The Human Mind As General Problem Solver
NASA Astrophysics Data System (ADS)
Gurr, Henry
2011-10-01
Since leaving U Cal Irvine Neutrino Research, I have been a University Physics Teacher, and an Informal Researcher Of Human Functionality. My talk will share what I discovered about the best ways to learn, many of which are regularities that are to be expected from the Neuronal Network Properties announced in the publications of physicist John Joseph Hopfield. Hopfield's Model of mammalian brain-body, provides solid instructive understanding of how best Learn, Solve Problems, Live! With it we understand many otherwise puzzling features of our intellect! Examples Why 1) Analogies and metaphors powerful in class instruction, ditto poems. 2) Best learning done in physical (Hands-On) situations with tight immediate dynamical feedback such as seen in learning to ride bike, drive car, speak language, etc. 3) Some of the best learning happens in seeming random exploration, bump around, trial and error. 4) Scientific discoveries happen, with no apparent effort, at odd moments. 5) Important discoveries DEPEND on considerable frustrating effort, then Flash of Insight AHA EURIKA.
Using parallel banded linear system solvers in generalized eigenvalue problems
NASA Technical Reports Server (NTRS)
Zhang, Hong; Moss, William F.
1994-01-01
Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speedup is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.
Using parallel banded linear system solvers in generalized eigenvalue problems
NASA Technical Reports Server (NTRS)
Zhang, Hong; Moss, William F.
1993-01-01
Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.
Navier-Stokes Solvers and Generalizations for Reacting Flow Problems
Elman, Howard C
2013-01-27
This is an overview of our accomplishments during the final term of this grant (1 September 2008 -- 30 June 2012). These fall mainly into three categories: fast algorithms for linear eigenvalue problems; solution algorithms and modeling methods for partial differential equations with uncertain coefficients; and preconditioning methods and solvers for models of computational fluid dynamics (CFD).
Schmidhuber, Jürgen
2013-01-01
Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. Given a general problem-solving architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhuber, 2011) searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Newly invented tasks may require to achieve a wow-effect by making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. The greedy search of typical PowerPlay variants uses time-optimal program search to order candidate pairs of tasks and solver modifications by their conditional computational (time and space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. This biases the search toward pairs that can be described compactly and validated quickly. The computational costs of validating new tasks need not grow with task repertoire size. Standard problem solver architectures of personal computers or neural networks tend to generalize by solving numerous tasks outside the self-invented training set; PowerPlay's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Gödel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing
Schmidhuber, Jürgen
2013-01-01
Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. Given a general problem-solving architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhuber, 2011) searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Newly invented tasks may require to achieve a wow-effect by making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. The greedy search of typical PowerPlay variants uses time-optimal program search to order candidate pairs of tasks and solver modifications by their conditional computational (time and space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. This biases the search toward pairs that can be described compactly and validated quickly. The computational costs of validating new tasks need not grow with task repertoire size. Standard problem solver architectures of personal computers or neural networks tend to generalize by solving numerous tasks outside the self-invented training set; PowerPlay's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Gödel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing
Schmidhuber, Jürgen
2013-01-01
Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. Given a general problem-solving architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhuber, 2011) searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Newly invented tasks may require to achieve a wow-effect by making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. The greedy search of typical PowerPlay variants uses time-optimal program search to order candidate pairs of tasks and solver modifications by their conditional computational (time and space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. This biases the search toward pairs that can be described compactly and validated quickly. The computational costs of validating new tasks need not grow with task repertoire size. Standard problem solver architectures of personal computers or neural networks tend to generalize by solving numerous tasks outside the self-invented training set; PowerPlay’s ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Gödel’s sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing
Sherlock Holmes, Master Problem Solver.
ERIC Educational Resources Information Center
Ballew, Hunter
1994-01-01
Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)
NASA Astrophysics Data System (ADS)
Contarino, Christian; Toro, Eleuterio F.; Montecinos, Gino I.; Borsche, Raul; Kall, Jochen
2016-06-01
In this paper we design a new implicit solver for the Junction-Generalized Riemann Problem (J-GRP), which is based on a recently proposed implicit method for solving the Generalized Riemann Problem (GRP) for systems of hyperbolic balance laws. We use the new J-GRP solver to construct an ADER scheme that is globally explicit, locally implicit and with no theoretical accuracy barrier, in both space and time. The resulting ADER scheme is able to deal with stiff source terms and can be applied to non-linear systems of hyperbolic balance laws in domains consisting on networks of one-dimensional sub-domains. In this paper we specifically apply the numerical techniques to networks of blood vessels. We report on a test problem with exact solution for a simplified network of three vessels meeting at a single junction, which is then used to carry out a systematic convergence rate study of the proposed high-order numerical methods. Schemes up to fifth order of accuracy in space and time are implemented and tested. We then show the ability of the ADER scheme to deal with stiff sources through a numerical simulation in a network of vessels. An application to a physical test problem consisting of a network of 37 compliant silicon tubes (arteries) and 21 junctions, reveals that it is imperative to use high-order methods at junctions, in order to preserve the desired high order of accuracy in the full computational domain. For example, it is demonstrated that a second-order method throughout, gives comparable results to a method that is fourth order in the interior of the domain and first order at junctions.
Edmondson, Amy C
2016-06-01
Companies today increasingly rely on teams that span many industries for radical innovation, especially to solve "wicked problems." So leaders have to understand how to promote collaboration when roles are uncertain, goals are shifting, expertise and organizational cultures are varied, and participants have clashing or even antagonistic perspectives. HBS professor Amy Edmondson has studied more than a dozen cross-industry innovation projects, among them the creation of a new city, a mango supply-chain transformation, and the design and construction of leading-edge buildings. She has identified the leadership practices that make successful cross-industry teams work: fostering an adaptable vision, promoting psychological safety, enabling knowledge sharing, and encouraging collaborative innovation. Though these practices are broadly familiar, their application within cross-industry teams calls for unique leadership approaches that combine flexibility, open-mindedness, humility, and fierce resolve. PMID:27491195
Edmondson, Amy C
2016-06-01
Companies today increasingly rely on teams that span many industries for radical innovation, especially to solve "wicked problems." So leaders have to understand how to promote collaboration when roles are uncertain, goals are shifting, expertise and organizational cultures are varied, and participants have clashing or even antagonistic perspectives. HBS professor Amy Edmondson has studied more than a dozen cross-industry innovation projects, among them the creation of a new city, a mango supply-chain transformation, and the design and construction of leading-edge buildings. She has identified the leadership practices that make successful cross-industry teams work: fostering an adaptable vision, promoting psychological safety, enabling knowledge sharing, and encouraging collaborative innovation. Though these practices are broadly familiar, their application within cross-industry teams calls for unique leadership approaches that combine flexibility, open-mindedness, humility, and fierce resolve.
An FC-based spectral solver for elastodynamic problems in general three-dimensional domains
NASA Astrophysics Data System (ADS)
Amlani, Faisal; Bruno, Oscar P.
2016-02-01
This paper presents a spectral numerical algorithm for the solution of elastodynamics problems in general three-dimensional domains. Based on a recently introduced "Fourier continuation" (FC) methodology for accurate Fourier expansion of non-periodic functions, the proposed approach possesses a number of appealing properties: it yields results that are essentially free of dispersion errors, it entails mild CFL constraints, it runs at a cost that scales linearly with the discretization sizes, and it lends itself easily to efficient parallelization in distributed-memory computing clusters. The proposed algorithm is demonstrated in this paper by means of a number of applications to problems of isotropic elastodynamics that arise in the fields of materials science and seismology. These examples suggest that the new approach can yield solutions within a prescribed error tolerance by means of significantly smaller discretizations and shorter computing times than those required by other methods.
Generic task problem solvers in Soar
NASA Technical Reports Server (NTRS)
Johnson, Todd R.; Smith, Jack W., Jr.; Chandrasekaran, B.
1989-01-01
Two trends can be discerned in research in problem solving architectures in the last few years. On one hand, interest in task-specific architectures has grown, wherein types of problems of general utility are identified, and special architectures that support the development of problem solving systems for those types of problems are proposed. These architectures help in the acquisition and specification of knowledge by providing inference methods that are appropriate for the type of problem. However, knowledge based systems which use only one type of problem solving method are very brittle, and adding more types of methods requires a principled approach to integrating them in a flexible way. Contrasting with this trend is the proposal for a flexible, general architecture contained in the work on Soar. Soar has features which make it attractive for flexible use of all potentially relevant knowledge or methods. But as the theory Soar does not make commitments to specific types of problem solvers or provide guidance for their construction. It was investigated how task-specific architectures can be constructed in Soar to retain as many of the advantages as possible of both approaches. Examples were used from the Generic Task approach for building knowledge based systems. Though this approach was developed and applied for a number of problems, the ideas are applicable to other task-specific approaches as well.
Problem Solvers' Conceptions about Osmosis.
ERIC Educational Resources Information Center
Zuckerman, June T.
1994-01-01
Discusses the scheme and findings of a study designed to identify the conceptual knowledge used by high school students to solve a significant problem related to osmosis. Useful tips are provided to teachers to aid students in developing constructs that maximize understanding. (ZWH)
Aleph Field Solver Challenge Problem Results Summary.
Hooper, Russell; Moore, Stan Gerald
2015-01-01
Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched mod- eling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challeng- ing problems important to Sandia's mission that Aleph was specifically designed to address.
DPS--a computerised diagnostic problem solver.
Bartos, P; Gyárfas, F; Popper, M
1982-01-01
The paper contains a short description of the DPS system which is a computerized diagnostic problem solver. The system is under development of the Research Institute of Medical Bionics in Bratislava, Czechoslovakia. Its underlying philosophy yields from viewing the diagnostic process as process of cognitive problem solving. The implementation of the system is based on the methods of Artificial Intelligence and utilisation of production systems and frame theory should be noted in this context. Finally a list of program modules and their characterisation is presented.
Scalable Adaptive Multilevel Solvers for Multiphysics Problems
Xu, Jinchao
2014-12-01
In this project, we investigated adaptive, parallel, and multilevel methods for numerical modeling of various real-world applications, including Magnetohydrodynamics (MHD), complex fluids, Electromagnetism, Navier-Stokes equations, and reservoir simulation. First, we have designed improved mathematical models and numerical discretizaitons for viscoelastic fluids and MHD. Second, we have derived new a posteriori error estimators and extended the applicability of adaptivity to various problems. Third, we have developed multilevel solvers for solving scalar partial differential equations (PDEs) as well as coupled systems of PDEs, especially on unstructured grids. Moreover, we have integrated the study between adaptive method and multilevel methods, and made significant efforts and advances in adaptive multilevel methods of the multi-physics problems.
Experiences with linear solvers for oil reservoir simulation problems
Joubert, W.; Janardhan, R.; Biswas, D.; Carey, G.
1996-12-31
This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.
Intellectual Abilities That Discriminate Good and Poor Problem Solvers.
ERIC Educational Resources Information Center
Meyer, Ruth Ann
1981-01-01
This study compared good and poor fourth-grade problem solvers on a battery of 19 "reference" tests for verbal, induction, numerical, word fluency, memory, perceptual speed, and simple visualization abilities. Results suggest verbal, numerical, and especially induction abilities are important to successful mathematical problem solving. (MP)
General purpose nonlinear system solver based on Newton-Krylov method.
2013-12-01
KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].
An optimal iterative solver for the Stokes problem
Wathen, A.; Silvester, D.
1994-12-31
Discretisations of the classical Stokes Problem for slow viscous incompressible flow gives rise to systems of equations in matrix form for the velocity u and the pressure p, where the coefficient matrix is symmetric but necessarily indefinite. The square submatrix A is symmetric and positive definite and represents a discrete (vector) Laplacian and the submatrix C may be the zero matrix or more generally will be symmetric positive semi-definite. For `stabilised` discretisations (C {ne} 0) and descretisations which are inherently `stable` (C = 0) and so do not admit spurious pressure components even as the mesh size, h approaches zero, the Schur compliment of the matrix has spectral condition number independent of h (given also that B is bounded). Here the authors will show how this property together with a multigrid preconditioner only for the Laplacian block A yields an optimal solver for the Stokes problem through use of the Minimum Residual iteration. That is, combining Minimum Residual iteration for the matrix equation with a block preconditioner which comprises a small number of multigrid V-cycles for the Laplacian block A together with a simple diagonal scaling block provides an iterative solution procedure for which the computational work grows only linearly with the problem size.
Problem Solvers: Solutions--Playing Basketball
ERIC Educational Resources Information Center
Smith, Jeffrey
2014-01-01
In this article, fourth grade Upper Allen Elementary School (Mechanicsburg, Pennsylvania) teacher Jeffrey Smith describes his exploration of the Playing Basketball activity. Herein he describes how he found the problem to be an effective way to review concepts associated with the measurement of elapsed time with his students. Additionally, it…
Problem Solvers: Solutions--The Inaugural Address
ERIC Educational Resources Information Center
Dause, Emily
2014-01-01
Fourth graders in Miss Dause's and Mrs. Hicks's mathematics classes at South Mountain Elementary School in Dillsburg, Pennsylvania, worked with the data from the Inauagural Address problem that was previously published published in the February 2013 issue of "Teaching Children Mathematics". This activity allowed students to…
Parallel H1-based auxiliary space AMG solver for H(curl) problems
Kolev, T V; Vassilevski, P S
2006-06-30
This report describes a parallel implementation of the auxiliary space methods for definite Maxwell problems proposed in [4]. The solver, named AMS, extends our previous study [7]. AMS uses ParCSR sparse matrix storage and the parallel AMG (algebraic multigrid) solver BoomerAMG [1] from the hypre library. It is designed for general unstructured finite element discretizations of (semi)definite H(curl) problems discretized by Nedelec elements. We document the usage of AMS and illustrate its parallel scalability and overall performance.
A generalized Poisson solver for first-principles device simulations
NASA Astrophysics Data System (ADS)
Bani-Hashemian, Mohammad Hossein; Brück, Sascha; Luisier, Mathieu; VandeVondele, Joost
2016-01-01
Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.
A generalized Poisson solver for first-principles device simulations.
Bani-Hashemian, Mohammad Hossein; Brück, Sascha; Luisier, Mathieu; VandeVondele, Joost
2016-01-28
Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated. PMID:26827208
An exact solver for the DCJ median problem.
Zhang, Meng; Arndt, William; Tang, Jijun
2009-01-01
The "double-cut-and-join" (DCJ) model of genome rearrangement proposed by Yancopoulos et al. uses the single DCJ operation to account for all genome rearrangement events. Given three signed permutations, the DCJ median problem is to find a fourth permutation that minimizes the sum of the pairwise DCJ distances between it and the three others. In this paper, we present a branch-and-bound method that provides accurate solution to the multichromosomal DCJ median problems. We conduct extensive simulations and the results show that the DCJ median solver performs better than other median solvers for most of the test cases. These experiments also suggest that DCJ model is more suitable for real datasets where both reversals and transpositions occur.
Parallel Auxiliary Space AMG Solver for $H(div)$ Problems
Kolev, Tzanio V.; Vassilevski, Panayot S.
2012-12-18
We present a family of scalable preconditioners for matrices arising in the discretization of $H(div)$ problems using the lowest order Raviart--Thomas finite elements. Our approach belongs to the class of “auxiliary space''--based methods and requires only the finite element stiffness matrix plus some minimal additional discretization information about the topology and orientation of mesh entities. Also, we provide a detailed algebraic description of the theory, parallel implementation, and different variants of this parallel auxiliary space divergence solver (ADS) and discuss its relations to the Hiptmair--Xu (HX) auxiliary space decomposition of $H(div)$ [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509] and to the auxiliary space Maxwell solver AMS [J. Comput. Math., 27 (2009), pp. 604--623]. Finally, an extensive set of numerical experiments demonstrates the robustness and scalability of our implementation on large-scale $H(div)$ problems with large jumps in the material coefficients.
Application of NASA General-Purpose Solver to Large-Scale Computations in Aeroacoustics
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Storaasli, Olaf O.
