Science.gov

Sample records for general magnetic fields

  1. Magnetic field of Jupiter: A generalized inverse approach

    SciTech Connect

    Connerney, J.E.P.

    1981-09-01

    The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model non-uniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.

  2. Magnetic field of Jupiter: A generalized inverse approach

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    1981-01-01

    The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model nonuniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.

  3. Analysis of Electric Field Induced by ELF Magnetic Field Utilizing Generalized Equivalent Multipole-Moment Method

    NASA Astrophysics Data System (ADS)

    Hamada, Shoji; Yamamoto, Osamu; Kobayashi, Tetsuo

    This paper presents a generalized equivalent multipole-moment method for calculating three-dimensional Laplacian fields in multi-spherical system. The Greengard & Rokhlin's M2M, M2L, and L2L formulae enable the multipole-moment method to calculate the fields in general arrangement of multi-spheres, which involve exclusive and multi-layered spherical arrangement. We applied this method to electric field calculation in biological structures induced by ELF magnetic fields. The induced electric fields in a three eccentric and exclusive spheres system, which models human head with two eyeballs, are calculated under the application of homogeneous and magnetic-dipole fields. The validity of this method is successfully confirmed by comparing the calculated fields with those by the fast-multipole surface-charge-simulation method.

  4. Local and nonlocal parallel heat transport in general magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  5. Mesons in strong magnetic fields: (I) General analyses

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-07-01

    We study properties of neutral and charged mesons in strong magnetic fields | eB | ≫ ΛQCD2 with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger-Dyson and Bethe-Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.

  6. Mesons in strong magnetic fields: (I) General analyses

    DOE PAGESBeta

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-03-21

    Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number ofmore » meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less

  7. A Simple Demonstration of a General Rule for the Variation of Magnetic Field with Distance

    ERIC Educational Resources Information Center

    Kodama, K.

    2009-01-01

    We describe a simple experiment demonstrating the variation in magnitude of a magnetic field with distance. The method described requires only an ordinary magnetic compass and a permanent magnet. The proposed graphical analysis illustrates a unique method for deducing a general rule of magnetostatics. (Contains 1 table and 6 figures.)

  8. On the Ideal Boundary Condition in a General Toroidal Geometry for a Mixed Magnetic Field Representation

    SciTech Connect

    X. Z. Tang

    2000-12-18

    Subtleties of implementing the standard perfectly conducting wall boundary condition in a general toroidal geometry are clarified for a mixed scalar magnetic field representation. An iterative scheme based on Ohm's law is given.

  9. A Simple Demonstration of a General rule for the Variation of Magnetic Field with Distance

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2009-05-01

    Most science students have some basic knowledge about magnets: magnetic poles attract or repel, depending on their polarity; the shorter the distance to the magnet, the greater the magnetic force. However, the specific magnetic force-distance relationship seems to confuse students. Many students appear to believe, mistakenly based on analogy to the electrostatic field or to gravity, that the force between magnets follows the familiar inverse-square law. It is difficult to teach them that the direction and magnitude of a magnetic field varies in quite a different manner from other interacting forces. I propose an educational demonstration illustrating the variation in magnitude of a magnetic field with distance, allowing students to grasp the idea of magnetic poles and dipoles. The method uses an ordinary geologic compass, a small circular magnet, and a bar magnet about 60 cm long. The small magnet is similar to those commonly used on household bulletin boards or refrigerator doors. The long bar magnet is a steel bar magnetized by a long solenoid coil with the application of a small current. The experiment is unique in that it is designed to permit students to infer a general law from their observations and requires no special instruments. The principle of this experiment is based on electromagnetism but is more readily understood, as it uses only ratios of measured properties. Some logarithmic and trigonometric calculations, easily computed with a pocket calculator, are required. No special calculations requiring a computer are necessary.

  10. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations.

    PubMed

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  11. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations

    NASA Astrophysics Data System (ADS)

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  12. A GENERALIZED DIFFUSION TENSOR FOR FULLY ANISOTROPIC DIFFUSION OF ENERGETIC PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.

    2012-05-10

    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.

  13. From charge motion in general magnetic fields to the non perturbative gyrokinetic equation

    SciTech Connect

    Di Troia, C.

    2015-04-15

    The exact analytical description of non relativistic charge motion in general magnetic fields is, apparently, a simple problem, even if it has not been solved until now, apart for rare cases. The key feature of the present derivation is to adopt a non perturbative magnetic field description to find new solutions of motion. Among all solutions, two are particularly important: guiding particle and gyro-particle solutions. The guiding particle has been characterized to be minimally coupled to the magnetic field; the gyro-particle has been defined to be maximally coupled to the magnetic field and, also, to move on a closed orbit. The generic charged particle motion is shown to be expressed as the sum of such particular solutions. This non perturbative approach corresponds to the description of the particle motion in the gyro-center and/or guiding center reference frame obtained at all the orders of the modern gyro-center transformation. The Boltzmann equation is analyzed with the described exact guiding center coordinates. The obtained gyrokinetic equation is solved for the Boltzmann equation at marginal stability conditions.

  14. Orbital motion in generalized static fields of FELs accounting for axial magnetic field, beam forces, undulator and external focusing

    SciTech Connect

    Papadichev, V.A.

    1995-12-31

    Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.

  15. Generating vorticity and magnetic fields in plasmas in general relativity: Spacetime curvature drive

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Mahajan, Swadesh M.; Qadir, Asghar

    2013-02-01

    Using the generally covariant magnetofluid formalism for a hot plasma, a spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The "battery" owes its origin to the interaction between the gravity modified Lorentz factor of the fluid element and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole and for particles in free fall near the horizon. Some astrophysical applications are suggested.

  16. Generating vorticity and magnetic fields in plasmas in general relativity: Spacetime curvature drive

    SciTech Connect

    Asenjo, Felipe A.; Mahajan, Swadesh M.; Qadir, Asghar

    2013-02-15

    Using the generally covariant magnetofluid formalism for a hot plasma, a spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The 'battery' owes its origin to the interaction between the gravity modified Lorentz factor of the fluid element and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole and for particles in free fall near the horizon. Some astrophysical applications are suggested.

  17. The generalized harmonic potential theorem in the presence of a time-varying magnetic field

    PubMed Central

    Lai, Meng-Yun; Pan, Xiao-Yin

    2016-01-01

    We investigate the evolution of the many-body wave function of a quantum system with time-varying effective mass, confined by a harmonic potential with time-varying frequency in the presence of a uniform time-varying magnetic field, and perturbed by a time-dependent uniform electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. In other words, we generalize the harmonic potential theorem to the case when the effective mass, harmonic potential, and the external uniform magnetic field with arbitrary orientation are all time-varying. The results reduce to various special cases obtained in the literature, particulary to that of the harmonic potential theorem wave function when the effective mass and frequency are both static and the external magnetic field is absent. PMID:27748461

  18. The generalized harmonic potential theorem in the presence of a time-varying magnetic field

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Pan, Xiao-Yin

    2016-10-01

    We investigate the evolution of the many-body wave function of a quantum system with time-varying effective mass, confined by a harmonic potential with time-varying frequency in the presence of a uniform time-varying magnetic field, and perturbed by a time-dependent uniform electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. In other words, we generalize the harmonic potential theorem to the case when the effective mass, harmonic potential, and the external uniform magnetic field with arbitrary orientation are all time-varying. The results reduce to various special cases obtained in the literature, particulary to that of the harmonic potential theorem wave function when the effective mass and frequency are both static and the external magnetic field is absent.

  19. Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.

    2016-08-01

    Generalizations of the class of quasi-1-D solutions of the 2-D Grad-Shafranov equation, first considered by Schindler in 1972, are investigated. It is shown that the effect of the dipole field, treated as a perturbation, can be included into the original 1972 class solution by modification of the boundary conditions. Some of the solutions imply the formation of singularly thin current sheets. Equilibrium solutions for such sheets resolving their singular current structure on the scales comparable to the thermal ion gyroradius can be obtained assuming anisotropic and nongyrotropic plasma distributions. It is shown that one class of such equilibria with the dipole-like boundary perturbation describes bifurcation of the near-Earth current sheet. Another class of weakly anisotropic equilibria with thin current sheets embedded into a thicker plasma sheet helps explain the formation of thin current sheets in a relatively distant tail, where such sheets can provide ion Landau dissipation for spontaneous magnetic reconnection. The free energy for spontaneous reconnection can be provided due to accumulation of the magnetic flux at the tailward end of the closed field line region. The corresponding hump in the normal magnetic field profile Bz(x,z = 0) creates a nonzero gradient along the tail. The resulting gradient of the equatorial magnetic field pressure is shown to be balanced by the pressure gradient and the magnetic tension force due to the higher-order correction of the latter in the asymptotic expansion of the tail equilibrium in the ratio of the characteristic tail current sheet variations across and along the tail.

  20. Turbulent General Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.

    2015-07-01

    Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian-Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.

  1. A General Method for Calculating the External Magnetic Field from a Cylindrical Magnetic Source using Toroidal Functions

    SciTech Connect

    J Selvaggi; S Salon; O Kwon CVK Chari

    2006-02-14

    An alternative method is developed to compute the magnetic field from a circular cylindrical magnetic source. Specifically, a Fourier series expansion whose coefficients are toroidal functions is introduced which yields an alternative to the more familiar spherical harmonic solution or the Elliptic integral solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion. This expansion is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. This method can be used to accurately compute the far field where a finite element formulation is known to be inaccurate.

  2. The ionization rate under a general magnetic field for microwave breakdown

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun

    2014-07-01

    The ionization rate under an extra magnetic field is studied by theory and particle-in-cell/Monte Carlo Collision simulations. The result shows that a magnetic field always decreases the ionization rate if √ 3 ω < υm, while it may increase the ionization rate if √ 3 ω > υm. The effect of the magnetic field on the ionization rate fades away when the angle between the magnetic field and the electric filed approaches to zero. Furthermore, the peak ionization rate among different magnetic fields is almost independent of ω. This peak ionization rate is in direct proportion to the gas pressure in the low pressure region, while it is about in inverse proportion to the gas pressure in the high pressure region.

  3. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    NASA Astrophysics Data System (ADS)

    Shi, Pengpeng; Jin, Ke; Zheng, Xiaojing

    2016-04-01

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress-strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress-magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  4. Studying the reversal mode of the magnetization vector versus applied field angle using generalized magneto-optical ellipsometry

    SciTech Connect

    Pufall, M. R.; Berger, A.

    1999-10-26

    The authors used the technique of vector Generalized Magneto-optical Ellipsometry to study the behavior of the magnetization vector of a 50 Co thin film as a function of external field magnitude and direction. With this method, which determines the both the direction and magnitude of the magnetization, averaged over the 1 mm incident laser beam, they were able to determine the relative contributions of magnetization rotation and domain formation to the reversal of M. The Co sample had a uniaxial in-plane anisotropy. The authors found that when the angle between the applied field and the easy axis was greater than {approximately} 40 degrees, the reversal occurred primarily by rotation of the magnetization, accompanied by a small reduction of the magnitude of M. In this angular region, the critical field-the field at which there is a large jump in the angle of M -- as a function of applied field angle followed a coherent rotation model. However, at applied field angles less than 40 degrees to the easy axis, they found a larger reduction in {vert_bar}M{vert_bar} occurring before and during the jump in the magnetization angle. The jump also occurred at fields much lower than those predicted by the coherent rotation model, indicating a reversal mode initiated by domain formation.

  5. Radiation from plasmas with sub-Larmor scale magnetic fields -- generalized jitter radiation

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2009-11-01

    Radiation produced by relativistic electrons in random magnetic fields of a sub-Larmor scale is referred to as the jitter radiation. It has been predicted to be produced from high- energy density environments which naturally generate such fields via Weibel-type (e.g., streaming) instabilities. Thus, it was argued to be a new diagnostic of Weibel turbulence in relativistic collisionless shocks, in reconnection in electron- positron plasmas and in laser-produced plasmas, the latter is of interest to both laser-plasma applications (e.g., Fast Ignition) and to Laboratory Astrophysics. The spectral characteristics of jitter radiation are markedly different from those of synchrotron and carry information about the magnetic fields structure (e.g., its spatial spectrum). Conventional treatment of jitter radiation assumes negligibly small deflections of particles in the magnetic fields, which is not always the case. Here we relax this assumption and discuss the transition between jitter and synchrotron regimes. Although the full treatment is model-dependent, certain important conclusions can be drawn. We will also address applications to both laboratory studies of the Weibel turbulence and astrophysical phenomena.

  6. General methods for determining the linear stability of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.

    1988-01-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.

  7. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  8. Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    NASA Astrophysics Data System (ADS)

    Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence

    2015-09-01

    Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115-121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958-1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251-317 (1996); and F. Mottez, Phys. Plasmas 10, 1541-1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20

  9. Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    SciTech Connect

    Dorville, Nicolas Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence

    2015-09-15

    Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115–121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958–1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251–317 (1996); and F. Mottez, Phys. Plasmas 10, 1541–1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present

  10. Electrically silent magnetic fields.

    PubMed Central

    Roth, B J; Wikswo, J P

    1986-01-01

    There has been a significant controversy over the past decade regarding the relative information content of bioelectric and biomagnetic signals. In this paper we present a new, theoretical example of an electrically-silent magnetic field, based on a bidomain model of a cylindrical strand of tissue generalized to include off-diagonal components in the conductivity tensors. The physical interpretation of the off-diagonal components is explained, and analytic expressions for the electrical potential and the magnetic field are found. These expressions show that information not obtainable from electrical potential measurements can be obtained from measurements of the magnetic field in systems with conductivity tensors more complicated than those previously examined. PMID:3779008

  11. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  12. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos

  13. Inelastic light and electron scattering in parabolic quantum dots in magnetic field: Implications of generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero-dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energy capable of being explored with the FIR, Raman, or electron energy loss spectroscopy. This implies that either of these probes should be competent in observing the localized magnetoplasmons in the system. A deeper insight into the physics of quantum dots is paving the way for their implementation in diverse fields such as quantum computing and medical imaging.

  14. Magnetic field mapper

    NASA Technical Reports Server (NTRS)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  15. Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh; Tchekhovskoy, Alexander; Abarca, David; Zhu, Yucong; McKinney, Jonathan C.

    2015-02-01

    We present a mean-field model that emulates the magnetic dynamo operating in magnetized accretion discs. We have implemented this model in the general relativisic radiation magnetohydrodynamic (GRRMHD) code KORAL, using results from local shearing sheet simulations of the magnetorotational instability to fix the parameters of the dynamo. With the inclusion of this dynamo, we are able to run 2D axisymmetric GRRMHD simulations of accretion discs for arbitrarily long times. The simulated discs exhibit sustained turbulence, with the poloidal and toroidal magnetic field components driven towards a state similar to that seen in 3D studies. Using this dynamo code, we present a set of long-duration global simulations of super-Eddington, optically thick discs around non-spinning and spinning black holes. Super-Eddington discs around non-rotating black holes exhibit a surprisingly large efficiency, η ≈ 0.04, independent of the accretion rate, where we measure efficiency in terms of the total energy output, both radiation and mechanical, flowing out to infinity. This value significantly exceeds the efficiency predicted by slim disc models for these accretion rates. Super-Eddington discs around spinning black holes are even more efficient, and appear to extract black hole rotational energy through a process similar to the Blandford-Znajek mechanism. All the simulated models are characterized by highly super-Eddington radiative fluxes collimated along the rotation axis. We also present a set of simulations that were designed to have Eddington or slightly sub-Eddington accretion rates (dot{M} ≲ 2dot{M}_Edd). None of these models reached a steady state. Instead, the discs collapsed as a result of runaway cooling, presumably because of a thermal instability.

  16. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  17. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  18. STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE

    SciTech Connect

    Pu, Hung-Yi; Nakamura, Masanori; Hirotani, Kouichi; Asada, Keiichi; Wu, Kinwah

    2015-03-01

    General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflow part of the solution can be constrained by the inflow part. The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative level.

  19. Resonant magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.; Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.

    2012-03-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of Script O(10-15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  20. The magnetic field of Neptune

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

    1992-01-01

    A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.

  1. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  2. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  3. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  4. Magnetic fields and coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.

    1980-01-01

    General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.

  5. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  6. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  7. Magnetic fields in spiral galaxies

    SciTech Connect

    Beck, R. )

    1990-02-01

    Radio polarization observations have revealed large-scale magnetic fields in spiral galaxies. The average total field strength most probably increases with the rate of star formation. The uniform field generally follows the orientation of the optical spiral arms, but is often strongest {ital outside} the arms. Long magnetic-field filaments are seen, sometimes up to a 30 kpc length. The field seems to be anchored in large gas clouds and is inflated out of the disk; e.g., by a galactic wind. The field in radio halos around galaxies is highly uniform in limited regions, resembling the structure of the solar corona. The detection of Faraday rotation in spiral galaxies excludes the existence of large amounts of antimatter. The distribution of Faraday rotation in the disks shows two different large-scale structures of the interstellar field: Axisymmetric-spiral and bisymmetric-spiral, which are interpreted as two modes of the galactic dynamo driven by differential rotation.

  8. Quark stars in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Cheng; Chen, Lie-Wen; Wang, Xin

    2014-09-01

    Within the confined isospin- and density-dependent mass model, we study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields. The equation of state of SQM under a constant magnetic field is obtained self-consistently and the pressure perpendicular to the magnetic field is shown to be larger than that parallel to the magnetic field, implying that the properties of magnetized QSs generally depend on both the strength and the orientation of the magnetic fields distributed inside the stars. Using a density-dependent magnetic field profile which is introduced to mimic the magnetic field strength distribution in a star, we study the properties of static spherical QSs by assuming two extreme cases for the magnetic field orientation in the stars, i.e., the radial orientation in which the local magnetic fields are along the radial direction, and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial direction. Our results indicate that including the magnetic fields with radial (transverse) orientation can significantly decrease (increase) the maximum mass of QSs, demonstrating the importance of the magnetic field orientation inside the magnetized compact stars.

