer), where β(Noise) is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer) depends on the transducer. We derive general expressions for β(Noise) and β(Transducer), from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx)(b), β ≈ β(Noise) x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian.

  16. Income distribution dependence of poverty measure: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Mallick, Sushanta K.

    2007-04-01

    Using a modified deprivation (or poverty) function, in this paper, we theoretically study the changes in poverty with respect to the ‘global’ mean and variance of the income distribution using Indian survey data. We show that when the income obeys a log-normal distribution, a rising mean income generally indicates a reduction in poverty while an increase in the variance of the income distribution increases poverty. This altruistic view for a developing economy, however, is not tenable anymore once the poverty index is found to follow a pareto distribution. Here although a rising mean income indicates a reduction in poverty, due to the presence of an inflexion point in the poverty function, there is a critical value of the variance below which poverty decreases with increasing variance while beyond this value, poverty undergoes a steep increase followed by a decrease with respect to higher variance. Identifying this inflexion point as the poverty line, we show that the pareto poverty function satisfies all three standard axioms of a poverty index [N.C. Kakwani, Econometrica 43 (1980) 437; A.K. Sen, Econometrica 44 (1976) 219] whereas the log-normal distribution falls short of this requisite. Following these results, we make quantitative predictions to correlate a developing with a developed economy.

  17. Convergence and Efficiency of Adaptive Importance Sampling Techniques with Partial Biasing

    NASA Astrophysics Data System (ADS)

    Fort, G.; Jourdain, B.; Lelièvre, T.; Stoltz, G.

    2018-04-01

    We propose a new Monte Carlo method to efficiently sample a multimodal distribution (known up to a normalization constant). We consider a generalization of the discrete-time Self Healing Umbrella Sampling method, which can also be seen as a generalization of well-tempered metadynamics. The dynamics is based on an adaptive importance technique. The importance function relies on the weights (namely the relative probabilities) of disjoint sets which form a partition of the space. These weights are unknown but are learnt on the fly yielding an adaptive algorithm. In the context of computational statistical physics, the logarithm of these weights is, up to an additive constant, the free-energy, and the discrete valued function defining the partition is called the collective variable. The algorithm falls into the general class of Wang-Landau type methods, and is a generalization of the original Self Healing Umbrella Sampling method in two ways: (i) the updating strategy leads to a larger penalization strength of already visited sets in order to escape more quickly from metastable states, and (ii) the target distribution is biased using only a fraction of the free-energy, in order to increase the effective sample size and reduce the variance of importance sampling estimators. We prove the convergence of the algorithm and analyze numerically its efficiency on a toy example.

  18. Nucleon transverse momentum-dependent parton distributions in lattice QCD: Renormalization patterns and discretization effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Boram; Engelhardt, Michael; Gupta, Rajan

    Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in nucleons are presented in this paper, based on the evaluation of nucleon matrix elements of quark bilocal operators with a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Sivers and Boer-Mulders transverse momentum shifts, as well as time-reversal even effects, namely, the generalized transversity and one of the generalized worm-gear shifts, are studied. Results are obtained on two different n f = 2 + 1 flavor ensembles with approximately matching pion masses but very different discretization schemes: domain-wall fermions (DWF) with lattice spacing a = 0.084 fmmore » and pion mass 297 MeV, and Wilson-clover fermions with a = 0.114 fm and pion mass 317 MeV. Comparison of the results on the two ensembles yields insight into the length scales at which lattice discretization errors are small, and into the extent to which the renormalization pattern obeyed by the continuum QCD TMD operator continues to apply in the lattice formulation. For the studied TMD observables, the results are found to be consistent between the two ensembles at sufficiently large separation of the quark fields within the operator, whereas deviations are observed in the local limit and in the case of a straight link gauge connection, which is relevant to the studies of parton distribution functions. Finally and furthermore, the lattice estimates of the generalized Sivers shift obtained here are confronted with, and are seen to tend towards, a phenomenological estimate extracted from experimental data.« less

  19. Nucleon transverse momentum-dependent parton distributions in lattice QCD: Renormalization patterns and discretization effects

    DOE PAGES

    Yoon, Boram; Engelhardt, Michael; Gupta, Rajan; ...

    2017-11-21

    Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in nucleons are presented in this paper, based on the evaluation of nucleon matrix elements of quark bilocal operators with a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Sivers and Boer-Mulders transverse momentum shifts, as well as time-reversal even effects, namely, the generalized transversity and one of the generalized worm-gear shifts, are studied. Results are obtained on two different n f = 2 + 1 flavor ensembles with approximately matching pion masses but very different discretization schemes: domain-wall fermions (DWF) with lattice spacing a = 0.084 fmmore » and pion mass 297 MeV, and Wilson-clover fermions with a = 0.114 fm and pion mass 317 MeV. Comparison of the results on the two ensembles yields insight into the length scales at which lattice discretization errors are small, and into the extent to which the renormalization pattern obeyed by the continuum QCD TMD operator continues to apply in the lattice formulation. For the studied TMD observables, the results are found to be consistent between the two ensembles at sufficiently large separation of the quark fields within the operator, whereas deviations are observed in the local limit and in the case of a straight link gauge connection, which is relevant to the studies of parton distribution functions. Finally and furthermore, the lattice estimates of the generalized Sivers shift obtained here are confronted with, and are seen to tend towards, a phenomenological estimate extracted from experimental data.« less

  20. USAF Aircraft Maintenance Officer Knowledge, Skills and Abilities and Commonalities among the Logistics Officer Corps

    DTIC Science & Technology

    2013-02-01

    distribution managemen t operations to include managing cargo distribution functions such as receiving, inspecting, tracing, tracking, packaging, and...Production Management DE CDE ABCDEFG Scheduling DE ADEF ABCDEF T ie r 2 Flightline Operations E BDE Systems Engineering D ABDEG Table 19: 21R...logistics units/ elements and as members of general or executive s t affs in t he operating forces, supporting establishment, and joint staffs . They

  1. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.

    PubMed

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta

    2015-10-16

    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  2. Joint Center for Operational Analysis Journal. Volume 12, Issue 2, Summer 2010

    DTIC Science & Technology

    2010-01-01

    Peixoto. In 19X7. then-Major Keen attended Bra- zil’s Command and General Staff Course in Rio de Janeiro . Bra- zil. In 1988, then Captain Floriano...controlling DoD office). • DISTRIBUTION STATEMENT E . Distribution authorized to DoD Components only (fill in reason) (date of determination). Other... basic joint functions that integrate, synchronize, and direct joint operations, which arc: command and control, intelligence, fires, movement and

  3. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    PubMed

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  4. Non-extensive quantum statistics with particle-hole symmetry

    NASA Astrophysics Data System (ADS)

    Biró, T. S.; Shen, K. M.; Zhang, B. W.

    2015-06-01

    Based on Tsallis entropy (1988) and the corresponding deformed exponential function, generalized distribution functions for bosons and fermions have been used since a while Teweldeberhan et al. (2003) and Silva et al. (2010). However, aiming at a non-extensive quantum statistics further requirements arise from the symmetric handling of particles and holes (excitations above and below the Fermi level). Naive replacements of the exponential function or "cut and paste" solutions fail to satisfy this symmetry and to be smooth at the Fermi level at the same time. We solve this problem by a general ansatz dividing the deformed exponential to odd and even terms and demonstrate that how earlier suggestions, like the κ- and q-exponential behave in this respect.

  5. 37 CFR 385.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a musical work; or (4) Performs the functions of marketing and authorizing the distribution of a... definition of “Service revenue,” and subject to U.S. Generally Accepted Accounting Principles, service... Accepted Accounting Principles, and including for the avoidance of doubt barter or nonmonetary...

  6. 7 CFR 251.4 - Availability of commodities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... existing food bank networks and other organizations whose ongoing primary function is to facilitate the... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION THE EMERGENCY FOOD ASSISTANCE PROGRAM § 251.4...

  7. Catchment virtual observatory for sharing flow and transport models outputs: using residence time distribution to compare contrasting catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald

    2017-04-01

    The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison

  8. Raindrop intervalometer

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nicolaas; Hut, Rolf; ten Veldhuis, Marie-claire

    2017-04-01

    If one can assume that drop size distributions can be effectively described by a generalized gamma function [1], one can estimate this function on the basis of the distribution of time intervals between drops hitting a certain area. The arrival of a single drop is relatively easy to measure with simple consumer devices such as cameras or piezoelectric elements. Here we present an open-hardware design for the electronics and statistical processing of an intervalometer that measures time intervals between drop arrivals. The specific hardware in this case is a piezoelectric element in an appropriate housing, combined with an instrumentation op-amp and an Arduino processor. Although it would not be too difficult to simply register the arrival times of all drops, it is more practical to only report the main statistics. For this purpose, all intervals below a certain threshold during a reporting interval are summed and counted. We also sum the scaled squares, cubes, and fourth powers of the intervals. On the basis of the first four moments, one can estimate the corresponding generalized gamma function and obtain some sense of the accuracy of the underlying assumptions. Special attention is needed to determine the lower threshold of the drop sizes that can be measured. This minimum size often varies over the area being monitored, such as is the case for piezoelectric elements. We describe a simple method to determine these (distributed) minimal drop sizes and present a bootstrap method to make the necessary corrections. Reference [1] Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.

  9. Flow assignment model for quantitative analysis of diverting bulk freight from road to railway

    PubMed Central

    Liu, Chang; Wang, Jiaxi; Xiao, Jie; Liu, Siqi; Wu, Jianping; Li, Jian

    2017-01-01

    Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway. PMID:28771536

  10. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  11. Hybrid reconstruction of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren; TAE Team

    2016-10-01

    Field-reversed configurations (FRC) are poorly represented by fluid-based models and require instead an ion-distribution function. Two such populations are needed since ``core'' ions are roughly restricted to the region inside the separatrix, whereas ``periphery'' ions can escape along open field lines. The Vlasov equation governs the distribution, the general solution to which is an arbitrary function of the constants of motion (Hamiltonian, canonical angular momentum). Only a small subset of such distributions are realistic in view of collisions, which smooth the distribution, and instabilities, which reorganize the field structure. Collisions and end loss are included if the distribution is a solution to the Fokker-Planck (FP) equation. Vlasov and FP solutions are nearly identical in weakly-collisional plasmas. Numerical construction of such equilibria requires solving both Ampere's law for the magnetic flux variable and the ponderous task of a full velocity-space integration at each point. The latter can be done analytically by expressing the distribution as the superposition of simple basis elements. This procedure allows rapid reconstruction of evolving equilibria based on limited diagnostic observables in FRC experiments.

  12. The weighted function method: A handy tool for flood frequency analysis or just a curiosity?

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Ewa; Kochanek, Krzysztof; Strupczewski, Witold G.

    2018-04-01

    The idea of the Weighted Function (WF) method for estimation of Pearson type 3 (Pe3) distribution introduced by Ma in 1984 has been revised and successfully applied for shifted inverse Gaussian (IGa3) distribution. Also the conditions of WF applicability to a shifted distribution have been formulated. The accuracy of WF flood quantiles for both Pe3 and IGa3 distributions was assessed by Monte Caro simulations under the true and false distribution assumption versus the maximum likelihood (MLM), moment (MOM) and L-moments (LMM) methods. Three datasets of annual peak flows of Polish catchments serve the case studies to compare the results of the WF, MOM, MLM and LMM performance for the real flood data. For the hundred-year flood the WF method revealed the explicit superiority only over the MLM surpassing the MOM and especially LMM both for the true and false distributional assumption with respect to relative bias and relative mean root square error values. Generally, the WF method performs well and for hydrological sample size and constitutes good alternative for the estimation of the flood upper quantiles.

  13. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning

    NASA Astrophysics Data System (ADS)

    Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft

    2018-01-01

    We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.

  14. Degradation data analysis based on a generalized Wiener process subject to measurement error

    NASA Astrophysics Data System (ADS)

    Li, Junxing; Wang, Zhihua; Zhang, Yongbo; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar

    2017-09-01

    Wiener processes have received considerable attention in degradation modeling over the last two decades. In this paper, we propose a generalized Wiener process degradation model that takes unit-to-unit variation, time-correlated structure and measurement error into considerations simultaneously. The constructed methodology subsumes a series of models studied in the literature as limiting cases. A simple method is given to determine the transformed time scale forms of the Wiener process degradation model. Then model parameters can be estimated based on a maximum likelihood estimation (MLE) method. The cumulative distribution function (CDF) and the probability distribution function (PDF) of the Wiener process with measurement errors are given based on the concept of the first hitting time (FHT). The percentiles of performance degradation (PD) and failure time distribution (FTD) are also obtained. Finally, a comprehensive simulation study is accomplished to demonstrate the necessity of incorporating measurement errors in the degradation model and the efficiency of the proposed model. Two illustrative real applications involving the degradation of carbon-film resistors and the wear of sliding metal are given. The comparative results show that the constructed approach can derive a reasonable result and an enhanced inference precision.

  15. Deeply Virtual Exclusive Processes and Generalized Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,

    2011-06-01

    The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,more » e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.« less

  16. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  17. Independent functions and the geometry of Banach spaces

    NASA Astrophysics Data System (ADS)

    Astashkin, Sergey V.; Sukochev, Fedor A.

    2010-12-01

    The main objective of this survey is to present the `state of the art' of those parts of the theory of independent functions which are related to the geometry of function spaces. The `size' of a sum of independent functions is estimated in terms of classical moments and also in terms of general symmetric function norms. The exposition is centred on the Rosenthal inequalities and their various generalizations and sharp conditions under which the latter hold. The crucial tool here is the recently developed construction of the Kruglov operator. The survey also provides a number of applications to the geometry of Banach spaces. In particular, variants of the classical Khintchine-Maurey inequalities, isomorphisms between symmetric spaces on a finite interval and on the semi-axis, and a description of the class of symmetric spaces with any sequence of symmetrically and identically distributed independent random variables spanning a Hilbert subspace are considered. Bibliography: 87 titles.