2004-01-01
Of several iterative and direct equation solvers evaluated previously for computations in aeroacoustics, the most promising was the NASA-developed General-Purpose Solver (winner of NASA's 1999 software of the year award). This paper presents detailed, single-processor statistics of the performance of this solver, which has been tailored and optimized for large-scale aeroacoustic computations. The statistics, compiled using an SGI ORIGIN 2000 computer with 12 Gb available memory (RAM) and eight available processors, are the central processing unit time, RAM requirements, and solution error. The equation solver is capable of solving 10 thousand complex unknowns in as little as 0.01 sec using 0.02 Gb RAM, and 8.4 million complex unknowns in slightly less than 3 hours using all 12 Gb. This latter solution is the largest aeroacoustics problem solved to date with this technique. The study was unable to detect any noticeable error in the solution, since noise levels predicted from these solution vectors are in excellent agreement with the noise levels computed from the exact solution. The equation solver provides a means for obtaining numerical solutions to aeroacoustics problems in three dimensions.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
NASA Astrophysics Data System (ADS)
Fisicaro, G.; Genovese, L.; Andreussi, O.; Marzari, N.; Goedecker, S.
2016-01-01
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
Problem Solvers: Problem--How Long Can You Stand?
ERIC Educational Resources Information Center
Teaching Children Mathematics, 2010
2010-01-01
Healthy lifestyles are increasingly emphasized these days. This month the authors begin a series of mathematical problems that also address physical activity. They hope that these problems offer opportunities to investigate mathematics and also reinforce the desire to lead a healthy life. In their first problem of the academic year, students…
Teaching problem solving: Don't forget the problem solver(s)
NASA Astrophysics Data System (ADS)
Ranade, Saidas M.; Corrales, Angela
2013-05-01
The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.
Incremental planning to control a blackboard-based problem solver
NASA Technical Reports Server (NTRS)
Durfee, E. H.; Lesser, V. R.
1987-01-01
To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network.
Problem Solvers: Problem--Area beyond the Formula
ERIC Educational Resources Information Center
Dean, Chrystal
2014-01-01
In this article, associate professor Chrystal Dean describes how teachers can challenge their upper elementary students' understanding of area beyond a memorized formula. Herein she describes an activity that will show students the "why" behind using A = l × w to solve rectangular area problems. The activity will help deepen…
Patients as partners, patients as problem-solvers.
Young, Amanda; Flower, Linda
2002-01-01
This article reports our ongoing work in developing a model of health care communication called collaborative interpretation, which we define as a rhetorical practice that generates building blocks for a more complete and coherent diagnostic story and for a collaborative treatment plan. It does this by situating patients as problem-solvers. Our study begins with an analysis of provider-patient interactions in a specific setting-the emergency department (ED) of an urban trauma-level hospital- where we observed patients and providers miscommunicating in at least 3 distinct areas: over the meaning of key terms, in the framing of the immediate problem, and over the perceived role of the ED in serving the individual and the community. From our observations, we argue that all of these miscommunications and missed opportunities are rooted in mismatched expectations on the part of both provider and patient and the lack of explicit comparison and negotiation of expectations-in other words, a failure to see the patient-provider interaction as a rhetorical, knowledge-building event. In the process of observing interactions, conversing with patients and providers, and working with a team of providers and patients, we have developed an operational model of communication that could narrow the gap between the lay public and the medical profession-a gap that is especially critical in intercultural settings like the one we have studied. This model of collaborative interpretation (CI) provides strategies to help patients to represent their medical problems in the context of their life experiences and to share the logic behind their health care decisions. In addition, CI helps both patient and provider identify their goals and expectations in treatment, the obstacles that each party perceives, and the available options. It is adaptableto various settings, including short, structured conversations in the emergency room, extended dialogue between a health educator and a patient in a
Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Padovan, Joe; Krishna, Lala
1986-01-01
To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.
PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma
NASA Astrophysics Data System (ADS)
Xie, Huasheng; Xiao, Yong
2016-02-01
A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is approximated by J-pole expansion. Subsequently, the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system. Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate; more strongly damped modes are less accurate, but are less likely to be of physical interest. In contrast to conventional approaches, such as Newton's iterative method, this approach can give either all the solutions in the system or a few solutions around the initial guess. It is also free from convergence problems. The approach is demonstrated for electrostatic dispersion equations with one-dimensional and two-dimensional wavevectors, and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2015GB110003, 2011GB105001, 2013GB111000), National Natural Science Foundation of China (No. 91130031), the Recruitment Program of Global Youth Experts
NASA Astrophysics Data System (ADS)
Heil, Matthias; Hazel, Andrew L.; Boyle, Jonathan
2008-12-01
We compare the relative performance of monolithic and segregated (partitioned) solvers for large- displacement fluid structure interaction (FSI) problems within the framework of oomph-lib, the object-oriented multi-physics finite-element library, available as open-source software at
Black box multigrid solver for definite and indefinite problems
Shapira, Yair
1997-02-01
A two-level analysis method for certain separable problems is introduced. It motivates the definition of improved versions of Black Box Multigrid for diffusion problems with discontinuous coefficients and indefinite Helmholtz equations. For anisotropic problems, it helps in choosing suitable implementations for frequency decomposition multigrid methods. For highly indefinite problems, it provides a way to choose in advance a suitable mesh size for the coarsest grid used. Numerical experiments confirm the analysis and show the advantage of the present methods for several examples.
Fast solver for large scale eddy current non-destructive evaluation problems
NASA Astrophysics Data System (ADS)
Lei, Naiguang
Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two
A Comparison of the Intellectual Abilities of Good and Poor Problem Solvers: An Exploratory Study.
ERIC Educational Resources Information Center
Meyer, Ruth Ann
This study examined a selected sample of fourth-grade students who had been previously identified as good or poor problem solvers. The pupils were compared on variables considered as "reference tests" for Verbal, Induction, Numerical, Word Fluency, Memory, Spatial Visualization, and Perceptual Speed abilities. The data were compiled to indicate…
Steady and transient least square solvers for thermal problems
NASA Technical Reports Server (NTRS)
Padovan, Joe
1987-01-01
This paper develops a hierarchical least square solution algorithm for highly nonlinear heat transfer problems. The methodology's capability is such that both steady and transient implicit formulations can be handled. This includes problems arising from highly nonlinear heat transfer systems modeled by either finite-element or finite-difference schemes. The overall procedure developed enables localized updating, iteration, and convergence checking as well as constraint application. The localized updating can be performed at a variety of hierarchical levels, i.e., degree of freedom, substructural, material-nonlinear groups, and/or boundary groups. The choice of such partitions can be made via energy partitioning or nonlinearity levels as well as by user selection. Overall, this leads to extremely robust computational characteristics. To demonstrate the methodology, problems are drawn from nonlinear heat conduction. These are used to quantify the robust capabilities of the hierarchical least square scheme.
Parallel satellite orbital situational problems solver for space missions design and control
NASA Astrophysics Data System (ADS)
Atanassov, Atanas Marinov
2016-11-01
Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.
Equity and Access: All Students Are Mathematical Problem Solvers
ERIC Educational Resources Information Center
Franz, Dana Pompkyl; Ivy, Jessica; McKissick, Bethany R.
2016-01-01
Often mathematical instruction for students with disabilities, especially those with learning disabilities, includes an overabundance of instruction on mathematical computation and does not include high-quality instruction on mathematical reasoning and problem solving. In fact, it is a common misconception that students with learning disabilities…
Fast solvers for optimal control problems from pattern formation
NASA Astrophysics Data System (ADS)
Stoll, Martin; Pearson, John W.; Maini, Philip K.
2016-01-01
The modeling of pattern formation in biological systems using various models of reaction-diffusion type has been an active research topic for many years. We here look at a parameter identification (or PDE-constrained optimization) problem where the Schnakenberg and Gierer-Meinhardt equations, two well-known pattern formation models, form the constraints to an objective function. Our main focus is on the efficient solution of the associated nonlinear programming problems via a Lagrange-Newton scheme. In particular we focus on the fast and robust solution of the resulting large linear systems, which are of saddle point form. We illustrate this by considering several two- and three-dimensional setups for both models. Additionally, we discuss an image-driven formulation that allows us to identify parameters of the model to match an observed quantity obtained from an image.
Implicit solvers for large-scale nonlinear problems
Keyes, D E; Reynolds, D; Woodward, C S
2006-07-13
Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications.
A closure-independent Generalized Roe solver for free-surface, two-phase flows over mobile bed
NASA Astrophysics Data System (ADS)
Rosatti, Giorgio; Begnudelli, Lorenzo
2013-12-01
Several different natural phenomena can be studied in the framework of free-surface, two-phase flows over mobile bed. Mathematically, they can be described by the same set of highly nonlinear, hyperbolic nonconservative PDEs but they differ in the possible algebraic closure relations. These affect significantly the relevant eigenvalues and consequently, all finite-volume numerical methods based on upwind Godunov-type fluxes. In this work the Generalized Roe solver, introduced in [29] for the case of a specific closure, is reformulated in a complete closure-independent way. This gives the solver a quite general applicability to the class of problems previously mentioned. Moreover, the new method maintains all the desirable features shown by the original one: full two-dimensionality and exact well-balanceness. This result is made possible thanks to the development of a novel Multiple Averages (MAs) approach that allows a straightforward determination of the matrices required by the solver. Several tests show the capabilities of the proposed numerical strategy.
Generalized emissivity inverse problem.
Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E
2002-04-01
Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.
NASA Astrophysics Data System (ADS)
Yamasaki, Tadashi; Houseman, Gregory; Hamling, Ian; Postek, Elek
2010-05-01
We have developed a new parallelized 3-D numerical code, OREGANO_VE, for the solution of the general visco-elastic problem in a rectangular block domain. The mechanical equilibrium equation is solved using the finite element method for a (non-)linear Maxwell visco-elastic rheology. Time-dependent displacement and/or traction boundary conditions can be applied. Matrix assembly is based on a tetrahedral element defined by 4 vertex nodes and 6 nodes located at the midpoints of the edges, and within which displacement is described by a quadratic interpolation function. For evaluating viscoelastic relaxation, an explicit time-stepping algorithm (Zienkiewicz and Cormeau, Int. J. Num. Meth. Eng., 8, 821-845, 1974) is employed. We test the accurate implementation of the OREGANO_VE by comparing numerical and analytic (or semi-analytic half-space) solutions to different problems in a range of applications: (1) equilibration of stress in a constant density layer after gravity is switched on at t = 0 tests the implementation of spatially variable viscosity and non-Newtonian viscosity; (2) displacement of the welded interface between two blocks of differing viscosity tests the implementation of viscosity discontinuities, (3) displacement of the upper surface of a layer under applied normal load tests the implementation of time-dependent surface tractions (4) visco-elastic response to dyke intrusion (compared with the solution in a half-space) tests the implementation of all aspects. In each case, the accuracy of the code is validated subject to use of a sufficiently small time step, providing assurance that the OREGANO_VE code can be applied to a range of visco-elastic relaxation processes in three dimensions, including post-seismic deformation and post-glacial uplift. The OREGANO_VE code includes a capability for representation of prescribed fault slip on an internal fault. The surface displacement associated with large earthquakes can be detected by some geodetic observations
A fast and stable solver for acoustic scattering problems based on the nonuniform grid approach.
Chernokozhin, Evgeny; Brick, Yaniv; Boag, Amir
2016-01-01
A fast and stable boundary element method (BEM) algorithm for solving external problems of acoustic scattering by impenetrable bodies is developed. The method employs the Burton-Miller integral equation, which provides stable convergence of iterative solvers, and a generalized multilevel nonuniform grid (MLNG) algorithm for fast evaluation of field integrals. The MLNG approach is used here for the removal of computational bottlenecks involved with repeated matrix-vector multiplications as well as for the low-order basis function regularization of the hyper-singular integral kernel. The method is used for calculating the fields scattered by large acoustic scatterers, including nonconvex bodies with piece-wise smooth surfaces. As a result, the algorithm is capable of accurately incorporating high-frequency effects such as creeping waves and multiple-edges diffractions. In all cases, stable convergence of the method is observed. High accuracy of the method is demonstrated by comparison with the traditional BEM solution. The computational complexity of the method in terms of both the computation time and storage is estimated in practical computations and shown to be close to the asymptotic O(N log N) dependence. PMID:26827041
Bruno, Oscar P. Lintner, Stéphane K.
2013-11-01
We present a novel methodology for the numerical solution of problems of diffraction by infinitely thin screens in three-dimensional space. Our approach relies on new integral formulations as well as associated high-order quadrature rules. The new integral formulations involve weighted versions of the classical integral operators related to the thin-screen Dirichlet and Neumann problems as well as a generalization to the open-surface problem of the classical Calderón formulae. The high-order quadrature rules we introduce for these operators, in turn, resolve the multiple Green function and edge singularities (which occur at arbitrarily close distances from each other, and which include weakly singular as well as hypersingular kernels) and thus give rise to super-algebraically fast convergence as the discretization sizes are increased. When used in conjunction with Krylov-subspace linear algebra solvers such as GMRES, the resulting solvers produce results of high accuracy in small numbers of iterations for low and high frequencies alike. We demonstrate our methodology with a variety of numerical results for screen and aperture problems at high frequencies—including simulation of classical experiments such as the diffraction by a circular disc (featuring in particular the famous Poisson spot), evaluation of interference fringes resulting from diffraction across two nearby circular apertures, as well as solution of problems of scattering by more complex geometries consisting of multiple scatterers and cavities.
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
US students continue to lag behind the rest of the world in science, technology, engineering, and math--taken together, STEM. Even as the US falls further and further behind other countries in these four critical academic areas, not everyone sees it as a crisis. Fortunately, there are those who do. One organization out front on the issue is,…
Analysis, tuning and comparison of two general sparse solvers for distributed memory computers
Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.; Li, X.S.
2000-06-30
We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differences in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.
NASA Astrophysics Data System (ADS)
Mena, Andres; Ferrero, Jose M.; Rodriguez Matas, Jose F.
2015-11-01
Solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50 × for three-dimensional problems.
NASA Astrophysics Data System (ADS)
Mena, Andres; Ferrero, Jose M.; Rodriguez Matas, Jose F.
2015-11-01
Solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50 × for three-dimensional problems.
NASA Technical Reports Server (NTRS)
Voigt, Kerstin
1992-01-01
We present MENDER, a knowledge based system that implements software design techniques that are specialized to automatically compile generate-and-patch problem solvers that satisfy global resource assignments problems. We provide empirical evidence of the superior performance of generate-and-patch over generate-and-test: even with constrained generation, for a global constraint in the domain of '2D-floorplanning'. For a second constraint in '2D-floorplanning' we show that even when it is possible to incorporate the constraint into a constrained generator, a generate-and-patch problem solver may satisfy the constraint more rapidly. We also briefly summarize how an extended version of our system applies to a constraint in the domain of 'multiprocessor scheduling'.
IDSOLVER: A general purpose solver for nth-order integro-differential equations
NASA Astrophysics Data System (ADS)
Gelmi, Claudio A.; Jorquera, Héctor
2014-01-01
Many mathematical models of complex processes may be posed as integro-differential equations (IDE). Many numerical methods have been proposed for solving those equations, but most of them are ad hoc thus new equations have to be solved from scratch for translating the IDE into the framework of the specific method chosen. Furthermore, there is a paucity of general-purpose numerical solvers that free the user from additional tasks.
Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems
NASA Astrophysics Data System (ADS)
Puzyrev, Vladimir; Koric, Seid; Wilkin, Scott
2016-04-01
High performance computing is absolutely necessary for large-scale geophysical simulations. In order to obtain a realistic image of a geologically complex area, industrial surveys collect vast amounts of data making the computational cost extremely high for the subsequent simulations. A major computational bottleneck of modeling and inversion algorithms is solving the large sparse systems of linear ill-conditioned equations in complex domains with multiple right hand sides. Recently, parallel direct solvers have been successfully applied to multi-source seismic and electromagnetic problems. These methods are robust and exhibit good performance, but often require large amounts of memory and have limited scalability. In this paper, we evaluate modern direct solvers on large-scale modeling examples that previously were considered unachievable with these methods. Performance and scalability tests utilizing up to 65,536 cores on the Blue Waters supercomputer clearly illustrate the robustness, efficiency and competitiveness of direct solvers compared to iterative techniques. Wide use of direct methods utilizing modern parallel architectures will allow modeling tools to accurately support multi-source surveys and 3D data acquisition geometries, thus promoting a more efficient use of the electromagnetic methods in geophysics.