  9. Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lin, Haosheng

    2007-05-01

    Centuries after the birth of modern solar astronomy, the Sun's corona still keeps many of its secrets: How is it heated to a million-degree temperature? How does it harbor the cool and dense prominence gas amid the tenuous and hot atmosphere? How does it drive the energetic events that eject particles into interplanetary space with speed exceeding 1% of the speed of light? We have greatly improved our knowledge of the solar corona with decades of space X-ray and EUV coronal observations, and many theories and models were put forward to address these problems. In our current understanding, magnetic fields are undoubtedly the most important fields in the corona, shaping its structure and driving its dynamics. It is clear that the resolution of these important questions all hinge on a better understanding of the organization, evolution, and interaction of the coronal magnetic field. However, as the direct measurement of coronal magnetic field is a very challenging observational problem, most of our theories and models were not experimentally verified. Nevertheless, we have finally overcome the experimental difficulties and can now directly measure the coronal magnetic field with great accuracy. This new capability can now be used to study the static magnetic structure of the corona, and offers hope that we will, in the near future, be able to directly observe the evolution of the coronal magnetic field of energetic solar events. More importantly, it finally allows us to conduct vigorous observational tests of our theories and models. In this lecture, I will review current research activities related to the observation, interpretation, and modeling of the coronal magnetic field, and discuss how they can help us resolve some of the long standing mysteries of the solar corona.

  10. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  11. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  12. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-01

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  13. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields

    SciTech Connect

    H. Qin and X. Guan

    2008-02-11

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.

  14. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  15. Modeling Earth's magnetic field variation

    NASA Astrophysics Data System (ADS)

    Wardinski, I.

    2012-12-01

    Observations of the Earth's magnetic field taken at the Earth's surface and at satellite altitude have been combined to construct models of the geomagnetic field and its variation. Lesur et al. (2010) developed a kinematic reconstruction of core field changes that satisfied the frozen-flux constraint. By constraining the field evolution to be entirely due to advection of the magnetic field at the core surface it maintained the spatial complexity of the field morphology imposed by a satellite field model backward in time [Wardinski & Lesur,2012]. In this study we attempt a kinematic construction of future variation in Earth's magnetic field variation. Our approach, first seeks to identify typical time scales of the magnetic field and core surface flows present in decadal and millennial field and flow models. Therefore, the individual spherical harmonic coefficients are treated by methods of time series analysis. The second step employs stochastic modelling of the temporal variability of such spherical harmonic coefficients that represent the field and core surface flow. Difficulties arise due to the non-stationary behavior of the field and core surface flow. However, the broad behavior may consist of some homogeneity, which could be captured by a generalized stochastic model that calls for the d'th difference of the time series to be stationary (ARIMA-Model), or by detrending the coefficient time series. By computing stochastic models, we obtain two sets of field-forecasts, the first set is obtained from stochastic models of the Gauss coefficients. Here, first results suggest that secular variation on time scales shorter than 5 years behaves rather randomly and cannot be described sufficiently well by stochastic models. The second set is derived from forward modeling the secular variation using the diffusion-less induction equation (kinematic construction). This approach has not provide consistent results.

  16. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  17. Neutrino emissivity from e sup minus synchrotron and e sup minus e+ annihilation processes in a strong magnetic field: General formalism and nonrelativistic limit

    SciTech Connect

    Kaminker, A.D.; Levenfish, K.P.; Yakovlev, D.G. ); Amsterdamski, P.; Haensel, P. )

    1992-10-15

    A general formalism is developed for calculating the neutrino emissivities of synchrotron and {ital e}{sup {minus}}{ital e+} annihilation radiations in a plasma in the presence of a large magnetic field {ital B}{similar to}10{sup 12}--10{sup 14} G. As a first step, the formalism is used to calculate the synchrotron and annihilation radiations from a nonrelativistic electron plasma (density {rho}{approx lt}10{sup 6} g cm{sup {minus}3}, temperature {ital T}{approx lt}6{times}10{sup 9} K) including the cases of nondegenerate and degenerate electrons, and of quantizing and nonquantizing magnetic fields. We conclude that these processes can be important for neutrino production in a hot plasma of neutron star envelopes.

  18. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  19. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  20. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  1. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  2. THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  3. The Martian magnetic field

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1979-01-01

    The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

  4. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  5. The modulation features of the long-period cosmic ray variations in connection with the sign change of the general magnetic field of the Sun

    NASA Technical Reports Server (NTRS)

    Iskra, K.

    1985-01-01

    On the basis of the model and experimental investigations, the spatial distribution of cosmic ray anisotropy for the different epochs of solar activity is studied. A solution is offered to the anisotropic diffusion equation with regard to the electromagnetic conditions for the periods of minimum and maximum solar activity and cosmic ray particle drift in a regular interplanetary magnetic field. It is shown that the long period changes amplitude and phase of the diurnal variations of cosmic rays is limited not only by convection and diffusion of particles but also by the drift effect before and after the sing change of the general magnetic field of the Sun. The calculated model is compared with the results obtained on the basis of an analysis of the experimental data from the neutron super monitor station, and it is shown that for the periods when the lines of magnetic force of the Sun come from the Northern Hemisphere the phase of the first harmonic diurnal variation is shifted forwards to an earlier time.

  6. Fast superconducting magnetic field switch

    SciTech Connect

    Goren, Y.; Mahale, N.K.

    1995-12-31

    The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

  7. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  8. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  9. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  10. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  11. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

  12. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  13. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  14. Generalized electromagnetic fields in a chiral medium

    NASA Astrophysics Data System (ADS)

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-09-01

    The time-dependent Dirac-Maxwell's equations in the presence of electric and magnetic sources are reformulated in a chiral medium, and the solutions for the classical problem are obtained in a unique, simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in the chiral medium has also been discussed in a compact, simple and consistent manner.

  15. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  16. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  17. Magnetic clouds and force-free fields with constant alpha

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1988-01-01

    Magnetic clouds observed at 1 AU are modeled as cylindrically symmetric, constant alpha force-free magnetic fields. The model satisfactorily explains the types of variations of the magnetic field direction that are observed as a magnetic cloud moves past a spacecraft in terms of the possible orientations of the axis of a magnetic cloud. The model also explains why the magnetic field strength is observed to be higher inside a magnetic cloud than near its boundaries. However, the model predicts that the magnetic field strength profile should be symmetric with respect to the axis of the magnetic cloud, whereas observations show that this is not generally the case.

  18. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  19. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  20. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior.

  1. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  2. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  3. Magnetic fields in the cosmos

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1983-08-01

    Descriptive models for the dynamo processes that generate magnetic fields around celestial objects are reviewed. Magnetic fields are produced, along with an electric current, when a conductor is moved perpendicularly through a magnetic field, so long as the resulting current is fed back into the conductor to amplify the current and field. In MHD theory, the lines of force of the magnetic field travel with the conducting fluid. A weak current or field must be present initially to generate the field. Planets have molten cores and stars have ionized gases to act as the conductors, and all space has sufficient gas with free electrons. The rotations of the planets, stars, and galaxy enhance the magnetic fields. Convective patterns have been characterized in the earth's molten core because of anomalies observed in the magnetic field at the surface. It has been shown that the faster a planet rotates, the more powerful its magnetic field is. However, fluid motions will produce fields only if the fluid motion is helical. The exact mechanism in stars could be primordial magnetism trapped during formation. However, in galaxies, the Biermann battery effect, wherein free electrons move along the surfaces of stars, could create enough of a field for the amplification process to proceed.

  4. Magnetic-field-dosimetry system

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  5. Summary of measured radiofrequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment.

    PubMed

    Mantiply, E D; Pohl, K R; Poppell, S W; Murphy, J A

    1997-01-01

    We have plotted data from a number of studies on the range of radiofrequency (RF) field levels associated with a variety of environmental and occupational sources. Field intensity is shown in units of volts/meter (V/m) for electric field strength and amps/meter (A/m) for magnetic field strength. Duty factors, modulation frequencies, and modulation indices are also reported for some sources. This paper is organized into seven sections, each cataloging sources into appropriate RF frequency bands from very-low frequency (VLF) to super-high frequency (SHF), and covers frequencies from 10 kHz to 30 GHz. Sources included in this summary are the following: Coast Guard navigational transmitters, a Navy VLF transmitter, computer visual display terminals (VDTs), induction stoves or range tops, industrial induction and dielectric heaters, radio and television broadcast transmitters, amateur and citizens band (CB) transmitters, medical diathermy and electrosurgical units, mobile and handheld transmitters, cordless and cellular telephones, microwave ovens, microwave terrestrial relay and satellite uplinks, and police, air traffic, and aircraft onboard radars. For the sources included in this summary, the strongest fields are found near industrial induction and dielectric heaters, and close to the radiating elements or transmitter leads of high power antenna systems. Handheld transmitters can produce near fields of about 500 V/m at the antenna. Fields in the general urban environment are principally associated with radio and TV broadcast services and measure about 0.1 V/m root-mean-square (rms). Peak fields from air traffic radars sampled in one urban environment were about 10 V/m, 300 times greater than the rms value of 0.03 V/m when the duty factor associated with antenna rotation and pulsing are factored in.

  6. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  7. Mars Observer magnetic fields investigation

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

    1992-01-01

    The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

  8. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G≳ B≳ {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  9. Magnetic Field of Mars

    NASA Astrophysics Data System (ADS)

    Cain, J. C.; Ferguson, B.; Mozzoni, D.; Hood, L.

    2000-07-01

    bodies combined with later absolute dating of Martian geologic units could lead to a quantitative constraint on the thermal history of the planet, i.e. the time when convective dynamo generation ceased in the core. Determination of directions of magnetization of anomaly sources as a function of age combined with the expectation that the Martian dynamo field was roughly aligned with the rotation axis would lead to a means of investigating polar wandering for Mars. Preliminary analysis of two magnetic anomalies in the northern polar region has yielded paleomagnetic pole positions near 50 N, 135 W, about 30 degrees north of Olympus Mons. This location is roughly consistent with the orientation of the planet expected theoretically prior to the formation of the Tharsis region. In the future, more accurate observations of the vector field at the lowest possible altitudes would significantly improve our understanding of Martian thermal history, polar wandering, and upper crustal evolution. Mapping potential resources (e.g., iron-rich source bodies) for future practical use would also be a side benefit. Additional information is contained in the original abstract.

  10. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  11. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  12. Mathematical developments regarding the general theory of the Earth magnetism

    NASA Technical Reports Server (NTRS)

    Schmidt, A.

    1983-01-01

    A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.

  13. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  14. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  15. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  16. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  17. Structure of magnetic field lines

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Ali Khalili; Golmankhaneh, Alireza Khalili; Jazayeri, Seyed Masud; Baleanu, Dumitru

    2012-02-01

    In this paper the Hamiltonian structure of magnetic lines is studied in many ways. First it is used vector analysis for defining the Poisson bracket and Casimir variable for this system. Second it is derived Pfaffian equations for magnetic field lines. Third, Lie derivative and derivative of Poisson bracket is used to show structure of this system. Finally, it is shown Nambu structure of the magnetic field lines.

  18. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  19. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  20. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  1. The somatosensory evoked magnetic fields.

    PubMed

    Kakigi, R; Hoshiyama, M; Shimojo, M; Naka, D; Yamasaki, H; Watanabe, S; Xiang, J; Maeda, K; Lam, K; Itomi, K; Nakamura, A

    2000-08-01

    Averaged magnetoencephalography (MEG) following somatosensory stimulation, somatosensory evoked magnetic field(s) (SEF), in humans are reviewed. The equivalent current dipole(s) (ECD) of the primary and the following middle-latency components of SEF following electrical stimulation within 80-100 ms are estimated in area 3b of the primary somatosensory cortex (SI), the posterior bank of the central sulcus, in the hemisphere contralateral to the stimulated site. Their sites are generally compatible with the homunculus which was reported by Penfield using direct cortical stimulation during surgery. SEF to passive finger movement is generated in area 3a or 2 of SI, unlike with electrical stimulation. Long-latency components with peaks of approximately 80-120 ms are recorded in the bilateral hemispheres and their ECD are estimated in the secondary somatosensory cortex (SII) in the bilateral hemispheres. We also summarized (1) the gating effects on SEF by interference tactile stimulation or movement applied to the stimulus site, (2) clinical applications of SEF in the fields of neurosurgery and neurology and (3) cortical plasticity (reorganization) of the SI. SEF specific to painful stimulation is also recorded following painful stimulation by CO(2) laser beam. Pain-specific components are recorded over 150 ms after the stimulus and their ECD are estimated in the bilateral SII and the limbic system. We introduced a newly-developed multi (12)-channel gradiometer system with the smallest and highest quality superconducting quantum interference device (micro-SQUID) available to non-invasively detect the magnetic fields of a human peripheral nerve. Clear nerve action fields (NAFs) were consistently recorded from all subjects.

  2. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  3. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  4. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  5. Magnetic Fields in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong

    2009-12-01

    Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  6. Evolution of magnetic fields at high redshift

    NASA Astrophysics Data System (ADS)

    Zweibel, E. G.

    2006-06-01

    The origin of magnetic fields in the Universe is a cosmology problem. The evolution of the field is a plasma physics problem. I review these problems and focus on magnetogenesis in accretion disks, specifically, the transition from the Biermann battery, which creates seed fields, to amplification by turbulence driven by magnetorotational instability. In collisional disks, there is a gap between the fieldstrength characteristic of the battery and the fieldstrength necessary to sustain magnetorotational instability, but in collisionless disks the transition occurs at low fieldstrength. Because collisionless disks are generally hot, and have short dynamical times, they are likely to be small. Thus, in the battery scenario, magnetic fields on large scales were built from fields created in many small sources. Simple estimates based on turbulent diffusion suggest that galaxies and the cores of galaxy clusters can be magnetized in this way, but not the intergalactic medium at large. The problem of creating a large-scale field remains unsolved.

  7. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  8. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  9. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  10. Strongly magnetized rotating dipole in general relativity

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2016-10-01

    Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.

  11. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  12. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  13. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  14. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  15. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  16. Dynamos and cosmic magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kulsrud, R.; Cowley, S. C.; Gruzinov, A. V.; Sudan, R. N.

    1997-04-01

    This paper discusses the origin of the galactic magnetic field. The theory of the mean field dynamo in the interstellar medium is reviewed and shown to be flawed because it ignores the strong amplification of small-scale magnetic fields. An alternative origin is offered. It is proposed that the galactic fields are created in the protogalaxy by protogalactic turbulence. It is shown that they are first created from zero by the turbulence through the Biermann battery mechanism. The resulting weak seed fields are then amplified by the dynamo action of the protogalactic turbulence up to a field strength adequate for a primordial field origin of the galactic magnetic field. It is suggested that the amplification of the small-scale fields, that are a problem for the interstellar origin, are suppressed in the protogalaxy by collisionless processes that act on scales smaller than the mean free path. Since the relative size of the mean free path is quite large in the protogalaxy, the dynamo would generate only large-scale fields. After compression this field could become the galactic field. It is possible that no further amplification of it need occur in the interstellar medium.

  17. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  18. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  19. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  20. Magnetic Cloud Field Intensities and Solar Wind Velocities

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Clau de Gonzalez, Alicia D.; Tsurutani, Bruce T.; Arballo, John K.

    1997-01-01

    For the sets of magnetic clouds studied in this work we have shown that there is a general relationship between their magnetic fields strength and velocities. With a clear tendency that the faster the speed of the cloud the higher the magnetic field.

  1. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  2. Passive magnetic shielding in static gradient fields

    NASA Astrophysics Data System (ADS)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  3. Generalized helicity and Beltrami fields

    SciTech Connect

    Buniy, Roman V.; Kephart, Thomas W.

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  4. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  5. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  6. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  7. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  8. The field lines of an axisymmetric magnetic field

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The equations of Willis and Young (1987) for the field lines of an arbitrary axisymmetric multipole are generalized to an arbitrary linear combination of multipoles, i.e., to an arbitrary axisymmetric magnetic field B outside a sphere of radius a, S(a), centered on the origin, and containing all the sources of B. For this field, axisymmetric Stokes stream function is expressed in terms of the Gauss coefficients. It is shown that if only one Gauss coefficient is nonzero, the field line equations are identical to those obtained by Willis and Young.

  9. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  10. The Effect of Magnetic Field on 2-D Problem for a Mode-I Crack of a Fiber-Reinforced in Generalized Thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.; Othman, Mohamed I. A.

    2014-01-01

    In the present paper, the coupled theory, Lord-Şhulman theory, and Green-Lindsay theory are introduced to study the influence of a magnetic field on the 2-D problem of a fiber-reinforced thermoelastic. These theories are also applied to study the influence of reinforcement on the total deformation of an infinite space weakened by a finite linear opening Mode-I crack. The material is homogeneous and an isotropic elastic half-space. The crack is subjected to a prescribed temperature and stress distribution. Normal mode analysis is used to solve the problem of a Mode-I crack. Numerical results for the temperature, the displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field. A comparison between the three theories is also made for different depths.

  11. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  12. Analyses of magnetic field in spiral steel pipe

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Huang, Xinjing; Chen, Shili; Guo, Shixu; Jin, Shijiu

    2015-02-01

    In order to confirm the feasibility of identifying the girth welds using the magnetic field in spiral pipelines, the distributions of the magnetic field in spiral steel pipes with different sizes and different magnetizations were analyzed using the equivalent magnetic charge method, and were verified experimentally. The magnetic field inside spiral steel pipes is generally uniform with very small magnetic sudden changes at the spiral welds, whereas the magnetic field near the pipe ends has very big local changes. The size of spiral pipes, including its wall thickness, length, diameter, and the lift-off, has various influences on the local magnetic sudden changes at the spiral welds (LMASW) and the magnetic incremental near the pipe ends (MINPE), whereas the difference between LMASW and MINPE is always quite considerable. The bigger the radial magnetization component is, the bigger the difference between LMASW and MINPE is. When the radial magnetization component is small, changes of the circumferential and axial magnetization components can reduce this difference. Since the magnetizations of each pipe are seldom identical, the magnetic field inside each pipe is usually quite different. Thus there will be a big local magnetic sudden change at the girth weld inside the spiral pipeline, and this sudden change is much stronger than LMASW. Therefore, we can still consider identifying the girth welds using the magnetic field in spiral pipelines to improve the positioning accuracy of the in-pipe detector.

  13. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1984-06-01

    Magnetic buoyancy causes the azimuthal magnetic fields of stars to rise rapidly to the surface, from where they are generally assumed to escape freely into space. However, a closer look at the problem reveals the simple fact that disengagement of the field from the gas, and escape into space, require a convoluted field configuration, producing neutral point reconnection of the flux in the tenuous gas above the surface of the star. Only that flux which reconnects can escape. Recent observations of the magnetic fields emerging through the surface of the Sun show that even at sunspot maximum the gaps in longitude between bipolar magnetic regions are so wide as to limit severely the reconnection between regions. We suggest from the observations that no more than perhaps 3% of the flux that is observed to emerge through the surface is able to reconnect and escape. Hence the surface of the Sun approximates to an impenetrable barrier rather than an open surface, with quantitative consequences for theoretical dynamo models. Recent observations of the retraction of bipolar fields at the end of their appearance at the surface suggest active dynamical control by the convection beneath the surface.