  18. Optimal steering for kinematic vehicles with applications to spatially distributed agents

    NASA Astrophysics Data System (ADS)

    Brown, Scott; Praeger, Cheryl E.; Giudici, Michael

    While there is no universal method to address control problems involving networks of autonomous vehicles, there exist a few promising schemes that apply to different specific classes of problems, which have attracted the attention of many researchers from different fields. In particular, one way to extend techniques that address problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram. The Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces a graph abstraction of the operating space that is in an one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining a sequential pursuit problem of a maneuvering target by a group of pursuers distributed in the plane. The construction of generalized Voronoi diagrams with respect to state-dependent metrics poses some significant challenges. First, the generalized distance metric may be a function of the direction of motion of the vehicle (anisotropic pseudo-distance function) and/or may not be expressible in closed form. Second, such problems fall under the general class of partitioning problems for which the vehicles' dynamics must be taken into account. The topology of the vehicle's configuration space may be non-Euclidean, for example, it may be a manifold embedded in a Euclidean space. In other words, these problems may not be reducible to generalized Voronoi diagram problems for which efficient construction schemes, analytical and/or computational, exist in the literature. This research effort pursues three main objectives. First, we present the complete solution of different steering problems involving a single vehicle in the presence of motion constraints imposed by the maneuverability envelope of the vehicle and/or the presence of a drift field induced by winds/currents in its vicinity. The analysis of each steering problem involving a single vehicle provides us with a state-dependent generalized metric, such as the minimum time-to-go/come. We subsequently use these state-dependent generalized distance functions as the proximity metrics in the formulation of generalized Voronoi-like partitioning problems. The characterization of the solutions of these state-dependent Voronoi-like partitioning problems using either analytical or computational techniques constitutes the second main objective of this dissertation. The third objective of this research effort is to illustrate the use of the proposed concept of state-dependent Voronoi-like partition as a means for passing from control techniques that apply to problems involving a single vehicle to problems involving networks of spatially distributed autonomous vehicles. To this aim, we formulate the problem of sequential/relay pursuit of a maneuvering target by a group of spatially distributed pursuers and subsequently propose a distributed group pursuit strategy that directly derives from the solution of a state-dependent Voronoi-like partitioning problem. (Abstract shortened by UMI.)

  19. Magnetosonic Solitons in Non-Maxwellian Space Plasmas

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Balikhin, M.; Onishchenko, O. G.

    2006-12-01

    The nonlinear theory of large-amplitude magnetosonic (MS) waves in high-beta space plasmas is developed. It is shown that solitary waves can exist in the form of magnetic humps and holes in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion velocity distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived. It takes into account general plasma equilibria such as the Dory-Guest-Harris or Kennel- Ashour-Abdalla loss cone equilibria, as well as distributions with a power law velocity dependence that can be modelled by kappa-distributions. It is shown that in Maxwellian and bi-Maxwellian plasmas the dispersion is negative, i.e. the phase velocity decreases with an increase of the wave number. This means that the solitary solution in this case has the form of a magnetic hump with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to experimental observations is outlined

  20. Solvation of Na^+ in water from first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, J. A.; Schwegler, E.; Galli, G.; Gygi, F.

    2000-03-01

    We have carried out ab initio molecular dynamics (MD) simulations of the Na^+ ion in water with an MD cell containing a single alkali ion and 53 water molecules. The electron-electron and electron-ion interactions were modeled by density functional theory with a generalized gradient approximation for the exchange-correlation functional. The computed radial distribution functions, coordination numbers, and angular distributions are consistent with available experimental data. The first solvation shell contains 5.2±0.6 water molecules, with some waters occasionally exchanging with those of the second shell. The computed Na^+ hydration number is larger than that from calculations for water clusters surrounding an Na^+ ion, but is consistent with that derived from x-ray measurements. Our results also indicate that the first hydration shell is better defined for Na^+ than for K^+ [1], as indicated by the first minimum in the Na-O pair distribution function. [1] L.M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 111, 1587 (1999). This work was performed for DOE under contract W-7405-ENG-48.

  1. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less

  2. Measurements of the separated longitudinal structure function FL from hydrogen and deuterium targets at low Q2

    NASA Astrophysics Data System (ADS)

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.; Abbott, D.; Adams, G. S.; Afanasev, A.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, R.; Avery, S.; Baker, O. K.; Benmouna, N.; Berman, B. L.; Biselli, A.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Brash, E.; Breuer, H.; Chang, G.; Chant, N.; Christy, M. E.; Connell, S. H.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dodario, T.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Ent, R.; Fenker, H. C.; Frolov, V. V.; Gaskell, D.; Garrow, K.; Gilman, R.; Gueye, P.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Jackson, H.; Jiang, X.; Jones, M. K.; Joo, K.; Kelly, J. J.; Keppel, C. E.; Kuhn, J.; Kinney, E.; Klein, A.; Kubarovsky, V.; Liang, Y.; Lolos, G.; Lung, A.; Mack, D.; Malace, S.; Markowitz, P.; Mbianda, G.; McGrath, E.; Mckee, D.; Meekins, D. G.; Mkrtchyan, H.; Napolitano, J.; Navasardyan, T.; Niculescu, G.; Nozar, M.; Ostapenko, T.; Papandreou, Z.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tadevosyan, V.; Tang, L.; Telfeyan, J.; Todor, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Warren, G.; Wesselmann, F.; Wojtsekhowski, B.; Wood, S. A.; Yan, C.; Zihlmann, B.

    2018-04-01

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q2<1 GeV2 , and compare them with parton distribution parametrization and kT factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q2 scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R , than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.

  3. Measurements of the separated longitudinal structure function F L from hydrogen and deuterium targets at low Q 2

    DOE PAGES

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.; ...

    2018-04-26

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less

  4. Measurements of the separated longitudinal structure function F L from hydrogen and deuterium targets at low Q 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less

  5. Social communication competence and functional adaptation in a general population of children: preliminary evidence for sex-by-verbal IQ differential risk.

    PubMed

    Skuse, David H; Mandy, William; Steer, Colin; Miller, Laura L; Goodman, Robert; Lawrence, Kate; Emond, Alan; Golding, Jean

    2009-02-01

    The proportion of schoolchildren with mild social communicative deficits far exceeds the number diagnosed with an autistic spectrum disorder (ASD). We aimed to ascertain both the population distribution of such deficits and their association with functional adaptation and cognitive ability in middle childhood. The parent-report Social and Communication Disorders Checklist was administered to participants (n = 8,094) in the Avon Longitudinal Study of Parents and Children. We correlated impairment severity with independent clinical diagnoses of ASD, cognitive abilities, and teacher-rated maladaptive behavior. Social and Communication Disorders Checklist scores were continuously distributed in the general population; boys had mean scores 30% higher than girls. Social communicative deficits were associated with functional impairment at school, especially in domains of hyperactivity and conduct disorders. A sex-by-verbal IQ interaction effect occurred: verbal IQ was protective against social communication impairments across the range of abilities in female subjects only. In male subjects, this protective effect did not exist for those with above-average verbal IQ. Social communicative deficits are of prognostic significance, in terms of behavioral adjustment at school, for boys and girls. Their high general population prevalence emphasizes the importance of measuring such traits among clinically referred children who do not meet diagnostic ASD criteria. Above-average verbal IQ seems to confer protection against social communication impairments in female subjects but not in male subjects.

  6. VizieR Online Data Catalog: Tracers of the Milky Way mass (Bratek+, 2014)

    NASA Astrophysics Data System (ADS)

    Bratek, L.; Sikora, S.; Jalocha, J.; Kutschera, M.

    2013-11-01

    We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ~~150-200kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4x1011M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. (1 data file).

  7. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  8. Statistical methods for investigating quiescence and other temporal seismicity patterns

    USGS Publications Warehouse

    Matthews, M.V.; Reasenberg, P.A.

    1988-01-01

    We propose a statistical model and a technique for objective recognition of one of the most commonly cited seismicity patterns:microearthquake quiescence. We use a Poisson process model for seismicity and define a process with quiescence as one with a particular type of piece-wise constant intensity function. From this model, we derive a statistic for testing stationarity against a 'quiescence' alternative. The large-sample null distribution of this statistic is approximated from simulated distributions of appropriate functionals applied to Brownian bridge processes. We point out the restrictiveness of the particular model we propose and of the quiescence idea in general. The fact that there are many point processes which have neither constant nor quiescent rate functions underscores the need to test for and describe nonuniformity thoroughly. We advocate the use of the quiescence test in conjunction with various other tests for nonuniformity and with graphical methods such as density estimation. ideally these methods may promote accurate description of temporal seismicity distributions and useful characterizations of interesting patterns. ?? 1988 Birkha??user Verlag.

  9. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1990-01-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  10. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  11. Use of Fermi-Dirac statistics for defects in solids

    NASA Astrophysics Data System (ADS)

    Johnson, R. A.

    1981-12-01

    The Fermi-Dirac distribution function is an approximation describing a special case of Boltzmann statistics. A general occupation probability formula is derived and a criterion given for the use of Fermi-Dirac statistics. Application to classical problems of defects in solids is discussed.

  12. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle.

    PubMed

    Craven, Galen T; Nitzan, Abraham

    2018-01-28

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  13. Photon-number statistics in resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Lenstra, D.

    1982-12-01

    The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.

  14. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Nitzan, Abraham

    2018-01-01

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  15. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  16. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  17. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    DOE PAGES

    Wang, Feng; Yu, L. M.; Fu, G. Y.; ...

    2017-03-22

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835–8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energymore » $$\\delta {{W}_{k}}$$ is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work. For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. As a result, numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold $${{\\beta}_{c}}$$ for instability and decrease mode frequency.« less

  18. Computer Aided Synthesis or Measurement Schemes for Telemetry applications

    DTIC Science & Technology

    1997-09-02

    5.2.5. Frame structure generation The algorithm generating the frame structure should take as inputs the sampling frequency requirements of the channels...these channels into the frame structure. Generally there can be a lot of ways to divide channels among groups. The algorithm implemented in...groups) first. The algorithm uses the function "try_permutation" recursively to distribute channels among the groups, and the function "try_subtable

  19. Kernel User’s Manual Version 1.0

    DTIC Science & Technology

    1989-02-01

    especially on distributed systems. There are issues concerning functionality (amply documented in [ARTEWG 86b), customization , tool support (especially...a far lower level, including special device drivers, special message or signaling systems, and even a custom executive. There is far less general...functionality; the implementors of the language do not know how to satisfy the variety of needs of real-time applications; the vendors are unable to customize

  20. Bayes classification of terrain cover using normalized polarimetric data

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Swartz, A. A.; Kong, J. A.; Shin, R. T.; Novak, L. M.

    1988-01-01

    The normalized polarimetric classifier (NPC) which uses only the relative magnitudes and phases of the polarimetric data is proposed for discrimination of terrain elements. The probability density functions (PDFs) of polarimetric data are assumed to have a complex Gaussian distribution, and the marginal PDF of the normalized polarimetric data is derived by adopting the Euclidean norm as the normalization function. The general form of the distance measure for the NPC is also obtained. It is demonstrated that for polarimetric data with an arbitrary PDF, the distance measure of NPC will be independent of the normalization function selected even when the classifier is mistrained. A complex Gaussian distribution is assumed for the polarimetric data consisting of grass and tree regions. The probability of error for the NPC is compared with those of several other single-feature classifiers. The classification error of NPCs is shown to be independent of the normalization function.

  1. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  2. Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data

    NASA Astrophysics Data System (ADS)

    Glüsenkamp, Thorsten

    2018-06-01

    Parameter estimation in HEP experiments often involves Monte Carlo simulation to model the experimental response function. A typical application are forward-folding likelihood analyses with re-weighting, or time-consuming minimization schemes with a new simulation set for each parameter value. Problematically, the finite size of such Monte Carlo samples carries intrinsic uncertainty that can lead to a substantial bias in parameter estimation if it is neglected and the sample size is small. We introduce a probabilistic treatment of this problem by replacing the usual likelihood functions with novel generalized probability distributions that incorporate the finite statistics via suitable marginalization. These new PDFs are analytic, and can be used to replace the Poisson, multinomial, and sample-based unbinned likelihoods, which covers many use cases in high-energy physics. In the limit of infinite statistics, they reduce to the respective standard probability distributions. In the general case of arbitrary Monte Carlo weights, the expressions involve the fourth Lauricella function FD, for which we find a new finite-sum representation in a certain parameter setting. The result also represents an exact form for Carlson's Dirichlet average Rn with n > 0, and thereby an efficient way to calculate the probability generating function of the Dirichlet-multinomial distribution, the extended divided difference of a monomial, or arbitrary moments of univariate B-splines. We demonstrate the bias reduction of our approach with a typical toy Monte Carlo problem, estimating the normalization of a peak in a falling energy spectrum, and compare the results with previously published methods from the literature.

  3. Local Stretching Theories

    DTIC Science & Technology

    2010-06-24

    diffusivity of the scalar. (If the scalar is heat, then the Schmidt number becomes the Prandtl number.) Momentum diffuses significantly faster than the...derive the Cramér function explicitly in the simple case where the xi have a Bernoulli distribution, though the general formula for S may be derived by...an analogous procedure. 5 Large deviation CLT for the Bernoulli distribution Let xi have the PDF of a fair coin, p(xi) = 1 2δ(xi + 1) + 1 2δ(xi − 1

  4. The 120V 20A PWM switch for applications in high power distribution

    NASA Astrophysics Data System (ADS)

    Borelli, V.; Nimal, W.

    1989-08-01

    A 20A/120VDC (voltage direct current) PWM (Pulse Width Modulation) Solid State Power Controller (SSPC) developed under ESA contract to be used in the power distribution system of Columbus is described. The general characteristics are discussed and the project specification defined. The benefits of a PWM solution over a more conventional approach, for the specific application considered are presented. An introduction to the SSPC characteristics and a functional description are presented.