NASA Astrophysics Data System (ADS)
Gurr, Henry
2014-03-01
Princeton Physicist J. J. Hopfield's Mathematical Model of the Mammalian Brain, (Similar To Ising Glass Model of a crystal of magnetic spin particles) says our Brain-Work for Memory, Perception, Language, Thinking, etc, (Even the AHA-EUREKA-Flash Of Insight Type Problem Solving), is achieved by our massively inter-connected CNS Neurons ... working together ... MINIMIZING an analog of physical energy ... thus yielding Optimal Solutions: These ``best'' answers, correspond to highest mental coherence, for most facets organism response, beit mental (eg: perception, memory, ideas, thinking, etc) or physical-muscular-actions (eg speaking, tool using, trail following, etc). Our brain is this way, because living creature, MUST be evolved, so they will find & use the best actions, for survival!!! Our human heritage, is to instantly compute near optimal future plans, (mental & physical-muscular), and be able to accomplish plans reliably & efficiently. If you know of book or articles in these topic areas, please email to HenryG--USCA.edu How to work well, with your own ``self'', called mind-body, will follow!! Conjectures: Who is the ``I'' that appears to make decisions? Am ``I'' the master of my domain? Is there an ``I'' or am ``I'' merely an illusion of reality.
Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report
Saad, Yousef
2014-01-16
The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners for solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the
General Solution of the Kenamond HE Problem 3
Kaul, Ann
2015-12-15
A general solution for programmed burn calculations of the light times produced by a singlepoint initiation of a single HE region surrounding an inert region has been developed. In contrast to the original solutions proposed in References 1 and 2, the detonator is no longer restricted to a location on a Cartesian axis and can be located at any point inside the HE region. This general solution has been implemented in the ExactPack suite of exact solvers for verification problems.
Analysis Tools for CFD Multigrid Solvers
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Diskin, Boris
2004-01-01
Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
Thevenot, Catherine; Barrouillet, Pierre; Castel, Caroline; Jimenez, Sonia
2011-11-01
This paper addresses the relationship between basic numerical processes and higher level numerical abilities in normal achieving adults. In the first experiment we inferred the elementary numerical abilities of university students from the time they needed to encode numerical information involved in complex additions and subtractions. We interpreted the shorter encoding times in good arithmetic problem solvers as revealing clearer or more accessible representations of numbers. The second experiment shows that these results cannot be due to the fact that lower skilled individuals experience more maths anxiety or put more cognitive efforts into calculations than do higher skilled individuals. Moreover, the third experiment involving non-numerical information supports the hypothesis that these interindividual differences are specific to number processing. The possible causal relationships between basic and higher level numerical abilities are discussed.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
dftatom: A robust and general Schrödinger and Dirac solver for atomic structure calculations
NASA Astrophysics Data System (ADS)
Čertík, Ondřej; Pask, John E.; Vackář, Jiří
2013-07-01
A robust and general solver for the radial Schrödinger, Dirac, and Kohn-Sham equations is presented. The formulation admits general potentials and meshes: uniform, exponential, or other defined by nodal distribution and derivative functions. For a given mesh type, convergence can be controlled systematically by increasing the number of grid points. Radial integrations are carried out using a combination of asymptotic forms, Runge-Kutta, and implicit Adams methods. Eigenfunctions are determined by a combination of bisection and perturbation methods for robustness and speed. An outward Poisson integration is employed to increase accuracy in the core region, allowing absolute accuracies of 10-8 Hartree to be attained for total energies of heavy atoms such as uranium. Detailed convergence studies are presented and computational parameters are provided to achieve accuracies commonly required in practice. Comparisons to analytic and current-benchmark density-functional results for atomic number Z=1-92 are presented, verifying and providing a refinement to current benchmarks. An efficient, modular Fortran 95 implementation, dftatom, is provided as open source, including examples, tests, and wrappers for interface to other languages; wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines. Program summaryProgram title:dftatom Catalogue identifier: AEPA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 14122 No. of bytes in distributed program, including test data, etc.: 157453 Distribution format: tar.gz Programming language: Fortran 95 with interfaces to Python and C. Computer: Any computer with a Fortran 95 compiler. Operating system: Any OS with a Fortran 95 compiler. RAM: 500 MB
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
Núñez-Peña, Maria Isabel; Suárez-Pellicioni, Macarena
2012-05-01
This paper focuses on the capacity to solve numerical incongruities in high- and lower-skilled arithmetic problem-solvers by investigating event-related brain potentials elicited by incorrect solutions to additions. Fifteen high-skill and fifteen low-skill individuals were presented with simple addition problems in a verification task. The proposed solution was manipulated by presenting correct solutions and incorrect solutions very close to the correct ones. Incorrect solutions elicited a negative component followed by a late positive component (LPC/P3b), whose amplitude was smaller for the low-skill group than for the high-skill group. Because the LPC/P3b amplitude has been taken as an indicator of the plausibility of the stimulus, this result suggests that incorrect solutions close to the correct ones appear more plausible to low-skilled individuals than to their high-skilled counterparts. This result is interpreted in terms of differences in the strength of association between problems and potential solutions depending on arithmetical skill.
ERIC Educational Resources Information Center
Seeley, Cathy L.
2016-01-01
In "Making Sense of Math," Cathy L. Seeley, former president of the National Council of Teachers of Mathematics, shares her insight into how to turn your students into flexible mathematical thinkers and problem solvers. This practical volume concentrates on the following areas: (1) Making sense of math by fostering habits of mind that…
Veijola, Timo; Råback, Peter
2007-01-01
We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.
NASA Astrophysics Data System (ADS)
Debreu, Laurent; Neveu, Emilie; Simon, Ehouarn; Le Dimet, Francois Xavier; Vidard, Arthur
2014-05-01
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid methods. The view of the multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements. [1] Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet and Arthur Vidard, 2014: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, submitted to QJRMS, http://hal.inria.fr/hal-00874643 [2] Emilie Neveu, Laurent Debreu and François-Xavier Le Dimet, 2011: Multigrid methods and data assimilation - Convergence study and first experiments on non-linear equations, ARIMA, 14, 63-80, http://intranet.inria.fr/international/arima/014/014005.html
Problem Solving with General Semantics.
ERIC Educational Resources Information Center
Hewson, David
1996-01-01
Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)
Problem Solvers: Problem--Light It up! and Solutions--Flags by the Numbers
ERIC Educational Resources Information Center
Hall, Shaun
2009-01-01
A simple circuit is created by the continuous flow of electricity through conductors (copper wires) from a source of electrical energy (batteries). "Completing a circuit" means that electricity flows from the energy source through the circuit and, in the case described in this month's problem, causes the light bulb tolight up. The presence of…
General aviation IFR operational problems
NASA Technical Reports Server (NTRS)
Bolz, E. H.; Eisele, J. E.
1979-01-01
Operational problems of general aviation IFR operators (particularly single pilot operators) were studied. Several statistical bases were assembled and utilized to identify the more serious problems and to demonstrate their magnitude. These bases include official activity projections, historical accident data and delay data, among others. The GA operating environment and cockpit environment were analyzed in detail. Solutions proposed for each of the problem areas identified are based on direct consideration of currently planned enhancements to the ATC system, and on a realistic assessment of the present and future limitations of general aviation avionics. A coordinated set of research program is suggested which would provide the developments necessary to implement the proposed solutions.
Training tomorrow's environmental problem-solvers: an integrative approach to graduate education
Technology Transfer Automated Retrieval System (TEKTRAN)
Environmental problems are generally complex and blind to disciplinary boundaries. Efforts to devise long-term solutions require collaborative research that integrates knowledge across historically disparate fields, yet the traditional model for training new scientists emphasizes personal independe...
MILAMIN: MATLAB-based finite element method solver for large problems
NASA Astrophysics Data System (ADS)
Dabrowski, M.; Krotkiewski, M.; Schmid, D. W.
2008-04-01
The finite element method (FEM) combined with unstructured meshes forms an elegant and versatile approach capable of dealing with the complexities of problems in Earth science. Practical applications often require high-resolution models that necessitate advanced computational strategies. We therefore developed "Million a Minute" (MILAMIN), an efficient MATLAB implementation of FEM that is capable of setting up, solving, and postprocessing two-dimensional problems with one million unknowns in one minute on a modern desktop computer. MILAMIN allows the user to achieve numerical resolutions that are necessary to resolve the heterogeneous nature of geological materials. In this paper we provide the technical knowledge required to develop such models without the need to buy a commercial FEM package, programming compiler-language code, or hiring a computer specialist. It has been our special aim that all the components of MILAMIN perform efficiently, individually and as a package. While some of the components rely on readily available routines, we develop others from scratch and make sure that all of them work together efficiently. One of the main technical focuses of this paper is the optimization of the global matrix computations. The performance bottlenecks of the standard FEM algorithm are analyzed. An alternative approach is developed that sustains high performance for any system size. Applied optimizations eliminate Basic Linear Algebra Subprograms (BLAS) drawbacks when multiplying small matrices, reduce operation count and memory requirements when dealing with symmetric matrices, and increase data transfer efficiency by maximizing cache reuse. Applying loop interchange allows us to use BLAS on large matrices. In order to avoid unnecessary data transfers between RAM and CPU cache we introduce loop blocking. The optimization techniques are useful in many areas as demonstrated with our MILAMIN applications for thermal and incompressible flow (Stokes) problems. We use
A fast parallel solver for the forward problem in electrical impedance tomography.
Jehl, Markus; Dedner, Andreas; Betcke, Timo; Aristovich, Kirill; Klöfkorn, Robert; Holder, David
2015-01-01
Electrical impedance tomography (EIT) is a noninvasive imaging modality, where imperceptible currents are applied to the skin and the resulting surface voltages are measured. It has the potential to distinguish between ischaemic and haemorrhagic stroke with a portable and inexpensive device. The image reconstruction relies on an accurate forward model of the experimental setup. Because of the relatively small signal in stroke EIT, the finite-element modeling requires meshes of more than 10 million elements. To study the requirements in the forward modeling in EIT and also to reduce the time for experimental image acquisition, it is necessary to reduce the run time of the forward computation. We show the implementation of a parallel forward solver for EIT using the Dune-Fem C++ library and demonstrate its performance on many CPU's of a computer cluster. For a typical EIT application a direct solver was significantly slower and not an alternative to iterative solvers with multigrid preconditioning. With this new solver, we can compute the forward solutions and the Jacobian matrix of a typical EIT application with 30 electrodes on a 15-million element mesh in less than 15 min. This makes it a valuable tool for simulation studies and EIT applications with high precision requirements. It is freely available for download. PMID:25069109
Approximate Riemann solvers for the Godunov SPH (GSPH)
NASA Astrophysics Data System (ADS)
Puri, Kunal; Ramachandran, Prabhu
2014-08-01
The Godunov Smoothed Particle Hydrodynamics (GSPH) method is coupled with non-iterative, approximate Riemann solvers for solutions to the compressible Euler equations. The use of approximate solvers avoids the expensive solution of the non-linear Riemann problem for every interacting particle pair, as required by GSPH. In addition, we establish an equivalence between the dissipative terms of GSPH and the signal based SPH artificial viscosity, under the restriction of a class of approximate Riemann solvers. This equivalence is used to explain the anomalous “wall heating” experienced by GSPH and we provide some suggestions to overcome it. Numerical tests in one and two dimensions are used to validate the proposed Riemann solvers. A general SPH pairing instability is observed for two-dimensional problems when using unequal mass particles. In general, Ducowicz Roe's and HLLC approximate Riemann solvers are found to be suitable replacements for the iterative Riemann solver in the original GSPH scheme.
Training Tomorrow's Environmental Problem Solvers: An Integrative Approach to Graduate Education
ERIC Educational Resources Information Center
Moslemi, Jennifer M.; Capps, Krista A.; Johnson, Mark S.; Maul, Jude; McIntyre, Peter B.; Melvin, April M.; Vadas, Timothy M.; Vallano, Dena M.; Watkins, James M.; Weiss, Marissa
2009-01-01
Environmental problems are generally complex and blind to disciplinary boundaries. Efforts to devise long-term solutions require collaborative research that integrates knowledge across historically disparate fields, yet the traditional model for training new scientists emphasizes personal independence and disciplinary focus. Growing awareness of…
NASA Astrophysics Data System (ADS)
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
A More General Solution of the Kenamond HE Problem 2
Kaul, Ann
2015-12-15
A more general solution for programmed burn calculations of the light times produced by an unobstructed line-of-sight, multi-point initiation of a composite HE region has been developed. The equations describing the interfaces between detonation fronts have also been included. In contrast to the original solutions proposed in References 1 and 2, four of the detonators are no longer restricted to specific locations on a Cartesian axis and can be located at any point inside the HE region. For the proposed solution, one detonator must be located at the origin. The more general solution for any locations on the 2D y-axis or 3D z-axis has been implemented in the ExactPack suite of exact solvers for verification problems. It could easily be changed to the most general case outlined above.
An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems
Oosterlee, C.W.; Washio, T.
1996-12-31
In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.
NASA Astrophysics Data System (ADS)
Seth, Priyanka; Krivenko, Igor; Ferrero, Michel; Parcollet, Olivier
2016-03-01
We present TRIQS/CTHYB, a state-of-the art open-source implementation of the continuous-time hybridisation expansion quantum impurity solver of the TRIQS package. This code is mainly designed to be used with the TRIQS library in order to solve the self-consistent quantum impurity problem in a multi-orbital dynamical mean field theory approach to strongly-correlated electrons, in particular in the context of realistic electronic structure calculations. It is implemented in C++ for efficiency and is provided with a high-level Python interface. The code ships with a new partitioning algorithm that divides the local Hilbert space without any user knowledge of the symmetries and quantum numbers of the Hamiltonian. Furthermore, we implement higher-order configuration moves and show that such moves are necessary to ensure ergodicity of the Monte Carlo in common Hamiltonians even without symmetry-breaking.
Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.
2015-10-15
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.
Dionne-Odom, J Nicholas; Lyons, Kathleen D; Akyar, Imatullah; Bakitas, Marie A
2016-01-01
Family caregivers of persons with advanced cancer often take on responsibilities that present daunting and complex problems. Serious problems that go unresolved may be burdensome and result in negative outcomes for caregivers' psychological and physical health and affect the quality of care delivered to the care recipients with cancer, especially at the end of life. Formal problem-solving training approaches have been developed over the past several decades to assist individuals with managing problems faced in daily life. Several of these problem-solving principles and techniques were incorporated into ENABLE (Educate, Nurture, Advise, Before Life End), an "early" palliative care telehealth intervention for individuals diagnosed with advanced cancer and their family caregivers. A hypothetical case resembling the situations of actual caregiver participants in ENABLE that exemplifies the complex problems that caregivers face is presented, followed by presentation of an overview of ENABLE's problem-solving key principles, techniques, and steps in problem-solving support. Though more research is needed to formally test the use of problem-solving support in social work practice, social workers can easily incorporate these techniques into everyday practice. PMID:27143574
Applied Technology: Targets for Learning. Preparing Successful Problem Solvers in the Workplace.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Vocational Instructional Materials Lab.
This curriculum guide provides resources that teachers and trainers can use to help learners improve their ability to apply technology problem-solving skills in the workplace. The instructional strategies and practice problems in the guide are patterned after those of the American College Testing (ACT) Work Keys System. Gains in skill levels can…
NASA Astrophysics Data System (ADS)
Sanan, P.; Schnepp, S. M.; May, D.; Schenk, O.