  14. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  15. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  16. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  17. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  18. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  19. A high-field superferric NMR magnet.

    PubMed

    Huson, F R; Bryan, R N; MacKay, W W; Herrick, R C; Colvin, J; Ford, J J; Pissanetzky, S; Plishker, G A; Rocha, R; Schmidt, W

    1993-01-01

    Strong, extensive magnetic fringe fields are a significant problem with magnetic resonance imaging magnets. This is particularly acute with 4-T, whole-body research magnets. To date this problem has been addressed by restricting an extensive zone around the unshielded magnet or by placing external unsaturated iron shielding around the magnet. This paper describes a solution to this problem which uses superconducting coils closely integrated with fully saturated iron elements. A 4-T, 30-cm-bore prototype, based on this design principle, was built and tested. The 5 G fringe field is contained within 1 meter of the magnet bore along the z axis. Homogeneity of the raw magnetic field is 10 ppm over 30% of the magnet's diameter after passive shimming. Compared with an unshielded magnet, 20% less superconductor is required to generate the magnetic field. Images and spectra are presented to demonstrate the magnet's viability for magnetic resonance imaging and spectroscopy.

  20. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  1. Magnetic fields in the ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Cravens, T. E.

    1991-02-01

    Pioneer Venus Orbiter measurements of magnetic fields in the Venusian ionosphere are reviewed, and theoretical models developed to explain them are discussed. Data on the large- and small-scale magnetic-field structures in the dayside and nightside ionosphere, for both low and high solar-wind dynamic pressure, are presented graphically and characterized in detail. For the MHD models, the derivations of the continuity, momentum, one-fluid momentum, and magnetic induction equations and a generalized formulation of Ohm's law are outlined, and model predictions are compared with the measurements in extensive graphs and diagrams. It is shown that one-dimensional multifluid MHD models are successful in reproducing the observed large-scale features of the subsolar region, at least under certain prescribed conditions, whereas the nightside and small-scale features are only poorly predicted.

  2. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  3. High magnetic fields in the USA

    NASA Astrophysics Data System (ADS)

    Campbell, Laurence J.; Parkin, Don E.; Crow, Jack E.; Schneider-Muntau, Hans J.; Sullivan, Neil S.

    During the past thirty years research using high magnetic fields has technically evolved in the manner, but not the magnitude, of the so-called big science areas of particle physics, plasma physics, neutron scattering, synchrotron light scattering, and astronomy. Starting from the laboratories of individual researchers it moved to a few larger universities, then to centralized national facilities with research and maintenance staffs, and, finally, to joint international ventures to build unique facilities, as illustrated by the subject of this conference. To better understand the nature of this type of research and its societal justification it is helpful to compare it, in general terms, with the aforementioned big-science fields. High magnetic field research differs from particle physics, plasma physics, and astronomy in three respects: (1) it is generic research that cuts across a wide range of scientific disciplines in physics, chemistry, biology, medicine, and engineering; (2) it studies materials and processes that are relevant for a variety of technological applications and it gives insight into biological processes; (3) it has produced, at least, comparably significant results with incomparably smaller resources. Unlike neutron and synchrotron light scattering, which probe matter, high magnetic fields change the thermodynamic state of matter. This change of state is fundamental and independent of other state variables, such as pressure and temperature. After the magnetic field is applied, various techniques are then used to study the new state.

  4. Applied magnetic field design for the field reversed configuration compression heating experiment.

    PubMed

    Domonkos, M T; Amdahl, D; Camacho, J F; Coffey, S K; Degnan, J H; Delaney, R; Frese, M; Gale, D; Grabowski, T C; Gribble, R; Intrator, T P; McCullough, J; Montano, N; Robinson, P R; Wurden, G

    2013-04-01

    Detailed calculations of the formation, guide, and mirror applied magnetic fields in the FRC compression-heating experiment (FRCHX) were conducted using a commercially available generalized finite element solver, COMSOL Multiphysics(®). In FRCHX, an applied magnetic field forms, translates, and finally captures the FRC in the liner region sufficiently long to enable compression. Large single turn coils generate the fast magnetic fields necessary for FRC formation. Solenoidal coils produce the magnetic field for translation and capture of the FRC prior to liner implosion. Due to the limited FRC lifetime, liner implosion is initiated before the FRC is injected, and the magnetic flux that diffuses into the liner is compressed. Two-dimensional axisymmetric magnetohydrodynamic simulations using MACH2 were used to specify optimal magnetic field characteristics, and this paper describes the simulations conducted to design magnetic field coils and compression hardware for FRCHX. This paper presents the vacuum solution for the magnetic field. PMID:23635196

  5. Magnetic field of a combined plasma trap

    NASA Astrophysics Data System (ADS)

    Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.

    2012-06-01

    This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.

  6. SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS.

    SciTech Connect

    WEI,J.; PAPAPHILIPPOU,Y.; TALMAN,R.

    2000-06-30

    A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry.

  7. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  8. QED in inhomogeneous magnetic fields

    SciTech Connect

    Fry, M.P.

    1996-11-01

    A lower bound is placed on the fermionic determinant of Euclidean quantum electrodynamics in three dimensions in the presence of a smooth, finite-flux, static, unidirectional magnetic field {bold B}({bold r})={bold (}0,0,{ital B}({bold r}){bold )}, where {ital B}({bold r}){ge}0 or {ital B}({bold r}){le}0 and {bold r} is a point in the {ital xy} plane. Bounds are also obtained for the induced spin for (2+1)-dimensional QED in the presence of {bold B}({bold r}). An upper bound is placed on the fermionic determinant of Euclidean QED in four dimensions in the presence of a strong, static, directionally varying, square-integrable magnetic field {bold B}({bold r}) on R{sup 3}. {copyright} {ital 1996 The American Physical Society.}

  9. The ESRF Miniature Pulsed Magnetic Field System

    SciTech Connect

    Linden, Peter J. E. M. van der; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-23

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  10. The ESRF Miniature Pulsed Magnetic Field System

    NASA Astrophysics Data System (ADS)

    van der Linden, Peter J. E. M.; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-01

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  11. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  12. Relaxation of magnetic systems after sudden magnetic field changes

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-09-01

    In magnetic systems where the projection of the total spin moment of the system parallel to an external magnetic field is not conserved, a sudden change in the field produces oscillations in the magnetization. The amplitude and frequency of these oscillations depend nonlinearly on the change in the field. Landau-Lifshitz relaxation in the magnetic system leads to a nonlinear dependence of the amplitude and frequency of the oscillations on the relaxation parameter, as well as to a dependence of the damping rate on the energy parameters of the magnet and on the amplitude of the jump in the external magnetic field.

  13. Deformation of Water by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  14. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  15. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  16. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  17. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  18. Ultra-low magnetic field apparatus for a cryogenic gyroscope

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Van Kann, F. J.

    1978-01-01

    An ultralow magnetic field apparatus for earth-based testing of a cryogenic gyroscope system designed for a satellite test of general relativity is described. The magnetic field apparatus makes use of a superconducting lead shield while also maintaining sufficient mechanical stability to obtain a gyroscope readout sensitivity of one arcsec over a limited range. A gyroscope environment of 2.3 times 10 to the minus seventh power gauss has been attained with the magnetic field shielding technique. The magnetic field apparatus is to be used with a three-axis London moment readout system.

  19. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  20. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  1. Strongly magnetized antihydrogen and its field ionization.

    PubMed

    Vrinceanu, D; Granger, B E; Parrott, R; Sadeghpour, H R; Cederbaum, L; Mody, A; Tan, J; Gabrielse, G

    2004-04-01

    Internal orbits of experimentally analyzed antihydrogen (H) atoms depend as much on an external magnetic field as on the Coulomb force. A circular "guiding center atom" model is used to understand their field ionization. This useful model, assumed in the theory of three-body H recombination so far, ignores the important coupling between internal and center-of-mass motion. A conserved pseudomomentum, effective potential, saddle point analysis, and numerical simulation show where the simple model is valid and classify the features of the general case, including "giant dipole states."

  2. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  3. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  4. Magnetic field associated with active electrochemical corrosion

    NASA Astrophysics Data System (ADS)

    Abedi, Afshin

    used for non- destructive and real-time quantification of electrochemical corrosion activity of non-ferromagnetic metals. The spatial extent of the corrosion magnetic field may be different than that of the actual corrosion damaged area; it does not, in general, correlate with the location of anodes where the corrosion damage occurs. And that sample geometry and the degree of inhomogeneity of corrosion damage are among the major factors affecting the magnitude and distribution of the observed corrosion magnetic field.

  5. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  6. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  7. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  8. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    PubMed

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements.

  9. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  10. Interaction between two magnetic dipoles in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  11. Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James

    2004-01-01

    An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.

  12. Saturn's Magnetic Field and Magnetosphere.

    PubMed

    Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P

    1980-01-25

    The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.

  13. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  14. On the resistive diffusion of force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1980-01-01

    Reid and Laing (1979) conjectured on the general behavior of resistive force-free magnetic fields in a slab model following a numerical study. However, the basic properties of resistive force-free magnetic fields had been established previously. Some results from the previous work are extended to show that the conjecture of Reid and Laing is incorrect. A general analytic treatment of the problem provides the correct physical properties that Reid and Laing were unable to deduce from their numerical solutions. A criticism is also given of the results presented in another numerical study treating cylindrical resistive force-free magnetic fields, by the same authors.

  15. Quenching of flames by magnetic fields (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.

    1988-11-01

    The effects of magnetic fields on combustion of alcohol with the aid of platinum catalysis have been studied to simulate in part the oxidation of organic matter in the living body, and it has been found that the combustion reactions are influenced by magnetic fields. It has also been observed that candle flames are pressed down by magnetic fields of higher intensities when flames are exposed to gradient magnetic fields in a range 20-200 T/m under 0.5-1.4 T. Apart from the combustion experiments, flows of carbon dioxide, oxygen, nitrogen, and argon gases were exposed to magnetic fields up to 2.2 T and 300 T/m. The flows of these gases were blocked or disturbed by the magnetic fields. The purpose of the present study is to clarify the mechanisms for the phenomena observed in the experiments of magnetic effects on combustion and gas flow. An electromagnet with a pair of columnar magnetic poles of which inner sidepieces were hollowed out was used. The magnetic fields of 1.5 T at the brim gave a gradient of 50-100 T/m in the direction perpendicular to the pole axis when the distance of the airgap was in a range 5-10 mm. A candle was burned in the hollowed space between magnetic poles, and candle flames were exposed to magnetic fields. The flames were quenched in a few seconds after the onset of field exposures. Oxygen gas as a paramagnetic molecule can be attracted to the magnetic fields of higher intensities. However, under the intensities of magnetic fields concerned, oxygen gases are not concentrated but are aligned so as to make a ``wall of oxygen'' or an ``air curtain.'' The air curtain, which is also called the ``magnetic curtain,'' blocks air flow into and out of the hollowed space. The interception of oxygen by magnetic curtain quenches flames. The magnetic curtain also presses back flames and other gases.

  16. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  17. Chiral plasmons without magnetic field

    PubMed Central

    Song, Justin C. W.; Rudner, Mark S.

    2016-01-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  18. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  19. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  20. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  1. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  2. Evolution of field line helicity during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Yeates, A. R.; Hornig, G.; Wilmot-Smith, A. L.

    2015-03-01

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  3. Evolution of field line helicity during magnetic reconnection

    SciTech Connect

    Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.

    2015-03-15

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  4. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  5. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  6. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  7. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  8. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  9. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  10. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  11. Frustrated magnets in high magnetic fields-selected examples.

    PubMed

    Wosnitza, J; Zvyagin, S A; Zherlitsyn, S

    2016-07-01

    An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818

  12. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  13. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  14. Dilation of force-free magnetic flux tubes. [solar magnetic field profiles

    NASA Technical Reports Server (NTRS)

    Frankenthal, S.

    1977-01-01

    A general study is presented of the mapping functions which relate the magnetic-field profiles across a force-free rope in segments subjected to various external pressures. The results reveal that if the external pressure falls below a certain critical level (dependent on the flux-current relation which defines the tube), the magnetic profile consists of an invariant core sheathed in a layer permeated by an azimuthal magnetic field.

  15. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  16. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  17. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  18. Implementing a Community-Driven Cyberinfrastructure Platform for the Paleo- and Rock Magnetic Scientific Fields that Generalizes to Other Geoscience Disciplines

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Jarboe, N.; Koppers, A. A.; Tauxe, L.; Constable, C.

    2013-12-01

    EarthRef.org is a geoscience umbrella website for several databases and data and model repository portals. These portals, unified in the mandate to preserve their respective data and promote scientific collaboration in their fields, are also disparate in their schemata. The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the paleo- and rock magnetic scientific community to archive their wealth of peer-reviewed raw data and interpretations from studies on natural and synthetic samples and relies on a partially strict subsumptive hierarchical data model. The Geochemical Earth Reference Model (http://earthref.org/GERM/) portal focuses on the chemical characterization of the Earth and relies on two data schemata: a repository of peer-reviewed reservoir geochemistry, and a database of partition coefficients for rocks, minerals, and elements. The Seamount Biogeosciences Network (http://earthref.org/SBN/) encourages the collaboration between the diverse disciplines involved in seamount research and includes the Seamount Catalog (http://earthref.org/SC/) of bathymetry and morphology. All of these portals also depend on the EarthRef Reference Database (http://earthref.org/ERR/) for publication reference metadata and the EarthRef Digital Archive (http://earthref.org/ERDA/), a generic repository of data objects and their metadata. The development of the new MagIC Search Interface (http://earthref.org/MagIC/search/) centers on a reusable platform designed to be flexible enough for largely heterogeneous datasets and to scale up to datasets with tens of millions of records. The HTML5 web application and Oracle 11g database residing at the San Diego Supercomputer Center (SDSC) support the online contribution and editing of complex datasets in a spreadsheet environment and the browsing and filtering of these contributions in the context of thousands of other datasets. EarthRef.org is in the process of

  19. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  20. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  1. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  2. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  3. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  4. On the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell M.; Zweibel, Ellen G.

    2008-04-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  5. Behaviour of ferrocholesterics under external magnetic fields

    NASA Astrophysics Data System (ADS)

    Petrescu, Emil; Motoc, Cornelia

    2001-08-01

    The influence of an external magnetic field on the orientational behaviour of a ferrocholesteric with a positive magnetic anisotropy is investigated. Both the phenomena arising when the field was switched on or switched off are considered. It is found that the field needed for a ferrocholesteric-ferronematic transition BFC↑ is higher when compared to that obtained for the pure cholesteric ( BC↑). A similar result was obtained when estimating the critical field for the homeotropic ferronematic-ferrocholesteric (focal conic) transition, occurring when the magnetic field was decreased or switched off. We found that BFC↓> BC↓. These results are explained when considering that the magnetic moments of the magnetic powder are not oriented parallel to the liquid crystal molecular directors, therefore hindering their orientation under a magnetic field.

  6. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  7. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

    2011-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

  8. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  9. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

    2013-04-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  10. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2012-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given.

  11. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  12. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  13. Axial-field permanent magnet motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1981-01-01

    The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.

  14. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  15. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  16. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  17. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  18. Numerical analysis of magnetic field in superconducting magnetic energy storage

    SciTech Connect

    Kanamaru, Y. ); Amemiya, Y. )

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

  19. Magnetic field measurements in tokamak plasmas

    SciTech Connect

    Feldman, U.; Seely, J.F.; Sheeley,Jr., N.R.; Suckewer, S.; Title, A.M.

    1984-11-01

    The measurement of the poloidal magnetic field in a tokamak plasma from the Zeeman splitting and polarization of the magnetic dipole radiation from heavy ions is discussed. When viewed from a direction perpendicular to the toroidal field, the effect of the poloidal field on the circularly polarized radiation is detectable using a photoelectric polarimeter. The Zeeman splittings for a number of magnetic dipole transitions with wavelengths in the range 2300--9300 A are presented. An imaging polarimeter is proposed that can measure the poloidal magnetic field with space and time resolution.

  20. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  1. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  2. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ≳10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  3. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  4. Structure of magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kotarba, Hanna; Lesch, H.; Dolag, K.; Naab, T.; Johansson, P. H.; Stasyszyn, F. A.

    2009-04-01

    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the code Vine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċ B-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the code Gadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.

  5. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  6. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  7. DYNAMICS OF CHROMOSPHERIC UPFLOWS AND UNDERLYING MAGNETIC FIELDS

    SciTech Connect

    Yurchyshyn, V.; Abramenko, V.; Goode, P.

    2013-04-10

    We used H{alpha}-0.1 nm and magnetic field (at 1.56{mu}) data obtained with the New Solar Telescope to study the origin of the disk counterparts to type II spicules, so-called rapid blueshifted excursions (RBEs). The high time cadence of our chromospheric (10 s) and magnetic field (45 s) data allowed us to generate x-t plots using slits parallel to the spines of the RBEs. These plots, along with potential field extrapolation, led us to suggest that the occurrence of RBEs is generally correlated with the appearance of new, mixed, or unipolar fields in close proximity to network fields. RBEs show a tendency to occur at the interface between large-scale fields and small-scale dynamic magnetic loops and thus are likely to be associated with the existence of a magnetic canopy. Detection of kinked and/or inverse {sup Y-}shaped RBEs further confirm this conclusion.

  8. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  9. Interaction mechanisms and biological effects of static magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  10. Supersymmetrization of Quaternion Dirac Equation for Generalized Fields of Dyons

    NASA Astrophysics Data System (ADS)

    Rawat, A. S.; Rawat, Seema; Li, Tianjun; Negi, O. P. S.

    2012-10-01

    The quaternion Dirac equation in presence of generalized electromagnetic field has been discussed in terms of two gauge potentials of dyons. Accordingly, the supersymmetry has been established consistently and thereafter the one, two and component Dirac Spinors of generalized quaternion Dirac equation of dyons for various energy and spin values are obtained for different cases in order to understand the duality invariance between the electric and magnetic constituents of dyons.

  11. Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rylyuk, V. M.