  5. Research on Influencing Factors and Generalized Power of Synthetic Artificial Seismic Wave

    NASA Astrophysics Data System (ADS)

    Jiang, Yanpei

    2018-05-01

    Start your abstract here… In this paper, according to the trigonometric series method, the author adopts different envelope functions and the acceleration design spectrum in Seismic Code For Urban Bridge Design to simulate the seismic acceleration time history which meets the engineering accuracy requirements by modifying and iterating the initial wave. Spectral analysis is carried out to find out the the distribution law of the changing frequencies of the energy of seismic time history and to determine the main factors that affect the acceleration amplitude spectrum and energy spectrum density. The generalized power formula of seismic time history is derived from the discrete energy integral formula and the author studied the changing characteristics of generalized power of the seismic time history under different envelop functions. Examples are analyzed to illustrate that generalized power can measure the seismic performance of bridges.

  6. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  7. Measures of dependence for multivariate Lévy distributions

    NASA Astrophysics Data System (ADS)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  8. Baldovin-Stella stochastic volatility process and Wiener process mixtures

    NASA Astrophysics Data System (ADS)

    Peirano, P. P.; Challet, D.

    2012-08-01

    Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.

  9. A field theory approach to the evolution of canonical helicity and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, S.

    A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems.more » For example, in a fixed, isolated system subject to non-conservative forces, a species' canonical helicity changes less than total energy only if gradients in density or distribution function are shallow.« less

  10. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  11. Thermal equilibrium and statistical thermometers in special relativity.

    PubMed

    Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-10-26

    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.

  12. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  13. Dimension-independent likelihood-informed MCMC

    DOE PAGES

    Cui, Tiangang; Law, Kody J. H.; Marzouk, Youssef M.

    2015-10-08

    Many Bayesian inference problems require exploring the posterior distribution of highdimensional parameters that represent the discretization of an underlying function. Our work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. There are two distinct lines of research that intersect in the methods we develop here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian informationmore » and any associated lowdimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Finally, we use two nonlinear inverse problems in order to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.« less

  14. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of conditionally averaged nonequilibrium Green's function for multicomponent disorders.

  15. Parton distributions from the nuclear physics perspective

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. Pauchy

    1995-05-01

    In deep inelastic scattering by charged leptons, the generalized Sullivan processes, in which the virtual photon may strike and smash the meson in the cloud (or the recoiling baryon in the core), may contribute to cross sections. Recently, Hwang, Speth, and Brown have suggested that the sea quark distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes. Apart from the result that the general characteristics of the various sea quark distributions, including the strengths and shapes, can be understood, the conjecture also allows for a simple interpretation of the recent finding by the New Muon Collaboration on the violation of the Gottfried sum rule [including the shape of Fp2(x)-Fn2(x) as a function of x], as well as that of the so-called ``proton spin crisis'' as caused by the observation by the European Muon Collaboration. To offer further tests of the conjecture, we mention that Drell-Yan processes and semi-inclusive Λ production may also be employed.

  16. Consistent description of kinetic equation with triangle anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu Shi; Gao Jianhua; Wang Qun

    2011-05-01

    We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for the minimum number of unknown coefficients in onemore » charge and two charge cases by solving the constraining equations.« less

  17. Measurement of exclusive π(0) electroproduction structure functions and their relationship to transverse generalized parton distributions.

    PubMed

    Bedlinskiy, I; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Aghasyan, M; Amaryan, M J; Anghinolfi, M; Avakian, H; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Bennett, R P; Biselli, A S; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Forest, T A; Fradi, A; Garçon, M; Gevorgyan, N; Giovanetti, K L; Girod, F X; Gohn, W; Gothe, R W; Graham, L; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kuhn, S E; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Markov, N; Martinez, D; Mayer, M; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Saylor, N; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tian, Ye; Tkachenko, S; Ungaro, M; Vineyard, M F; Vlassov, A; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2012-09-14

    Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.0 to 4.6  GeV(2), -t up to 2  GeV(2), and x(B) from 0.1 to 0.58. Structure functions σ(T)+ϵσ(L), σ(TT), and σ(LT) were extracted as functions of t for each of 17 combinations of Q(2) and x(B). The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σ(T)+ϵσ(L) and fails to account for σ(TT) and σ(LT), while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π(0) electroproduction offers direct experimental access to the transversity GPDs.

  18. Measurement of Exclusive π0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2012-09-01

    Exclusive π0 electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q2, xB, t, and ϕπ, in the Q2 range from 1.0 to 4.6GeV2, -t up to 2GeV2, and xB from 0.1 to 0.58. Structure functions σT+ɛσL, σTT, and σLT were extracted as functions of t for each of 17 combinations of Q2 and xB. The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σT+ɛσL and fails to account for σTT and σLT, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π0 electroproduction offers direct experimental access to the transversity GPDs.

  19. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-07

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Functional aging in pilots : an examination of a mathematical model based on medical data on general aviation pilots.

    DOT National Transportation Integrated Search

    1982-06-01

    The purpose of this study was to apply mathematical procedures to the Federal Aviation Administration (FAA) pilot medical data to examine the feasibility of devising a linear numbering system such that (1) the cumulative probability distribution func...

  1. Generalization of some hidden subgroup algorithms for input sets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Poslu, Damla; Say, A. C. Cem

    2006-05-01

    We consider the problem of generalizing some quantum algorithms so that they will work on input domains whose cardinalities are not necessarily powers of two. When analyzing the algorithms we assume that generating superpositions of arbitrary subsets of basis states whose cardinalities are not necessarily powers of two perfectly is possible. We have taken Ballhysa's model as a template and have extended it to Chi, Kim and Lee's generalizations of the Deutsch-Jozsa algorithm and to Simon's algorithm. With perfectly equal superpositions of input sets of arbitrary size, Chi, Kim and Lee's generalized Deutsch-Jozsa algorithms, both for evenly-distributed and evenly-balanced functions, worked with one-sided error property. For Simon's algorithm the success probability of the generalized algorithm is the same as that of the original for input sets of arbitrary cardinalities with equiprobable superpositions, since the property that the measured strings are all those which have dot product zero with the string we search, for the case where the function is 2-to-1, is not lost.

  2. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis

    PubMed Central

    Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu

    2014-01-01

    The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments. PMID:25068019

  3. Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2013-01-01

    Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules. PMID:23555856

  4. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  5. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  6. The probability density function (PDF) of Lagrangian Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, B.

    2012-12-01

    The statistical theory of Lagrangian turbulence is derived from the stochastic Navier-Stokes equation. Assuming that the noise in fully-developed turbulence is a generic noise determined by the general theorems in probability, the central limit theorem and the large deviation principle, we are able to formulate and solve the Kolmogorov-Hopf equation for the invariant measure of the stochastic Navier-Stokes equations. The intermittency corrections to the scaling exponents of the structure functions require a multiplicative (multipling the fluid velocity) noise in the stochastic Navier-Stokes equation. We let this multiplicative noise, in the equation, consists of a simple (Poisson) jump process and then show how the Feynmann-Kac formula produces the log-Poissonian processes, found by She and Leveque, Waymire and Dubrulle. These log-Poissonian processes give the intermittency corrections that agree with modern direct Navier-Stokes simulations (DNS) and experiments. The probability density function (PDF) plays a key role when direct Navier-Stokes simulations or experimental results are compared to theory. The statistical theory of turbulence is determined, including the scaling of the structure functions of turbulence, by the invariant measure of the Navier-Stokes equation and the PDFs for the various statistics (one-point, two-point, N-point) can be obtained by taking the trace of the corresponding invariant measures. Hopf derived in 1952 a functional equation for the characteristic function (Fourier transform) of the invariant measure. In distinction to the nonlinear Navier-Stokes equation, this is a linear functional differential equation. The PDFs obtained from the invariant measures for the velocity differences (two-point statistics) are shown to be the four parameter generalized hyperbolic distributions, found by Barndorff-Nilsen. These PDF have heavy tails and a convex peak at the origin. A suitable projection of the Kolmogorov-Hopf equations is the differential equation determining the generalized hyperbolic distributions. Then we compare these PDFs with DNS results and experimental data.

  7. Modeling the brain morphology distribution in the general aging population

    NASA Astrophysics Data System (ADS)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  8. Dust temperature distributions in star-forming condensations

    NASA Technical Reports Server (NTRS)

    Xie, Taoling; Goldsmith, Paul F.; Snell, Ronald L.; Zhou, Weimin

    1993-01-01

    The FIR spectra of the central IR condensations in the dense cores of molecular clouds AFGL 2591. B335, L1551, Mon R2, and Sgr B2 are reanalyzed here in terms of the distribution of dust mass as a function of temperature. FIR spectra of these objects can be characterized reasonably well by a given functional form. The general shapes of the dust temperature distributions of these objects are similar and closely resemble the theoretical computations of de Muizon and Rouan (1985) for a sample of 'hot centered' clouds with active star formation. Specifically, the model yields a 'cutoff' temperature below which essentially no dust is needed to interpret the dust emission spectra, and most of the dust mass is distributed in a broad temperature range of a few tens of degrees above the cutoff temperature. Mass, luminosity, average temperature, and column density are obtained, and it is found that the physical quantities differ considerably from source to source in a meaningful way.

  9. PROFILE: Airfoil Geometry Manipulation and Display. User's Guide

    NASA Technical Reports Server (NTRS)

    Collins, Leslie; Saunders, David

    1997-01-01

    This report provides user information for program PROFILE, an aerodynamics design utility for plotting, tabulating, and manipulating airfoil profiles. A dozen main functions are available. The theory and implementation details for two of the more complex options are also presented. These are the REFINE option, for smoothing curvature in selected regions while retaining or seeking some specified thickness ratio, and the OPTIMIZE option, which seeks a specified curvature distribution. Use of programs QPLOT and BPLOT is also described, since all of the plots provided by PROFILE (airfoil coordinates, curvature distributions, pressure distributions)) are achieved via the general-purpose QPLOT utility. BPLOT illustrates (again, via QPLOT) the shape functions used by two of PROFILE's options. These three utilities should be distributed as one package. They were designed and implemented for the Applied Aerodynamics Branch at NASA Ames Research Center, Moffett Field, California. They are all written in FORTRAN 77 and run on DEC and SGI systems under OpenVMS and IRIX.

  10. Discrete epidemic models with arbitrary stage distributions and applications to disease control.

    PubMed

    Hernandez-Ceron, Nancy; Feng, Zhilan; Castillo-Chavez, Carlos

    2013-10-01

    W.O. Kermack and A.G. McKendrick introduced in their fundamental paper, A Contribution to the Mathematical Theory of Epidemics, published in 1927, a deterministic model that captured the qualitative dynamic behavior of single infectious disease outbreaks. A Kermack–McKendrick discrete-time general framework, motivated by the emergence of a multitude of models used to forecast the dynamics of epidemics, is introduced in this manuscript. Results that allow us to measure quantitatively the role of classical and general distributions on disease dynamics are presented. The case of the geometric distribution is used to evaluate the impact of waiting-time distributions on epidemiological processes or public health interventions. In short, the geometric distribution is used to set up the baseline or null epidemiological model used to test the relevance of realistic stage-period distribution on the dynamics of single epidemic outbreaks. A final size relationship involving the control reproduction number, a function of transmission parameters and the means of distributions used to model disease or intervention control measures, is computed. Model results and simulations highlight the inconsistencies in forecasting that emerge from the use of specific parametric distributions. Examples, using the geometric, Poisson and binomial distributions, are used to highlight the impact of the choices made in quantifying the risk posed by single outbreaks and the relative importance of various control measures.

  11. Statistical mechanics in the context of special relativity. II.

    PubMed

    Kaniadakis, G

    2005-09-01

    The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g., momentum, energy, etc.), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E 66, 056125 (2002)], we show that the Lorentz transformations impose also a proper one-parameter generalization of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits us to construct a coherent and self-consistent relativistic statistical theory, preserving the main features of the ordinary statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence. Furthermore, this statistical mechanics can be obtained as the stationary case of a generalized kinetic theory governed by an evolution equation obeying the H theorem and reproducing the Boltzmann equation of the ordinary kinetics in the classical limit.

  12. Positive Wigner functions render classical simulation of quantum computation efficient.

    PubMed

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  13. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale.

    PubMed

    Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan

    2018-03-29

    Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.

  14. Nuclear risk analysis of the Ulysses mission

    NASA Astrophysics Data System (ADS)

    Bartram, Bart W.; Vaughan, Frank R.; Englehart, Richard W., Dr.

    1991-01-01

    The use of a radioisotope thermoelectric generator fueled with plutonium-238 dioxide on the Space Shuttle-launched Ulysses mission implies some level of risk due to potential accidents. This paper describes the method used to quantify risks in the Ulysses mission Final Safety Analysis Report prepared for the U.S. Department of Energy. The starting point for the analysis described herein is following input of source term probability distributions from the General Electric Company. A Monte Carlo technique is used to develop probability distributions of radiological consequences for a range of accident scenarios thoughout the mission. Factors affecting radiological consequences are identified, the probability distribution of the effect of each factor determined, and the functional relationship among all the factors established. The probability distributions of all the factor effects are then combined using a Monte Carlo technique. The results of the analysis are presented in terms of complementary cumulative distribution functions (CCDF) by mission sub-phase, phase, and the overall mission. The CCDFs show the total probability that consequences (calculated health effects) would be equal to or greater than a given value.

  15. Applying generalized stochastic Petri nets to manufacturing systems containing nonexponential transition functions

    NASA Technical Reports Server (NTRS)

    Watson, James F., III; Desrochers, Alan A.