2014-12-01
Geophysical applications require efficient forward models for non-linear Stokes flow on high resolution spatio-temporal domains. The bottleneck in applying the forward model is solving the linearized, discretized Stokes problem which takes the form of a large, indefinite (saddle point) linear system. Due to the heterogeniety of the effective viscosity in the elliptic operator, devising effective preconditioners for saddle point problems has proven challenging and highly problem-dependent. Nevertheless, at least three approaches show promise for preconditioning these difficult systems in an algorithmically scalable way using multigrid and/or domain decomposition techniques. The first is to work with a hierarchy of coarser or smaller saddle point problems. The second is to use the Schur complement method to decouple and sequentially solve for the pressure and velocity. The third is to use the Schur decomposition to devise preconditioners for the full operator. These involve sub-solves resembling inexact versions of the sequential solve. The choice of approach and sub-methods depends crucially on the motivating physics, the discretization, and available computational resources. Here we examine the performance trade-offs for preconditioning strategies applied to idealized models of mantle convection and lithospheric dynamics, characterized by large viscosity gradients. Due to the arbitrary topological structure of the viscosity field in geodynamical simulations, we utilize low order, inf-sup stable mixed finite element spatial discretizations which are suitable when sharp viscosity variations occur in element interiors. Particular attention is paid to possibilities within the decoupled and approximate Schur complement factorization-based monolithic approaches to leverage recently-developed flexible, communication-avoiding, and communication-hiding Krylov subspace methods in combination with `heavy' smoothers, which require solutions of large per-node sub-problems, well
HOMEOSTATIC PROBLEMS IN GENERAL SURGERY.
LUPPI, A P
1965-06-01
For electrolyte problems that arise during surgical procedures, the surgeon must be versed in the physiologic function of the organs that play vital roles in homeostasis. Pulmonary and renal evaluation before operation can give forewarning of potential dangers. Hyperaldosteronism, a disease entity influencing electrolytic changes and causing other pathophysiological effects, should be understood by the surgeon. Not only should he understand the causes of dehydration, hyperhydration, metabolic and respiratory acidosis and metabolic and respiratory alkalosis, he should also be able to recognize their deleterious effects clinically, know how to make use of adequate laboratory procedures to substantiate a diagnosis and determine the effect of treatment. The effect of water deficit and water excess, and of deficits and excesses of such ions as sodium, potassium, calcium, carbon dioxide and bicarbonate on the renal, cardiac, pulmonary and neuromuscular systems must be considered.Tetany before or after operation challenges a surgeon's diagnostic acuity. Relying on laboratory tests only, without correlating the results with history and clinical features, may lead to errors in the administration of electrolytic fluids.
Li Jiequan; Li Qibing; Xu Kun
2011-06-01
The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an
Technologies as Rural Special Education Problem Solvers--A Status Report and Successful Strategies.
ERIC Educational Resources Information Center
Helge, Doris
Rural schools can help solve their special education problems by using advanced technology to provide instructional support (computer managed instruction, satellite television, library searches, resource networks, on-line testing), instructional applications (computer assisted instruction, reading machines, mobile vans, instructional television),…
Motivation in Adult Education: A Problem Solver or a Euphemism for Direction and Control?
ERIC Educational Resources Information Center
Ahl, Helene
2006-01-01
Adults' motivation to participate in continued education is of immediate interest, as lifelong learning is now considered as the solution to the pressing problems of increased levels of unemployment, not least among unskilled workers. Many theories concerning motivation and adult education maintain that individuals are innately motivated to learn,…
A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices
NASA Astrophysics Data System (ADS)
Schmitz, Phillip G.; Ying, Lexing
2014-02-01
We present a fast algorithm for solutions to linear systems arising from three dimensional elliptic problems on a regular Cartesian mesh. We follow the approach of Schmitz and Ying (2012) on combining the nested dissection matrix factorization method with hierarchical matrices in two dimensions and extend it to the three dimensional case. A theoretical linear time complexity is derived and a more practical variant with slightly worse scaling is demonstrated.
NASA Technical Reports Server (NTRS)
Keyes, David E.; Smooke, Mitchell D.
1987-01-01
A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n.
Parallel Multigrid Equation Solver
2001-09-07
Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.
Software-engineering challenges of building and deploying reusable problem solvers
O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.
2012-01-01
Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031
Software-engineering challenges of building and deploying reusable problem solvers.
O'Connor, Martin J; Nyulas, Csongor; Tu, Samson; Buckeridge, David L; Okhmatovskaia, Anna; Musen, Mark A
2009-11-01
Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task-method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach.
Engaging Reluctant Problem Solvers
ERIC Educational Resources Information Center
Holbert, Sydney M.; Barlow, Angela T.
2012-01-01
With the introduction of the Common Core State Standards (CCSS), teachers must now teach math with an eye on simultaneously meeting the Standards for Mathematical Practice (CCSSI 2010). These Standards "describe varieties of expertise that math educators at all levels should seek to develop in their students" (p. 6). The first Standard, that…
Two Solvers for Tractable Temporal Constraints with Preferences
NASA Technical Reports Server (NTRS)
Rossi, F.; Khatib,L.; Morris, P.; Morris, R.; Clancy, Daniel (Technical Monitor)
2002-01-01
A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time on the basis of preferences. Soft temporal constraints problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. We describe two solvers based on two different approaches for solving the same tractable subclass. For each solver we present the theoretical results it stands on, a description of the algorithm and some experimental results. The random generator used to build the problems on which tests are performed is also described. Finally, we compare the two solvers highlighting the tradeoff between performance and representational power.
T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2
Moridis, G.; Pruess, K.; Antunez, E.
1994-03-01
Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources.
A general heuristic for genome rearrangement problems.
Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni
2014-06-01
In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results. PMID:24969750
Lobb's Generalization of Catalan's Parenthesization Problem
ERIC Educational Resources Information Center
Koshy, Thomas
2009-01-01
A. Lobb discovered an interesting generalization of Catalan's parenthesization problem, namely: Find the number L(n, m) of arrangements of n + m positive ones and n - m negative ones such that every partial sum is nonnegative, where 0 = m = n. This article uses Lobb's formula, L(n, m) = (2m + 1)/(n + m + 1) C(2n, n + m), where C is the usual…
A survey of deterministic solvers for rarefied flows (Invited)
NASA Astrophysics Data System (ADS)
Mieussens, Luc
2014-12-01
Numerical simulations of rarefied gas flows are generally made with DSMC methods. Up to a recent period, deterministic numerical methods based on a discretization of the Boltzmann equation were restricted to simple problems (1D, linearized flows, or simple geometries, for instance). In the last decade, several deterministic solvers have been developed in different teams to tackle more complex problems like 2D and 3D flows. Some of them are based on the full Boltzmann equation. Solving this equation numerically is still very challenging, and 3D solvers are still restricted to monoatomic gases, even if recent works have proved it was possible to simulate simple flows for polyatomic gases. Other solvers are based on simpler BGK like models: they allow for much more intensive simulations on 3D flows for realistic geometries, but treating complex gases requires extended BGK models that are still under development. In this paper, we discuss the main features of these existing solvers, and we focus on their strengths and inefficiencies. We will also review some recent results that show how these solvers can be improved: - higher accuracy (higher order finite volume methods, discontinuous Galerkin approaches) - lower memory and CPU costs with special velocity discretization (adaptive grids, spectral methods) - multi-scale simulations by using hybrid and asymptotic preserving schemes - efficient implementation on high performance computers (parallel computing, hybrid parallelization) Finally, we propose some perspectives to make these solvers more efficient and more popular.
2004-03-01
PLIRIS is an object-oriented solver built on top of a previous matrix solver used in a number of application codes. Puns solves a linear system directly via LU factorization with partial pivoting. The user provides the linear system in terms of Epetra Objects including a matrix and right-hand-sides. The user can then factor the matrix and perform the forward and back solve at a later time or solve for multiple right-hand-sides at once. This packagemore » is used when dense matrices are obtained in the problem formulation. These dense matrices occur whenever boundary element techniques are chosen for the solution procedure. This has been used in electromagnetics for both static and frequency domain problems.« less
NASA Astrophysics Data System (ADS)
Kovalevsky, Louis; Gosselet, Pierre
2016-09-01
The Variational Theory of Complex Rays (VTCR) is an indirect Trefftz method designed to study systems governed by Helmholtz-like equations. It uses wave functions to represent the solution inside elements, which reduces the dispersion error compared to classical polynomial approaches but the resulting system is prone to be ill conditioned. This paper gives a simple and original presentation of the VTCR using the discontinuous Galerkin framework and it traces back the ill-conditioning to the accumulation of eigenvalues near zero for the formulation written in terms of wave amplitude. The core of this paper presents an efficient solving strategy that overcomes this issue. The key element is the construction of a search subspace where the condition number is controlled at the cost of a limited decrease of attainable precision. An augmented LSQR solver is then proposed to solve efficiently and accurately the complete system. The approach is successfully applied to different examples.
Solution of the Generalized Noah's Ark Problem.
Billionnet, Alain
2013-01-01
The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Doctoral training in behavior analysis: Training generalized problem-solving skills
Chase, Philip N.; Wylie, Ruth G.
1985-01-01
This essay provides guidelines for designing a doctoral program in behavior analysis. First, we propose a general accomplishment for all behavior analytic doctoral students: that they be able to solve problems concerning individual behavior within a range of environments. Second, in order to achieve this goal, we propose that students be trained in conceptual and experimental analysis of behavior, the application of behavioral principles and the administration of behavioral programs. This training should include class work, but it should emphasize the immersion of students in a variety of environments in which they are required to use behavior analytic strategies. Third, we provide an example of a hypothetical graduate program that involves the proposed training. Finally, an evaluation plan is suggested for determining whether a training program is in fact producing students who are generalized problem-solvers. At each step, we justify our point of view from a perspective that combines principles from behavior analysis and educational systems design. PMID:22478633
Fast computation of general forward gravitation problems
NASA Astrophysics Data System (ADS)
Casenave, Fabien; Métivier, Laurent; Pajot-Métivier, Gwendoline; Panet, Isabelle
2016-07-01
We consider the well-known problem of the forward computation of the gradient of the gravitational potential generated by a mass density distribution of general 3D geometry. Many methods have been developed for given geometries, and the computation time often appears as a limiting practical issue for considering large or complex problems. In this work, we develop a fast method to carry out this computation, where a tetrahedral mesh is used to model the mass density distribution. Depending on the close- or long-range nature of the involved interactions, the algorithm automatically switches between analytic integration formulae and numerical quadratic formulae, and relies on the Fast Multipole Method to drastically increase the computation speed of the long-range interactions. The parameters of the algorithm are empirically chosen for the computations to be the fastest possible while guarantying a given relative accuracy of the result. Computations that would load many-core clusters for days can now be carried out on a desk computer in minutes. The computation of the contribution of topographical masses to the Earth's gravitational field at the altitude of the GOCE satellite and over France are proposed as numerical illustrations of the method.
Cinema, Fermi problems and general education
NASA Astrophysics Data System (ADS)
Efthimiou, C. J.; Llewellyn, R. A.
2007-05-01
During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called Physics in Films (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate physical principles and has excited student interest and improved student performance. A similar approach at the senior/high-school level, nicknamed Hollywood Physics, has been developed by Chandler (2006 Phys. Teach. 44 290-2 2002 Phys. Teach. 40 420-4). The two approaches may be considered complementary as they target different student groups. The analyses of many of the scenes in Physics in Films are a direct application of Fermi calculations—estimates and approximations designed to make solutions of complex and seemingly intractable problems understandable to the student non-specialist. The intent of this paper is to provide instructors with examples they can use to develop skill in recognizing Fermi problems and making Fermi calculations in their own courses.
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer
Hwang, Seong Jae; Collins, Maxwell D.; Ravi, Sathya N.; Ithapu, Vamsi K.; Adluru, Nagesh; Johnson, Sterling C.; Singh, Vikas
2016-01-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a “black box” can often become restrictive. Many ‘human in the loop’ settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other ‘views’ of the disease pathology, involving clinical measurements and other image-derived representations. PMID:27081374
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
Problem Solving in the General Mathematics Classroom
ERIC Educational Resources Information Center
Troutman, Andria Price; Lichtenberg, Betty Plunkett
1974-01-01
Five steps common to different problem solving models are listed. Next, seven specific abilities related to solving problems are discussed and examples given. Sample activities, appropriate to help in developing these specific abilities, are suggested. (LS)
General Description of Human Problem Solving.
ERIC Educational Resources Information Center
Klein, Gary A.; Weitzenfeld, Julian
A theoretical model relating problem identification to problem solving is presented. The main purpose of the study is to increase understanding of decision making among Air Force educators. The problem-solving process is defined as the generation and evaluation of alternatives that will accomplish what is needed and the reidentification of what is…
The generalized pole assignment problem. [dynamic output feedback problems
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Two dynamic output feedback problems for a linear, strictly proper system are considered, along with their interrelationships. The problems are formulated in the frequency domain and investigated in terms of linear equations over rings of polynomials. Necessary and sufficient conditions are expressed using genericity.
ERIC Educational Resources Information Center
Cantor, Alida; DeLauer, Verna; Martin, Deborah; Rogan, John
2015-01-01
Management of "wicked problems", messy real-world problems that defy resolution, requires thinkers who can transcend disciplinary boundaries, work collaboratively, and handle complexity and obstacles. This paper explores how educators can train undergraduates in these skills through applied community-based research, using the example of…
ERIC Educational Resources Information Center
Foley, Greg
2014-01-01
A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…
Generalized Kepler problems. I. Without magnetic charges
Meng, Guowu
2013-01-15
For each simple euclidean Jordan algebra V of rank {rho} and degree {delta}, we introduce a family of classical dynamic problems. These dynamical problems all share the characteristic features of the Kepler problem for planetary motions, such as the existence of Laplace-Runge-Lenz vector and hidden symmetry. After suitable quantizations, a family of quantum dynamic problems, parametrized by the nontrivial Wallach parameter {nu}, is obtained. Here, {nu} Element-Of W(V):={l_brace}k({delta}/2) Double-Vertical-Line k=1,...,({rho}-1){r_brace} Union (({rho}-1)({delta}/2),{infinity}) and was introduced by N. Wallach to parametrize the set of nontrivial scalar-type unitary lowest weight representations of the conformal group of V. For the quantum dynamic problem labelled by {nu}, the bound state spectra is -(1/2/(I+{nu}({rho}/2)){sup 2}), I= 0, 1, Horizontal-Ellipsis and its Hilbert space of bound states gives a new realization for the afore-mentioned representation labelled by {nu}. A few results in the literature about these representations become more explicit and more refined. The Lagrangian for a classical Kepler-type dynamic problem introduced here is still of the simple form: (1/2) parallel x parallel {sup 2}+(1/r). Here, x is the velocity of a unit-mass particle moving on the space consisting of V's semi-positive elements of a fixed rank, and r is the inner product of x with the identity element of V.
Generalized Kepler problems. I. Without magnetic charges
NASA Astrophysics Data System (ADS)
Meng, Guowu
2013-01-01
For each simple euclidean Jordan algebra V of rank ρ and degree δ, we introduce a family of classical dynamic problems. These dynamical problems all share the characteristic features of the Kepler problem for planetary motions, such as the existence of Laplace-Runge-Lenz vector and hidden symmetry. After suitable quantizations, a family of quantum dynamic problems, parametrized by the nontrivial Wallach parameter ν, is obtained. Here, ν in {W}(V):=[ k δ/2mid k=1, ldots, (ρ -1)] \\cup ((ρ -1)δ / 2, infty ) and was introduced by N. Wallach to parametrize the set of nontrivial scalar-type unitary lowest weight representations of the conformal group of V. For the quantum dynamic problem labelled by ν, the bound state spectra is -1/2/ (I+ν frac{ρ { 2})^2}, I = 0, 1, … and its Hilbert space of bound states gives a new realization for the afore-mentioned representation labelled by ν. A few results in the literature about these representations become more explicit and more refined. The Lagrangian for a classical Kepler-type dynamic problem introduced here is still of the simple form: 1/ 2 Vert dot{x}Vert ^2+1/ r. Here, dot{x} is the velocity of a unit-mass particle moving on the space consisting of V's semi-positive elements of a fixed rank, and r is the inner product of x with the identity element of V.