    2016-05-01

    Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of the Schrödinger equation and the Green's function for the electron moving in an arbitrary laser field and crossed constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum of the ejected electron are derived. Using the "imaginary-time" method, the extremal subbarrier trajectory of the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The analytical consideration and numerical calculations also showed that the difference between the ionization rates for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper

  12. MHD Simulation Heliospheric Magnetic Fields and Turbulence

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2005-01-01

    This talk will present a summary of our results on simulations of heliospheric structure and dynamics. We use a three-dimensional MHD code in spherical coordinates to produce a solar wind containing a rotating, tilted heliospheric current sheet, fast-slow stream and microstream shear layers, waves, 2-D turbulence, and pressure balanced structures that are input to the inner (superAlfvenic) boundary. The evolution of various combinations of these has led to a deeper understanding of sector structure, magnetic holes, fluctuation anisotropies, and general turbulent evolution. We show how the sectors are likely to be connected, how spiral fields can arise, and how field line diffusion can be caused by waves with transverse structure and microstream shears.

  13. MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.

    2007-05-01

    In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.

  14. Magnetic Field Investigations During ROSETTA's Steins Flyby

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

    2009-05-01

    During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

  15. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  16. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  17. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  18. Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.; Fisher, George H.

    2016-08-01

    The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.

  19. The generation and dissipation of solar and galactic magnetic fields.

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1973-01-01

    Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.

  20. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  1. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  2. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  3. The magnetic field of ζ Ori A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  4. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  5. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  6. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  7. Magnetic resonance imaging: effects of magnetic field strength

    SciTech Connect

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-04-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields.

  8. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  9. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  10. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  11. Couette flow in ferrofluids with magnetic field

    NASA Astrophysics Data System (ADS)

    Singh, Jitender; Bajaj, Renu

    2005-06-01

    Instability of a viscous, incompressible ferrofluid flow in an annular space between two coaxially rotating cylinders in the presence of axial magnetic field has been investigated numerically. The magnetic field perturbations in fluid in the gap between the cylinders have been taken into consideration and these have been observed to stabilize the Couette flow.

  12. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  13. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  14. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  15. Magnetic diode for measurement of magnetic-field strength

    SciTech Connect

    Fedotov, S.I.; Zalkind, V.M.

    1988-02-01

    The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.

  16. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  17. Tracing magnetic field orientation in starless cores

    NASA Astrophysics Data System (ADS)

    Maheswar, G.; Ramaprakash, A. N.; Lee, C. W.; Dib, S.

    It is now well understood that stars are formed in the interiors of dense, gravitationally bound molecular cloud cores that are both magnetized and turbulent. But the relative role played by the magnetic field and the turbulence in cloud formation and evolution and in the subsequent star formation is a matter of debate. In a magnetically dominated scenario, the magnetic field geometry of the cores is expected to be inherited unchanged from their low-density envelope, even for an hour glass geometry of the field, unless the action of turbulence disturbs it. We carried out polarimetry of stars projected on starless molecular clouds, LDN 183 and LDN 1544, in R-filter. The comparison of these fields with those in the interiors of the cloud cores inferred from the sub-mm polarization shows that both magnetic field and turbulence are important in the cloud formation and evolution of star formation.

  18. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  19. Processing of polymers in high magnetic fields

    SciTech Connect

    Douglas, E.P.; Smith, M.E.; Benicewicz, B.C.; Earls, J.D.; Priester, R.D. Jr.

    1996-05-01

    Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

  20. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    SciTech Connect

    Parker, E.N.

    1987-10-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references.

  1. Generalized metric formulation of double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Hull, Chris; Zwiebach, Barton

    2010-08-01

    The generalized metric is a T-duality covariant symmetric matrix constructed from the metric and two-form gauge field and arises in generalized geometry. We view it here as a metric on the doubled spacetime and use it to give a simple formulation with manifest T-duality of the double field theory that describes the massless sector of closed strings. The gauge transformations are written in terms of a generalized Lie derivative whose commutator algebra is defined by a double field theory extension of the Courant bracket.

  2. Magnetic susceptibility of an organosilicon based magnetic fluid in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Dikanskii, Yu. I.; Gladkikh, D. V.; Kunikin, S. A.; Radionov, A. V.

    2015-02-01

    We have studied peculiarities of the behavior of magnetic susceptibility χ' of an organosilicon based magnetic fluid under the action of an electric field and a combination of electric and magnetic fields. It is established that an external electric field affects the temperature dependence of χ'. The obtained results are related to structural changes in the system—the appearance of a labyrinth structure in the electric field and transformation of this structure under the additional action of a magnetic field.

  3. Generalized Langmuir Waves in Magnetized Kinetic Plasmas

    NASA Technical Reports Server (NTRS)

    Willes, A. J.; Cairns, Iver H.

    2000-01-01

    The properties of unmagnetized Langmuir waves and cold plasma magnetoionic waves (x, o, z and whistler) are well known. However, the connections between these modes in a magnetized kinetic plasma have not been explored in detail. Here, wave properties are investigated by numerically solving the dispersion equation derived from the Vlasov equations both with and without a beam instability present. For omega(sub p)>Omega(sub e), it is shown that the generalized Langmuir mode at oblique propagation angles has magnetic z-mode characteristics at low wave numbers and thermal Langmuir mode characteristics at high wave numbers. For omega(sub p)magnetized Langmuir waves in Earth's foreshock and the solar wind, to waves observed near the plasma frequency in the auroral regions, and to solar type III bursts are discussed.

  4. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  5. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  6. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  7. Physics in Very Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2015-10-01

    This paper provides an introduction to a number of astrophysics problems related to strong magnetic fields. The first part deals with issues related to atoms, condensed matter and high-energy processes in very strong magnetic fields, and how these issues influence various aspects of neutron star astrophysics. The second part deals with classical astrophysical effects of magnetic fields: Even relatively "weak" fields can play a strong role in various astrophysical problems, ranging from stars, accretion disks and outflows, to the formation and merger of compact objects.

  8. The Protogalactic Origin for Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell M.; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1997-05-01

    It is demonstrated that strong magnetic fields are produced from a zero initial magnetic field during the pregalactic era, when the galaxy is first forming. Their development proceeds in three phases. In the first phase, weak magnetic fields are created by the Biermann battery mechanism. During the second phase, results from a numerical simulation make it appear likely that homogenous isotropic Kolmogorov turbulence develops that is associated with gravitational structure formation of galaxies. Assuming that this turbulence is real, then these weak magnetic fields will be amplified to strong magnetic fields by this Kolmogorov turbulence. During this second phase, the magnetic fields reach saturation with the turbulent power, but they are coherent only on the scale of the smallest eddy. During the third phase, which follows this saturation, it is expected that the magnetic field strength will increase to equipartition with the turbulent energy and that the coherence length of the magnetic fields will increase to the scale of the largest turbulent eddy, comparable to the scale of the entire galaxy. The resulting magnetic field represents a galactic magnetic field of primordial origin. No further dynamo action after the galaxy forms is necessary to explain the origin of magnetic fields. However, the magnetic field will certainly be altered by dynamo action once the galaxy and the galactic disk have formed. It is first shown by direct numerical simulations that thermoelectric currents associated with the Biermann battery build the field up from zero to 10-21 G in the regions about to collapse into galaxies, by z ~ 3. For weak fields, in the absence of dissipation, the cyclotron frequency -&b.omega;cyc = eB/mH c and &b.omega;/(1 + χ), where &b.nabla;Xv is the vorticity and χ is the degree of ionization, satisfy the same equations, and initial conditions &b.omega;cyc = &b.omega; = 0, so that, globally, -&b.omega;cyc(r, t) = &b.omega;(r, t)/(1 + χ). The vorticity grows

  9. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  10. Magnetic Field Measurements near Mars.

    PubMed

    Smith, E J; Davis, L; Coleman, P J; Jones, D E

    1965-09-10

    During the encounter between Mariner IV and Mars on 14-15 July, no magnetic effect that could be definitely associated with the planet was evident in the magnetometer data. This observation implies that the Martian magnetic dipole moment is, at most, 3 x 10(-4) times that of the earth.

  11. Neptunium Monochalcogenides: Magnetic Hyperfine Fields

    NASA Astrophysics Data System (ADS)

    Troć, R.

    This document is part of subvolume B6bβ`Actinide Monochalcogenides' of Volume 27 `Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III `Condensed Matter'. The volume presents magnetic and related properties of monochalcogenides based on actinides and their solid solutions.

  12. Influence of High Harmonics of Magnetic Fields on Trapped Magnetic Fluxes in HTS Bulk

    NASA Astrophysics Data System (ADS)

    Yamagishi, K.; Miyagi, D.; Tsukamoto, O.

    Various kinds of HTS bulk motors are proposed and have been developed. Generally, those motors are driven by semiconductor inverters and currents fed to the armature windings contain high harmonics. Therefore, the bulks are exposed to high harmonics magnetic fields and AC losses are produced in the bulks. The AC losses deteriorate the efficiency of the motors and cause temperature rise of the bulks which decrease the trapped magnetic fluxes of the bulks. Usually, electro-magnetic shielding devices are inserted between the bulks and armature windings. However, the shielding devices degrade compactness of the motors. Therefore, it is important to have knowledge of the influence of the high harmonics magnetic fields on the AC losses and trapped magnetic fluxes of the bulk for optimum design of the shielding devices. In this work, the authors experimentally study the influence of high harmonics magnetic fields.

  13. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  14. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  15. Solar winds along curved magnetic field lines

    NASA Astrophysics Data System (ADS)

    Li, B.; Xia, L. D.; Chen, Y.

    2011-05-01

    Context. Both remote-sensing measurements using the interplanetary scintillation (IPS) technique and in-situ measurements by the Ulysses spacecraft show a bimodal structure for the solar wind at solar minimum conditions. At present it still remains to address why the fast wind is fast and the slow wind is slow. While a robust empirical correlation exists between the coronal expansion rate fc of the flow tubes and the speeds v measured in situ, a more detailed data analysis suggests that v depends on more than just fc. Aims. We examine whether the non-radial shape of field lines, which naturally accompanies any non-radial expansion, could be an additional geometrical factor. Methods. We solved the transport equations incorporating the heating from turbulent Alfvén waves for an electron-proton solar wind along curved field lines given by an analytical magnetic field model, which is representative of a solar minimum corona. Results. The field line shape is found to influence the solar wind parameters substantially, reducing the asymptotic speed by up to ~130 km s-1 or by ~28% in relative terms, compared with the case where the field line curvature is neglected. This effect was interpreted in the general framework of energy addition in the solar wind: compared to the straight case, the field line curvature enhances the effective energy deposition to the subsonic flow, which results in a higher proton flux and a lower terminal proton speed. Conclusions. Our computations suggest that the field line curvature could be a geometrical factor which, in addition to the tube expansion, substantially influences the solar wind speed. Furthermore, although the field line curvature is unlikely to affect the polar fast solar wind at solar minima, it does help make the wind at low latitudes slow, which in turn helps better reproduce the Ulysses measurements.

  16. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  17. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  18. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ρ0(770) mesons may occur if strong decay channel ρ0 → π+π- is significantly suppressed. CP - violating π+π- decays of pseudoscalar ηc and η(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ηc,b and χc,b(nP) with Ψ(nS), ϒ(nS) mesons in the external field are considered.

  19. Low frequency radio observations of coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Kathiravan, C.

    2012-07-01

    Magnetic fields play an important role in the dynamics as well as the formation of the structures in the solar corona. Despite its fundamental importance, only a few direct measurements of the coronal magnetic field are available. The existing direct estimates using optical/infrared and radio emissions are limited to the inner corona, i.e., r < 1.2 R , where R is the radius of the Sun. In the outer corona beyond r > 3 R , Faraday rotation observations are used to derive the magnetic field. But due to lack of observational techniques, measurements in the range 1.2 R < r > 3 R (middle corona) are not available until now. As the photosphere, chromosphere, and corona are coupled by the solar magnetic field, the magnetic field strength at these distances is generally obtained by mathematical extrapolation of the observed line-of-sight component of the photospheric magnetic field assuming a potential or force-free model. The Indian Institute of Astrophysics has recently commissioned a radio polarimeter (based on inteferometer techniques) for dedicated obervations of the polarized radio emission from the solar corona. The frequency range of observation is 120-30 MHz which corresponds to a radial distance range of about 1.2-1.8 R. Estimates of weak magnetic fields in the 'undisturbed' Sun (non-flaring sunspot active regions, coronal streamers, etc.) obtained from observations with the above instrument will be presented.

  20. Collapse of magnetized hypermassive neutron stars in general relativity.

    PubMed

    Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C

    2006-01-27

    Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.

  1. Compact low field magnetic resonance imaging magnet: Design and optimization

    NASA Astrophysics Data System (ADS)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  2. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1984-11-01

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

  3. An Extraordinary Magnetic Field Map of Mars

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

    2004-01-01

    The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

  4. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  5. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  6. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  7. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  8. Particle Transport in Therapeutic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  9. Magnetic fields near Mars - First results

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Schwingenschuh, K.; Moehlmann, D.; Oraevskii, V. N.; Eroshenko, E.; Slavin, J.

    1989-01-01

    The magnetic fields of Mars have been measured from Phobos 2 with high temporal resolution in the tail and down to an 850-km altitude. During four successive highly elliptical orbits, the position of the bow shock as well as that of a transition layer, the 'planetopause', were identified. Subsequent circular orbits at 6000-km altitude provided the first high-resolution data in the planetary tail and indicate that the interplanetary magnetic field mainly controls the magnetic tail. Magnetic turbulence was also detected when the spacecraft crossed the orbit of Phobos, indicating the possible existence of a torus near the orbit of this moon.

  10. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  11. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  12. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  13. Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions

    NASA Astrophysics Data System (ADS)

    Baratchart, L.; Hardin, D. P.; Lima, E. A.; Saff, E. B.; Weiss, B. P.

    2013-01-01

    Recently developed scanning magnetic microscopes measure the magnetic field in a plane above a thin-plate magnetization distribution. These instruments have broad applications in geoscience and materials science, but are limited by the requirement that the sample magnetization must be retrieved from measured field data, which is a generically nonunique inverse problem. This problem leads to an analysis of the kernel of the related magnetization operators, which also has relevance to the ‘equivalent source problem’ in the case of measurements taken from just one side of the magnetization. We characterize the kernel of the operator relating planar magnetization distributions to planar magnetic field maps in various function and distribution spaces (e.g., sums of derivatives of Lp (Lebesgue spaces) or bounded mean oscillation (BMO) functions). For this purpose, we present a generalization of the Hodge decomposition in terms of Riesz transforms and utilize it to characterize sources that do not produce a magnetic field either above or below the sample, or that are magnetically silent (i.e. no magnetic field anywhere outside the sample). For example, we show that a thin-plate magnetization is silent (i.e. in the kernel) when its normal component is zero and its tangential component is divergence free. In addition, we show that compactly supported magnetizations (i.e. magnetizations that are zero outside of a bounded set in the source plane) that do not produce magnetic fields either above or below the sample are necessarily silent. In particular, neither a nontrivial planar magnetization with fixed direction (unidimensional) compact support nor a bidimensional planar magnetization (i.e. a sum of two unidimensional magnetizations) that is nontangential can be silent. We prove that any planar magnetization distribution is equivalent to a unidimensional one. We also discuss the advantages of mapping the field on both sides of a magnetization, whenever experimentally

  14. The sun and interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1991-01-01

    The interplanetary magnetic field (IMF) serves as a link between the sun, the response of the earth to solar activity and variations in galactic cosmic radiation. The IMF originates as a solar-coronal magnetic field that is transported into space by the solar wind. The close connection between solar magnetic fields and the origin and structure of the solar wind is described. The solar wind forms the heliosphere, a cavity containing the magnetized solar plasma from which the interstellar plasma and field are excluded. The entry of galactic cosmic rays into the heliosphere and their strong interaction with the IMF are discussed, this topic being of primary importance to the production and temporal variations of radiogenic elements. The profound influence of the IMF on geomagnetic activity and the aurora is discussed within the context of merging or reconnection with the planetary field. The physical connection is thus established between solar magnetic fields, magnetic storms and aurora. The state of the solar wind and IMF during the Maunder minimum is considered and an explanation for the (relative) absence of sunspots and aurora is proposed. The mechanism is an interruption of the oscillatory solar dynamo, a consequent reduction in the heating of the corona, a cessation of the supersonic solar wind and a weakening or absence of southward-directed magnetic fields in the vicinity of the earth.

  15. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ≳ B ≳ 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  16. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  17. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  18. Magnetic field induced transition in vanadium spinels.

    PubMed

    Mun, E D; Chern, Gia-Wei; Pardo, V; Rivadulla, F; Sinclair, R; Zhou, H D; Zapf, V S; Batista, C D

    2014-01-10

    We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at μ0H≈40  T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field. PMID:24483929

  19. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  20. Turbulence and Magnetic Fields in Astrophysics

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.

    2004-10-01

    The juxtaposition of ``magnetic fields'' and ``turbulence'' arises in plasma dynamics in various contexts-such as the solar corona, the magnetosphere, space physics in general, cosmic ray propagation, and laboratory plasmas of both fusion and nonfusion types. In astrophysics, the impact of turbulence has arrived relatively recently but is rapidly finding importance. The present volume is a written record of topics presented at a conference, Simulations of Magnetohydrodynamic Turbulence in Astrophysics: Recent Achievements and Perspectives, held at the Institut Henri Poincare, in Paris, in July 2001. The international audience that attended this meeting heard talks on a broad range of astrophysical, space physics, and purely theoretical subjects. A wide range of physical scenarios was discussed, with many different observational data presented. However, true to the conference banner, the emphasis was on the physics of low-frequency plasma turbulence, described by magnetohydrodyamics (MHD), and investigated using numerical simulation.

  1. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  2. New superconductor stands up to magnetic fields

    SciTech Connect

    Service, R.F.

    1995-05-05

    For high-temperature superconductors (HTS), magnetic fields have been the equivalent of kryptonite. HTS materials are capable of carrying huge electrical currents without resistance, but when they are put in powerful magnetic fields their current-carrying ability plummets. At a Materials Research Society meeting, researchers from Los Alamos National Laboratory reported making a flexible superconducting tape that stands up to high magnetic fields at 77K. However, it is not clear it will stand up to industrial levels. This article discusses this and other research from Oak Ridge, as yet unpublished, in this area of superconductors.

  3. Enhanced Cloud Disruption by Magnetic Field Interaction.

    PubMed

    Gregori; Miniati; Ryu; Jones

    1999-12-20

    We present results from the first three-dimensional numerical simulations of moderately supersonic cloud motion through a tenuous, magnetized medium. We show that the interaction of the cloud with a magnetic field perpendicular to its motion has a great dynamical impact on the development of instabilities at the cloud surface. Even for initially spherical clouds, magnetic field lines become trapped in surface deformations and undergo stretching. The consequent field amplification that occurs there and, in particular, its variation across the cloud face then dramatically enhance the growth rate of Rayleigh-Taylor unstable modes, hastening the cloud disruption.