    1991-01-01

    Generalized stochastic Petri nets (GSPNs) are applied to flexible manufacturing systems (FMSs). Throughput subnets and s-transitions are presented. Two FMS examples containing nonexponential distributions which were analyzed in previous papers by queuing theory and probability theory, respectively, are treated using GSPNs developed using throughput subnets and s-transitions. The GSPN results agree with the previous results, and developing and analyzing the GSPN models are straightforward and relatively easy compared to other methodologies.

  16. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  17. A path integral methodology for obtaining thermodynamic properties of nonadiabatic systems using Gaussian mixture distributions

    NASA Astrophysics Data System (ADS)

    Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel

    2018-05-01

    We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.

  18. Particle detection and non-detection in a quantum time of arrival measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.

    2016-01-15

    The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less

  19. On the existence of a scaling relation in the evolution of cellular systems

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.

    1994-05-01

    A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.

  20. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-04-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  1. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-10-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  2. Periodic bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde

    2006-05-01

    Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.

  3. Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.

    2015-10-01

    We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.

  4. New Developments in Uncertainty: Linking Risk Management, Reliability, Statistics and Stochastic Optimization

    DTIC Science & Technology

    2014-11-13

    Cm) in a given set C ⊂ IRm . (5.7) Motivation for generalized regression comes from applications in which Y has the cost/loss orien- tation that we have...distribution. The corresponding probability measure on IRm is induced then by the multivariate distribution function FV1,...,Vm(v1, . . . , vm) = prob { (V1...could be generated by future observations of some variables V1, . . . , Vm, as above, in which case Ω would be a subset of IRm with elements ω = (v1

  5. Intercommunications in Real Time, Redundant, Distributed Computer System

    NASA Technical Reports Server (NTRS)

    Zanger, H.

    1980-01-01

    An investigation into the applicability of fiber optic communication techniques to real time avionic control systems, in particular the total automatic flight control system used for the VSTOL aircraft is presented. The system consists of spatially distributed microprocessors. The overall control function is partitioned to yield a unidirectional data flow between the processing elements (PE). System reliability is enhanced by the use of triple redundancy. Some general overall system specifications are listed here to provide the necessary background for the requirements of the communications system.

  6. Rational BRDF.

    PubMed

    Pacanowski, Romain; Salazar Celis, Oliver; Schlick, Christophe; Granier, Xavier; Poulin, Pierre; Cuyt, Annie

    2012-11-01

    Over the last two decades, much effort has been devoted to accurately measuring Bidirectional Reflectance Distribution Functions (BRDFs) of real-world materials and to use efficiently the resulting data for rendering. Because of their large size, it is difficult to use directly measured BRDFs for real-time applications, and fitting the most sophisticated analytical BRDF models is still a complex task. In this paper, we introduce Rational BRDF, a general-purpose and efficient representation for arbitrary BRDFs, based on Rational Functions (RFs). Using an adapted parametrization, we demonstrate how Rational BRDFs offer 1) a more compact and efficient representation using low-degree RFs, 2) an accurate fitting of measured materials with guaranteed control of the residual error, and 3) efficient importance sampling by applying the same fitting process to determine the inverse of the Cumulative Distribution Function (CDF) generated from the BRDF for use in Monte-Carlo rendering.

  7. Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Rombouts, Isabelle; Beaugrand, Grégory; Dauvin, Jean-Claude

    2012-03-01

    Climate-induced changes in the distribution of species are likely to affect the functioning and diversity of marine ecosystems. Therefore, in economic and ecological important areas, such as the English Channel, projections of the future distributions of key species under changing environmental conditions are urgently needed. Ecological Niche Models (ENMs) have been applied successfully to determine potential distributions of species based on the information of the environmental niche of a species (sensu Hutchinson). In this study, the niches of two commercially exploited benthic species, Pecten maximus and Glycymeris glycymeris, and two ecologically important species, Abra alba and Ophelia borealis were derived using four contemporary hydrographic variables, i.e. sea surface temperature, sea surface salinity, water depth and sediment type. Consequently, using these ecological envelopes, the Non-Parametric Probalistic Ecological Niche model (NPPEN) was applied to calculate contemporary probabilities of occurrence for each species in the North East Atlantic and to predict potential re-distributions under the climate change scenario A2 for two time periods 2050-2059 and 2090-2099. Results show general northern displacements of the four benthic species from the English Channel into the North Sea and southern Norwegian coast. The projections mostly indicate a reduction of suitable habitat for benthic species with a notable disappearance of their distributions in the English Channel, except for A. alba. However, interpretations should be treated with caution since many uncertainties and assumptions are attached to ecological niche models in general. Furthermore, opening up potential habitats for benthic species does not necessarily imply that the species will actually occupy these sites in the future. The displacement and colonisation success of species are a function of many other non-climatic factors such as species life histories, dispersal abilities, adaptability and community interactions.

  8. General relativistic magnetohydrodynamical κ-jet models for Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Davelaar, J.; Mościbrodzka, M.; Bronzwaer, T.; Falcke, H.

    2018-04-01

    Context. The observed spectral energy distribution of an accreting supermassive black hole typically forms a power-law spectrum in the near infrared (NIR) and optical wavelengths, that may be interpreted as a signature of accelerated electrons along the jet. However, the details of acceleration remain uncertain. Aim. In this paper, we study the radiative properties of jets produced in axisymmetric general relativistic magnetohydrodynamics (GRMHD) simulations of hot accretion flows onto underluminous supermassive black holes both numerically and semi-analytically, with the aim of investigating the differences between models with and without accelerated electrons inside the jet. Methods: We assume that electrons are accelerated in the jet regions of our GRMHD simulation. To model them, we modify the electrons' distribution function in the jet regions from a purely relativistic thermal distribution to a combination of a relativistic thermal distribution and the κ-distribution function (the κ-distribution function is itself a combination of a relativistic thermal and a non-thermal power-law distribution, and thus it describes accelerated electrons). Inside the disk, we assume a thermal distribution for the electrons. In order to resolve the particle acceleration regions in the GRMHD simulations, we use a coordinate grid that is optimized for modeling jets. We calculate jet spectra and synchrotron maps by using the ray tracing code RAPTOR, and compare the synthetic observations to observations of Sgr A*. Finally, we compare numerical models of jets to semi-analytical ones. Results: We find that in the κ-jet models, the radio-emitting region size, radio flux, and spectral index in NIR/optical bands increase for decreasing values of the κ parameter, which corresponds to a larger amount of accelerated electrons. This is in agreement with analytical predictions. In our models, the size of the emission region depends roughly linearly on the observed wavelength λ, independently of the assumed distribution function. The model with κ = 3.5, ηacc = 5-10% (the percentage of electrons that are accelerated), and observing angle i = 30° fits the observed Sgr A* emission in the flaring state from the radio to the NIR/optical regimes, while κ = 3.5, ηacc < 1%, and observing angle i = 30° fit the upper limits in quiescence. At this point, our models (including the purely thermal ones) cannot reproduce the observed source sizes accurately, which is probably due to the assumption of axisymmetry in our GRMHD simulations. The κ-jet models naturally recover the observed nearly-flat radio spectrum of Sgr A* without invoking the somewhat artificial isothermal jet model that was suggested earlier. Conclusions: From our model fits we conclude that between 5% and 10% of the electrons inside the jet of Sgr A* are accelerated into a κ distribution function when Sgr A* is flaring. In quiescence, we match the NIR upper limits when this percentage is <1%.

  9. Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E.J.; Green, D.L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  10. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  11. The role of the host in a cooperating mainframe and workstation environment, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Kusmanoff, Antone; Martin, Nancy L.

    1989-01-01

    In recent years, advancements made in computer systems have prompted a move from centralized computing based on timesharing a large mainframe computer to distributed computing based on a connected set of engineering workstations. A major factor in this advancement is the increased performance and lower cost of engineering workstations. The shift to distributed computing from centralized computing has led to challenges associated with the residency of application programs within the system. In a combined system of multiple engineering workstations attached to a mainframe host, the question arises as to how does a system designer assign applications between the larger mainframe host and the smaller, yet powerful, workstation. The concepts related to real time data processing are analyzed and systems are displayed which use a host mainframe and a number of engineering workstations interconnected by a local area network. In most cases, distributed systems can be classified as having a single function or multiple functions and as executing programs in real time or nonreal time. In a system of multiple computers, the degree of autonomy of the computers is important; a system with one master control computer generally differs in reliability, performance, and complexity from a system in which all computers share the control. This research is concerned with generating general criteria principles for software residency decisions (host or workstation) for a diverse yet coupled group of users (the clustered workstations) which may need the use of a shared resource (the mainframe) to perform their functions.

  12. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schmuck, Frank Bernhard

    1988-01-01

    Reliable broadcast protocols are important tools in distributed and fault-tolerant programming. They are useful for sharing information and for maintaining replicated data in a distributed system. However, a wide range of such protocols has been proposed. These protocols differ in their fault tolerance and delivery ordering characteristics. There is a tradeoff between the cost of a broadcast protocol and how much ordering it provides. It is, therefore, desirable to employ protocols that support only a low degree of ordering whenever possible. This dissertation presents techniques for deciding how strongly ordered a protocol is necessary to solve a given application problem. It is shown that there are two distinct classes of application problems: problems that can be solved with efficient, asynchronous protocols, and problems that require global ordering. The concept of a linearization function that maps partially ordered sets of events to totally ordered histories is introduced. How to construct an asynchronous implementation that solves a given problem if a linearization function for it can be found is shown. It is proved that in general the question of whether a problem has an asynchronous solution is undecidable. Hence there exists no general algorithm that would automatically construct a suitable linearization function for a given problem. Therefore, an important subclass of problems that have certain commutativity properties are considered. Techniques for constructing asynchronous implementations for this class are presented. These techniques are useful for constructing efficient asynchronous implementations for a broad range of practical problems.

  13. Similarity of plant functional traits and aggregation pattern in a subtropical forest

    USGS Publications Warehouse

    Zhang, Bo; Lu, Xiaozhen; Jiang, Jiang; DeAngelis, Donald L.; Fu, Zhiyuan; Zhang, Jinchi

    2017-01-01

    The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co-occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one-ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one-ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low-fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns.

  14. Sediment-stabilizing and Destabilizing Ecoengineering Species from River to Estuary: the Case of the Scheldt System

    NASA Astrophysics Data System (ADS)

    Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.

    2017-12-01

    Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.

  15. FUNCTIONAL EQUIVALENCE OF NON-LETHAL EFFECTS: GENERALIZED FISH AVOIDANCE DETERMINES DISTRIBUTION OF GRAY TREEFROG, HYLA CHRYSOSCELIS, LARVAE. (R825795)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. 26 CFR 1.482-1 - Allocation of income and deductions among taxpayers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section sets forth general principles and guidelines to be followed under section 482. Section 1.482-2... practices, economic principles, or statistical analyses. The extent and reliability of any adjustments will..., extraction, and assembly; (E) Purchasing and materials management; (F) Marketing and distribution functions...

  17. Architectural and Functional Design of an Environmental Information Network.

    DTIC Science & Technology

    1984-04-30

    study was accomplished under contract F08635-83-C-013(,, Task 83- 2 for Headquarters Air Force Engineering and Services Center, Engineering and Services...election Procedure ............................... 11 2 General Architecture of Distributed Data Management System...o.......60 A-1 Schema Architecture .......... o-.................. .... 74 A- 2 MULTIBASE Component Architecture

  18. Memory for Context becomes Less Specific with Time

    ERIC Educational Resources Information Center

    Wiltgen, Brian J.; Silva, Alcino J.

    2007-01-01

    Context memories initially require the hippocampus, but over time become independent of this structure. This shift reflects a consolidation process whereby memories are gradually stored in distributed regions of the cortex. The function of this process is thought to be the extraction of statistical regularities and general knowledge from specific…

  19. From quantum to classical modeling of radiation reaction: A focus on stochasticity effects

    NASA Astrophysics Data System (ADS)

    Niel, F.; Riconda, C.; Amiranoff, F.; Duclous, R.; Grech, M.

    2018-04-01

    Radiation reaction in the interaction of ultrarelativistic electrons with a strong external electromagnetic field is investigated using a kinetic approach in the nonlinear moderately quantum regime. Three complementary descriptions are discussed considering arbitrary geometries of interaction: a deterministic one relying on the quantum-corrected radiation reaction force in the Landau and Lifschitz (LL) form, a linear Boltzmann equation for the electron distribution function, and a Fokker-Planck (FP) expansion in the limit where the emitted photon energies are small with respect to that of the emitting electrons. The latter description is equivalent to a stochastic differential equation where the effect of the radiation reaction appears in the form of the deterministic term corresponding to the quantum-corrected LL friction force, and by a diffusion term accounting for the stochastic nature of photon emission. By studying the evolution of the energy moments of the electron distribution function with the three models, we are able to show that all three descriptions provide similar predictions on the temporal evolution of the average energy of an electron population in various physical situations of interest, even for large values of the quantum parameter χ . The FP and full linear Boltzmann descriptions also allow us to correctly describe the evolution of the energy variance (second-order moment) of the distribution function, while higher-order moments are in general correctly captured with the full linear Boltzmann description only. A general criterion for the limit of validity of each description is proposed, as well as a numerical scheme for the inclusion of the FP description in particle-in-cell codes. This work, not limited to the configuration of a monoenergetic electron beam colliding with a laser pulse, allows further insight into the relative importance of various effects of radiation reaction and in particular of the discrete and stochastic nature of high-energy photon emission and its back-reaction in the deformation of the particle distribution function.