Stanley, Vendall S.; Heroux, Michael A.; Hoekstra, Robert J.; Sala, Marzio
2004-03-01
Amesos is the Direct Sparse Solver Package in Trilinos. The goal of Amesos is to make AX=S as easy as it sounds, at least for direct methods. Amesos provides interfaces to a number of third party sparse direct solvers, including SuperLU, SuperLU MPI, DSCPACK, UMFPACK and KLU. Amesos provides a common object oriented interface to the best sparse direct solvers in the world. A sparse direct solver solves for x in Ax = b. where A is a matrix and x and b are vectors (or multi-vectors). A sparse direct solver flrst factors A into trinagular matrices L and U such that A = LU via gaussian elimination and then solves LU x = b. Switching amongst solvers in Amesos roquires a change to a single parameter. Yet, no solver needs to be linked it, unless it is used. All conversions between the matrices provided by the user and the format required by the underlying solver is performed by Amesos. As new sparse direct solvers are created, they will be incorporated into Amesos, allowing the user to simpty link with the new solver, change a single parameter in the calling sequence, and use the new solver. Amesos allows users to specify whether the matrix has changed. Amesos can be used anywhere that any sparse direct solver is needed.
2004-03-01
Amesos is the Direct Sparse Solver Package in Trilinos. The goal of Amesos is to make AX=S as easy as it sounds, at least for direct methods. Amesos provides interfaces to a number of third party sparse direct solvers, including SuperLU, SuperLU MPI, DSCPACK, UMFPACK and KLU. Amesos provides a common object oriented interface to the best sparse direct solvers in the world. A sparse direct solver solves for x in Ax = b. wheremore » A is a matrix and x and b are vectors (or multi-vectors). A sparse direct solver flrst factors A into trinagular matrices L and U such that A = LU via gaussian elimination and then solves LU x = b. Switching amongst solvers in Amesos roquires a change to a single parameter. Yet, no solver needs to be linked it, unless it is used. All conversions between the matrices provided by the user and the format required by the underlying solver is performed by Amesos. As new sparse direct solvers are created, they will be incorporated into Amesos, allowing the user to simpty link with the new solver, change a single parameter in the calling sequence, and use the new solver. Amesos allows users to specify whether the matrix has changed. Amesos can be used anywhere that any sparse direct solver is needed.« less
Scalable Parallel Algebraic Multigrid Solvers
Bank, R; Lu, S; Tong, C; Vassilevski, P
2005-03-23
The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.
ERIC Educational Resources Information Center
Thevenot, Catherine; Castel, Caroline; Fanget, Muriel; Fayol, Michel
2010-01-01
The authors used the operand-recognition paradigm (C. Thevenot, M. Fanget, & M. Fayol, 2007) in order to study the strategies used by adults to solve subtraction problems. This paradigm capitalizes on the fact that algorithmic procedures degrade the memory traces of the operands. Therefore, greater difficulty in recognizing them is expected when…
Stiff-system problems and solutions at LLNL
Hindmarsh, A.C.
1982-03-01
Difficult stiff system problems encountered at LLNL are typified by those arising from various atmospheric kinetics models, which include reaction kinetics and transport in up to two space dimensions. Approaches devised for these problems resulted in several general purpose stiff system solvers. These have since evolved into a new systematized collection of solvers, called ODEPACK, based on backward differentiation formulas in the stiff case. A model kinetics-transport problem is used to illustrate the various solvers.
Cinema, Fermi Problems and General Education
ERIC Educational Resources Information Center
Efthimiou, C. J.; Llewellyn, R. A.
2007-01-01
During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called "Physics in Films" (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate…
Thevenot, Catherine; Castel, Caroline; Fanget, Muriel; Fayol, Michel
2010-09-01
The authors used the operand-recognition paradigm (C. Thevenot, M. Fanget, & M. Fayol, 2007) in order to study the strategies used by adults to solve subtraction problems. This paradigm capitalizes on the fact that algorithmic procedures degrade the memory traces of the operands. Therefore, greater difficulty in recognizing them is expected when calculations have been solved by reconstructive strategies rather than by retrieval of number facts from long-term memory. The present results suggest that low- and high-skilled individuals differ in their strategy when they solve problems involving minuends from 11 to 18. Whereas high-skilled individuals retrieve the results of such subtractions from long-term memory, lower skilled individuals have to resort to reconstructive strategies. Moreover, the authors directly confront the results obtained with the operand-recognition paradigm and those obtained with the more classical method of verbal report collection and show clearly that this second method of investigation fails to reveal this differential pattern. The rationale behind the operand-recognition paradigm is then discussed. PMID:20804294
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge.
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng
2016-04-01
With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.
A STUDY OF PROBLEM DRINKERS IN A GENERAL HOSPITAL
Babu, R. Sateesh; Sengupta, S.N.
1997-01-01
349 new admissions in the wards of Medicine, General Surgery & Orthopedics in a general hospital were screened with MAST & AUDIT for problem use of alcohol. Problem drinking was present in 14.6% of the inpatients. The severity and the need for additional treatment were measured with Addiction Severity Index (ASI). Majority of the patients had problems in more than one ar?a. Nevertheless, only one fourth of the patients were referred for psychiatric treatment. The findings indicate the need to develop services towards the recognition and referrals of the problem drinkers in general hospitals PMID:21584037
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
ERIC Educational Resources Information Center
Figarella-Garcia, Frances V.; Velazquez-Rivera, Lizzette M.; Santiago-Rivera, Teresita
2004-01-01
Imagine--you must bring water to a hurricane-ravaged area. There is only one bridge and only one truck, and the bridge can only hold so much weight. Your calculations determine if the truck--and its load of water--can make it safely over the bridge. This is a typical challenge during two-week summer camps for third-through fourth-grade students…
Fast Poisson, Fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds
Wiegmann, A.
1999-06-01
FFT-based fast Poisson and fast Helmholtz solvers on rectangular parallelepipeds for periodic boundary conditions in one-, two and three space dimensions can also be used to solve Dirichlet and Neumann boundary value problems. For non-zero boundary conditions, this is the special, grid-aligned case of jump corrections used in the Explicit Jump Immersed Interface method. Fast elastostatic solvers for periodic boundary conditions in two and three dimensions can also be based on the FFT. From the periodic solvers we derive fast solvers for the new 'normal' boundary conditions and essential boundary conditions on rectangular parallelepipeds. The periodic case allows a simple proof of existence and uniqueness of the solutions to the discretization of normal boundary conditions. Numerical examples demonstrate the efficiency of the fast elastostatic solvers for non-periodic boundary conditions. More importantly, the fast solvers on rectangular parallelepipeds can be used together with the Immersed Interface Method to solve problems on non-rectangular domains with general boundary conditions. Details of this are reported in the preprint The Explicit Jump Immersed Interface Method for 2D Linear Elastostatics by the author.
New generalizations of the integrable problems in rigid body dynamics
NASA Astrophysics Data System (ADS)
Yehia, H. M.
1997-10-01
We consider the general problem of motion of a rigid body about a fixed point under the action of an axisymmetric combination of potential and gyroscopic forces. We introduce six cases of this problem which are completely integrable for arbitrary initial conditions. The new cases generalize by several parameters all, but one, of the known results in the subject of rigid body dynamics. Namely, we generalize all the results due to Euler, Lagrange, Clebsch, Kovalevskaya, Brun and Lyapunov and also their subsequent generalizations by Rubanovsky and the present author.
Recent results on a general financial equilibrium problem
NASA Astrophysics Data System (ADS)
Barbagallo, Annamaria; Daniele, Patrizia; Lorino, Mariagrazia; Maugeri, Antonino; Mirabella, Cristina
2013-10-01
The paper is devoted to the study of a general financial equilibrium problem which is modeled by means of a variational inequality. The main theoretical results obtained in these last years are presented.
Local Conjecturing Process in the Solving of Pattern Generalization Problem
ERIC Educational Resources Information Center
Sutarto; Nusantara, Toto; Subanji; Sisworo
2016-01-01
This aim of this study is to describe the process of local conjecturing in generalizing patterns based on Action, Process, Object, Schema (APOS) theory. The subjects were 16 grade 8 students from a junior high school. Data collection used Pattern Generalization Problem (PGP) and interviews. In the first stage, students completed PGP; in the second…
A chemical reaction network solver for the astrophysics code NIRVANA
NASA Astrophysics Data System (ADS)
Ziegler, U.
2016-02-01
Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes
Finite Element Interface to Linear Solvers
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.
2006-01-01
The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.
Generalization of Torricelli's parabola to problems with a moving source
NASA Astrophysics Data System (ADS)
Heppler, G. R.; D'Eleuterio, G. M. T.
2013-10-01
Analytical forms for the envelopes of trajectories for particles radially ejected from a moving source in uniform gravity are derived. These results generalize Torricelli's (safety) parabola for ballistic problems. As a motivating scenario we consider the spherical case shot, later named the shrapnel shell. Several cases that illustrate interesting features of the problem are presented along with an example inspired by the spherical case shot.
Many body generalization of the Landau-Zener problem.
Altland, Alexander; Gurarie, V
2008-02-15
We formulate and approximately solve a specific many body generalization of the Landau-Zener problem. Unlike with the single particle Landau-Zener problem, our system does not abide in the adiabatic ground state, even at very slow driving rates. The structure of the theory suggests that this finding reflects a more general phenomenon in the physics of adiabatically driven many particle systems. Our solution can be used to understand, for example, the behavior of two-level systems coupled to an electromagnetic field, as realized in cavity QED experiments.
NASA Technical Reports Server (NTRS)
Bittker, David A.; Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
A parallel PCG solver for MODFLOW.
Dong, Yanhui; Li, Guomin
2009-01-01
In order to simulate large-scale ground water flow problems more efficiently with MODFLOW, the OpenMP programming paradigm was used to parallelize the preconditioned conjugate-gradient (PCG) solver with in this study. Incremental parallelization, the significant advantage supported by OpenMP on a shared-memory computer, made the solver transit to a parallel program smoothly one block of code at a time. The parallel PCG solver, suitable for both MODFLOW-2000 and MODFLOW-2005, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. Based on the timing results, execution times using the parallel PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. PMID:19563427
Wavelet-based Poisson Solver for use in Particle-In-CellSimulations
Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.
2005-05-13
We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors.
The little hierarchy problem in a generalized NMSSM
Kolda, Christopher
2013-05-23
In this talk, I review recent work on using a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), called the Singlet-extended Minimal Supersymmetric Standard Model (SMSSM), to raise the mass of the Standard Model-like Higgs boson without requiring extremely heavy top squarks or large stop mixing. In so doing, this model solves the little hierarchy problem of the minimal model (MSSM), at the expense of leaving the {mu}-problem of the MSSM unresolved. This talk is based on work published in Refs. [1, 2, 3].
Lu, Bao-Liang; Ito, Koji
2003-09-01
In this paper we present a method for converting general nonlinear programming (NLP) problems into separable programming (SP) problems by using feedforward neural networks (FNNs). The basic idea behind the method is to use two useful features of FNNs: their ability to approximate arbitrary continuous nonlinear functions with a desired degree of accuracy and their ability to express nonlinear functions in terms of parameterized compositions of functions of single variables. According to these two features, any nonseparable objective functions and/or constraints in NLP problems can be approximately expressed as separable functions with FNNs. Therefore, any NLP problems can be converted into SP problems. The proposed method has three prominent features. (a) It is more general than existing transformation techniques; (b) it can be used to formulate optimization problems as SP problems even when their precise analytic objective function and/or constraints are unknown; (c) the SP problems obtained by the proposed method may highly facilitate the selection of grid points for piecewise linear approximation of nonlinear functions. We analyze the computational complexity of the proposed method and compare it with an existing transformation approach. We also present several examples to demonstrate the method and the performance of the simplex method with the restricted basis entry rule for solving SP problems.
Equation solvers for distributed-memory computers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.
Two-dimensional time dependent Riemann solvers for neutron transport
Brunner, Thomas A. . E-mail: tabrunn@sandia.gov; Holloway, James Paul
2005-11-20
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P{sub 1} equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem.
A real-time impurity solver for DMFT
NASA Astrophysics Data System (ADS)
Kim, Hyungwon; Aron, Camille; Han, Jong E.; Kotliar, Gabriel
Dynamical mean-field theory (DMFT) offers a non-perturbative approach to problems with strongly correlated electrons. The method heavily relies on the ability to numerically solve an auxiliary Anderson-type impurity problem. While powerful Matsubara-frequency solvers have been developed over the past two decades to tackle equilibrium situations, the status of real-time impurity solvers that could compete with Matsubara-frequency solvers and be readily generalizable to non-equilibrium situations is still premature. We present a real-time solver which is based on a quantum Master equation description of the dissipative dynamics of the impurity and its exact diagonalization. As a benchmark, we illustrate the strengths of our solver in the context of the equilibrium Mott-insulator transition of the one-band Hubbard model and compare it with iterative perturbation theory (IPT) method. Finally, we discuss its direct application to a nonequilibrium situation.
Sensitivity analysis and approximation methods for general eigenvalue problems
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1986-01-01
Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.
A Generalized Cauchy Distribution Framework for Problems Requiring Robust Behavior
NASA Astrophysics Data System (ADS)
Carrillo, Rafael E.; Aysal, Tuncer C.; Barner, Kenneth E.
2010-12-01
Statistical modeling is at the heart of many engineering problems. The importance of statistical modeling emanates not only from the desire to accurately characterize stochastic events, but also from the fact that distributions are the central models utilized to derive sample processing theories and methods. The generalized Cauchy distribution (GCD) family has a closed-form pdf expression across the whole family as well as algebraic tails, which makes it suitable for modeling many real-life impulsive processes. This paper develops a GCD theory-based approach that allows challenging problems to be formulated in a robust fashion. Notably, the proposed framework subsumes generalized Gaussian distribution (GGD) family-based developments, thereby guaranteeing performance improvements over traditional GCD-based problem formulation techniques. This robust framework can be adapted to a variety of applications in signal processing. As examples, we formulate four practical applications under this framework: (1) filtering for power line communications, (2) estimation in sensor networks with noisy channels, (3) reconstruction methods for compressed sensing, and (4) fuzzy clustering.
ERIC Educational Resources Information Center
ten Berge, Jos M. F.
1988-01-01
A summary and a unified treatment of fully general computational solutions for two criteria for transforming two or more matrices to maximal agreement are provided. The two criteria--Maxdiff and Maxbet--have applications in the rotation of factor loading or configuration matrices to maximal agreement and the canonical correlation problem. (SLD)
Extending substructure based iterative solvers to multiple load and repeated analyses
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1993-01-01
Direct solvers currently dominate commercial finite element structural software, but do not scale well in the fine granularity regime targeted by emerging parallel processors. Substructure based iterative solvers--often called also domain decomposition algorithms--lend themselves better to parallel processing, but must overcome several obstacles before earning their place in general purpose structural analysis programs. One such obstacle is the solution of systems with many or repeated right hand sides. Such systems arise, for example, in multiple load static analyses and in implicit linear dynamics computations. Direct solvers are well-suited for these problems because after the system matrix has been factored, the multiple or repeated solutions can be obtained through relatively inexpensive forward and backward substitutions. On the other hand, iterative solvers in general are ill-suited for these problems because they often must restart from scratch for every different right hand side. In this paper, we present a methodology for extending the range of applications of domain decomposition methods to problems with multiple or repeated right hand sides. Basically, we formulate the overall problem as a series of minimization problems over K-orthogonal and supplementary subspaces, and tailor the preconditioned conjugate gradient algorithm to solve them efficiently. The resulting solution method is scalable, whereas direct factorization schemes and forward and backward substitution algorithms are not. We illustrate the proposed methodology with the solution of static and dynamic structural problems, and highlight its potential to outperform forward and backward substitutions on parallel computers. As an example, we show that for a linear structural dynamics problem with 11640 degrees of freedom, every time-step beyond time-step 15 is solved in a single iteration and consumes 1.0 second on a 32 processor iPSC-860 system; for the same problem and the same parallel
Crystalline order on a sphere and the generalized Thomson problem.