  4. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  5. Magnetic Field Control of Combustion Dynamics

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  6. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  7. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  8. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  9. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  10. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  11. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  12. Magnetic field generated by current filaments

    NASA Astrophysics Data System (ADS)

    Kimura, Y.

    2014-10-01

    We investigate the magnetic field generated by two straight current filaments using the analogy between steady MHD and Euler flows. Using the Biot-Savart law, we present a dynamical system describing the extension of magnetic lines around the current filaments. It is demonstrated that, if two current filaments are non-parallel, a magnetic line starting near one current goes to infinity by the drifting effect of the other.

  13. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  14. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  15. The topological description of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Berger, Mitchell A.

    1986-01-01

    Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.

  16. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Baker, John; Miller, M. Coleman; Reynolds, Christopher; van Meter, James

    2012-03-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and they are among the most powerful sources of gravitational waves that can be detected by space gravitational observatories. In many cases it is believed that the merger of supermassive black holes may happen in presence of matter and magnetic fields and in this case the gravitational wave signal may be accompanied by an electro-magnetic counterpart. We present the first general relativistic simulations of a magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals.

  17. Are pulsars born with a hidden magnetic field?

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Pons, José A.; Font, José A.

    2016-03-01

    The observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10-3-10-2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.

  18. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  19. Biological effects of magnetic fields from superconducting magnetic energy storage systems

    SciTech Connect

    Tenforde, T.S.

    1989-12-01

    Physical interaction mechanisms and potential biological effects of static and slowly time-varying magnetic fields are summarized. The results of laboratory and human health studies on this topic are related to the fringe magnetic field levels anticipated to occur in the proximity of superconducting magnetic energy storage (SMES) systems. The observed biological effects of magnetic fields include: (1) magnetic induction of electrical potentials in the circulatory system and other tissues, (2) magneto-orientation of macromolecules and membranes in strong magnetic fields, and (3) Zeeman interactions with electronic spin states in certain classes of charge transfer reactions. In general, only the first of these interactions is relevant to the establishment of occupational exposure guidelines. Physical hazards posed by the interactions of magnetic fields with cardiac pacemakers and other implanted medical devices, e.g., aneurysm clips and prostheses, are important factors that must also be considered in establishing exposure guidelines. Proposed guidelines for limiting magnetic field exposure are discussed. 50 refs., 1 fig.

  20. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  1. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  2. the Origin of Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell

    1996-05-01

    It is proposed that the origin of our galactic magnetic field occurred during the protogalactic formation phase of our galaxy. It is assumed that prior to the formation there was no cosmic field at all. It is shown that as the protogalaxy formed the thermoelectric currents in cosmic plasma increased the magnetic field from zero by the Biermann battery mechanism up to a value of order 10-20 gauss. From numerical simulations, it is found that there there is very strong Kolmogoroff turbulence present in the protogalaxy. This turbulence acts on the magnetic field resulting from the Biermann battery and amplifies it at a rate γ = (k_max/k_min )^2/3 × 10-16 sec-1 where k_min and k_max are the minimum and maximum wave numbers for the turbulence. The value of k_min is found to be of order 1 megaparsec-1 , but the value of k_max lies below the grid resolution of the numerical simulation and must be determined by the physics of the cosmic plasma on small scales. During a Hubble time there is plenty of time to amplify the magnetic field from 10-20 gauss to a value that would serve as a seed field for the galactic field. The question that arises is will this field be coherent on large scales or will all the energy be concentrated in small scales. This question is addressed in this talk. the important consideration is that the cosmic plasma at this stage is very hot and has a very low density. As a result, the mean free path is extremely long of order a sizable fraction of the entire size of the protogalaxy. Therefore, it is necessary to treat the effect of the turbulent motions of the cosmic magnetic field by a semicollionless theory on scales shorter than the mean free path. It turns out that as long as the ion gyroradius is small the magnetic field controls the motion of ions through the magnetic mirror effect. this is true even if the magnetic energy is tiny compared to the thermal or kinetic energy of the plasma. As a result of this process the magnetic energy is

  3. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  4. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  5. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  6. Wire codes, magnetic fields, and childhood cancer

    SciTech Connect

    Kheifets, L.I.; Kavet, R.; Sussman, S.S.

    1997-05-01

    Childhood cancer has been modestly associated with wire codes, an exposure surrogate for power frequency magnetic fields, but less consistently with measured fields. The authors analyzed data on the population distribution of wire codes and their relationship with several measured magnetic field metrics. In a given geographic area, there is a marked trend for decreased prevalence from low to high wire code categories, but there are differences between areas. For average measured fields, there is a positive relationship between the mean of the distributions and wire codes but a large overlap among the categories. Better discrimination is obtained for the extremes of the measurement values when comparing the highest and the lowest wire code categories. Instability of measurements, intermittent fields, or other exposure conditions do not appear to provide a viable explanation for the differences between wire codes and magnetic fields with respect to the strength and consistency of their respective association with childhood cancer.

  7. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  8. Effect of a magnetic field on sonoluminescence.

    PubMed

    Yasui, K

    1999-08-01

    The effect of a magnetic field on single-bubble sonoluminescence in water reported experimentally by Young, Schmiedel, and Kang [Phys. Rev. Lett. 77, 4816 (1996)] is studied theoretically. It is suggested that bubble dynamics is affected by the magnetic field because moving water molecules of the liquid suffer torque due to the Lorentz force acting on their electrical dipole moment, which results in the transformation of some of the kinetic energy into heat. It is shown that the magnetic field acts as if the ambient pressure of the liquid were increased. It is suggested that the effect increases as the amount of the liquid water increases. It is predicted that nonpolar liquid such as dodecane exhibits no effect of the magnetic field. PMID:11969959

  9. The Magnetic Field of Helmholtz Coils

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  10. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  11. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  12. Magnetic Fields in Limb Solar Flares

    NASA Astrophysics Data System (ADS)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  13. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  14. Magnetic field studies by voyager 1: preliminary results at saturn.

    PubMed

    Ness, N F; Acuña, M H; Lepping, R P; Connerney, J E; Behannon, K W; Burlaga, L F; Neubauer, F M

    1981-04-10

    Magnetic field studies by Voyager 1 have confirmed and refined certain general features of the Saturnian magnetosphere and planetary magnetic field established by Pioneer 11 in 1979. The main field of Saturn is well represented by a dipole of moment 0.21 +/- 0.005 gauss-R(s)(3) (where 1 Saturn radius, R(s), is 60,330 kilometers), tilted 0.7 degrees +/- 0.35 degrees from the rotation axis and located within 0.02 R(s) of the center of the planet. The radius of the magnetopause at the subsolar point was observed to be 23 R(s) on the average, rather than 17 R(s). Voyager 1 discovered a magnetic tail of Saturn with a diameter of approximately 80 R(s). This tail extends away from the Sun and is similar to type II comet tails and the terrestrial and Jovian magnetic tails. Data from the very close flyby at Titan (located within the Saturnian magnetosphere) at a local time of 1330, showed an absence of any substantial intrinsic satellite magnetic field. However, the results did indicate a very well developed, induced magnetosphere with a bipolar magnetic tail. The upper limit to any possible internal satellite magnetic moment is 5 x 10(21) gauss-cubic centimeter, equivalent to a 30-nanotesla equatorial surface field.

  15. The Grenoble High Magnetic Field Laboratory as a user facility

    NASA Astrophysics Data System (ADS)

    Debray, F.; Jongbloets, H.; Joss, W.; Martinez, G.; Mossang, E.; Picoche, J. C.; Plante, A.; Rub, P.; Sala, P.; Wyder, P.

    2001-01-01

    The Grenoble High Magnetic Field Laboratory (GHMFL), run jointly by the Centre National de la Recherche Scientifique (CNRS, France) and the Max-Planck Gesellschaft (MPG, Germany) is a leading laboratory pursuing research in the highest static magnetic fields technically feasible. The laboratory maintains strong in-house research activities and partly operates as a user facility for qualified external researchers. It has developed highly sophisticated instrumentation for specific use under high magnetic fields, including transport, magnetization, visible and infrared optical measurements at low temperatures and/or high pressures, EPR and NMR investigations in high magnetic fields. The laboratory delivers around 5000 h of magnet time per year. Access for users to the high magnetic field facility is supported by the European Union, in the framework of the Human Potential Program : “Transnational Access to Major Research Infrastructures”.We give an overview of the technical aspects of the facility and of the laboratory activities as a facility over the last few years. The general organization of the user community and repartition between countries will also be reviewed.

  16. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  17. Carbon nanotube superlattices in a magnetic field

    NASA Astrophysics Data System (ADS)

    Jaskólski, W.; Pelc, M.

    The influence of magnetic field on the band structure of carbon nanotube superlattices is investigated. In particular, we study superlattices built of finite sections of (6,6) and (12,0) tubes connected by pentagon/heptagon topological defects. Magnetic field is parallel to the axis of the superlattice. We demonstrate that the superlattice band structure does not show periodicity with the flux quantum, which is typical for pure carbon nanotubes.

  18. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  19. Magnetic fields in Proto Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sabin, L.; Zhang, Q.; Zijlstra, A. A.; Patel, N. A.; Vázquez, R.; Zauderer, B. A.; Contreras, M. E.; Guillén, P. F.

    2014-08-01

    The role of magnetic field in late type stars such as proto-planetary and planetary nebulae (PPNe/PNe), is poorly known from an observational point of view. We present submillimetric observations realized with the Submillimeter Array (SMA) which unveil the dust continuum polarization in the envelopes of two well known PPNe: CRL 618 and OH 231.8+4.2. Assuming the current grain alignment theory, we were then able to trace the geometry of the magnetic field.

  20. Untwisting magnetic fields in the solar corona

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  1. Planetary Magnetic Fields and Climate Evolution

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Leblanc, F.; Luhmann, J. G.; Moore, T. E.; Tian, F.

    We explore the possible connections between magnetic fields and climate at the terrestrial bodies Venus, Earth, Mars, and Titan. Magnetic fields are thought to have negligible effects on the processes that change a planet's climate, except for processes that alter the abundance of atmospheric gases. Particles can be added or removed at the top of an atmosphere, where collisions are infrequent and a more substantial fraction of particles are ionized (and therefore subject to magnetic forces) than at lower altitudes. The absence of a global magnetic field at Mars for much of its history may have contributed to the removal of a substantial fraction of its atmosphere to space. The persistence of a global magnetic field should have decreased both ionization and removal of atmospheric ions by several processes, and may have indirectly decreased the loss rate of neutral particles as well. While it is convenient to think of magnetic fields as shields for planetary atmospheres from impinging plasma (such as the solar wind), observations of ions escaping from Earth's polar cusp regions suggest that magnetic shielding effects may not be as effective as previously thought. One explanation that requires further testing is that magnetic fields transfer momentum and energy from incident plasma to localized regions of the atmosphere, resulting in similar (or possibly greater) escape rates than if the momentum and energy were imparted more globally to the atmosphere in the absence of a magnetic field. Trace gases can be important for climate despite their low relative abundance in planetary atmospheres. At Venus, removal of O+ over the history of the planet has likely contributed to the loss of water from the atmosphere, leading to a runaway greenhouse situation and having implications for the chemistry of atmosphere-surface interactions. Conversely, Titan's robust atmospheric chemistry may result from the addition of trace amounts of oxygen from Saturn's magnetosphere, which then

  2. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  3. Seed magnetic Fields Generated by Primordial Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Miranda, Oswaldo D.; Opher, Merav; Opher, Reuven

    1998-12-01

    The origin of the magnetic field in galaxies is an open question in astrophysics. Several mechanisms have been proposed related, in general, to the generation of small seed fields amplified by a dynamo mechanism. In general, these mechanisms have difficulty in satisfying both the requirements of a sufficiently high strength for the magnetic field and the necessary large coherent scales. We show that the formation of dense and turbulent shells of matter, in the multiple explosion scenario of Miranda & Opher for the formation of the large-scale structures of the Universe, can naturally act as a seed for the generation of a magnetic field. During the collapse and explosion of Population III objects, a temperature gradient not parallel to a density gradient can naturally be established, producing a seed magnetic field through the Biermann battery mechanism. We show that seed magnetic fields ~10^-12-10^-14G can be produced in this multiple explosion scenario on scales of the order of clusters of galaxies (with coherence length L~1.8Mpc) and up to ~4.5x10^-10G on scales of galaxies (L~100kpc).

  4. Helical cosmological magnetic fields from extra-dimensions

    NASA Astrophysics Data System (ADS)

    Atmjeet, Kumar; Seshadri, T. R.; Subramanian, Kandaswamy

    2015-05-01

    We study the inflationary generation of helical cosmological magnetic fields in a higher-dimensional generalization of the electromagnetic theory. For this purpose, we also include a parity breaking piece to the electromagnetic action. The evolution of an extra-dimensional scale factor allows the breaking of conformal invariance of the effective electromagnetic action in 1 +3 dimensions required for such generation. Analytical solutions for the vector potential can be obtained in terms of Coulomb wave-functions for some special cases. We also present numerical solutions for the vector potential evolution in more general cases. In the presence of a higher-dimensional cosmological constant there exist solutions for the scale factors in which both normal and extra dimensional space either inflate or deflate simultaneously with the same rate. In such a scenario, with the number of extra dimensions D =4 , a scale invariant spectrum of helical magnetic field is obtained. The net helicity arises, as one helical mode comes to dominate over the other at the superhorizon scales. A magnetic field strength of the order of 10-9 G can be obtained for the inflationary scale H ≃1 0-3 Mpl . Weaker fields will be generated for lower scales of inflation. Magnetic fields generated in this model respects the bounds on magnetic fields by Planck and γ -ray observations (i.e., 10-16 G

  5. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  6. Driving magnetic skyrmions with microwave fields

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Beg, Marijan; Zhang, Bin; Kuch, Wolfgang; Fangohr, Hans

    2015-07-01

    We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a classical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial symmetry of the skyrmion, for example, through application of a static in-plane external field. The net velocity of the skyrmion depends on the frequency and amplitude of the microwave fields as well as the strength of the in-plane field. The maximum velocity is found where the frequency of the microwave coincides with the resonance frequency of the breathing mode of the skyrmions.

  7. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  8. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  9. Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps

    SciTech Connect

    Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

    1999-05-24

    Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

  10. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  11. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    A loss of magnetic flux through the free surface of a star into the surrounding space has important implications for the generation of the field within the star. The present investigation is concerned with the physics of the escape of net azimuthal flux from a star. The obtained results are used as a basis for the interpretation of some recent observations of the detailed behavior of magnetic fields emerging through the surface of the sun. The buoyancy of an isolated horizontal magnetic flux tube beneath the surface of a star causes the tube to rise at a rate comparable to the Alfven speed. The necessary conditions for escape of the flux are considered along with aspects of magnetic buoyancy, and the conditions on the sun. It appears that the observed retraction of bipolar magnetic fields at the end of their life at the surface is the one phenomenon which requires dynamical intervention. Attention is given to known dynamical effects which suppress the buoyant rise of an azimuthal magnetic field.

  12. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  13. Scale invariance, conformality, and generalized free fields

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina

    2016-02-01

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.

  14. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  15. Magnetic reconnection in collisionless plasmas - Prescribed fields

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Chen, J.

    1990-01-01

    The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

  16. Generation and Evolution of Magnetic Fields in the Gravitomagnetic Field of a Kerr Black Hole

    NASA Astrophysics Data System (ADS)

    Khanna, Ramon

    2003-05-01

    I study the generation and evolution of magnetic fields in the plasma surrounding a rotating black hole. Attention is focused on effects of the gravitomagnetic potential. The gravitomagnetic force appears as battery term in the generalized Ohm's law. The generated magnetic field should be stronger than fields generated by the classical Biermann battery. The coupling of the gravitomagnetic potential with electric fields appears as gravitomagnetic current in Maxwell's equations. In the magnetohydrodynamic induction equation, this current re-appears as source term for the poloidal magnetic field, which can produce closed magnetic structures around an accreting black hole. In principle, even self-excited axisymmetric dynamo action is possible, which means that Cowling's anti dynamo theorem does not hold in the Kerr metric. Finally, the structure of a black hole driven current is studied.

  17. Investigations of Magnetically Enhanced RIE Reactors with Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2008-10-01

    In Magnetically Enhanced Reactive Ion Etching (MERIE) reactors, a magnetic field parallel to the substrate enables higher plasma densities and control of ion energy distributions. Since it is difficult to make the B-field uniform across the wafer, the B-field is often azimuthally rotated at a few Hz to average out non-uniformities. The rotation is slow enough that the plasma is in quasi-equilibrium with the instantaneous B-field. For the pressures (10's mTorr or less) and B-fields (10's - 100's G) of interest, electrons are magnetized whereas ions are usually not. The orientation and intersection of the B-field with the wafer are important, as intersecting field lines provide a low resistance path for electron current to the substrate. We report on a modeling study of plasma properties in MERIE reactors having rotating B-fields by investigating a series of quasi-steady states of B-field profiles. To resolve side-to-side variations, computations are performed in Cartesian coordinates. The model, nonPDPSIM, was improved with full tensor conductivities in the fluid portions of the code and v x B forces in the kinetic portions. Results are discussed while varying the orientation and strength of the B-field for electropositive (argon) and electronegative (Ar/CxFy, Ar/Cl2) gas mixtures.

  18. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  19. Magnetic field structure evolution in RMF plasmas

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri; Yang, Xiaokang; Huang, Tian-Sen

    2007-11-01

    A study of magnetic field structure evolution during 40-ms plasma discharge had been performed in 80 cm long / 40 cm OD cylindrical chamber. Plasma current Ip˜2--3 kA is produced by applied 500 kHz rotating magnetic field. In experiments, the 2D profile of plasma current is changed by feeding a 10-ms pulse current to additional magnetic coil located at the midplane. Using newly developed magnetic field pick-up coils system, we scanned the magnetic field in cross-section of plasma. Two experimental regimes were studied: without external toroidal field (TF), and with TF produced by applied axial current. When a relatively small current (<0.5 kA) is applied to the midplane coil, in both cases the total plasma current measured with Rogowski coil experiences a jump (up to 100%), but the profile of current remains almost unchanged. When a larger current (1--2 kA) is applied to the midplane coil, the total plasma current drops; the magnetic structure changes differently in two regimes. In regime without TF, the magnetic field of plasma current is reversed at Rmagnetic field evolves during initial 1--3 ms transitional period of plasma formation.