  20. Two-sided Topp-Leone Weibull distribution

    NASA Astrophysics Data System (ADS)

    Podeang, Krittaya; Bodhisuwan, Winai

    2017-11-01

    In this paper, we introduce a general class of lifetime distributions, called the two-sided Topp-Leone generated family of distribution. A special case of new family is the two-sided Topp-Leone Weibull distribution. This distribution used the two-sided Topp-Leone distribution as a generator for the Weibull distribution. The two-sided Topp-Leone Weibull distribution is presented in several shapes of distributions such as decreasing, unimodal, and bimodal which make this distribution more than flexible than the Weibull distribution. Its quantile function is presented. The parameter estimation method by using maximum likelihood estimation is discussed. The proposed distribution is applied to the strength data set, remission times of bladder cancer patients data set and time to failure of turbocharger data set. We compare the proposed distribution to the Topp-Leone Generated Weibull distribution. In conclusion, the two-sided Topp-Leone Weibull distribution performs similarly as the Topp-Leone Generated Weibull distribution in the first and second data sets. However, the proposed distribution can perform better than fit to Topp-Leone Generated Weibull distribution for the other.

  1. A general formula for computing maximum proportion correct scores in various psychophysical paradigms with arbitrary probability distributions of stimulus observations.

    PubMed

    Dai, Huanping; Micheyl, Christophe

    2015-05-01

    Proportion correct (Pc) is a fundamental measure of task performance in psychophysics. The maximum Pc score that can be achieved by an optimal (maximum-likelihood) observer in a given task is of both theoretical and practical importance, because it sets an upper limit on human performance. Within the framework of signal detection theory, analytical solutions for computing the maximum Pc score have been established for several common experimental paradigms under the assumption of Gaussian additive internal noise. However, as the scope of applications of psychophysical signal detection theory expands, the need is growing for psychophysicists to compute maximum Pc scores for situations involving non-Gaussian (internal or stimulus-induced) noise. In this article, we provide a general formula for computing the maximum Pc in various psychophysical experimental paradigms for arbitrary probability distributions of sensory activity. Moreover, easy-to-use MATLAB code implementing the formula is provided. Practical applications of the formula are illustrated, and its accuracy is evaluated, for two paradigms and two types of probability distributions (uniform and Gaussian). The results demonstrate that Pc scores computed using the formula remain accurate even for continuous probability distributions, as long as the conversion from continuous probability density functions to discrete probability mass functions is supported by a sufficiently high sampling resolution. We hope that the exposition in this article, and the freely available MATLAB code, facilitates calculations of maximum performance for a wider range of experimental situations, as well as explorations of the impact of different assumptions concerning internal-noise distributions on maximum performance in psychophysical experiments.

  2. A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function.

    PubMed

    Horvath, Isabelle R; Chatterjee, Siddharth G

    2018-05-01

    The recently derived steady-state generalized Danckwerts age distribution is extended to unsteady-state conditions. For three different wind speeds used by researchers on air-water heat exchange on the Heidelberg Aeolotron, calculations reveal that the distribution has a sharp peak during the initial moments, but flattens out and acquires a bell-shaped character with process time, with the time taken to attain a steady-state profile being a strong and inverse function of wind speed. With increasing wind speed, the age distribution narrows significantly, its skewness decreases and its peak becomes larger. The mean eddy renewal time increases linearly with process time initially but approaches a final steady-state value asymptotically, which decreases dramatically with increased wind speed. Using the distribution to analyse the transient absorption of a gas into a large body of liquid, assuming negligible gas-side mass-transfer resistance, estimates are made of the gas-absorption and dissolved-gas transfer coefficients for oxygen absorption in water at 25°C for the three different wind speeds. Under unsteady-state conditions, these two coefficients show an inverse behaviour, indicating a heightened accumulation of dissolved gas in the surface elements, especially during the initial moments of absorption. However, the two mass-transfer coefficients start merging together as the steady state is approached. Theoretical predictions of the steady-state mass-transfer coefficient or transfer velocity are in fair agreement (average absolute error of prediction = 18.1%) with some experimental measurements of the same for the nitrous oxide-water system at 20°C that were made in the Heidelberg Aeolotron.

  3. An annular superposition integral for axisymmetric radiators

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2007-01-01

    A fast integral expression for computing the nearfield pressure is derived for axisymmetric radiators. This method replaces the sum of contributions from concentric annuli with an exact double integral that converges much faster than methods that evaluate the Rayleigh-Sommerfeld integral or the generalized King integral. Expressions are derived for plane circular pistons using both continuous wave and pulsed excitations. Several commonly used apodization schemes for the surface velocity distribution are considered, including polynomial functions and a “smooth piston” function. The effect of different apodization functions on the spectral content of the wave field is explored. Quantitative error and time comparisons between the new method, the Rayleigh-Sommerfeld integral, and the generalized King integral are discussed. At all error levels considered, the annular superposition method achieves a speed-up of at least a factor of 4 relative to the point-source method and a factor of 3 relative to the generalized King integral without increasing the computational complexity. PMID:17348500

  4. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  5. INTERPRETING PHYSICAL AND BEHAVIORAL HEALTH SCORES FROM NEW WORK DISABILITY INSTRUMENTS

    PubMed Central

    Marfeo, Elizabeth E.; Ni, Pengsheng; Chan, Leighton; Rasch, Elizabeth K.; McDonough, Christine M.; Brandt, Diane E.; Bogusz, Kara; Jette, Alan M.

    2015-01-01

    Objective To develop a system to guide interpretation of scores generated from 2 new instruments measuring work-related physical and behavioral health functioning (Work Disability – Physical Function (WD-PF) and WD – Behavioral Function (WD-BH)). Design Cross-sectional, secondary data from 3 independent samples to develop and validate the functional levels for physical and behavioral health functioning. Subjects Physical group: 999 general adult subjects, 1,017 disability applicants and 497 work-disabled subjects. Behavioral health group: 1,000 general adult subjects, 1,015 disability applicants and 476 work-disabled subjects. Methods Three-phase analytic approach including item mapping, a modified-Delphi technique, and known-groups validation analysis were used to develop and validate cut-points for functional levels within each of the WD-PF and WD-BH instrument’s scales. Results Four and 5 functional levels were developed for each of the scales in the WD-PF and WD-BH instruments. Distribution of the comparative samples was in the expected direction: the general adult samples consistently demonstrated scores at higher functional levels compared with the claimant and work-disabled samples. Conclusion Using an item-response theory-based methodology paired with a qualitative process appears to be a feasible and valid approach for translating the WD-BH and WD-PF scores into meaningful levels useful for interpreting a person’s work-related physical and behavioral health functioning. PMID:25729901

  6. Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Wattanasakulpong, Nuttawit; Chaikittiratana, Arisara; Pornpeerakeat, Sacharuck

    2018-06-01

    In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton's principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions.

  7. Category representations in the brain are both discretely localized and widely distributed.

    PubMed

    Shehzad, Zarrar; McCarthy, Gregory

    2018-06-01

    Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.

  8. Quasi-parton distribution functions: A study in the diquark spectator model

    DOE PAGES

    Gamberg, Leonard; Kang, Zhong -Bo; Vitev, Ivan; ...

    2015-02-12

    A set of quasi-parton distribution functions (quasi-PDFs) have been recently proposed by Ji. Defined as the matrix elements of equal-time spatial correlations, they can be computed on the lattice and should reduce to the standard PDFs when the proton momentum P z is very large. Since taking the P z → ∞ limit is not feasible in lattice simulations, it is essential to provide guidance for which values of P z the quasi-PDFs are good approximations of standard PDFs. Within the framework of the spectator diquark model, we evaluate both the up and down quarks' quasi-PDFs and standard PDFs formore » all leading-twist distributions (unpolarized distribution f₁, helicity distribution g₁, and transversity distribution h₁). We find that, for intermediate parton momentum fractions x , quasi-PDFs are good approximations to standard PDFs (within 20–30%) when P z ≳ 1.5–2 GeV. On the other hand, for large x~1 much larger P z > 4 GeV is necessary to obtain a satisfactory agreement between the two sets. We further test the Soffer positivity bound, and find that it does not hold in general for quasi-PDFs.« less

  9. Exact solution of a ratchet with switching sawtooth potential

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Klümper, Andreas

    2018-01-01

    We consider the flashing potential ratchet model with general asymmetric potential. Using Bloch functions, we derive equations which allow for the calculation of both the ratchet's flux and higher moments of distribution for rather general potentials. We indicate how to derive the optimal transition rates for maximal velocity of the ratchet. We calculate explicitly the exact velocity of a ratchet with simple sawtooth potential from the solution of a system of 8 linear algebraic equations. Using Bloch functions, we derive the equations for the ratchet with potentials changing periodically with time. We also consider the case of the ratchet with evolution with two different potentials acting for some random periods of time.

  10. Exact Scheffé-type confidence intervals for output from groundwater flow models: 1. Use of hydrogeologic information

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.

  11. The orbital PDF: general inference of the gravitational potential from steady-state tracers

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Wang, Wenting; Cole, Shaun; Frenk, Carlos S.

    2016-02-01

    We develop two general methods to infer the gravitational potential of a system using steady-state tracers, I.e. tracers with a time-independent phase-space distribution. Combined with the phase-space continuity equation, the time independence implies a universal orbital probability density function (oPDF) dP(λ|orbit) ∝ dt, where λ is the coordinate of the particle along the orbit. The oPDF is equivalent to Jeans theorem, and is the key physical ingredient behind most dynamical modelling of steady-state tracers. In the case of a spherical potential, we develop a likelihood estimator that fits analytical potentials to the system and a non-parametric method (`phase-mark') that reconstructs the potential profile, both assuming only the oPDF. The methods involve no extra assumptions about the tracer distribution function and can be applied to tracers with any arbitrary distribution of orbits, with possible extension to non-spherical potentials. The methods are tested on Monte Carlo samples of steady-state tracers in dark matter haloes to show that they are unbiased as well as efficient. A fully documented C/PYTHON code implementing our method is freely available at a GitHub repository linked from http://icc.dur.ac.uk/data/#oPDF.

  12. Content Representation in the Human Medial Temporal Lobe

    PubMed Central

    Liang, Jackson C.; Wagner, Anthony D.

    2013-01-01

    Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pathways, empirical data for content-based MTL subregional dissociations are mixed. Here, we combined functional magnetic resonance imaging with multiple statistical approaches to characterize MTL subregional responses to different classes of novel event content (faces, scenes, spoken words, sounds, visual words). Univariate analyses revealed that responses to novel faces and scenes were distributed across the anterior–posterior axis of MTL cortex, with face responses distributed more anteriorly than scene responses. Moreover, multivariate pattern analyses of perirhinal and parahippocampal data revealed spatially organized representational codes for multiple content classes, including nonpreferred visual and auditory stimuli. In contrast, anterior hippocampal responses were content general, with less accurate overall pattern classification relative to MTL cortex. Finally, posterior hippocampal activation patterns consistently discriminated scenes more accurately than other forms of content. Collectively, our findings indicate differential contributions of MTL subregions to event representation via a distributed code along the anterior–posterior axis of MTL that depends on the nature of event content. PMID:22275474

  13. Mean Excess Function as a method of identifying sub-exponential tails: Application to extreme daily rainfall

    NASA Astrophysics Data System (ADS)

    Nerantzaki, Sofia; Papalexiou, Simon Michael

    2017-04-01

    Identifying precisely the distribution tail of a geophysical variable is tough, or, even impossible. First, the tail is the part of the distribution for which we have the less empirical information available; second, a universally accepted definition of tail does not and cannot exist; and third, a tail may change over time due to long-term changes. Unfortunately, the tail is the most important part of the distribution as it dictates the estimates of exceedance probabilities or return periods. Fortunately, based on their tail behavior, probability distributions can be generally categorized into two major families, i.e., sub-exponentials (heavy-tailed) and hyper-exponentials (light-tailed). This study aims to update the Mean Excess Function (MEF), providing a useful tool in order to asses which type of tail better describes empirical data. The MEF is based on the mean value of a variable over a threshold and results in a zero slope regression line when applied for the Exponential distribution. Here, we construct slope confidence intervals for the Exponential distribution as functions of sample size. The validation of the method using Monte Carlo techniques on four theoretical distributions covering major tail cases (Pareto type II, Log-normal, Weibull and Gamma) revealed that it performs well especially for large samples. Finally, the method is used to investigate the behavior of daily rainfall extremes; thousands of rainfall records were examined, from all over the world and with sample size over 100 years, revealing that heavy-tailed distributions can describe more accurately rainfall extremes.

  14. Topology for Dominance for Network of Multi-Agent System

    NASA Astrophysics Data System (ADS)

    Szeto, K. Y.

    2007-05-01

    The resource allocation problem in evolving two-dimensional point patterns is investigated for the existence of good strategies for the construction of initial configuration that leads to fast dominance of the pattern by one single species, which can be interpreted as market dominance by a company in the context of multi-agent systems in econophysics. For hexagonal lattice, certain special topological arrangements of the resource in two-dimensions, such as rings, lines and clusters have higher probability of dominance, compared to random pattern. For more complex networks, a systematic way to search for a stable and dominant strategy of resource allocation in the changing environment is found by means of genetic algorithm. Five typical features can be summarized by means of the distribution function for the local neighborhood of friends and enemies as well as the local clustering coefficients: (1) The winner has more triangles than the loser has. (2) The winner likes to form clusters as the winner tends to connect with other winner rather than with losers; while the loser tends to connect with winners rather than losers. (3) The distribution function of friends as well as enemies for the winner is broader than the corresponding distribution function for the loser. (4) The connectivity at which the peak of the distribution of friends for the winner occurs is larger than that of the loser; while the peak values for friends for winners is lower. (5) The connectivity at which the peak of the distribution of enemies for the winner occurs is smaller than that of the loser; while the peak values for enemies for winners is lower. These five features appear to be general, at least in the context of two-dimensional hexagonal lattices of various sizes, hierarchical lattice, Voronoi diagrams, as well as high-dimensional random networks. These general local topological properties of networks are relevant to strategists aiming at dominance in evolving patterns when the interaction between the agents is local.

  15. Ordinary mode instability associated with thermal ring distribution

    NASA Astrophysics Data System (ADS)

    Hadi, F.; Yoon, P. H.; Qamar, A.