Bowick, M; Cacciuto, A; Nelson, D R; Travesset, A
2002-10-28
We attack the generalized Thomson problem, i.e., determining the ground state energy and configuration of many particles interacting via an arbitrary repulsive pairwise potential on a sphere via a continuum mapping onto a universal long range interaction between angular disclination defects parametrized by the elastic (Young) modulus Y of the underlying lattice and the core energy E(core) of an isolated disclination. Predictions from the continuum theory for the ground state energy agree with numerical simulations of long range power law interactions of the form 1/r(gamma) (0
Braunack-Mayer, A. J.
2001-01-01
Whilst there has been considerable debate about the fit between moral theory and moral reasoning in everyday life, the way in which moral problems are defined has rarely been questioned. This paper presents a qualitative analysis of interviews conducted with 15 general practitioners (GPs) in South Australia to argue that the way in which the bioethics literature defines an ethical dilemma captures only some of the range of lay views about the nature of ethical problems. The bioethics literature has defined ethical dilemmas in terms of conflict and choice between values, beliefs and options for action. While some of the views of some of the GPs in this study about the nature of their ethical dilemmas certainly accorded with this definition, other explanations of the ethical nature of their problems revolved around the publicity associated with the issues they were discussing, concern about their relationships with patients, and anxiety about threats to their integrity and reputation. The variety of views about what makes a problem a moral problem indicates that the moral domain is perhaps wider and richer than mainstream bioethics would generally allow. Key Words: Empirical ethics • general practice • qualitative research PMID:11314166
Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers
NASA Technical Reports Server (NTRS)
Guru Prasad, K.; Kane, J. H.
1992-01-01
The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.
NASA Astrophysics Data System (ADS)
Liu, Yan; Shen, Weidong; Tian, Baolin; Mao, De-kang
2015-03-01
We develop a new and more general formula for the construction of two dimensional nodal Riemann solver for a cell-centered Lagrangian scheme developed by Maire and his co-workers which allows us to use general one dimensional Riemann solvers that have intermediate velocity and pressure in the construction. The old formula for the scheme used in the papers of Maire et al. is only a special case of our new formula. We present an entropy discussion, which indicates that the schemes with nodal solvers constructed following the old formula, which can only use the 1D Riemann solvers satisfying our strong entropy condition, are usually numerically very dissipative. To develop numerically less dissipative schemes we introduce a so-called weak entropy condition, and present a one dimensional Riemann solver that satisfies the weak entropy condition but not the strong entropy condition. Analysis shows that the scheme using this 1D solver is numerically less dissipative than the schemes using solvers satisfying the strong condition. Finally, several numerical examples are presented to show that our new formula works well and the scheme using the one dimensional solver satisfying the weak entropy condition improves the accuracy in smooth region, resolution around rarefaction waves and two dimensional symmetry; however it sometimes produces small velocity oscillations and mesh distortions.
A semi-direct solver for compressible 3-dimensional rotational flow
NASA Technical Reports Server (NTRS)
Chang, S. C.; Adamczyk, J. J.
1983-01-01
An iterative procedure is presented for solving steady inviscid 3-D subsonic rotational flow problems. The procedure combines concepts from classical secondary flow theory with an extension to 3-D of a novel semi-direct Cauchy-Riemann solver. It is developed for generalized coordinates and can be exercised using standard finite difference procedures. The stability criterion of the iterative procedure is discussed along with its ability to capture the evolution of inviscid secondary flow in a turning channel.
A semi-direct solver for compressible three-dimensional rotational flow
NASA Technical Reports Server (NTRS)
Chang, S.-C.; Adamczyk, J. J.
1983-01-01
An iterative procedure is presented for solving steady inviscid 3-D subsonic rotational flow problems. The procedure combines concepts from classical secondary flow theory with an extension to 3-D of a novel semi-direct Cauchy-Riemann solver. It is developed for generalized coordinates and can be exercised using standard finite difference procedures. The stability criterion of the iterative procedure is discussed along with its ability to capture the evolution of inviscid secondary flow in a turning channel.
Origins and development of the Cauchy problem in general relativity
NASA Astrophysics Data System (ADS)
Ringström, Hans
2015-06-01
The seminal work of Yvonne Choquet-Bruhat published in 1952 demonstrates that it is possible to formulate Einstein's equations as an initial value problem. The purpose of this article is to describe the background to and impact of this achievement, as well as the result itself. In some respects, the idea of viewing the field equations of general relativity as a system of evolution equations goes back to Einstein himself; in an argument justifying that gravitational waves propagate at the speed of light, Einstein used a special choice of coordinates to derive a system of wave equations for the linear perturbations on a Minkowski background. Over the following decades, Hilbert, de Donder, Lanczos, Darmois and many others worked to put Einstein's ideas on a more solid footing. In fact, the issue of local uniqueness (giving a rigorous justification for the statement that the speed of propagation of the gravitational field is bounded by that of light) was already settled in the 1930s by the work of Stellmacher. However, the first person to demonstrate both local existence and uniqueness in a setting in which the notion of finite speed of propagation makes sense was Yvonne Choquet-Bruhat. In this sense, her work lays the foundation for the formulation of Einstein's equations as an initial value problem. Following a description of the results of Choquet-Bruhat, we discuss the development of three research topics that have their origin in her work. The first one is local existence. One reason for addressing it is that it is at the heart of the original paper. Moreover, it is still an active and important research field, connected to the problem of characterizing the asymptotic behaviour of solutions that blow up in finite time. As a second topic, we turn to the questions of global uniqueness and strong cosmic censorship. These questions are of fundamental importance to anyone interested in justifying that the Cauchy problem makes sense globally. They are also closely
General solutions of optimum problems in nonstationary flight
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
A general method concerning optimum problems in nonstationary flight is developed and discussed. Best flight techniques are determined for the following conditions: climb with minimum time, climb with minimum fuel consumption, steepest climb, descending and gliding flight with maximum time or with maximum distance. Optimum distributions of speed with altitude are derived assuming constant airplane weight and neglecting curvatures and squares of path inclination in the projection of the equation of motion on the normal to the flight path. The results of this paper differ from the well-known results obtained by neglecting accelerations with one exception, namely the case of gliding with maximum range. The paper is concluded with criticisms and remarks concerning the physical nature of the solutions and their usefulness for practical applications.
Belos Block Linear Solvers Package
2004-03-01
Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less
Management of general surgical problems after cardiac transplantation.
Jones, M T; Menkis, A H; Kostuk, W J; McKenzie, F N
1988-07-01
Over a 6-year period at the University Hospital in London, Ont., 101 patients underwent heart transplantation and 5 heart-lung transplantation. The authors review the general surgical problems identified from the charts of 13 of these patients. In the early postoperative period (within 30 days), laparotomy was required for pancreatitis (one), perforated peptic ulcer (two), cholecystectomy (one), pancreatic cyst (one) and appendicitis (one). In addition, a spontaneous colocutaneous fistula and spontaneous pneumoperitoneum occurred; both were managed conservatively. Later, three patients required cholecystectomy; one underwent a below-knee and a Symes amputation for dry gangrene and one surgical correction of a lymphocele. The incidence of surgical problems (13%) indicates an increased susceptibility in this group of patients. Four of the 13 patients died. Pancreatitis is a well-recognized complication of cardiac surgery; it is frequently associated with a normal or only slightly elevated serum amylase level, making a definitive diagnosis without laparotomy almost impossible. Persistence of abdominal signs should signal the need for exploratory surgery. During the early postoperative period and in the absence of multiorgan failure, immediate operation for an acute abdomen is usually successful. Despite the additional risk, cardiac transplantation does not preclude later surgery, but immunosuppression must be continued and carefully monitored.
Heroux, Michael A.
2007-03-01
HPCCG is a simple PDE application and preconditioned conjugate gradient solver that solves a linear system on a beam-shaped domain. Although it does not address many performance issues present in real engineering applications, such as load imbalance and preconditioner scalability, it can serve as a first "sanity test" of new processor design choices, inter-connect network design choices and the scalability of a new computer system. Because it is self-contained, easy to compile and easily scaled to 100s or 1000s of porcessors, it can be an attractive study code for computer system designers.
Scalable solvers and applications
Ribbens, C J
2000-10-27
The purpose of this report is to summarize research activities carried out under Lawrence Livermore National Laboratory (LLNL) research subcontract B501073. This contract supported the principal investigator (P1), Dr. Calvin Ribbens, during his sabbatical visit to LLNL from August 1999 through June 2000. Results and conclusions from the work are summarized below in two major sections. The first section covers contributions to the Scalable Linear Solvers and hypre projects in the Center for Applied Scientific Computing (CASC). The second section describes results from collaboration with Patrice Turchi of LLNL's Chemistry and Materials Science Directorate (CMS). A list of publications supported by this subcontract appears at the end of the report.
2007-03-01
HPCCG is a simple PDE application and preconditioned conjugate gradient solver that solves a linear system on a beam-shaped domain. Although it does not address many performance issues present in real engineering applications, such as load imbalance and preconditioner scalability, it can serve as a first "sanity test" of new processor design choices, inter-connect network design choices and the scalability of a new computer system. Because it is self-contained, easy to compile and easily scaledmore » to 100s or 1000s of porcessors, it can be an attractive study code for computer system designers.« less
An efficient iterative method for the generalized Stokes problem
Sameh, A.; Sarin, V.
1996-12-31
This paper presents an efficient iterative scheme for the generalized Stokes problem, which arises frequently in the simulation of time-dependent Navier-Stokes equations for incompressible fluid flow. The general form of the linear system is where A = {alpha}M + vT is an n x n symmetric positive definite matrix, in which M is the mass matrix, T is the discrete Laplace operator, {alpha} and {nu} are positive constants proportional to the inverses of the time-step {Delta}t and the Reynolds number Re respectively, and B is the discrete gradient operator of size n x k (k < n). Even though the matrix A is symmetric and positive definite, the system is indefinite due to the incompressibility constraint (B{sup T}u = 0). This causes difficulties both for iterative methods and commonly used preconditioners. Moreover, depending on the ratio {alpha}/{nu}, A behaves like the mass matrix M at one extreme and the Laplace operator T at the other, thus complicating the issue of preconditioning.
Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D.
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060
Comparison of open-source linear programming solvers.
Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph
2013-10-01
When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1994-06-01
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.
Two-Dimensional Unsteady Euler-Equation Solver for Arbitrarily Shaped Flow Regions
NASA Technical Reports Server (NTRS)
Hindman, R. G.; Kutler, Paul; Anderson, Dale
1981-01-01
A new technique is described for solving supersonic fluid dynamics problems containing multiple regions of continuous flow, each bounded by a permeable or impermeable surface. Region boundaries are, in general, arbitrarily shaped and time dependent. Discretization of such a region for solution by conventional finite difference procedures is accomplished using an elliptic solver which alleviates the dependence on a particular base coordinate system. Multiple regions are coupled together through the boundary conditions. The technique has been applied to a variety of problems including a shock diffraction problem and supersonic flow over a pointed ogive.
A perspective on unstructured grid flow solvers
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.
1995-01-01
This survey paper assesses the status of compressible Euler and Navier-Stokes solvers on unstructured grids. Different spatial and temporal discretization options for steady and unsteady flows are discussed. The integration of these components into an overall framework to solve practical problems is addressed. Issues such as grid adaptation, higher order methods, hybrid discretizations and parallel computing are briefly discussed. Finally, some outstanding issues and future research directions are presented.
General heuristics algorithms for solving capacitated arc routing problem
NASA Astrophysics Data System (ADS)
Fadzli, Mohammad; Najwa, Nurul; Masran, Hafiz
2015-05-01
In this paper, we try to determine the near-optimum solution for the capacitated arc routing problem (CARP). In general, NP-hard CARP is a special graph theory specifically arises from street services such as residential waste collection and road maintenance. By purpose, the design of the CARP model and its solution techniques is to find optimum (or near-optimum) routing cost for a fleet of vehicles involved in operation. In other words, finding minimum-cost routing is compulsory in order to reduce overall operation cost that related with vehicles. In this article, we provide a combination of various heuristics algorithm to solve a real case of CARP in waste collection and benchmark instances. These heuristics work as a central engine in finding initial solutions or near-optimum in search space without violating the pre-setting constraints. The results clearly show that these heuristics algorithms could provide good initial solutions in both real-life and benchmark instances.
Parallel tridiagonal equation solvers
NASA Technical Reports Server (NTRS)
Stone, H. S.
1974-01-01
Three parallel algorithms were compared for the direct solution of tridiagonal linear systems of equations. The algorithms are suitable for computers such as ILLIAC 4 and CDC STAR. For array computers similar to ILLIAC 4, cyclic odd-even reduction has the least operation count for highly structured sets of equations, and recursive doubling has the least count for relatively unstructured sets of equations. Since the difference in operation counts for these two algorithms is not substantial, their relative running times may be more related to overhead operations, which are not measured in this paper. The third algorithm, based on Buneman's Poisson solver, has more arithmetic operations than the others, and appears to be the least favorable. For pipeline computers similar to CDC STAR, cyclic odd-even reduction appears to be the most preferable algorithm for all cases.
The development of a robust, efficient solver for spectral and spectral-element time discretizations
NASA Astrophysics Data System (ADS)
Mundis, Nathan L.
This work examines alternative time discretizations for the Euler equations and methods for the robust and efficient solution of these discretizations. Specifically, the time-spectral method (TS), quasi-periodic time-spectral method (BDFTS), and spectral-element method in time (SEMT) are derived and examined in detail. For the two time-spectral based methods, focus is given to expanding these methods for more complicated problems than have been typically solved by other authors, including problems with spectral content in a large number of harmonics, gust response problems, and aeroelastic problems. To solve these more complicated problems, it was necessary to implement the flexible variant of the Generalized Minimal Residual method (FGMRES), utilizing the full second-order accurate spatial Jacobian, complete temporal coupling of the chosen time discretization, and fully-implicit coupling of the aeroelastic equations in the cases where they are needed. The FGMRES solver developed utilizes a block-colored Gauss-Seidel (BCGS) preconditioner augmented by a defect-correction process to increase its effectiveness. Exploration of more efficient preconditioners for the FGMRES solver is an anticipated topic for future work in this field. It was a logical extension to apply this already developed FGMRES solver to the spectral-element method in time, which has some advantages over the spectral methods already discussed. Unlike purely-spectral methods, SEMT allows for bothh- and p-refinement. This property could allow for element clustering around areas of sharp gradients and discontinuities, which in turn could make SEMT more efficient than TS for periodic problems that contain these sharp gradients and would require many time instances to produce a precise solution using the TS method. As such, a preliminary investigation of the SEMT method applied to the Euler equations is conducted and some areas for needed improvement in future work are identified. In this work, it is
NASA Technical Reports Server (NTRS)
McCormick, S.; Ruge, John W.
1998-01-01
This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable.
Amesos2 Templated Direct Sparse Solver Package
2011-05-24
Amesos2 is a templated direct sparse solver package. Amesos2 provides interfaces to direct sparse solvers, rather than providing native solver capabilities. Amesos2 is a derivative work of the Trilinos package Amesos.
Generalized holographic dark energy and the IR cutoff problem
Guberina, B.; Horvat, R.; Nikolic, H.
2005-12-15
We consider a holographic dark energy model, in which both the cosmological-constant (CC) energy density {rho}{sub {lambda}} and the Newton constant G{sub N} are varying quantities, to study the problem of setting an effective field-theory IR cutoff. Assuming that ordinary matter scales canonically, we show that the continuity equation univocally fixes the IR cutoff, provided a law of variation for either {rho}{sub {lambda}} or G{sub N} is known. Previous considerations on holographic dark energy disfavor the Hubble parameter as a candidate for the IR cutoff (for spatially flat universes), since in this case the ratio of dark energy to dark matter is not allowed to vary, thus hindering a deceleration era of the universe for the redshifts z > or approx. 0.5. On the other hand, the future event horizon as a choice for the IR cutoff is being favored in the literature, although the 'coincidence problem' usually cannot be addressed in that case. We extend considerations to spatially curved universes, and show that with the Hubble parameter as a choice for the IR cutoff one always obtains a universe that never accelerates or a universe that accelerates all the time, thus making the transition from deceleration to acceleration impossible. Next, we apply the IR cutoff consistency procedure to a renormalization-group (RG) running CC model, in which the low-energy variation of the CC is due to quantum effects of particle fields having masses near the Planck scale. We show that bringing such a model (having the most general cosmology for running CC universes) in full accordance with holography amounts to having such an IR cutoff which scales as a square root of the Hubble parameter. We find that such a setup, in which the only undetermined input represents the true ground state of the vacuum, can give early deceleration as well as late-time acceleration. The possibility of further improvement of the model is also briefly indicated.