  20. Effects of static magnetic fields on plants.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that

  1. ARTEMIS Low Altitude Magnetic Field Measurements

    NASA Astrophysics Data System (ADS)

    Glassmeier, Karl-Heinz; Constantinescu, Dragos; Auster, Hans-Ulrich

    2016-10-01

    Since 2011, two spacecraft of the five THEMIS mission spacecraft are in orbit around the Moon. These two ARTEMIS probes provide for very interesting observations of plasma physical properties of the lunar environment. In particular, the very low periselene of the ARTEMIS probes allows for the detection of crustal magnetic features of our terrestrial companion. Repeated low passes over the same region are used to confirm the crustal origin of the measured magnetic field variations. Using a model for the decay of the magnetic field intensity and measurements at several altitudes, we estimate the magnetic moment and the depth of the equivalent dipole. Some of these magnetic anomalies are strong enough to produce upstream waves due to the interaction with the solar wind with the anomaly driven mini-magnetospheres.

  2. Magnetic field fluctuations of THEMIS substorm events

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Chang, T.

    2009-12-01

    We investigate the origin of waves leading to current disruption and dipolarization observed by THEMIS satellites in the near-Earth plasma sheet near substorm expansion onset events on 29 January 2008. Based on the Hilbert-Huang Transform (HHT) technique we analyze the magnetic activity associated with current disruption which shows clearly low frequency fluctuations in the Pi 2 range growing exponentially before the time of magnetic field depolarization and continuing well into the expansion phase. Higher frequency waves are excited at or after the depolarization process starts. These features of magnetic activities are present in almost all three substorm events on January 29, 2008. We identify the low frequency instability as the kinetic ballooning modes destabilized by the free energy associated with the plasma pressure gradient in the bad magnetic field curvature via the wave-particle magnetic drift resonance effect.

  3. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  4. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  5. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  6. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  7. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  8. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  9. Variable-field permanent magnet dipole

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Meyer, R.E.

    1993-10-01

    A new concept for a variable-field permanent-magnet dipole (VFPMD) has been designed, fabricated, and tested at Los Alamos. The VFPMD is a C-shaped sector magnet with iron poles separated by a large block of magnet material (SmCo). The central field can be continuously varied from 0.07 T to 0.3 T by moving an iron shunt closer or further away from the back of the magnet. The shunt is specially shaped to make the dependence of the dipole field strength on the shunt position as linear as possible. The dipole has a 2.8 cm high by 8 cm wide aperture with {approximately}10 cm long poles.

  10. Magnetic fields of Jupiter and Saturn

    SciTech Connect

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  11. The magnetic fields of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Ness, N. F.

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  12. GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH IS TO THE RIGHT. THE BUILDING TO THE LEFT IS 'STATION 'A'', ALSO A NON-MAGNETIC STRUCTURE, ONCE USED FOR COMPARISONS OF MAGNETIC INSTRUMENTS WITH THE SMO. THE BUILDING IN THE CENTER CONTAINED A SEARCH-LIGHT USED IN CONJUNCTION WITH MEASUREMENTS OF THE EARTH'S ATMOSPHERE. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  13. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  14. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  15. Field Evaluation of a General Purpose Simulator.

    ERIC Educational Resources Information Center

    Spangenberg, Ronald W.

    The use of a general purpose simulator (GPS) to teach Air Force technicians diagnostic and repair procedures for specialized aircraft radar systems is described. An EC II simulator manufactured by Educational Computer Corporation was adapted to resemble the actual configuration technicians would encounter in the field. Data acquired in the…

  16. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  17. Scale invariance, conformality, and generalized free fields

    DOE PAGESBeta

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina

    2016-02-16

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unlessmore » the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.« less

  18. Diagnostic of stellar magnetic fields with cumulative circular polarisation profiles

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.

    2015-08-01

    Information about stellar magnetic field topologies is obtained primarily from high-resolution circular polarisation (Stokes V) observations. Because of their generally complex morphologies, the stellar Stokes V profiles are usually interpreted with elaborate inversion techniques such as Zeeman Doppler imaging (ZDI). Here we further develop a new method for interpreting circular polarisation signatures in spectral lines using cumulative Stokes V profiles (anti-derivative of Stokes V). This method is complimentary to ZDI and can be applied to validate the inversion results or when the available observational data are insufficient for an inversion. Based on the rigorous treatment of polarised line formation in the weak-field regime, we show that, for rapidly rotating stars, the cumulative Stokes V profiles contain information about the spatially resolved longitudinal magnetic field density. Rotational modulation of these profiles can be employed for a simple, qualitative characterisation of the stellar magnetic field topologies. We apply this diagnostic method to the archival observations of the weak-line T Tauri star V410 Tau and Bp He-strong star HD 37776. We show that the magnetic field in V410 Tau is dominated by an azimuthal component, in agreement with the ZDI map that we recover from the same data set. For HD 37776 the cumulative Stokes V profile variation indicates the presence of multiple regions of positive and negative field polarity. This behaviour agrees with the ZDI results, but contradicts the popular hypothesis that the magnetic field of this star is dominated by an axisymmetric quadrupolar component.

  19. A survey of magnetic fields in the dental operatory.

    PubMed

    Bohay, R N; Bencak, J; Kavaliers, M; Maclean, D

    1994-09-01

    Recently, there has been growing concern regarding the biological effects of occupational exposure to weak time-varying magnetic fields, especially those in the extremely low-frequency range (0.1-100.0 Hz). This study examined some potential sources and intensities of 60 Hz magnetic fields produced in the dental environment. A random sample of general dental offices and selected specialty offices was visited, and the magnetic fields associated with ultrasonic scalers, amalgamators, composite light curing units, X-ray view boxes and chair lights were measured. The median 60 Hz field strengths measured at various running speeds (off, standby, low and high) and the distances from the equipment (0, 15 and 30 cm) ranged from 1.2 to 2,225 milligauss (mG). Field strengths fell off quickly with distance, but were less affected by the running speed of the equipment. They also varied among the five types of equipment tested. This was likely due to variations in the make, model and age of the equipment. The 60 Hz magnetic field strengths recorded in the dental operatory were comparable to those reported from measurements of common household appliances. However, in view of recent concerns with respect to the possible effects of magnetic fields, it is suggested that exposures be minimized and the concept of prudent avoidance be employed.

  20. The Galilean satellites and the Jovian magnetic field

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.

    1978-01-01

    Alfven and Arrhenius (1974, 1976) have proposed that satellites may be formed by the condensation of plasma in partial corrotation in the dipole magnetic field of the central body. They conclude that the final orbit distance of the condensed material will be two-thirds of the orbit distance of the plasma. Since the Jovian field is strongly distorted beyond about 40 Jupiter radii, it is expected (assuming that plasma and magnetic field conditions have not changed significantly with time) that the first Galilean satellites would appear at about two-thirds 40 Jupiter radii or about 27 Jupiter radii. In fact Callisto, the outermost Galilean satellite, is found at 26.47 Jupiter radii. This generally supports the Alfven-Arrhenius hypothesis that the central-body dipolar magnetic field plays a role in major satellite formation and, more, specifically, that the two-thirds law has validity.

  1. Variability in Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.

    2013-12-01

    Martian crustal magnetic fields form localized mini-magnetosphere structures that extend in some regions well above the Martian ionosphere, interacting directly with the draped external interplanetary magnetic field (IMF). In some regions the crustal magnetic field lines are closed, locally shielding the ionosphere from external plasma. In other locations the crustal field lines are open, allowing exchange of plasma between the ionosphere and the surrounding plasma interaction region. The average magnetic topology as a function of geographic location has been mapped previously, using ~7 years of Mars Global Surveyor electron observations recorded at constant altitude and local time. In this previous work, pitch angle distributions of suprathermal electrons were examined for the presence of loss cones to determine whether field lines were open or closed. Here we apply the same technique to describe how magnetic topology varies with four external drivers: solar wind pressure, IMF orientation, solar EUV flux, and Martian season. We see that some locations on Mars change topology frequently depending upon external conditions, while others have a relatively static field topology.

  2. Ionospheric magnetic fields at Venus and Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Zhang, T. L.; Woch, J.; Wei, Y.

    2014-04-01

    Mars Global Surveyor (MGS) and Venus Express(VEX) spacecraft have provided us a wealth of insitu observations of characteristics of induced magnetospheres of Mars and Venus at low altitudes during the periods of solar minimum. At such conditions the interplanetary magnetic field (IMF) penetrates deeply inside the ionosphere while the solar wind is terminated at higher altitudes. We present the measurements made by MGS and VEX in the ionospheres of both planets which reveal similar features of the magnetization. The arising magnetic field pattern occurs strongly asymmetrical with respect to the direction of the cross-flow component of the IMF revealing either a sudden straightening of the field lines with a release of the magnetic field stresses or a sudden rotation of the magnetic field vector with a reversal of the sign of the cross-flow component. Such an asymmetrical response is observed at altitudes where the motion of ions and electrons is decoupled and collisional effects become important for generation of the electric currents Asymmetry in the field topology significantly modifies a plasma transport to the night side.

  3. DC-magnetic field vector measurement

    NASA Technical Reports Server (NTRS)

    Schmidt, R.

    1981-01-01

    A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.

  4. Primordial magnetic fields from the string network

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  5. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  6. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  7. A deep dynamo generating Mercury's magnetic field.

    PubMed

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned. PMID:17183319

  8. Magnetic Field Sensor Using Polymer MEMS Structures for Detection of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Oldham, Bradley E.

    This thesis covers the development of a magnetic sensor for application with brain computer interfacing for the detection of motor imagery evoked potentials. For this application, the feasibility of a resonance magnetic cantilever based sensor is investigated via: numerical analysis for feasibility, multilayer structure for layer integration verification, and finally flexible magnetic material characterization for sensing element consideration. The flexible magnetic material that is considered in this thesis is made by the embedding of hard rare earth magnetic (Nd2Fe14B) particles into polydimethylsiloxane (PDMS) and provides a micro-mouldable material with hard magnetic properties. This material provides a couple advantages for design of a small magnetic sensor as it is scalable while being made of a rugged polymer. Additionally, this magnetic material exhibits magnetic rheological properties when exposed to a static magnetic field. While there is additional work needed to complete the sensor design, this thesis shows the feasibility of this design.

  9. Magnetic bubbles and magnetic towers - I. General properties and simple analytical models

    NASA Astrophysics Data System (ADS)

    Aly, J.-J.; Amari, T.

    2012-02-01

    We consider magnetostatic equilibria in which a bounded region D containing a magnetized plasma is either fully confined by a field-free external medium - magnetic bubble equilibria (MBEqs) - or is confined by both such a medium and line-tying in a dense plasma region - magnetic tower equilibria (MTEqs). We first establish some of their general properties. In particular, we derive a series of useful integral equalities relating the magnetic field and the thermal pressures inside and outside D, respectively. We use them to prove the non-existence of an axisymmetric MBEq with a purely poloidal field, and to discuss some recent results of Braithwaite on MBEq formation by relaxation from an initial non-equilibrium state. We next present two families of exact analytical axisymmetric MBEqs with, respectively, spherical and toroidal shapes. The first family is extracted from Prendergast's model of a self-gravitating magnetized body, while the second one is constructed by using Palumbo's theory of isodynamic equilibria, for which both magnetic and thermal pressures take constant values on any flux surface. MTEqs with a large variety of structures are thus obtained in a simple way: we start from an arbitrary MBEq and just consider the part of it above a given plane cutting the bubble D. For MBEqs and MTEqs in either family, we compute in closed form most of the interesting physical quantities (such as energy, magnetic helicity and twist). Our results are expected to be useful for building up simple models of several astrophysical objects (such as X-ray cavities in the intracluster medium, jets emitted by disc accreting compact objects, eruptive events in stellar coronae and their ejecta).

  10. Self-forces from generalized Killing fields

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.

    2008-12-01

    A non-perturbative formalism is developed that simplifies the understanding of self-forces and self-torques acting on extended scalar charges in curved spacetimes. Laws of motion are locally derived using momenta generated by a set of generalized Killing fields. Self-interactions that may be interpreted as arising from the details of a body's internal structure are shown to have very simple geometric and physical interpretations. Certain modifications to the usual definition for a center-of-mass are identified that significantly simplify the motions of charges with strong self-fields. A derivation is also provided for a generalized form of the Detweiler Whiting axiom that pointlike charges should react only to the so-called regular component of their self-field. Standard results are shown to be recovered for sufficiently small charge distributions.

  11. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  12. Constructing the Coronal Magnetic Field: by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    1998-01-01

    The reconstruction of the coronal magnetic field is carried out using a perturbation procedure. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal fluxtubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures (1) that the normal component of the photospheric field remains unchanged, (2) that the field is given in the entire corona, (3) that the field remains divergence free, and (4) that electrical currents are introduced into the field. It is demonstrated that a simple radial parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 Nov 26. At a coronal height of 30 km, the resulting magnetic field is a non-force free magnetic field with the maximum Lorentz force being on the order of 2.6 x 10(exp -9) dyn resulting from an electric current density of $0.13 mu A/ sq m. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  13. Opening the cusp. [using magnetic field topology

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  14. Primordial magnetic fields and nonlinear electrodynamics

    SciTech Connect

    Kunze, Kerstin E.

    2008-01-15

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  15. Magnetic fields of young solar twins

    NASA Astrophysics Data System (ADS)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  16. Strong CP violation in external magnetic fields

    SciTech Connect

    Millo, R.; Faccioli, P.

    2008-03-15

    We study the response of the QCD vacuum to an external magnetic field, in the presence of strong CP violation. Using chiral perturbation theory and large N{sub c} expansion, we show that the external field would polarize quantum fluctuations and induce an electric dipole moment of the vacuum along the direction of the magnetic field. We estimate the magnitude of this effect in different physical scenarios. In particular, we find that the polarization induced by the magnetic field of a magnetar could accelerate electric charges up to energies of the order {approx}{theta}10{sup 3} TeV. We also suggest a connection with the possible existence of ''hot-spots'' on the surface of neutron stars.

  17. RESOLVED MAGNETIC FIELD MAPPING OF A MOLECULAR CLOUD USING GPIPS

    SciTech Connect

    Marchwinski, Robert C.; Pavel, Michael D.; Clemens, Dan P. E-mail: pavelmi@bu.edu

    2012-08-20

    We present the first resolved map of plane-of-sky magnetic field strength for a quiescent molecular cloud. GRSMC 45.60+0.30 subtends 40 Multiplication-Sign 10 pc at a distance of 1.88 kpc, masses 16,000 M{sub Sun }, and exhibits no star formation. Near-infrared background starlight polarizations were obtained for the Galactic Plane Infrared Polarization Survey using the 1.8 m Perkins telescope and the Mimir instrument. The cloud area of 0.78 deg{sup 2} contains 2684 significant starlight polarizations for Two Micron All Sky Survey matched stars brighter than 12.5 mag in the H band. Polarizations are generally aligned with the cloud's major axis, showing an average position angle dispersion of 15 {+-} 2 Degree-Sign and polarization of 1.8 {+-} 0.6%. The polarizations were combined with Galactic Ring Survey {sup 13}CO spectroscopy and the Chandrasekhar-Fermi method to estimate plane-of-sky magnetic field strengths, with an angular resolution of 100 arcsec. The average plane-of-sky magnetic field strength across the cloud is 5.40 {+-} 0.04 {mu}G. The magnetic field strength map exhibits seven enhancements or 'magnetic cores'. These cores show an average magnetic field strength of 8.3 {+-} 0.9 {mu}G, radius of 1.2 {+-} 0.2 pc, intercore spacing of 5.7 {+-} 0.9 pc, and exclusively subcritical mass-to-flux ratios, implying their magnetic fields continue to suppress star formation. The magnetic field strength shows a power-law dependence on gas volume density, with slope 0.75 {+-} 0.02 for n{sub H{sub 2}} {>=}10 cm{sup -3}. This power-law index is identical to those in studies at higher densities, but disagrees with predictions for the densities probed here.

  18. Studies of cryogenic electron plasmas in magnetic mirror fields

    NASA Astrophysics Data System (ADS)

    Gopalan, Ramesh

    This thesis considers the properties of pure electron plasmas in Penning traps which have an axially varying magnetic field. Our theory of the thermal equilibrium of such plasmas in magnetic mirror fields indicates that their behavior may be characterized by the ratio of their temperature to their central density T/n. For cold, dense plasmas the density along the plasma axis scales linearly with the magnetic field, while for hot, tenuous plasmas, at the opposite limit of the parameter range, the density is constant along the axis, similar to the behavior of a neutral plasma in a magnetic mirror. We are able to conclude from this that the electrostatic potential varies along the field lines, in equilibrium. As the plasma charge and potential distribution must be consistent with the grounded potential on the trap walls, the plasma profile does not follow the geometry of the magnetic field lines; the plasma radius in the high-field region is smaller than would be obtained by mapping the field lines from the radial edge of the low-field region. Another interesting feature of these mirror equilibria is that there are trapped populations of particles both in the low-field and high-field regions. Our experiments on the Cryogenic Electron Trap have confirmed many of these theoretical results over a wide parameter range. We have been able to sample the volume charge density at various points on the axis. We have also measured the line-charge distribution of the plasma. Both these experiments are in general agreement with our theory of the global thermal equilibrium in the mirror- field. A surprising observation has been the unexpectedly long- life of the m = 1 diocotron mode in these traps where the magnetic field varies by ~100% across its length. We report these observations, along with plausible explanations for them. The trap we have constructed is intended for the eventual study of very cold electron plasmas in strong magnetic fields, where the plasma electrons are

  19. Magnetic properties of a classical XY spin dimer in a "planar" magnetic field

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion; Prenga, Dode

    2016-10-01

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a "planar" external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin-spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks.

  20. Near-Zero-Field Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Appelt, S.; Blümich, B.; Pines, A.; Budker, D.

    2011-09-01

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  1. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  2. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  3. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and Λ cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ≃ 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  4. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  5. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  6. Whistler modes with wave magnetic fields exceeding the ambient field.

    PubMed

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  7. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  8. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  9. Use of magnetic field aids oil search

    SciTech Connect

    Not Available

    1992-05-04

    Efficient oil and gas exploration requires the measurement of the earth's magnetic field with the ability to determine and remove with high accuracy that part of the signal caused by changes in the magnetic basement, and measurement of rock drill cuttings when possible, only to add confidence that the magnetic mineral body is authigenic in origin (created in place), and not detrital. This paper reports that results show that anomalous areas developed from aeromagnetic data and drill holes shown to have anomalous authigenic altered drill cuttings are both 80-85% probable of oil and natural gas discovery, and similarly those areas not anomalous in either are 10-15% probable of oil and gas discovery. The method involves the gathering of low terrain clearance high resolution data of the earth's magnetic field using the cesium vapor magnetometer or equivalent.