    2015-02-01

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  16. Unified halo-independent formalism from convex hulls for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2017-12-01

    Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution F(v) in Earth's frame or 2- Galactic velocity distribution fgal(vec u), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (Script N‑1), where Script N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is Script N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function tilde eta0BF(vmin) (which is an integral of the speed distribution) with at most (Script N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise confidence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of fgal(vec u), which is a sum of Galactic streams, yields a periodic time-dependent halo function tilde etaBF(vmin, t) which at any fixed time is a piecewise constant function of vmin with at most Script N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u) that is once again a sum of delta functions, and produces a time-dependent tilde etaBF(vmin, t) function (and a time-averaged tilde eta0BF(vmin)) that is piecewise linear, differing significantly from best-fit halo functions obtained without the assumption of isotropy.

  17. Dynamics of transit times and StorAge Selection functions in four forested catchments from stable isotope data

    NASA Astrophysics Data System (ADS)

    Rodriguez, Nicolas B.; McGuire, Kevin J.; Klaus, Julian

    2017-04-01

    Transit time distributions, residence time distributions and StorAge Selection functions are fundamental integrated descriptors of water storage, mixing, and release in catchments. In this contribution, we determined these time-variant functions in four neighboring forested catchments in H.J. Andrews Experimental Forest, Oregon, USA by employing a two year time series of 18O in precipitation and discharge. Previous studies in these catchments assumed stationary, exponentially distributed transit times, and complete mixing/random sampling to explore the influence of various catchment properties on the mean transit time. Here we relaxed such assumptions to relate transit time dynamics and the variability of StoreAge Selection functions to catchment characteristics, catchment storage, and meteorological forcing seasonality. Conceptual models of the catchments, consisting of two reservoirs combined in series-parallel, were calibrated to discharge and stable isotope tracer data. We assumed randomly sampled/fully mixed conditions for each reservoir, which resulted in an incompletely mixed system overall. Based on the results we solved the Master Equation, which describes the dynamics of water ages in storage and in catchment outflows Consistent between all catchments, we found that transit times were generally shorter during wet periods, indicating the contribution of shallow storage (soil, saprolite) to discharge. During extended dry periods, transit times increased significantly indicating the contribution of deeper storage (bedrock) to discharge. Our work indicated that the strong seasonality of precipitation impacted transit times by leading to a dynamic selection of stored water ages, whereas catchment size was not a control on transit times. In general this work showed the usefulness of using time-variant transit times with conceptual models and confirmed the existence of the catchment age mixing behaviors emerging from other similar studies.

  18. Solutions to Kuessner's integral equation in unsteady flow using local basis functions

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Halstead, D. W.

    1975-01-01

    The computational procedure and numerical results are presented for a new method to solve Kuessner's integral equation in the case of subsonic compressible flow about harmonically oscillating planar surfaces with controls. Kuessner's equation is a linear transformation from pressure to normalwash. The unknown pressure is expanded in terms of prescribed basis functions and the unknown basis function coefficients are determined in the usual manner by satisfying the given normalwash distribution either collocationally or in the complex least squares sense. The present method of solution differs from previous ones in that the basis functions are defined in a continuous fashion over a relatively small portion of the aerodynamic surface and are zero elsewhere. This method, termed the local basis function method, combines the smoothness and accuracy of distribution methods with the simplicity and versatility of panel methods. Predictions by the local basis function method for unsteady flow are shown to be in excellent agreement with other methods. Also, potential improvements to the present method and extensions to more general classes of solutions are discussed.

  19. Exponential Family Functional data analysis via a low-rank model.

    PubMed

    Li, Gen; Huang, Jianhua Z; Shen, Haipeng

    2018-05-08

    In many applications, non-Gaussian data such as binary or count are observed over a continuous domain and there exists a smooth underlying structure for describing such data. We develop a new functional data method to deal with this kind of data when the data are regularly spaced on the continuous domain. Our method, referred to as Exponential Family Functional Principal Component Analysis (EFPCA), assumes the data are generated from an exponential family distribution, and the matrix of the canonical parameters has a low-rank structure. The proposed method flexibly accommodates not only the standard one-way functional data, but also two-way (or bivariate) functional data. In addition, we introduce a new cross validation method for estimating the latent rank of a generalized data matrix. We demonstrate the efficacy of the proposed methods using a comprehensive simulation study. The proposed method is also applied to a real application of the UK mortality study, where data are binomially distributed and two-way functional across age groups and calendar years. The results offer novel insights into the underlying mortality pattern. © 2018, The International Biometric Society.

  20. On the velocity distribution of ion jets during substorm recovery

    NASA Technical Reports Server (NTRS)

    Birn, J.; Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Paschmann, G.

    1981-01-01

    The velocity distribution of earthward jetting ions that are observed principally during substorm recovery by satellites at approximately 15-35 earth radii in the magnetotail is quantitatively compared with two different theoretical models - the 'adiabatic deformation' of an initially flowing Maxwellian moving into higher magnetic field strength (model A) and the field-aligned electrostatic acceleration of an initially nonflowing isotropic Maxwellian including adiabatic deformation effects (model B). The assumption is made that the ions are protons or, more generally, that they consist of only one species. It is found that both models can explain the often observed concave-convex shape of isodensity contours of the distribution function.

  1. Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms.

    PubMed

    Azaña, J; Muriel, M A

    2000-12-01

    The grating-period profile and length of an arbitrary fiber Bragg grating structure can be reconstructed from the structure's reflection response by use of a time-frequency signal representation based on the well-known Wigner-Ville distribution and spectrogram. We present a detailed description of this synthesis technique. By means of numerical simulations, the technique is tested with several fiber grating structures. In general, our results show good agreement between exact and reconstructed functions. The technique's advantages and limitations are discussed. We propose and demonstrate the application of the proposed synthesis technique to distributed mechanical strain or temperature sensing.

  2. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    NASA Astrophysics Data System (ADS)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  4. Ion Thermal Conductivity and Ion Distribution Function in the Banana Regime

    DTIC Science & Technology

    1988-04-01

    approximate collision operator which is more general than the model operator derived by HIRSHMAN and SIGMAR is presented. By use of this collision...by HIRSHMAN and SIGMAR (1976). The finite aspect ratio correction is shown to increase the ion thermal conductivity by a factor of two in the...operator (12) is more general than that of Hirshman and Sigmar which can be derived by approximating Ct(1=0,1,2)in (12) by more simple forms. Let us

  5. Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Maroun, Michael Anthony

    This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.

  6. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chew, Jia Wei

    2018-02-01

    In this study, an alternative second-order boundary scheme is proposed under the framework of the convection-diffusion lattice Boltzmann (LB) method for both straight and curved geometries. With the proposed scheme, boundary implementations are developed for the Dirichlet, Neumann and linear Robin conditions in a consistent way. The Chapman-Enskog analysis and the Hermite polynomial expansion technique are first applied to derive the explicit expression for the general distribution function with second-order accuracy. Then, the macroscopic variables involved in the expression for the distribution function is determined by the prescribed macroscopic constraints and the known distribution functions after streaming [see the paragraph after Eq. (29) for the discussions of the "streaming step" in LB method]. After that, the unknown distribution functions are obtained from the derived macroscopic information at the boundary nodes. For straight boundaries, boundary nodes are directly placed at the physical boundary surface, and the present scheme is applied directly. When extending the present scheme to curved geometries, a local curvilinear coordinate system and first-order Taylor expansion are introduced to relate the macroscopic variables at the boundary nodes to the physical constraints at the curved boundary surface. In essence, the unknown distribution functions at the boundary node are derived from the known distribution functions at the same node in accordance with the macroscopic boundary conditions at the surface. Therefore, the advantages of the present boundary implementations are (i) the locality, i.e., no information from neighboring fluid nodes is required; (ii) the consistency, i.e., the physical boundary constraints are directly applied when determining the macroscopic variables at the boundary nodes, thus the three kinds of conditions are realized in a consistent way. It should be noted that the present focus is on two-dimensional cases, and theoretical derivations as well as the numerical validations are performed in the framework of the two-dimensional five-velocity lattice model.

  7. Geometric multiaxial representation of N -qubit mixed symmetric separable states

    NASA Astrophysics Data System (ADS)

    SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik

    2017-08-01

    The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.

  8. Reliability estimation of a N- M-cold-standby redundancy system in a multicomponent stress-strength model with generalized half-logistic distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei

    2018-01-01

    In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.

  9. Magnetosonic solitons in space plasmas: dark or bright solitons?

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Onishchenko, O. G.; Balikhin, M. A.; Stenflo, L.; Shukla, P. K.

    2007-12-01

    The nonlinear theory of large-amplitude magnetosonic (MS) waves in highβ space plasmas is revisited. It is shown that solitary waves can exist in the form of `bright' or `dark' solitons in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion, which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived.It takes into account general plasma equilibria, such as the Dory-Guest-Harris (DGH) or Kennel-Ashour-Abdalla (KA) loss-cone equilibria, as well as distributions with a power-law velocity dependence that can be modelled by κdistributions. It is shown that in a bi-Maxwellian plasma the dispersion is negative, i.e. the phase velocity decreases with an increase of the wavenumber. This means that the solitary solution in this case has the form of a `bright' soliton with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas, such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to existing satellite wave observations is outlined.

  10. Phenomenological model to fit complex permittivity data of water from radio to optical frequencies.

    PubMed

    Shubitidze, Fridon; Osterberg, Ulf

    2007-04-01

    A general factorized form of the dielectric function together with a fractional model-based parameter estimation method is used to provide an accurate analytical formula for the complex refractive index in water for the frequency range 10(8)-10(16)Hz . The analytical formula is derived using a combination of a microscopic frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic reduction in the imaginary part of the permittivity in the visible window of the water spectrum.

  11. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    NASA Astrophysics Data System (ADS)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  12. Smooth conditional distribution function and quantiles under random censorship.

    PubMed

    Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine

    2002-09-01

    We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).

  13. Generalized Green's function molecular dynamics for canonical ensemble simulations

    NASA Astrophysics Data System (ADS)

    Coluci, V. R.; Dantas, S. O.; Tewary, V. K.

    2018-05-01

    The need of small integration time steps (˜1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.

  14. Objective assessment of the effect of pupil size upon the power distribution of multifocal contact lenses.

    PubMed

    Papadatou, Eleni; Del Águila-Carrasco, Antonio J; Esteve-Taboada, José J; Madrid-Costa, David; Cerviño-Expósito, Alejandro

    2017-01-01

    To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses. Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed. The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about -3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens. In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient's visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.

  15. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Anupam; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076; Higham, Jonathan

    A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, themore » nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell.« less

  17. Asymptotic approximations to posterior distributions via conditional moment equations

    USGS Publications Warehouse

    Yee, J.L.; Johnson, W.O.; Samaniego, F.J.

    2002-01-01

    We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.

  18. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1992-01-01

    The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems.

  19. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  20. Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.

    PubMed

    Terraneo, M; Georgeot, B; Shepelyansky, D L

    2005-06-01

    We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.

  1. Ambulatory cancer and US general population reference values and cutoff scores for the functional assessment of cancer therapy.

    PubMed

    Pearman, Timothy; Yanez, Betina; Peipert, John; Wortman, Katy; Beaumont, Jennifer; Cella, David

    2014-09-15

    Health-related quality of life (HRQOL) measures are commonly used in oncology research. Interest in their use for monitoring or screening is increasing. The Functional Assessment of Cancer Therapy (FACT) is one of the most widely used HRQOL instruments. Consequently, oncology researchers and practitioners have an increasing need for reference values for the Functional Assessment of Cancer Therapy-General (FACT-G) and its 7-item rapid version, the Functional Assessment of Cancer Therapy-General 7 (FACT-G7), to compare FACT scores across specific subgroups of patients in research trials and practice. The objectives of this study are to provide 1) reference values from a sample of the general US adult population and a sample of adults diagnosed with cancer and 2) cutoff scores for quality of life. A sample of the general US population (N = 1075) and a sample of patients with cancer from 12 studies (N = 5065) were analyzed. Cutoff scores were established using distribution- and anchor-based methods. Mean values for the cancer sample were analyzed by performance status, cancer type, and disease status. Also, t tests and established criteria for meaningful differences were used to compare values. FACT-G and FACT-G7 scores in the general US population sample and cancer sample were generally comparable. Among the sample of patients with cancer, FACT-G and FACT-G7 scores worsened with declining performance status and increasing disease status. These data will aid interpretation of the magnitude and meaning of FACT scores, and allow for comparisons of scores across studies. © 2014 American Cancer Society.

  2. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  3. Application of constrained deconvolution technique for reconstruction of electron bunch profile with strongly non-Gaussian shape

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function.

  4. Research on target information optics communications transmission characteristic and performance in multi-screens testing system

    NASA Astrophysics Data System (ADS)

    Li, Hanshan

    2016-04-01

    To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.

  5. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff.

    PubMed

    Toranjian, Amin; Marofi, Safar

    2017-05-01

    Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014-May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov-Smirnov and Anderson-Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.

  6. Retrieval of high-fidelity memory arises from distributed cortical networks.

    PubMed

    Wais, Peter E; Jahanikia, Sahar; Steiner, Daniel; Stark, Craig E L; Gazzaley, Adam

    2017-04-01

    Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A Simpli ed, General Approach to Simulating from Multivariate Copula Functions

    Treesearch

    Barry Goodwin

    2012-01-01

    Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses \\probability{...

  8. Distributions in Spherical Coordinates with Applications to Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2007-01-01

    A general and rigorous method to deal with singularities at the origin of a polar coordinate system is presented. Its power derives from a clear distinction between the radial distance and the radial coordinate variable, which makes that all delta functions and their derivatives are automatically generated, and ensures that the Gauss theorem is…

  9. Attentional Control in Visual Signal Detection: Effects of Abrupt-Onset and No-Onset Stimuli

    ERIC Educational Resources Information Center

    Sewell, David K.; Smith, Philip L.