Problems in Communications with Patients in General Surgery Outpatient Practice
Yilmaz, Tonguc Utku; Gumus, Enes; Salman, Bulent
2015-01-01
Objective: Communication between the patient and physician is central to medical care. However communication skills in Turkey haven’t been gained so much concern. This situation effect the national quality of health care. Here, we tried to perform some basic communication skills and to find the problems with the possible solution suggestions. Materials and Methods: The study was conducted for a month in general surgery outpatient department located in the slum part of Ankara with low socio-economic population. Basic communication skills were performed. The age, sex, education levels of the patients were obtained. Total symptom expression and interview time were recorded. Previous medical histories were asked. Interruptions including telephone, door knocking were noted. The questions of the patients at the end of the interview classified as hospital setting, nutrition and treatment. Results: Total 410 interviews were analysed. Mean symptom expression and interview times were 22.9 sec and 7.05 min, respectively. Educated patients, males and young patients expressed symptoms longer than the others (p<0.05). There were 174 interruptions in which total interview time signifantly increased than the non interrupted ones (p<0.05). Final questions about hospital setting were signifantly higher in illiterate patients than the educated ones (p<0.05). Awareness of medical history is higher in educated and young patients. Conclusion: Basic communications skills can be performed whether in rural regions. Much more concern should be given to the education of communication skills. The obstacles in communication in medicine are low education levels, and unorganised health system. PMID:26644767
Towards general information theoretical representations of database problems
Joslyn, C.
1997-06-01
General database systems are described from the General Systems Theoretical (GST) framework. In this context traditional information theoretical (statistical) and general information theoretical (fuzzy measure and set theoretical, possibilistic, and random set theoretical) representations are derived. A preliminary formal framework is introduced.
A robust multilevel simultaneous eigenvalue solver
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1993-01-01
Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.
Parallel iterative solvers and preconditioners using approximate hierarchical methods
Grama, A.; Kumar, V.; Sameh, A.
1996-12-31
In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.
Problems with Single Interest Scales: Implications of the General Factor
ERIC Educational Resources Information Center
Tracey, Terence J. G.
2012-01-01
The presence of the general factor in interest and self-efficacy assessment and its meaning are reviewed. The general factor is found in all interest and self-efficacy assessment and has been viewed as (a) a nuisance factor with little effect on assessment, (b) a variable having substantive meaning and thus worthy of including in interpretation,…
Investigating the Problem of Skill Generalization: Literature Review III.
ERIC Educational Resources Information Center
Haring, Norris
The third in a series of literature reviews, this monograph presents three articles on skill generalization among individuals with severe disabilities. Kathleen A. Liberty analyzes the results of 15 studies to determine how teaching self-control affected students' performance in training and generalization, "Behavior-Control of Stimulus Events to…
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1991-01-01
An upwind three-dimensional volume Navier-Stokes code is modified to facilitate modeling of complex geometries and flow fields represented by proposed National Aerospace Plane concepts. Code enhancements include an equilibrium air model, a generalized equilibrium gas model and several schemes to simplify treatment of complex geometric configurations. The code is also restructured for inclusion of an arbitrary number of independent and dependent variables. This latter capability is intended for eventual use to incorporate nonequilibrium/chemistry gas models, more sophisticated turbulence and transition models, or other physical phenomena which will require inclusion of additional variables and/or governing equations. Comparisons of computed results with experimental data and results obtained using other methods are presented for code validation purposes. Good correlation is obtained for all of the test cases considered, indicating the success of the current effort.
Euler solvers for transonic applications
NASA Technical Reports Server (NTRS)
Vanleer, Bram
1989-01-01
The 1980s may well be called the Euler era of applied aerodynamics. Computer codes based on discrete approximations of the Euler equations are now routinely used to obtain solutions of transonic flow problems in which the effects of entropy and vorticity production are significant. Such codes can even predict separation from a sharp edge, owing to the inclusion of artificial dissipation, intended to lend numerical stability to the calculation but at the same time enforcing the Kutta condition. One effect not correctly predictable by Euler codes is the separation from a smooth surface, and neither is viscous drag; for these some form of the Navier-Stokes equation is needed. It, therefore, comes as no surprise to observe that the Navier-Stokes has already begun before Euler solutions were fully exploited. Moreover, most numerical developments for the Euler equations are now constrained by the requirement that the techniques introduced, notably artificial dissipation, must not interfere with the new physics added when going from an Euler to a full Navier-Stokes approximation. In order to appreciate the contributions of Euler solvers to the understanding of transonic aerodynamics, it is useful to review the components of these computational tools. Space discretization, time- or pseudo-time marching and boundary procedures, the essential constituents are discussed. The subject of grid generation and grid adaptation to the solution are touched upon only where relevant. A list of unanswered questions and an outlook for the future are covered.
ALPS - A LINEAR PROGRAM SOLVER
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given
AN ADAPTIVE PARTICLE-MESH GRAVITY SOLVER FOR ENZO
Passy, Jean-Claude; Bryan, Greg L.
2014-11-01
We describe and implement an adaptive particle-mesh algorithm to solve the Poisson equation for grid-based hydrodynamics codes with nested grids. The algorithm is implemented and extensively tested within the astrophysical code Enzo against the multigrid solver available by default. We find that while both algorithms show similar accuracy for smooth mass distributions, the adaptive particle-mesh algorithm is more accurate for the case of point masses, and is generally less noisy. We also demonstrate that the two-body problem can be solved accurately in a configuration with nested grids. In addition, we discuss the effect of subcycling, and demonstrate that evolving all the levels with the same timestep yields even greater precision.
NASA Astrophysics Data System (ADS)
Szeto, Alan Ka-Fai
This study explored how undergraduate students in a new problem-centered General Chemistry Laboratory curriculum achieved cognitive growth. The new curriculum had three instructional segments: the highly-structured, semi-structured, and open-ended segments. The pedagogical approaches adopted were expository, guided-inquiry, and open-inquiry styles, respectively. Sixty-seven first-year undergraduate students who enrolled in the course in Spring semester, 2000, at Columbia University and three Ph.D.-level chemistry experts were included in the study. A qualitative approach was used including data collection through "think-aloud" problem solving; however, quantitative data such as test scores were also used. The findings from this study confirmed that chemistry experts possessed sophisticated and domain-specific conceptual knowledge structures; they mobilized and applied conceptual knowledge in conjunction with use of heuristics, tacit knowledge, and experience in authentic problem solving. They validated the new curriculum design in preparing students for inquiry-type of problem solving. For novices, solving of semi-structured before ill-structured problems had a positive effect on the solvers' chance of success in solving the latter type of problems as their abilities to mobilize and apply conceptual knowledge and use effective strategies appeared to be critical for successful problem solving. Students in the new course curriculum had grown cognitively as evidenced by their performance on the Case Study projects and Final Examination. High academic achievers were found to perform well independently while the medium and relatively low academic achievers should benefit from sustained and intensive instruction. It is proposed that ill-structured problems should be used to assess and identify the best from the better students. Finally, it was found that no significant change in students' attitudes had resulted from their curriculum experience. Gender and cognitive style
A multigrid solver for the semiconductor equations
NASA Technical Reports Server (NTRS)
Bachmann, Bernhard
1993-01-01
We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.
The generalized pole assignment problem. [dynamic output feedback control systems
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
For some linear, strictly proper system given by its transfer function, two dynamic output feedback problems can be posed. The first one is that of using dynamic-output feedback to assign the closed-loop characteristic polynomial and the second that of assigning the closed-loop invariant factors. These problems and their interrelationships are discussed. The formulation is done in the frequency domain and the investigation carried out from an algebraic point of view, in terms of linear equations over rings of polynomials. Using the notion of genericity, several necessary and sufficient conditions are expressed.
Quantitative analysis of numerical solvers for oscillatory biomolecular system models
Quo, Chang F; Wang, May D
2008-01-01
Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible
GENERAL: A New Solution to Detectable Byzantine Agreement Problem
NASA Astrophysics Data System (ADS)
Qin, Su-Juan; Wen, Qiao-Yan; Meng, Luo-Ming; Zhu, Fu-Chen
2009-12-01
We present a new quantum protocol for solving detectable Byzantine agreement problem between three parties by employing one quantum key distribution protocol. The protocol is suggested by a special four-qubit entangled state instead of singlet states, which shows that singlet states are not necessary to achieve detectable Byzantine agreement.
On a problem of Berenstein-Gay and its generalizations
NASA Astrophysics Data System (ADS)
Volchkov, Valerii V.; Volchkov, Vitaly V.
2010-09-01
We obtain a solution of the Berenstein-Gay problem on the local analogue of spectral analysis on Riemannian symmetric spaces X of rank 1. The proof is based on constructing transmutation maps connected with eigenfunction expansions of the Laplace-Beltrami operator on X.
Awareness during general anesthesia: new technology for an old problem.
Halliburton, J R
1998-05-01
The possibility of awareness during general anesthesia causes apprehension for the patient and the Certified Registered Nurse Anesthetist (CRNA). The goals of general anesthesia are to prevent the sensation of pain and produce a state of sedation, hypnosis, and unconsciousness so the patient will not remember the surgical procedure. An inadequate level of anesthesia can result in patient awareness during surgery. The current practice of anesthesia relies on indirect hemodynamic measurements such as blood pressure and heart rate to monitor the sedative hypnotic state of the patient's brain during general anesthesia. Hemodynamic responses are not reliable for predicting awareness just as blood pressure and heart rate are not indicative of consciousness. Electroencephalogram (EEG) waveforms are known to be affected by anesthetics. Characteristic EEG waveforms are a direct indication of the patient's level of consciousness. Unprocessed and computer-processed EEG recordings have been used in an attempt to monitor the patient's level of consciousness during general anesthesia. A raw or unprocessed EEG recording to monitor the level of consciousness during general anesthesia is problematic. The EEG signal is complex, affected by artifact, and it requires a dedicated interpreter. Conventional processed EEG monitoring systems are problematic because of the complexity of the equipment and technical difficulty of reading the EEG recording. The purpose of this article is to describe the history of awareness during anesthesia and introduce a new processed EEG monitor, the Bispectral Index (BIS) (Aspect Medical Systems, Inc., Natick, MA) with implications for future clinical use and research. PMID:9726194
General aviation aircraft interior noise problem: Some suggested solutions
NASA Technical Reports Server (NTRS)
Roskam, J.; Navaneethan, R.
1984-01-01
Laboratory investigation of sound transmission through panels and the use of modern data analysis techniques applied to actual aircraft is used to determine methods to reduce general aviation interior noise. The experimental noise reduction characteristics of stiffened flat and curved panels with damping treatment are discussed. The experimental results of double-wall panels used in the general aviation industry are given. The effects of skin panel material, fiberglass insulation and trim panel material on the noise reduction characteristics of double-wall panels are investigated. With few modifications, the classical sound transmission theory can be used to design the interior noise control treatment of aircraft. Acoustic intensity and analysis procedures are included.
The Nonlinear Stokes Problem with General Potentials Having Superquadratic Growth
NASA Astrophysics Data System (ADS)
Breit, Dominic; Fuchs, Martin
2011-09-01
We discuss partial regularity results concerning local minimizers {u : mathbb{R}^3 supset Ω rightarrow mathbb{R}^3} of variational integrals of the form intlimits_{Ω}left\\{h(|\\varepsilon(w)|) - f \\cdot wright\\} dx defined on appropriate classes of solenoidal fields, where h is a N-function of rather general type. As a byproduct we obtain a theorem on partial C 1-regularity for weak solutions of certain non-uniformly elliptic Stokes-type systems modelling generalized Newtonian fluids.
NASA Technical Reports Server (NTRS)
Eidson, T. M.; Erlebacher, G.
1994-01-01
While parallel computers offer significant computational performance, it is generally necessary to evaluate several programming strategies. Two programming strategies for a fairly common problem - a periodic tridiagonal solver - are developed and evaluated. Simple model calculations as well as timing results are presented to evaluate the various strategies. The particular tridiagonal solver evaluated is used in many computational fluid dynamic simulation codes. The feature that makes this algorithm unique is that these simulation codes usually require simultaneous solutions for multiple right-hand-sides (RHS) of the system of equations. Each RHS solutions is independent and thus can be computed in parallel. Thus a Gaussian elimination type algorithm can be used in a parallel computation and the more complicated approaches such as cyclic reduction are not required. The two strategies are a transpose strategy and a distributed solver strategy. For the transpose strategy, the data is moved so that a subset of all the RHS problems is solved on each of the several processors. This usually requires significant data movement between processor memories across a network. The second strategy attempts to have the algorithm allow the data across processor boundaries in a chained manner. This usually requires significantly less data movement. An approach to accomplish this second strategy in a near-perfect load-balanced manner is developed. In addition, an algorithm will be shown to directly transform a sequential Gaussian elimination type algorithm into the parallel chained, load-balanced algorithm.
Needed: A New Generation of Problem Solvers
ERIC Educational Resources Information Center
McArthur, John W.; Sachs, Jeffrey
2009-01-01
Amid the global economic crisis dominating policy makers' recent attention, the world faces many other equal if not greater long-term challenges that will require concerted and highly skilled policy efforts in coming years. Those interwoven challenges include the mitigation of climate change, the control of emerging diseases, the reduction of…
Cultivating Creative Problem Solvers: The PBL Style
ERIC Educational Resources Information Center
Hung, Woei
2015-01-01
After decades of research, we now know that creativity is a multidimensional construct that involves variables from the domains of personality, environment, and cognition. A construct with such level of complexity, as we know from past research, cannot be effectively learned through traditional lecture-based instruction. Rather, the formation of…
Numerical Solvers for Generalized Algebraic Riccati Equations
NASA Astrophysics Data System (ADS)
Ivanov, I. G.; Rusinova, R. I.
2009-10-01
We consider a new type nonlinear matrix equation. We investigate the existence a positive definite solution and two iterative methods for computing this solution. The first method is the classical Newton procedure and the second is a new Stein iteration. In this paper it is proved that a new Stein iteration has convergence properties to those of the Newton iteration.
NASA Astrophysics Data System (ADS)
Gasymov, E. A.; Guseinova, A. O.; Gasanova, U. N.
2016-07-01
One of the methods for solving mixed problems is the classical separation of variables (the Fourier method). If the boundary conditions of the mixed problem are irregular, this method, generally speaking, is not applicable. In the present paper, a generalized separation of variables and a way of application of this method to solving some mixed problems with irregular boundary conditions are proposed. Analytical representation of the solution to this irregular mixed problem is obtained.
Generalized monotonically convergent algorithms for solving quantum optimal control problems
NASA Astrophysics Data System (ADS)
Ohtsuki, Yukiyoshi; Turinici, Gabriel; Rabitz, Herschel
2004-03-01
A wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence. Numerical tests are implemented in four-level model systems employing stationary and/or nonstationary targets in the absence and/or presence of relaxation. Trajectory plots that conveniently present the global nature of the convergence behavior show that slow convergence may often be attributed to "trapping" and that relaxation processes may remove such unfavorable behavior.
Generalized monotonically convergent algorithms for solving quantum optimal control problems.
Ohtsuki, Yukiyoshi; Turinici, Gabriel; Rabitz, Herschel
2004-03-22
A wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence. Numerical tests are implemented in four-level model systems employing stationary and/or nonstationary targets in the absence and/or presence of relaxation. Trajectory plots that conveniently present the global nature of the convergence behavior show that slow convergence may often be attributed to "trapping" and that relaxation processes may remove such unfavorable behavior. PMID:15267426
Generalized single-hidden layer feedforward networks for regression problems.