  10. Thermodynamic properties of anisotropic spin ladder in a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2015-08-01

    We address thermodynamic properties of quasi-one dimensional two leg antiferromagnetic ladder in the presence of magnetic field. A generalized bond operator formalism is used to transform the spin model to a hard core bosonic gas. We have implemented Green's function approach to obtain the temperature dependence of spin excitation spectrum in field induced spin polarized phase. The results show energy gap that vanishes at critical magnetic field for fixed values of temperatures. We have also found the temperature dependence of the specific heat and magnetization component in the magnetic field direction for various magnetic field strengths and anisotropies in the Heisenberg interactions on both leg and rung couplings. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the spin polarized phase region. Furthermore we studied the temperature dependence of the longitudinal magnetization for different magnetic field and anisotropy parameters.

  11. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    SciTech Connect

    Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  12. Maximum field capability of Energy-Saver superconducting magnets

    SciTech Connect

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-03-01

    At an energy of 1 TeV, the superconducting cable in the Energy Saver dipole magnets will be operating at approx. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets is 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils. In general, the cable in the four coils comes from four different reels of cable. As part of magnet fabrication quality control, a short piece of cable from both ends of each reel has its critical current (rho = 1 x 10/sup -12/'..cap omega..-cm) measured at 5T and 4.3/sup 0/K. We present the statistical results of the maximum field tests on Saver magnets and explore the correlation with cable critical current.

  13. Closed expressions for the magnetic field of toroidal multipole configurations

    SciTech Connect

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration.

  14. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  15. Magnetic Fields in Early Protostellar Disk Formation

    NASA Astrophysics Data System (ADS)

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M⊙ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  16. Rapid Change of Field Line Connectivity and Reconnection in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Huang, Y. M.; Bhattacharjee, A.; Boozer, A. H.

    2014-12-01

    Magnetic fields depending on three spatial coordinates generally have the feature that neighboring field lines exponentiate away from each other and become stochastic. Such a generic condition usually occurs in space and astrophysical plasmas, such as coronal magnetic field entangled by photospheric footpoint shuffling, as well as in fusion plasmas in the presence of multiple tearing modes. Under the condition of large exponentiation, the ideal constraint of preserving magnetic field line connectivity becomes exponentially sensitive to small deviations from ideal Ohm's law, which may potentially lead to rapid magnetic reconnection. This idea of breaking field line connectivity by stochasticity is tested with numerical simulations based on reduced magnetohydrodynamics equations with a strong guide field line-tied to two perfectly conducting end plates. Starting from an ideally stable force-free equilibrium, the system is allowed to undergo resistive relaxation. Two distinct phases are identified in the process of resistive relaxation. During the quasi-static phase, it is found that regions of high field line exponentiation (akin to quasi-separatrix-layers) are associated with rapid change of field line connectivity and strong induced flow. However, although the field line connectivity of individual field lines can change rapidly, the overall pattern of footpoint mapping appears to deform gradually. From this perspective, field line exponentiation appears to cause enhanced diffusion rather than reconnection. In some cases, it is found that resistive quasi-static evolution can cause the ideally stable initial equilibrium to cross a stability threshold. Onset of the instability leads to formation of intense current filaments, followed by rapid change of field line mapping into a qualitatively different pattern. It is in this onset phase that the change of field line connectivity may be more appropriately designated as magnetic reconnection. Our results reveal and

  17. Evolution of primordial magnetic fields in mean-field approximation

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2014-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity and the magnetic correlation length evolve asymptotically with the temperature, , as and . Here, , , and are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients , , , , , and , depend on the index of the assumed initial power-law magnetic spectrum, , and on the particular regime, with the order-one constants and depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with equal to zero.

  18. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  19. Topology of induced lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Schwartz, K.; Schubert, G.

    1973-01-01

    Using the asymmetric theory of lunar induction the total and induced magnetic field line structure within the Moon and the diamagnetic cavity were obtained. Total field distributions are shown for orientations of the oscillating interplanetary field parallel, perpendicular and at 45 deg to the cavity axis. Induced field lines are shown only for the orientations of the interplanetary field parallel and orthogonal to the cavity axis. When compared with the field lines derived using the long wavelength limit of spherically symmetric vacuum induction theory, the configurations obtained using the asymmetric theory exhibit significant distortion. For all orientations of the interplanetary field, the field lines are strongly compressed on the sunlit hemisphere because of the confining solar wind pressure at the lunar surface and the exclusion of the field by the lunar core.

  20. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  1. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  2. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  3. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  4. Static magnetic field therapy: dosimetry considerations.

    PubMed

    Colbert, Agatha P; Markov, Marko S; Souder, James S

    2008-06-01

    The widespread use of static magnetic field (SMF) therapy as a self-care physical intervention has led to the conduct of numerous randomized controlled trials (RCTs). A recent systematic review of SMF trials for pain reduction concluded that the evidence does not support the use of permanent magnets for pain relief. We argue that this conclusion is unwarranted if the SMF dosage was inadequate or inappropriate for the clinical condition treated. The purpose of this communication is to (1) provide a rationale and an explanation for each of 10 essential SMF dosing parameters that should be considered when conducting trials of SMF therapy, and (2) advocate for the conduct of Phase I studies to optimize SMF dosimetry for each condition prior to implementing a large-scale RCT. A previous critical review of SMF dosimetry in 56 clinical studies found that reporting SMF dosages in a majority of those studies was of such poor quality that the magnetic field exposure at the target tissue could not be characterized. Without knowing what magnetic field actually reached the target, it is impossible to judge dosage adequacy. In order to quantify SMF exposure at the site of pathology (target tissue/s), that site must be clearly named; the distance of the permanent magnet surface from the target must be delineated; the physical parameters of the applied permanent magnet must be described; and the dosing regimen must be precisely reported. If the SMF dosimetry is inadequate, any inferences drawn from reported negative findings are questionable.

  5. Mechanical Response of Elastomers to Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Munoz, B. C.; Jolly, M. R.

    1996-01-01

    Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.

  6. Magnetic Fields and Outflows from AGN Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Bisnovatyi-Kogan, Gennady S.; Rothstein, D. M.

    2010-11-01

    Activity of the nuclei of galaxies involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (Z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr (Z) which depends mainly on the midplane thermal to magnetic pressure ratio ˜>1 and the Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (˜>1) large-scale field does not di use away as suggested by earlier work.

  7. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary

  8. The average stress in a suspension of cube-shaped magnetic particles subject to shear and magnetic fields

    NASA Astrophysics Data System (ADS)

    Mallavajula, Rajesh K.; Archer, Lynden A.; Koch, Donald L.

    2015-09-01

    The effect of a homogeneous magnetic field (H) on the bulk stress in a dilute suspension of weakly Brownian, magnetic cubes suspended in a Newtonian fluid subjected to a linear shear flow is studied. The stresslet on each cube is anisotropic and depends on its orientation. Application of a magnetic field results in anisotropy in the orientation distribution. The steady-state orientation distribution is derived as a function of the angle between the directions of the magnetic field and the fluid vorticity vector and the ratio of the magnetic torque to the viscous torque. Knowledge of the distribution function is used to derive a general expression for the bulk stress in a general linear flow field and a magnetic field. Specific numerical results are obtained for the intrinsic viscosity in a simple shear flow when the magnetic field is either parallel or perpendicular to the vorticity. When the magnetic field is perpendicular to vorticity, we find that the intrinsic viscosity increases at first with increasing shear rate passes through a maximum and then shear thins. The intrinsic viscosity can vary from 3.25 to 5.5 in response to changes in the relative strengths of the shear and magnetic fields. The maximum value of 5.5 is obtained when the magnetic moment of the cube, which is assumed to be parallel to the normal of one of the faces, lies in the flow gradient plane at an angle of π/4 from the flow direction.

  9. Modeling Solar Magnetic Fields Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Lee, G.; Malanushenko, A. V.; DeRosa, M. L.

    2014-12-01

    Previous research reconstructed a three-dimensional model of the magnetic field of an active region on the Sun from using solar coronal loops as guides for modeling(Malanushenko et al., ApJ,2009, 707:1044). In this study, we test the consistency of such reconstructions with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) by applying the aformentioned method to additional active regions with varying amounts of solar activity. To create an initial model of a magnetic field surrounding an active region, we first manually trace the coronal loops on the coronal images in the following wavelengths: 171Å, 193Å, 211Å, 94Å, 131Å, and 335Å. The manually traced loops are then used as a guide for a computer reconstruction of the individual three-dimensional field lines with differing heights and degrees of local twist. The reconstructed field lines are then adjusted by a partially automated algorithm, so that the constructed field line would correspond to a coronal loop on the Sun. These fitted loops serve as a skeleton to create a model of the magnetic field of the active region. We expect that our modeling can be used in future works to predict future solar events. Implications of this ability include being able to prepare a response for a solar event before it happens.

  10. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  11. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd–Ba–Cu–O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization

  12. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  13. Consistency relation for cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev Kumar; Sloth, Martin S.

    2012-12-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  14. Human melatonin during continuous magnetic field exposure

    SciTech Connect

    Graham, C.; Cook, M.R.; Riffle, D.W.

    1997-05-01

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.

  15. Bound states in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-03-25

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB{approx}m{sup 2}{sub {pi}}{approx} 0.02 GeV{sup 2} at the RHIC and eB{approx} 15m{sup 2}{sub {pi}}{approx} 0.3 GeV{sup 2} at the LHC. We investigate the effects of the magnetic field on B{sup 0} and D{sup 0} mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  16. Frame-dragging effects on magnetic fields near a rotating black hole

    NASA Astrophysics Data System (ADS)

    Karas, V.; Kopáček, O.; Kunneriath, D.

    2012-07-01

    We discuss the role of general relativity frame dragging acting on magnetic field lines near a rotating (Kerr) black hole. Near ergosphere the magnetic structure becomes strongly influenced and magnetic null points can develop. We consider aligned magnetic fields as well as fields inclined with respect to the rotation axis, and the two cases are shown to behave in profoundly different ways. Further, we construct surfaces of equal values of local electric and magnetic intensities, which have not yet been discussed in the full generality of a boosted rotating black hole.

  17. Reconnection rates of magnetic fields

    SciTech Connect

    Park, W.; Monticello, D.A.; White, R.B.

    1983-05-01

    The Sweet-Parker and Petschek scalings of magnetic reconnection rate are modified to include the effect of the viscosity. The modified scalings show that the viscous effect can be important in high-..beta.. plasmas. The theoretical reconnection scalings are compared with numerical simulation results in a tokamak geometry for three different cases: a forced reconnection driven by external coils, the nonlinear m = 1 resistive internal kink, and the nonlinear m = 2 tearing mode. In the first two cases, the numerical reconnection rate agrees well with the modified Sweet-Parker scaling, when the viscosity is sufficiently large. When the viscosity is negligible, a steady state which was assumed in the derivation of the reconnection scalings is not reached and the current sheet in the reconnection layer either remains stable through sloshing motions of the plasma or breaks up to higher m modes. When the current sheet remains stable, a rough comparison with the Sweet-Parker scaling is obtained. In the nonlinear m = 2 tearing mode case where the instability is purely resistive, the reconnection occurs on the slower dissipation time scale (Psi/sub s/ approx. eta). In addition, experimental data of the nonlinear m = 1 resistive internal kink in tokamak discharges are analyzed and are found to give reasonable agreement with the modified Sweet-Parker scaling.

  18. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  19. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  20. Neutrino dispersion in external magnetic fields

    SciTech Connect

    Kuznetsov, A. V.; Mikheev, N. V.; Vassilevskaya, L. A.; Raffelt, G. G.

    2006-01-15

    We calculate the neutrino self-energy operator {sigma}(p) in the presence of a magnetic field B. In particular, we consider the weak-field limit eB<field' m{sub l}{sup 2}<field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (eB){sup 2} and thus comparable to the contribution of the magnetized plasma.

  1. Magnetic field line lengths inside interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Qiu, Jiong; Krucker, Sam

    2015-07-01

    We report on the detailed and systematic study of field line twist and length distributions within magnetic flux ropes embedded in interplanetary coronal mass ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field line twist and length in cylindrical flux ropes, based on in situ Wind spacecraft measurements. We show that the field line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular, we utilize the unique measurements of magnetic field line lengths within selected ICME events as provided by Kahler et al. () based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux rope interpretation of the embedded magnetic structures. By using the different flux rope models, we show that the in situ direct measurements of field line lengths are consistent with a flux rope structure with spiral field lines of constant and low twist, largely different from that of the Lundquist model, especially for relatively large-scale flux ropes.

  2. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  3. Equivalent source mapping of lunar magnetic field

    NASA Astrophysics Data System (ADS)

    Toyoshima, M.; Shibuya, H.

    2007-12-01

    JAXA (Japan Aerospace Exploration Agency) shall launch the SELENE (SELenological and ENgineering Explorer) spacecraft this autumn. Amongst many instruments, it has a magnetometer (LMAG: Lunar MAGnetomter) which will measure the magnetic field on the orbit around the Moon. The nominal orbit of the SELENE is about 100km in altitudes for 1 year observation. Although the extended mission is still not determined, LMAG team is requesting a low altitude (less than 50km) observation, if the remaining fuel allows. We are preparing data processing software for the mission. Here, we report an objective scheme for mapping the lunar crustal magnetic field from the orbital measurement data of unequal altitudes. In this study, the magnetic field is restored by solving a linear inverse-problem determining the sources distributed on the lunar surface to satisfy the observational data, which is known as the equivalent source method. Our scheme has three features improving the method: First, the source calculation is performed simultaneously with detrending. Second, magnetic charges (magnetic monopoles) are used as the equivalent sources. It reduces the density of the sources for the same smoothness in produced field, comparing to the dipole sauces. Third, the number of sources is taken large enough to avoid the problem of configuration of the sources, instead the damped least square assuming the strength of each charge is similar to the next one, and the smoothness factor is determined by minimizing Akaike's Bayesian Information Criterion (ABIC). It guarantees the objectivity of the calculation, in other words, there is no adjustable parameter which may depend of the researcher dealing the data analyses. For testing the scheme, we apply this method to the Lunar Prospector magnetometer data, and provide magnetic field map in the region centered at several regions of strong crustal field including the Reiner Gamma anomaly. The stability of the method and the resolution of the anomaly

  4. Experimental Study of Magnetic Field Effect on dc Corona Discharge in Low Vacuum

    NASA Astrophysics Data System (ADS)

    Elabbas, K.

    2014-09-01

    In the present paper, an attempt was made to investigate the effect of applying a transverse magnetic field on the dc corona discharge behavior in low vacuum. In general, two experiments were carried out in this work: the first is the ionization-region magnetic field experiment, and the second was the drift region magnetic field experiment. In these experiments, permanent magnets were used to produce magnetic field. The degree of vacuum used in this test was 0.4×105 Pa. It is found that the effect of the magnetic field increases as the degree of vacuum increases. It is also seen from this study that the corona current values are higher with magnetic fields than without magnetic fields. The experimental results indicate that the enhancement of the magnetic field near the wire discharge electrode has a significant influence on the increment of the discharge current. The effect of the magnetic field on the discharge current is the most significant with the negative corona discharges rather than with positive corona discharge. In contrast to, the curves were demonstrated that the application of magnetic fields in drift region magnetic field does not significantly change the corona discharge current. Discharge characteristics of magnetically enhanced corona discharges, extracted from this study, can be applied to various industrial applications, such as, in an electrostatic enhancement filter for the purpose of capturing fine particles, and as effective method for production of high ozone concentrations in a generator as compared to the ultraviolet (UV) radiation method.

  5. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  6. Severe to Extreme Solar Storms: Magnetic Field Complexity and Warnings

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    2014-12-01

    The most pressing space weather warnings are those of the most intense solar flares and coronal mass ejections. By now we have studied the extreme solar storms in May 1921, October-November 2003 and July 2012. A solid torus model was developed to explain the extreme solar storms of May 1921. The most recent extreme solar storm in July 2012 makes it possible to use magnetic field data of Solar Dynamics Observatory (SDO) and derived magnetic field complexity parameters of the SHARP system. Preliminary daily probabilistic warnings of severe solar flares, based on SDO magnetic field complexity and SHARP parameters will be presented. The general goal is to try to integrate the topological with the probabilistic approach into a daily warning system of severe to extreme solar storms.

  7. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.

  8. Characteristics of a magnetic fluid under an orthogonal alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Hu, J. H.; Zou, J. B.; Zhao, B.; Li, Y.

    2016-07-01

    Nonlinearity is a primary characteristic of a magnetic fluid. Under an orthogonal alternating magnetic field, the magnetization characteristics change, which produce a variable magnetic field in the magnetic fluid region. A mathematical model of a magnetic fluid under an orthogonal alternating magnetic field is here proposed. The model is solved by an analytic method, and the validity of the solution is verified using the finite element method in addition to experimental results. It is shown that the frequency of the magnetic field in a magnetic fluid is twice that of the orthogonal alternating magnetic field.

  9. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  10. Measurements of magnetic fields in solar prominences

    NASA Technical Reports Server (NTRS)

    Deglinnocenti, Egidio Landi

    1986-01-01

    Magnetic fields can be measured, in solar prominences, by means of two different basic mechanisms that are responsible for the introduction (or the reduction) of a given amount of polarization in spectral lines: these are the Zeeman effect and the Hanle effect. Through the splitting of the magnetic components of a spectral line, the Zeeman effect is capable of introducing a certain amount of circular polarization across the line profile. The Hanle effect consist of a modification of the linear polarization that is induced in spectral lines by the anisotropic illumination of the prominence plasma by the photospheric radiation field. These two effects are briefly discussed.

  11. Magnetic field processing of inorganic polymers

    SciTech Connect

    Kunerth, D.C.; Peterson, E.S.

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  12. DYNAMICAL FIELD LINE CONNECTIVITY IN MAGNETIC TURBULENCE

    SciTech Connect

    Ruffolo, D.; Matthaeus, W. H.

    2015-06-20

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, but this can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity from the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for the noisy reduced MHD model. Our formalism accounts for the dynamical decorrelation of magnetic fluctuations due to wave propagation, local nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The diffusion coefficient D{sub X} of the time-differenced displacement becomes twice the usual field line diffusion coefficient D{sub x} at large time displacement t or large distance z along the mean field (corresponding to a pair of uncorrelated random walks), though for a low Kubo number (in the quasilinear regime) it can oscillate at intermediate values of t and z. At high Kubo number the dynamical decorrelation decays mainly from the nonlinear term and D{sub X} tends monotonically toward 2D{sub x} with increasing t and z. The formalism and results presented here are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries.