    2012-01-01

    The attention literature distinguishes two general mechanisms by which attention can benefit performance: gain (or resource) models and orienting (or switching) models. In gain models, processing efficiency is a function of a spatial distribution of capacity or resources; in orienting models, an attentional spotlight must be aligned with the…

  10. Children's Abstraction and Generalization of English Lexical Stress Patterns

    ERIC Educational Resources Information Center

    Redford, Melissa A.; Oh, Grace E.

    2016-01-01

    The current study investigated school-aged children's internalization of the distributional patterns of English lexical stress as a function of vocabulary size. Sixty children (5;3 to 8;3) participated in the study. The children were asked to blend two individually presented, equally stressed syllables to produce disyllabic nonwords with different…

  11. Analysis of hyperspectral scattering profiles using a generalized Gaussian distribution function for prediction of apple firmness and soluble solids content

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral scattering provides an effective means for characterizing light scattering in the fruit and is thus promising for noninvasive assessment of apple firmness and soluble solids content (SSC). A critical problem encountered in application of hyperspectral scattering technology is analyzing...

  12. A κ-generalized statistical mechanics approach to income analysis

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2009-02-01

    This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.

  13. Lattice QCD calculations of nucleon transverse momentum-dependent parton distributions using clover and domain wall fermions

    DOE PAGES

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan; ...

    2015-01-01

    Here, we present a lattice QCD calculation of transverse momentum dependent parton distribution functions (TMDs) of protons using staple-shaped Wilson lines. For time-reversal odd observables, we calculate the generalized Sivers and Boer-Mulders transverse momentum shifts in SIDIS and DY cases, and for T-even observables we calculate the transversity related to the tensor charge and the generalized worm-gear shift. The calculation is done on two different n f = 2+1 ensembles: domain-wall fermion (DWF) with lattice spacing 0:084fm and pion mass of 297 MeV, and clover fermion with lattice spacing 0:114 fm and pion mass of 317 MeV. The results frommore » those two different discretizations are consistent with each other.« less

  14. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.

  15. A generalized theory of preferential linking

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan

    2014-12-01

    There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.

  16. Generalized image contrast enhancement technique based on the Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1996-07-01

    This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.

  17. New parton distribution functions from a global analysis of quantum chromodynamics

    DOE PAGES

    Dulat, Sayipjamal; Hou, Tie -Jiun; Gao, Jun; ...

    2016-02-16

    Here, we present new parton distribution functions (PDFs) up to next-to-next-to-leading order (NNLO) from the CTEQ-TEA global analysis of quantum chromodynamics. These differ from previous CT PDFs in several respects, including the use of data from LHC experiments and the new D0 charged lepton rapidity asymmetry data, as well as the use of more flexible parametrization of PDFs that, in particular, allows a better fit to different combinations of quark flavors. Predictions for important LHC processes, especially Higgs boson production at 13 TeV, are presented. These CT14 PDFs include a central set and error sets in the Hessian representation. Formore » completeness, we also present the CT14 PDFs determined at the leading order (LO) and the next-to-leading order (NLO) in QCD. Besides these general-purpose PDF sets, we provide a series of (N)NLO sets with various α s values and additional sets in general-mass variable flavor number (GM-VFN) schemes, to deal with heavy partons, with up to 3, 4, and 6 active flavors.« less

  18. Redefining neuromarketing as an integrated science of influence

    PubMed Central

    Breiter, Hans C.; Block, Martin; Blood, Anne J.; Calder, Bobby; Chamberlain, Laura; Lee, Nick; Livengood, Sherri; Mulhern, Frank J.; Raman, Kalyan; Schultz, Don; Stern, Daniel B.; Viswanathan, Vijay; Zhang, Fengqing (Zoe)

    2015-01-01

    Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as “neuromarketing”. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make “choices”, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or “influenced”, which can occur at multiple “scales” of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats. PMID:25709573

  19. Redefining neuromarketing as an integrated science of influence.

    PubMed

    Breiter, Hans C; Block, Martin; Blood, Anne J; Calder, Bobby; Chamberlain, Laura; Lee, Nick; Livengood, Sherri; Mulhern, Frank J; Raman, Kalyan; Schultz, Don; Stern, Daniel B; Viswanathan, Vijay; Zhang, Fengqing Zoe

    2014-01-01

    Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as "neuromarketing". There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make "choices", and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or "influenced", which can occur at multiple "scales" of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.

  20. Statistical dynamics of regional populations and economies

    NASA Astrophysics Data System (ADS)

    Huo, Jie; Wang, Xu-Ming; Hao, Rui; Wang, Peng

    Quantitative analysis of human behavior and social development is becoming a hot spot of some interdisciplinary studies. A statistical analysis on the population and GDP of 150 cities in China from 1990 to 2013 is conducted. The result indicates the cumulative probability distribution of the populations and that of the GDPs obeying the shifted power law, respectively. In order to understand these characteristics, a generalized Langevin equation describing variation of population is proposed, which is based on the correlations between population and GDP as well as the random fluctuations of the related factors. The equation is transformed into the Fokker-Plank equation to express the evolution of population distribution. The general solution demonstrates a transition of the distribution from the normal Gaussian distribution to a shifted power law, which suggests a critical point of time at which the transition takes place. The shifted power law distribution in the supercritical situation is qualitatively in accordance with the practical result. The distribution of the GDPs is derived from the well-known Cobb-Douglas production function. The result presents a change, in supercritical situation, from a shifted power law to the Gaussian distribution. This is a surprising result-the regional GDP distribution of our world will be the Gaussian distribution one day in the future. The discussions based on the changing trend of economic growth suggest it will be true. Therefore, these theoretical attempts may draw a historical picture of our society in the aspects of population and economy.

  1. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E. J.; Green, D. L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  2. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE PAGES

    Bertelli, N.; Valeo, E. J.; Green, D. L.; ...

    2017-04-03

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  3. A phase space approach to wave propagation with dispersion.

    PubMed

    Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J

    2015-08-01

    A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.

  4. Non-Fickian dispersion of groundwater age

    PubMed Central

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2014-01-01

    We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the random walk recovers the previous conventional model of age when the low order moments of the transition density functions remain finite at their limits and describes non-Fickian age distributions when the transition densities diverge. Previously published transition densities are then used to show how the added dimension in age affects the governing differential equations. Depending on which transition densities diverge, the resulting models may be nonlocal in time, space, or age and can describe asymptotic or pre-asymptotic dispersion. A joint distribution function of time and age transitions is developed as a conditional probability and a natural result of this is that time and age must always have identical transition rate functions. This implies that a transition density defined for age can substitute for a density in time and this has implications for transport model parameter estimation. We present examples of simulated age distributions from a geologically based, heterogeneous domain that exhibit non-Fickian behavior and show that the non-Fickian model provides better descriptions of the distributions than the Fickian model. PMID:24976651

  5. Contrasting Relationships between Functional and Species Diversity in Subarctic and Subtropical Copepod Communities across the western North Pacific

    NASA Astrophysics Data System (ADS)

    Garcia-Comas, C.; Chiba, S.; Sugisaki, H.; Hashioka, T.; Smith, S. L.

    2016-02-01

    Understanding how species coexist in rich communities and the role of biodiversity on ecosystem-functioning is a long-standing challenge in ecology. Comparing functional diversity to species diversity may shed light on these questions. Here, we analyze copepod species data from the ODATE collection: 3142 samples collected over a period of 40 years, which includes a 10 o x 10o area of the Oyashio-Kuroshio Transition System, east of Japan (western North Pacific). The area hosts species characteristic of subarctic and subtropical communities. 163 copepod species were classified into five categorical functional traits (i.e., size, food, reproduction, thermal affinity and coastal-offshore habitat), following online databases and local taxonomic keys. We observe a general opposite hump-shaped relationship of species evenness (lower at mid-point) and functional diversity (Rao's Q) (higher at mid-point) with species richness. Subtropical Kuroshio communities tend to be richer with higher species evenness, and yet subarctic and transition waters tend to host communities of higher functional diversity. The distribution of trait values within each functional trait was further examined in relation to the Species Abundances Distribution (SAD). In subtropical communities, the distribution of trait values in the species ranking is homogenous, mirroring the frequency of those trait values in the entire community. In contrast, in subarctic communities the distribution of trait values differs along the species rank, with dominant species having favorable trait values more often than expected by chance (i.e., based on the overall frequency of that trait value in the entire community). Our results suggest that subtropical communities may be niche-saturated towards the most adapted trait values, so that merely having the most adapted trait value confers no strong competitive advantage to a species.

  6. Novel approximation of misalignment fading modeled by Beckmann distribution on free-space optical links.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2016-10-03

    A novel accurate and useful approximation of the well-known Beckmann distribution is presented here, which is used to model generalized pointing errors in the context of free-space optical (FSO) communication systems. We derive an approximate closed-form probability density function (PDF) for the composite gamma-gamma (GG) atmospheric turbulence with the pointing error model using the proposed approximation of the Beckmann distribution, which is valid for most practical terrestrial FSO links. This approximation takes into account the effect of the beam width, different jitters for the elevation and the horizontal displacement and the simultaneous effect of nonzero boresight errors for each axis at the receiver plane. Additionally, the proposed approximation allows us to delimit two different FSO scenarios. The first of them is when atmospheric turbulence is the dominant effect in relation to generalized pointing errors, and the second one when generalized pointing error is the dominant effect in relation to atmospheric turbulence. The second FSO scenario has not been studied in-depth by the research community. Moreover, the accuracy of the method is measured both visually and quantitatively using curve-fitting metrics. Simulation results are further included to confirm the analytical results.

  7. Expanded explorations into the optimization of an energy function for protein design

    PubMed Central

    Huang, Yao-ming; Bystroff, Christopher

    2014-01-01

    Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here we present new insights towards the application of machine learning to the problem of finding a general energy function for protein design. Machine learning requires the definition of an objective function, which carries with it the implied definition of success in protein design. We explored four functions, consisting of two functional forms, each with two criteria for success. Optimization was carried out by a Monte Carlo search through the space of all variable parameters. Cross-validation of the optimized energy function against a test set gave significantly different results depending on the choice of objective function, pointing to relative correctness of the built-in assumptions. Novel energy cross-terms correct for the observed non-additivity of energy terms and an imbalance in the distribution of predicted amino acids. This paper expands on the work presented at ACM-BCB, Orlando FL , October 2012. PMID:24384706

  8. 78 FR 33691 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Distribution of Source Material to Exempt Persons and to General Licensees and Revision of General License and..., Distribution of Source Material to Exempt Persons and to General Licensees and Revision of General License and Exemptions (Distribution of Source Material Rule). The Distribution of Source Material Rule amended the NRC's...

  9. A direct method for the solution of unsteady two-dimensional incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1983-01-01

    The unsteady incompressible Navier-Stokes equations are formulated in terms of vorticity and stream function in generalized curvilinear orthogonal coordinates to facilitiate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the transport equation using the alternating-direction implicit method, whereas the stream-function equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a back-step in a doubly infinite channel, using clustered conformal coordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behavior of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honor the multiple length scales of the separated-flow model problem. The asymptotic behavior of the finite-differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order accurate wiggle-free solutions, i.e., with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem.

  10. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso.

    PubMed

    Kong, Shengchun; Nan, Bin

    2014-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.

  11. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso

    PubMed Central

    Kong, Shengchun; Nan, Bin

    2013-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses. PMID:24516328

  12. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy

    PubMed Central

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K.

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  13. Approaches in highly parameterized inversion - GENIE, a general model-independent TCP/IP run manager

    USGS Publications Warehouse

    Muffels, Christopher T.; Schreuder, Willem A.; Doherty, John E.; Karanovic, Marinko; Tonkin, Matthew J.; Hunt, Randall J.; Welter, David E.

    2012-01-01

    GENIE is a model-independent suite of programs that can be used to generally distribute, manage, and execute multiple model runs via the TCP/IP infrastructure. The suite consists of a file distribution interface, a run manage, a run executer, and a routine that can be compiled as part of a program and used to exchange model runs with the run manager. Because communication is via a standard protocol (TCP/IP), any computer connected to the Internet can serve in any of the capacities offered by this suite. Model independence is consistent with the existing template and instruction file protocols of the widely used PEST parameter estimation program. This report describes (1) the problem addressed; (2) the approach used by GENIE to queue, distribute, and retrieve model runs; and (3) user instructions, classes, and functions developed. It also includes (4) an example to illustrate the linking of GENIE with Parallel PEST using the interface routine.

  14. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    PubMed

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  15. The limit distribution in the q-CLT for q\\,\\geqslant \\,1 is unique and can not have a compact support

    NASA Astrophysics Data System (ADS)

    Umarov, Sabir; Tsallis, Constantino

    2016-10-01

    In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.

  16. Enhancement of wave growth for warm plasmas with a high-energy tail distribution

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Summers, Danny

    1991-01-01

    The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.

  17. Identifying multiple influential spreaders based on generalized closeness centrality

    NASA Astrophysics Data System (ADS)

    Liu, Huan-Li; Ma, Chuang; Xiang, Bing-Bing; Tang, Ming; Zhang, Hai-Feng

    2018-02-01

    To maximize the spreading influence of multiple spreaders in complex networks, one important fact cannot be ignored: the multiple spreaders should be dispersively distributed in networks, which can effectively reduce the redundance of information spreading. For this purpose, we define a generalized closeness centrality (GCC) index by generalizing the closeness centrality index to a set of nodes. The problem converts to how to identify multiple spreaders such that an objective function has the minimal value. By comparing with the K-means clustering algorithm, we find that the optimization problem is very similar to the problem of minimizing the objective function in the K-means method. Therefore, how to find multiple nodes with the highest GCC value can be approximately solved by the K-means method. Two typical transmission dynamics-epidemic spreading process and rumor spreading process are implemented in real networks to verify the good performance of our proposed method.