  13. Skyrmion motion driven by oscillating magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z.Q.; Choe, Sug-Bong; Hwang, Chanyong

    2016-01-01

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods. PMID:26847334

  14. Skyrmion motion driven by oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Choe, Sug-Bong; Hwang, Chanyong

    2016-02-01

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.

  15. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup −3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  16. Tracing the Magnetic Field in Orion A

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Rui-Sheng; Bastien, Pierre

    2003-01-01

    We use extensive 350 micron polarimetry and continuum maps obtained with Hertz and SHARC II along with HCN and HCO(sup +) spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament it becomes better aligned with it at OMC-3 MMS 8-9 and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two, is a peculiar object where we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1 where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows much more stability. This suggests that, perhaps, the orientation of the field is relatively unaffected by the mass condensations present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data we were able to measure a set of average d u e s for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is approx. = 73 deg around OMC-3 MMS 6, approx. = 74 deg at OMC-3 MMS 8-9, approx. = 80 deg at OMC-2 FIR 4, approx. = 65 deg in the northeastern part of OMC-1, and approx. = 49 deg in the Bas. The small difference

  17. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  18. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  19. Biomaterials and Magnetic fields for Cancer Therapy

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  20. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  1. World Record Magnetic Field 100T

    SciTech Connect

    McDonald, Ross; Mielke, Chuck; Rickel, Dwight

    2012-03-22

    Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with the chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.

  2. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, W.F.

    1980-02-26

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  3. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  4. Magnetic-field-compensation optical vector magnetometer.

    PubMed

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed.

  5. Assessment of magnetic field asymmetries in ELMO Bumpy Square

    SciTech Connect

    Uckan, T.; Uckan, N.A.

    1985-01-01

    There exist two separate and independent magnetic field asymmetries in the ELMO Bumpy Square (EBS). One is associated with the small perturbations in the magnetic field, known as the field errors, caused by coil misalignments during installation, imperfection in coil winding, etc. The second source of asymmetry is the magnetic field ripple in the high-field toroidal solenoids (corners) produced by the finiteness of the number of coils. In general, these two sources of asymmetry introduce enhanced transport losses (in addition to other effects) to the system, although they affect different classes of particles. Toroidally passing (circulating) particles (v/sub parallel//v approx. 1) are influenced by the field errors, whereas trapped particles (v/sub parallel//v approx. 0) in the corners are influenced by the field ripple. In this paper we discuss these two effects separately and calculate the allowable magnitudes of the field error and field ripple in EBS, both for an experimental-size device and for a reactor.

  6. On spontaneous formation of current sheets: Untwisted magnetic fields

    SciTech Connect

    Bhattacharyya, R.; Low, B. C.; Smolarkiewicz, P. K.

    2010-11-15

    This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through

  7. Dynamics of photoelectrons in a magnetic field

    NASA Astrophysics Data System (ADS)

    Bracher, Christian; Kramer, Tobias; Delos, John B.

    2006-05-01

    Near-threshold photodetachment from negative atomic ions provides a virtually pointlike source of electrons, and is ideally suited to study electron dynamics in externally applied electric and magnetic fields. These fields govern the motion of the emitted electron wave, and lead to characteristic modulations both in the total photocurrent and in the spatial electron distribution. These changes have been predicted and observed in an electric field environment (photodetachment microscopy). Here, we examine the effects of a purely magnetic field on the photodetachment cross sections. Theoretical predictions for the electron distribution reveal a surprising wealth of structure that is currently only partly understood. We present numerical and analytical results, and give a semiclassical interpretation of the observed features where possible.

  8. Magnetic-field considerations in superferric dipole

    NASA Astrophysics Data System (ADS)

    Snowdon, S. C.

    1983-03-01

    Iron dominated magnets are characterized in the limit of infinite permeability by a pole shape that is a magnetic equipotential. Deviations from this ideal because of finite permeability are associated with differences in path length, local saturation, flux concentration in slotted pole if crenellation is used, and sub surface voids. For moderate field levels the variation in flux path length throughout the iron lowers the magnetic potential on the iron surface more for the longer paths. As the excitation increases, the permeability is lowered in regions of high flux density. Crenellation in this region offers some degree of control over the permeability by concentrating the flux. To a lesser degree sub surface voids can be used to control the reluctance of a flux path. The net result suggests that the shape of the effective air gap can be adjusted to be a magnetic equipotential sensibly equivalent to the ideal pole shape for infinite permeability.

  9. Magnetic Field Twisting by Intergranular Downdrafts

    NASA Astrophysics Data System (ADS)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  10. Pulsed-field magnetometry for rock magnetism

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  11. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  12. The design and construction of high field-uniformity permanent magnet system for MRI

    SciTech Connect

    Feng, Z.X.; Jiang, X.H.; Han, S. )

    1992-01-01

    This paper reports that the permanent magnet system used for MRI has some advantages: the lower cost/field ratio in the range of magnetic field 1.5-3.0 kG; no need power supply and cryogenic equipment. So, the MRI device with a permanent magnet system has marketable value. The MRI device requires a high field-uniformity magnet system. The necessary field-uniformity is better than several tens of ppm in a 30 cm diameter spherical volume. Generally, the shim coils can be used for correcting the magnetic field in working area, but the authors developed a passive method to correct the field-uniformity. First, the specially designed ferromagnetic pole pieces are disposed onto the surfaces of the main permanent magnet poles to improve the field-uniformity preliminarily. Then, the necessary field-uniformity will be obtained by using the magneto-dipoles which are suitably placed in the field domain.

  13. High magnetic field facilities in Latin America

    NASA Astrophysics Data System (ADS)

    Sato, R.; Grössinger, R.; Bertorello, H.; Broto, J. M.; Davies, H. A.; Estevez-Rams, E.; Gonzalez, J.; Matutes, J.; Sinnecker, J. P.; Sagredo, V.

    2006-11-01

    The EC supported a network (under the Framework 5 ALFA Programme) designated HIFIELD (Project number II0147FI) and entitled: "Measurement methods involving high magnetic fields for advanced and novel materials". As a result, high field facilities were initiated, constructed or extended at the following laboratories in Latin America: University Cordoba (Argentina), CES, Merida (Venezuela), CIMAV, Chihuahua (Mexico), University Federal de Rio de Janeiro (Brazil).

  14. Magnetic field influence on paramecium motility

    SciTech Connect

    Rosen, M.F.; Rosen, A.D. )

    1990-01-01

    The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.

  15. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  16. Laboratory Measurements of Astrophysical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  17. Dynamical Field Line Connectivity in Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Matthaeus, W. H.

    2014-12-01

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, with observable manifestations such as dropouts of solar energetic particles and upstream events at Earth's bow shock. This can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity to the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for two specific models: reduced magnetohydrodynanmics (RMHD), a quasi-two dimensional model of anisotropic turbulence that is applicable to low-beta plasmas, and two-dimensional (2D) plus slab turbulence, which is a good parameterization for solar wind turbulence. We take into account the dynamical decorrelation of magnetic fluctuations due to wave propagation, nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The mean squared time-differenced displacement increases with time and with parallel distance, becoming twice the field line random walk displacement at long distances and/or times, corresponding to a pair of uncorrelated random walks. These results are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries. Partially supported by the Thailand Research Fund, the US NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX11AJ44G), and by the Solar Probe Plus Project through the ISIS Theory team.

  18. Laboratory observation of magnetic field growth driven by shear flow

    SciTech Connect

    Intrator, T. P. Feng, Y.; Sears, J.; Weber, T.; Dorf, L.; Sun, X.

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  19. Predicting observational consequences of magnetic field effects in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Ryutov1, D. D.; Kane1, J. O.; Mizuta2, A.; Pound3, M. W.; Remington1, B. A.

    2003-10-01

    Magnetic fields are thought to play a substantial role in photoevaporated molecular clouds, an example of which is the famous Eagle Nebula. On the other hand, any direct measurements of the magnetic fields in the Eagle Nebula are still absent. To help in developing the observational strategies, we consider two models of the magnetic field and discuss their general compatibility with the observed structures. We also consider other factors that can be used to derive the structure and the strength of the magnetic field. The two models are those of an initially quasi-homogeneous magnetic field permeating the cloud prior to the onset of hydrodynamic motion, and of a pre-existing "magnetostatic turbulence" [1]. We evaluate possible magnetic field strength in the ablated flow, magnetic field effects on the velocity distribution inside the cloud, and on the star formation. [1] D.D. Ryutov, B.A. Remington. PPCF, 44, B407, 2002.

  20. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  1. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  2. Historic Methods for Capturing Magnetic Field Images

    ERIC Educational Resources Information Center

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  3. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    NASA Astrophysics Data System (ADS)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  4. Historic Methods for Capturing Magnetic Field Images

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  5. Magnetic field affects enzymatic ATP synthesis.

    PubMed

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair. PMID:18774801

  6. A Topology for the Penumbral Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild upward and downward velocities observed in penumbrae must increase upon improving the resolution. This and other observational tests to support or disprove the scenario are put forward.

  7. Charm production in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G. de; Strickland, M.

    2014-11-11

    We discuss the effects of a strong magnetic field on B and D mesons, focusing on the changes of the energy levels and the masses of the bound states. Using the Color Evaporation Model we discuss the possible changes in the production of J/ψ and Υ. We briefly comment the recent experimental data.

  8. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  9. Cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

    2014-05-01

    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  10. Magnetic field observations during the ulysses flyby of jupiter.

    PubMed

    Balogh, A; Dougherty, M K; Forsyth, R J; Southwood, D J; Smith, E J; Tsurutani, B T; Murphy, N; Burton, M E

    1992-09-11

    The Jovian flyby of the Ulysses spacecraft presented the opportunity to confirm and complement the findings of the four previous missions that investigated the structure and dynamics of the Jovian magnetosphere and magnetic field, as well as to explore for the first time the high-latitude dusk side of the magnetosphere and its boundary regions. In addition to confirming the general structure of the dayside magnetosphere, the Ulysses magnetic field measurements also showed that the importance of the current sheet dynamics extends well into the middle and outer magnetosphere. On the dusk side, the magnetic field is swept back significantly toward the magnetotail. The importance of current systems, both azimuthal and field-aligned, in determining the configuration of the field has been strongly highlighted by the Ulysses data. No significant changes have been found in the internal planetary field; however, the need to modify the external current densities with respect to previous observations on the inbound pass shows that Jovian magnetic and magnetospheric models are highly sensitive to both the intensity and the structure assumed for the current sheet and to any time dependence that may be assigned to these. The observations show that all boundaries and boundary layers in the magnetosphere have a very complex microstructure. Waves and wave-like structures were observed throughout the magnetosphere; these included the longest lasting mirror-mode wave trains observed in space.

  11. Group-theoretical approach to Bloch electron in magnetic field problem

    SciTech Connect

    Cosic, Marko

    2010-06-15

    In this paper magnetic-translation group theory is extended to include full rotational symmetry of Hamiltonian. Proper generalization of small representation and star of the representation concepts are derived. Irreducible representations of magnetic-translation group and magnetic-space group are presented. Correct form of symmetrized basis function is derived, reflecting symmetry of the magnetic-point group. From viewpoint of group theory reduction of Hamiltonian symmetry group caused by magnetic field and splitting of energy levels is investigated.

  12. Ensemble simulations of the ocean induced magnetic field

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch, Jan; Hagedoorn, Jan M.; Thomas, Maik

    2016-04-01

    The recent advent of new high-resolution datasets of electromagnetic induction allows novel combinations of observations and models. The ocean induced magnetic field provides the potential to indirectly observe the ocean general circulation and may be utilized by data assimilation techniques. The modelling of the ocean induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the applied model itself. The amount of aggregated uncertainties and their effect on the modelling of electromagnetic induction in the ocean is unknown. However, the knowledge of model uncertainties is essential for many research questions. To investigate the uncertainty in the modelling of motional induction, ensemble simulations with an ocean general circulation model and an electromagnetic induction model are performed on the basis of different error scenarios. This approach allows to estimate both the spatial distribution and temporal variation of the uncertainty. The largest uncertainty in the motionally induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nano Tesla (nT). The estimated global annual mean uncertainty in the motionally induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30 % of the induced magnetic signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by the wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the motionally induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  13. Magnetic fields in gaps surrounding giant protoplanets

    NASA Astrophysics Data System (ADS)

    Keith, Sarah L.; Wardle, Mark

    2015-07-01

    Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution [pure hydrodynamical, ideal, and resistive magnetohydrodynamical (MHD)], but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability (MRI) and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap-crossing simulation by Tanigawa, Ohtsuki & Machida. We calculate the ionization fraction and estimate field strength and geometry to determine the strength of non-ideal effects. We find that the protoplanetary disc field would be easily drawn into the gap and circumplanetary disc. Hall drift dominates, so that much of the gap is conditionally MRI unstable depending on the alignment of the field and disc rotation axes. Field alignment also influences the strong toroidal field component permeating the gap. Large-scale magnetic forces are small in the circumplanetary disc, indicating that they cannot drive accretion there. However, turbulence will be key during satellite growth as it affects critical disc features, such as the location of the ice line.

  14. Spectral Properties of the Martian Crustal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lewis, K. W.; Simons, F. J.

    2010-12-01

    Although the planet Mars no longer possesses an internal dynamo, its crustal rocks retain strong remanent magnetization thought to have been induced by an ancient core-sourced field. The strength and distribution of the crustal field is extremely heterogeneous, and particularly strong in the Terra Cimmeria region of the southern hemisphere. The field as a whole is inconsistent with induction from a single dipolar source, although previous studies have attempted to isolate individual magnetic anomalies to deduce paleopolar orientations. While several areas of the planet appear to have been demagnetized, including large impact basins and the Tharsis volcanic province, the distribution of the field is generally poorly correlated with surface geologic structures. However, beyond the spatial pattern of crustal magnetization, the magnetic power spectrum can provide information about the nature of the source and formation processes. Previous studies have used the power spectrum of the Martian field to estimate the approximate depth of the magnetic anomalies. We extend this approach by applying the spatiospectral localization technique of Wieczorek and Simons (2005) and Dahlen and Simons (2008) to isolate the magnetic power spectra of several areas of the Martian surface. This method allows us to look beyond the strongly magnetized Terra Cimmeria region, which dominates the global power spectrum. Localized spectral estimates, along with their appropriate errors, allow us to examine the significance of observed variations between distinct regions of the planet, and to evaluate the validity of analyses which operate on the whole sphere. Significant differences are observed between spectra of the Terra Cimmeria region and the remainder of the planet, a result of the concentration of power at certain spherical harmonic degrees in this anomalous region. Approximate depths to the magnetic sources are calculated for tiled windows on the planet using the stochastic magnetized

  15. Magnetic field induced motion behavior of gas bubbles in liquid

    PubMed Central

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  16. Magnetic field diffusion and flux loss within a spheromak

    SciTech Connect

    Clegg, J.R.; Browning, P.K.; Rusbridge, M.G. )

    1991-01-01

    This paper considers the magnetic confinement of a plasma within a prototype controlled fusion experiment, the spheromak. This device has a containment vessel that is topologically spherical, offering considerable engineering advantages compared with conventional toroidal systems. The authors' aim has been to evaluate possible designs for the flux conserver and gun magnetic field coils, taking account of flux penetration into the walls caused by finite resisitivity. The copper walls cannot remain perfect magnetic flux surfaces for the duration of the experiment, and we calculate the magnetic field penetration into the walls for a range of designs. This study is in response to recent results showing that wall conditions and flux loss are a vital element of the system's performance, with a substantial increase in global resistance arising if field becomes embedded in the walls creating a dead space that is not driven by the gun current. The authors develop a model bearing general application to magnetic field interaction with resistive walls in complex geometries, with particular reference to the UMIST spheromak experiment SPHEX.

  17. Magnetic field induced motion behavior of gas bubbles in liquid.

    PubMed

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-02-12

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields.

  18. Magnetic field induced motion behavior of gas bubbles in liquid

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-02-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields.

  19. Lunar Magnetic Fields: Implications for Resource Utilization

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1992-01-01

    It is well known that solar-wind-implanted hydrogen and helium-3 in lunar soils are potentially usable resources for future manned activities. For economical mining of these implanted gases, it is desirable that relative concentrations exceed that of typical soils. It has previously been noted that the monthly variation of solar wind flux on the surface due to lunar immersion in the geomagnetic tail may have measurable consequences for resource utilization. It is pointed out that, for a constant external flux, locally strong lunar crustal magnetic fields will exert the dominant influence on solar wind volatile implantation rates. In particular, the strongest lunar crustal magnetic fields will both deflect and focus incident ions in local regions leading to local enhancements of the incident ion flux. Thus, the most economical sites for extraction of solar-wind-implanted volatiles may be within or adjacent to strong crustal magnetic fields. In addition, solar wind ion deflection by crustal magnetic fields must be considered in evaluating the issue of whether remnant cometary ice or water-bearing minerals have survived in permanently shadowed regions near the lunar poles. This is because sputter erosion of water ice by solar wind ions has been suggested to be an important ice loss mechanism within permanently shadowed regions. Thus, permanently shadowed regions that are also shielded from the solar wind by locally strong crustal fields could be the most promising locations for the survival of cometary ice. Additional numerical simulations are employed to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases in the implantation rate of solar wind gases such as hydrogen.

  20. Lunar magnetic fields: Implications for resource utilization

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    1992-09-01

    It is well known that solar-wind-implanted hydrogen and helium-3 in lunar soils are potentially usable resources for future manned activities. For economical mining of these implanted gases, it is desirable that relative concentrations exceed that of typical soils. It has previously been noted that the monthly variation of solar wind flux on the surface due to lunar immersion in the geomagnetic tail may have measurable consequences for resource utilization. It is pointed out that, for a constant external flux, locally strong lunar crustal magnetic fields will exert the dominant influence on solar wind volatile implantation rates. In particular, the strongest lunar crustal magnetic fields will both deflect and focus incident ions in local regions leading to local enhancements of the incident ion flux. Thus, the most economical sites for extraction of solar-wind-implanted volatiles may be within or adjacent to strong crustal magnetic fields. In addition, solar wind ion deflection by crustal magnetic fields must be considered in evaluating the issue of whether remnant cometary ice or water-bearing minerals have survived in permanently shadowed regions near the lunar poles. This is because sputter erosion of water ice by solar wind ions has been suggested to be an important ice loss mechanism within permanently shadowed regions. Thus, permanently shadowed regions that are also shielded from the solar wind by locally strong crustal fields could be the most promising locations for the survival of cometary ice. Additional numerical simulations are employed to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases in the implantation rate of solar wind gases such as hydrogen.