  18. Soft context clustering for F0 modeling in HMM-based speech synthesis

    NASA Astrophysics Data System (ADS)

    Khorram, Soheil; Sameti, Hossein; King, Simon

    2015-12-01

    This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.

  19. Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.

    PubMed

    Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei

    2015-04-28

    Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.

  20. Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity. [numerical tests for water-haze aerosol model

    NASA Technical Reports Server (NTRS)

    Smith, C. B.

    1982-01-01

    The Fymat analytic inversion method for retrieving a particle-area distribution function from anomalous diffraction multispectral extinction data and total area is generalized to the case of a variable complex refractive index m(lambda) near unity depending on spectral wavelength lambda. Inversion tests are presented for a water-haze aerosol model. An upper-phase shift limit of 5 pi/2 retrieved an accurate peak area distribution profile. Analytical corrections using both the total number and area improved the inversion.

  1. A limiting analysis for edge effects in angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  2. Solutions of evolution equations associated to infinite-dimensional Laplacian

    NASA Astrophysics Data System (ADS)

    Ouerdiane, Habib

    2016-05-01

    We study an evolution equation associated with the integer power of the Gross Laplacian ΔGp and a potential function V on an infinite-dimensional space. The initial condition is a generalized function. The main technique we use is the representation of the Gross Laplacian as a convolution operator. This representation enables us to apply the convolution calculus on a suitable distribution space to obtain the explicit solution of the perturbed evolution equation. Our results generalize those previously obtained by Hochberg [K. J. Hochberg, Ann. Probab. 6 (1978) 433.] in the one-dimensional case with V=0, as well as by Barhoumi-Kuo-Ouerdiane for the case p=1 (See Ref. [A. Barhoumi, H. H. Kuo and H. Ouerdiane, Soochow J. Math. 32 (2006) 113.]).

  3. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  4. Advances in Highly Constrained Multi-Phase Trajectory Generation using the General Pseudospectral Optimization Software (GPOPS)

    DTIC Science & Technology

    2013-08-01

    release; distribution unlimited. PA Number 412-TW-PA-13395 f generic function g acceleration due to gravity h altitude L aerodynamic lift force L Lagrange...cost m vehicle mass M Mach number n number of coefficients in polynomial regression p highest order of polynomial regression Q dynamic pressure R...Method (RPM); the collocation points are defined by the roots of Legendre -Gauss- Radau (LGR) functions.9 GPOPS also automatically refines the “mesh” by

  5. Organizational and Functional Charts of the Office, Secretary of the Army

    DTIC Science & Technology

    1948-03-01

    1 o CHARTS LIMITED DISTRI BUT loti: of the OFfice , Secret:ary of the Army ) THIS BOOK WILL NOT BE REPRINTED PERIODICALLY BUT WILL BE...Functional Charts of the Office , Secretary of the Army. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Management Office...distribution has been made within the Office of the Secretary of the Army and courtesy copies have been limited to the Department of the Army General and

  6. The development of spheroidal bodies theory for proto-planetary dynamics problem solving

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2007-08-01

    There is not a full statistical equilibrium in a gas-dust proto-planetary cloud because of long relaxation time for proto-planet formation in own gravitational field. This protoplanetary system behavior can be described by Jeans equation in partial derivations relatively a distribution function. The problem for finding a general solution of Jeans equation is connected directly with an analytical expression for potential of gravitational field. Thus, the determination of gravitational potential is the main problem of statistical dynamics for proto-planetary system. The work shows this task of protoplanetary dynamics can be solved on the basis of spheroidal bodies theory [1]-[4]. Within the framework of this theory, cosmological bodies have fuzzy outlines and are represented by means of spheroidal forms. The proposed theory follows from the conception for forming a spheroidal body as a proto-planet from dust-like nebula; it permits to derive the form of distribution functions for an immovable spheroidal body [1],[2] and rotating one [3],[4] as well as their density masses (gravitational potentials and strengths) and also to find the distribution function of specific angular momentum for the rotating spheroidal body [4]. References: [1] A.M.Krot, Achievement in Modern Radioelectronics, 1996, no.8, pp.66-81 (in Russian). [2] A.M.Krot, Proc. SPIE's 13thAnnual Intern.Symp. "AeroSense", Orlando, Florida, USA, 1999, vol.3710, pp.1248-1259. [3] A.M.Krot, Proc. 35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] A.Krot, Proc. EGU General Assembly, Vienna, Austria, 2006, Geophys. Res. Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/.

  7. A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function

    PubMed Central

    Horvath, Isabelle R.

    2018-01-01

    The recently derived steady-state generalized Danckwerts age distribution is extended to unsteady-state conditions. For three different wind speeds used by researchers on air–water heat exchange on the Heidelberg Aeolotron, calculations reveal that the distribution has a sharp peak during the initial moments, but flattens out and acquires a bell-shaped character with process time, with the time taken to attain a steady-state profile being a strong and inverse function of wind speed. With increasing wind speed, the age distribution narrows significantly, its skewness decreases and its peak becomes larger. The mean eddy renewal time increases linearly with process time initially but approaches a final steady-state value asymptotically, which decreases dramatically with increased wind speed. Using the distribution to analyse the transient absorption of a gas into a large body of liquid, assuming negligible gas-side mass-transfer resistance, estimates are made of the gas-absorption and dissolved-gas transfer coefficients for oxygen absorption in water at 25°C for the three different wind speeds. Under unsteady-state conditions, these two coefficients show an inverse behaviour, indicating a heightened accumulation of dissolved gas in the surface elements, especially during the initial moments of absorption. However, the two mass-transfer coefficients start merging together as the steady state is approached. Theoretical predictions of the steady-state mass-transfer coefficient or transfer velocity are in fair agreement (average absolute error of prediction = 18.1%) with some experimental measurements of the same for the nitrous oxide–water system at 20°C that were made in the Heidelberg Aeolotron. PMID:29892429

  8. Analytic Evolution of Singular Distribution Amplitudes in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandogan Kunkel, Asli

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standardmore » method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.« less

  9. Numerical analysis of the accuracy of bivariate quantile distributions utilizing copulas compared to the GUM supplement 2 for oil pressure balance uncertainties

    NASA Astrophysics Data System (ADS)

    Ramnath, Vishal

    2017-11-01

    In the field of pressure metrology the effective area is Ae = A0 (1 + λP) where A0 is the zero-pressure area and λ is the distortion coefficient and the conventional practise is to construct univariate probability density functions (PDFs) for A0 and λ. As a result analytical generalized non-Gaussian bivariate joint PDFs has not featured prominently in pressure metrology. Recently extended lambda distribution based quantile functions have been successfully utilized for summarizing univariate arbitrary PDF distributions of gas pressure balances. Motivated by this development we investigate the feasibility and utility of extending and applying quantile functions to systems which naturally exhibit bivariate PDFs. Our approach is to utilize the GUM Supplement 1 methodology to solve and generate Monte Carlo based multivariate uncertainty data for an oil based pressure balance laboratory standard that is used to generate known high pressures, and which are in turn cross-floated against another pressure balance transfer standard in order to deduce the transfer standard's respective area. We then numerically analyse the uncertainty data by formulating and constructing an approximate bivariate quantile distribution that directly couples A0 and λ in order to compare and contrast its accuracy to an exact GUM Supplement 2 based uncertainty quantification analysis.

  10. A least squares approach to estimating the probability distribution of unobserved data in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salama, Paul

    2008-02-01

    Multi-photon microscopy has provided biologists with unprecedented opportunities for high resolution imaging deep into tissues. Unfortunately deep tissue multi-photon microscopy images are in general noisy since they are acquired at low photon counts. To aid in the analysis and segmentation of such images it is sometimes necessary to initially enhance the acquired images. One way to enhance an image is to find the maximum a posteriori (MAP) estimate of each pixel comprising an image, which is achieved by finding a constrained least squares estimate of the unknown distribution. In arriving at the distribution it is assumed that the noise is Poisson distributed, the true but unknown pixel values assume a probability mass function over a finite set of non-negative values, and since the observed data also assumes finite values because of low photon counts, the sum of the probabilities of the observed pixel values (obtained from the histogram of the acquired pixel values) is less than one. Experimental results demonstrate that it is possible to closely estimate the unknown probability mass function with these assumptions.

  11. Population patterns in World’s administrative units

    PubMed Central

    Miramontes, Pedro; Cocho, Germinal

    2017-01-01

    Whereas there has been an extended discussion concerning city population distribution, little has been said about that of administrative divisions. In this work, we investigate the population distribution of second-level administrative units of 150 countries and territories and propose the discrete generalized beta distribution (DGBD) rank-size function to describe the data. After testing the balance between the goodness of fit and number of parameters of this function compared with a power law, which is the most common model for city population, the DGBD is a good statistical model for 96% of our datasets and preferred over a power law in almost every case. Moreover, the DGBD is preferred over a power law for fitting country population data, which can be seen as the zeroth-level administrative unit. We present a computational toy model to simulate the formation of administrative divisions in one dimension and give numerical evidence that the DGBD arises from a particular case of this model. This model, along with the fitting of the DGBD, proves adequate in reproducing and describing local unit evolution and its effect on the population distribution. PMID:28791153

  12. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.; van Elk, J.; Doornhof, D.

    2014-12-01

    A seismological model is developed for earthquakes induced by subsurface reservoir volume changes. The approach is based on the work of Kostrov () and McGarr () linking total strain to the summed seismic moment in an earthquake catalog. We refer to the fraction of the total strain expressed as seismic moment as the strain partitioning function, α. A probability distribution for total seismic moment as a function of time is derived from an evolving earthquake catalog. The moment distribution is taken to be a Pareto Sum Distribution with confidence bounds estimated using approximations given by Zaliapin et al. (). In this way available seismic moment is expressed in terms of reservoir volume change and hence compaction in the case of a depleting reservoir. The Pareto Sum Distribution for moment and the Pareto Distribution underpinning the Gutenberg-Richter Law are sampled using Monte Carlo methods to simulate synthetic earthquake catalogs for subsequent estimation of seismic ground motion hazard. We demonstrate the method by applying it to the Groningen gas field. A compaction model for the field calibrated using various geodetic data allows reservoir strain due to gas extraction to be expressed as a function of both spatial position and time since the start of production. Fitting with a generalized logistic function gives an empirical expression for the dependence of α on reservoir compaction. Probability density maps for earthquake event locations can then be calculated from the compaction maps. Predicted seismic moment is shown to be strongly dependent on planned gas production.

  13. Analytical functions for beta and gamma absorbed fractions of iodine-131 in spherical and ellipsoidal volumes.

    PubMed

    Mowlavi, Ali Asghar; Fornasier, Maria Rossa; Mirzaei, Mohammd; Bregant, Paola; de Denaro, Mario

    2014-10-01

    The beta and gamma absorbed fractions in organs and tissues are the important key factors of radionuclide internal dosimetry based on Medical Internal Radiation Dose (MIRD) approach. The aim of this study is to find suitable analytical functions for beta and gamma absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution of iodine-131 radionuclide. MCNPX code has been used to calculate the energy absorption from beta and gamma rays of iodine-131 uniformly distributed inside different ellipsoids and spheres, and then the absorbed fractions have been evaluated. We have found the fit parameters of a suitable analytical function for the beta absorbed fraction, depending on a generalized radius for ellipsoid based on the radius of sphere, and a linear fit function for the gamma absorbed fraction. The analytical functions that we obtained from fitting process in Monte Carlo data can be used for obtaining the absorbed fractions of iodine-131 beta and gamma rays for any volume of the thyroid lobe. Moreover, our results for the spheres are in good agreement with the results of MIRD and other scientific literatures.

  14. Uncertainties in the projection of species distributions related to general circulation models

    PubMed Central

    Goberville, Eric; Beaugrand, Grégory; Hautekèete, Nina-Coralie; Piquot, Yves; Luczak, Christophe

    2015-01-01

    Ecological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM-based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi-GCM and multi-emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between-GCM variability was greater than the between-RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi-GCM and multi-RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between-GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species spatial distributions are examined, we propose to use a large number of GCMs and RCPs to better anticipate potential trajectories and quantify uncertainties. PMID:25798227

  15. Kinematics, influence functions and field quantities for disturbance propagation from moving disturbance sources

    NASA Technical Reports Server (NTRS)

    Das, A.

    1984-01-01

    A unified method is presented for deriving the influence functions of moving singularities which determine the field quantities in aerodynamics and aeroacoustics. The moving singularities comprise volume and surface distributions having arbitrary orientations in space and to the trajectory. Hence one generally valid formula for the influence functions which reveal some universal relationships and remarkable properties in the disturbance fields. The derivations used are completely consistent with the physical processes in the propagation field, such that treatment renders new descriptions for some standard concepts. The treatment is uniformly valid for subsonic and supersonic Mach numbers.

  16. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  17. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    DOE PAGES

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  18. Generic functional requirements for a NASA general-purpose data base management system

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1981-01-01

    Generic functional requirements for a general-purpose, multi-mission data base management system (DBMS) for application to remotely sensed scientific data bases are detailed. The motivation for utilizing DBMS technology in this environment is explained. The major requirements include: (1) a DBMS for scientific observational data; (2) a multi-mission capability; (3) user-friendly; (4) extensive and integrated information about data; (5) robust languages for defining data structures and formats; (6) scientific data types and structures; (7) flexible physical access mechanisms; (8) ways of representing spatial relationships; (9) a high level nonprocedural interactive query and data manipulation language; (10) data base maintenance utilities; (11) high rate input/output and large data volume storage; and adaptability to a distributed data base and/or data base machine configuration. Detailed functions are specified in a top-down hierarchic fashion. Implementation, performance, and support requirements are also given.

  19. Two-time quantum transport and quantum diffusion.

    PubMed

    Kleinert, P

    2009-05-01

    Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.

  20. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

Top