Wang, Ning; Er, Meng Joo; Han, Min
2015-06-01
In this paper, traditional single-hidden layer feedforward network (SLFN) is extended to novel generalized SLFN (GSLFN) by employing polynomial functions of inputs as output weights connecting randomly generated hidden units with corresponding output nodes. The significant contributions of this paper are as follows: 1) a primal GSLFN (P-GSLFN) is implemented using randomly generated hidden nodes and polynomial output weights whereby the regression matrix is augmented by full or partial input variables and only polynomial coefficients are to be estimated; 2) a simplified GSLFN (S-GSLFN) is realized by decomposing the polynomial output weights of the P-GSLFN into randomly generated polynomial nodes and tunable output weights; 3) both P- and S-GSLFN are able to achieve universal approximation if the output weights are tuned by ridge regression estimators; and 4) by virtue of the developed batch and online sequential ridge ELM (BR-ELM and OSR-ELM) learning algorithms, high performance of the proposed GSLFNs in terms of generalization and learning speed is guaranteed. Comprehensive simulation studies and comparisons with standard SLFNs are carried out on real-world regression benchmark data sets. Simulation results demonstrate that the innovative GSLFNs using BR-ELM and OSR-ELM are superior to standard SLFNs in terms of accuracy, training speed, and structure compactness.
Matrix general relativity: a new look at old problems
NASA Astrophysics Data System (ADS)
Avramidi, Ivan G.
2004-01-01
We develop a novel approach to gravity that we call 'matrix general relativity' (MGR) or 'gravitational chromodynamics' (GCD or GQCD for the quantum version). Gravity is described in this approach not by one Riemannian metric (i.e. a symmetric two-tensor field) but by a multiplet of such fields, or by a matrix-valued symmetric two-tensor field that satisfies certain conditions. We define the matrix extensions of standard constructions of differential geometry including connections and curvatures, and finally, an invariant functional of the new field that reduces to the standard Einstein action functional in the commutative (diagonal) case. Our main idea is the analogy with Yang Mills theory (QCD and the standard model). We call the new degrees of freedom of gravity associated with the matrix structure 'gravitational colour' or simply 'gravicolour' and introduce a new gauge symmetry associated with this degree of freedom. As in the standard model there are two possibilities. First of all, it is possible that at high energies (say at the Planckian scale) this symmetry is exact (symmetric phase), but at low energies it is badly broken, so that one tensor field remains massless (and gives general relativity) and the other ones become massive with masses of Planckian scale. The second possibility is that the additional degrees of freedom of the gravitational field are confined to the Planckian scale. What one sees at large distances are singlets (invariants) of the new gauge symmetry.
Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics
NASA Astrophysics Data System (ADS)
Spiegelman, M. W.; May, D.; Wilson, C. R.
2014-12-01
Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to
User documentation for PVODE, an ODE solver for parallel computers
Hindmarsh, A.C., LLNL
1998-05-01
PVODE is a general purpose ordinary differential equation (ODE) solver for stiff and nonstiff ODES It is based on CVODE [5] [6], which is written in ANSI- standard C PVODE uses MPI (Message-Passing Interface) [8] and a revised version of the vector module in CVODE to achieve parallelism and portability PVODE is intended for the SPMD (Single Program Multiple Data) environment with distributed memory, in which all vectors are identically distributed across processors In particular, the vector module is designed to help the user assign a contiguous segment of a given vector to each of the processors for parallel computation The idea is for each processor to solve a certain fixed subset of the ODES To better understand PVODE, we first need to understand CVODE and its historical background The ODE solver CVODE, which was written by Cohen and Hindmarsh, combines features of two earlier Fortran codes, VODE [l] and VODPK [3] Those two codes were written by Brown, Byrne, and Hindmarsh. Both use variable-coefficient multi-step integration methods, and address both stiff and nonstiff systems (Stiffness is defined as the presence of one or more very small damping time constants ) VODE uses direct linear algebraic techniques to solve the underlying banded or dense linear systems of equations in conjunction with a modified Newton method in the stiff ODE case On the other hand, VODPK uses a preconditioned Krylov iterative method [2] to solve the underlying linear system User-supplied preconditioners directly address the dominant source of stiffness Consequently, CVODE implements both the direct and iterative methods Currently, with regard to the nonlinear and linear system solution, PVODE has three method options available. functional iteration, Newton iteration with a diagonal approximate Jacobian, and Newton iteration with the iterative method SPGMR (Scaled Preconditioned Generalized Minimal Residual method) Both CVODE and PVODE are written in such a way that other linear
A multiple right hand side iterative solver for history matching
Killough, J.E.; Sharma, Y.; Dupuy, A.; Bissell, R.; Wallis, J.
1995-12-31
History matching of oil and gas reservoirs can be accelerated by directly calculating the gradients of observed quantities (e.g., well pressure) with respect to the adjustable reserve parameters (e.g., permeability). This leads to a set of linear equations which add a significant overhead to the full simulation run without gradients. Direct Gauss elimination solvers can be used to address this problem by performing the factorization of the matrix only once and then reusing the factor matrix for the solution of the multiple right hand sides. This is a limited technique, however. Experience has shown that problems with greater than few thousand cells may not be practical for direct solvers because of computation time and memory limitations. This paper discusses the implementation of a multiple right hand side iterative linear equation solver (MRHS) for a system of adjoint equations to significantly enhance the performance of a gradient simulator.
NASA Technical Reports Server (NTRS)
Hersey, Mayo D
1923-01-01
This report is intended as a technical introduction to the series of reports on aeronautic instruments. It presents a discussion of those subjects which are common to all instruments. First, a general classification is given, embracing all types of instruments used in aeronautics. Finally, a classification is given of the various problems confronted by the instrument expert and investigator. In this way the following groups of problems are brought up for consideration: problems of mechanical design, human factor, manufacturing problems, supply and selection of instruments, problems concerning the technique of testing, problems of installation, problems concerning the use of instruments, problems of maintenance, and physical research problems. This enumeration of problems which are common to instruments in general serves to indicate the different points of view which should be kept in mind in approaching the study of any particular instrument.
The novel high-performance 3-D MT inverse solver
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey
2016-04-01
We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.
A GPU-accelerated flow solver for incompressible two-phase fluid flows
NASA Astrophysics Data System (ADS)
Codyer, Stephen; Raessi, Mehdi; Khanna, Gaurav
2011-11-01
We present a numerical solver for incompressible, immiscible, two-phase fluid flows that is accelerated by using Graphics Processing Units (GPUs). The Navier-Stokes equations are solved by the projection method, which involves solving a pressure Poisson problem at each time step. A second-order discretization of the Poisson problem leads to a sparse matrix with five and seven diagonals for two- and three-dimensional simulations, respectively. Running a serial linear algebra solver on a single CPU can take 50-99.9% of the total simulation time to solve the above system for pressure. To remove this bottleneck, we utilized the large parallelization capabilities of GPUs; we developed a linear algebra solver based on the conjugate gradient iterative method (CGIM) by using CUDA 4.0 libraries and compared its performance with CUSP, an open-source, GPU library for linear algebra. Compared to running the CGIM solver on a single CPU core, for a 2D case, our GPU solver yields speedups of up to 88x in solver time and 81x overall time on a single GPU card. In 3D cases, the speedups are up to 81x (solver) and 15x (overall). Speedup is faster at higher grid resolutions and our GPU solver outperforms CUSP. Current work examines the acceleration versus a parallel CGIM CPU solver.
An amoeboid algorithm for solving linear transportation problem
NASA Astrophysics Data System (ADS)
Gao, Cai; Yan, Chao; Zhang, Zili; Hu, Yong; Mahadevan, Sankaran; Deng, Yong
2014-03-01
Transportation Problem (TP) is one of the basic operational research problems, which plays an important role in many practical applications. In this paper, a bio-inspired mathematical model is proposed to handle the Linear Transportation Problem (LTP) in directed networks by modifying the original amoeba model Physarum Solver. Several examples are used to prove that the provided model can effectively solve Balanced Transportation Problem (BTP), Unbalanced Transportation Problem (UTP), especially the Generalized Transportation Problem (GTP), in a nondiscrete way.
Optimising a parallel conjugate gradient solver
Field, M.R.
1996-12-31
This work arises from the introduction of a parallel iterative solver to a large structural analysis finite element code. The code is called FEX and it was developed at Hitachi`s Mechanical Engineering Laboratory. The FEX package can deal with a large range of structural analysis problems using a large number of finite element techniques. FEX can solve either stress or thermal analysis problems of a range of different types from plane stress to a full three-dimensional model. These problems can consist of a number of different materials which can be modelled by a range of material models. The structure being modelled can have the load applied at either a point or a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a thermal load can be applied with a given initial temperature. The displacement of the structure can be constrained by having a fixed boundary or by prescribing the displacement at a boundary.
ERIC Educational Resources Information Center
Ekici, Didem Inel
2016-01-01
This study aimed to determine Turkish junior high-school students' perceptions of the general problem-solving process. The Turkish junior high-school students' perceptions of the general problem-solving process were examined in relation to their gender, grade level, age and their grade point with regards to the science course identified in the…
A block iterative LU solver for weakly coupled linear systems. [in fluid dynamics equations
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1977-01-01
A hybrid technique, called the block iterative LU solver, is proposed for solving the linear equations resulting from a finite element numerical analysis of certain fluid dynamics problems where the equations are weakly coupled between distinct sets of variables. Either the block Jacobi iterative method or the block Gauss-Seidel iterative solver is combined with LU decomposition.
Multilevel solvers of first-order system least-squares for Stokes equations
Lai, Chen-Yao G.
1996-12-31
Recently, The use of first-order system least squares principle for the approximate solution of Stokes problems has been extensively studied by Cai, Manteuffel, and McCormick. In this paper, we study multilevel solvers of first-order system least-squares method for the generalized Stokes equations based on the velocity-vorticity-pressure formulation in three dimensions. The least-squares functionals is defined to be the sum of the L{sup 2}-norms of the residuals, which is weighted appropriately by the Reynolds number. We develop convergence analysis for additive and multiplicative multilevel methods applied to the resulting discrete equations.
How to Compute Green's Functions for Entire Mass Trajectories Within Krylov Solvers
NASA Astrophysics Data System (ADS)
Glässner, Uwe; Güsken, Stephan; Lippert, Thomas; Ritzenhöfer, Gero; Schilling, Klaus; Frommer, Andreas
The availability of efficient Krylov subspace solvers plays a vital role in the solution of a variety of numerical problems in computational science. Here we consider lattice field theory. We present a new general numerical method to compute many Green's functions for complex non-singular matrices within one iteration process. Our procedure applies to matrices of structure A = D - m, with m proportional to the unit matrix, and can be integrated within any Krylov subspace solver. We can compute the derivatives x(n) of the solution vector x with respect to the parameter m and construct the Taylor expansion of x around m. We demonstrate the advantages of our method using a minimal residual solver. Here the procedure requires one intermediate vector for each Green's function to compute. As real-life example, we determine a mass trajectory of the Wilson fermion matrix for lattice QCD. Here we find that we can obtain Green's functions at all masses ≥ m at the price of one inversion at mass m.
Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics
NASA Astrophysics Data System (ADS)
Brio, M.; Zakharian, A. R.; Webb, G. M.
2001-02-01
We construct a Riemann solver based on two-dimensional linear wave contributions to the numerical flux that generalizes the one-dimensional method due to Roe (1981, J. Comput. Phys.43, 157). The solver is based on a multistate Riemann problem and is suitable for arbitrary triangular grids or any other finite volume tessellations of the plane. We present numerical examples illustrating the performance of the method using both first- and second-order-accurate numerical solutions. The numerical flux contributions are due to one-dimensional waves and multidimensional waves originating from the corners of the computational cell. Under appropriate CFL restrictions, the contributions of one-dimensional waves dominate the flux, which explains good performance of dimensionally split solvers in practice. The multidimensional flux corrections increase the accuracy and stability, allowing a larger time step. The improvements are more pronounced on a coarse mesh and for large CFL numbers. For the second-order method, the improvements can be comparable to the improvements resulting from a less diffusive limiter.
A Radiation Transfer Solver for Athena Using Short Characteristics
NASA Astrophysics Data System (ADS)
Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei
2012-03-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.
Periodic orbits in the Planar General Three-Body Problem. [with applications to solar system
NASA Technical Reports Server (NTRS)
Broucke, R.; Boggs, D.
1975-01-01
The article contains a numerical study of periodic solutions of the Planar General Three-Body Problem. Several new periodic solutions have been discovered and are described. In particular, there is a continuous family with variable masses, extending all the way from the elliptic restricted problem to the general problem with three equal masses. All our examples have special symmetry properties which are described in detail. Finally we also suggest some important applications to the natural satellites of the solar system.
LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators
NASA Astrophysics Data System (ADS)
Gonzalez, Juan; Núñez, Rafael C.
2009-07-01
We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.
Numerical System Solver Developed for the National Cycle Program
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1999-01-01
As part of the National Cycle Program (NCP), a powerful new numerical solver has been developed to support the simulation of aeropropulsion systems. This software uses a hierarchical object-oriented design. It can provide steady-state and time-dependent solutions to nonlinear and even discontinuous problems typically encountered when aircraft and spacecraft propulsion systems are simulated. It also can handle constrained solutions, in which one or more factors may limit the behavior of the engine system. Timedependent simulation capabilities include adaptive time-stepping and synchronization with digital control elements. The NCP solver is playing an important role in making the NCP a flexible, powerful, and reliable simulation package.
Barlow, D H; Brockie, J A; Rees, C M
1991-01-01
OBJECTIVE--To investigate the nature of work related to the menopause in general practice. DESIGN--Questionnaire study over six months among general practitioners after each consultation with a woman aged 40-69 at which issues related to the climacteric had been discussed. SETTING--9 General practices in the Oxford area. SUBJECTS--416 Women who had 572 consultations. MAIN OUTCOME MEASURES--Age, menopausal state, and first or subsequent consultation. Symptoms were classified together with the treatment and the outcome of the consultation. RESULTS--The consultation rate varied greatly between practices, the overall rate being 4.4%. There were many premenopausal women and women in their 60s presenting; women with hysterectomies presented more often--36% (37/103) of women with hysterectomies had more than one consultation compared with 26% (38/144) for premenopausal women and 24% (38/155) for postmenopausal women. 409 women had symptoms and 218 were prescribed oestrogen treatment. 156 of the consultations involved discussion and advice only. Only four women were referred to a local specialist clinic. CONCLUSION--There is a low overall use of hormone replacement therapy in the general postmenopausal population despite the recent media coverage of its benefits in the prevention of osteoporosis and subsequent fractures. PMID:1998795
A Look at the Generalized Heron Problem through the Lens of Majorization-Minimization
Chi, Eric C.; Lange, Kenneth
2013-01-01
In a recent issue of this journal, Mordukhovich, Nam, and Salinas pose and solve an interesting non-differentiable generalization of the Heron problem in the framework of modern convex analysis. In the generalized Heron problem, one is given k + 1 closed convex sets in ℝd equipped with its Euclidean norm and asked to find the point in the last set such that the sum of the distances to the first k sets is minimal. In later work, the authors generalize the Heron problem even further, relax its convexity assumptions, study its theoretical properties, and pursue subgradient algorithms for solving the convex case. Here, we revisit the original problem solely from the numerical perspective. By exploiting the majorization-minimization (MM) principle of computational statistics and rudimentary techniques from differential calculus, we are able to construct a very fast algorithm for solving the Euclidean version of the generalized Heron problem. PMID:25242816
Parallel solver for trajectory optimization search directions
NASA Technical Reports Server (NTRS)
Psiaki, M. L.; Park, K. H.
1992-01-01
A key algorithmic element of a real-time trajectory optimization hardware/software implementation is presented, the search step solver. This is one piece of an algorithm whose overall goal is to make nonlinear trajectory optimization fast enough to provide real-time commands during guidance of a vehicle such as an aeromaneuvering orbiter or the National Aerospace Plane. Many methods of nonlinear programming require the solution of a quadratic program (QP) at each iteration to determine the search step. In the trajectory optimization case, the QP has a special dynamic programming structure. The algorithm exploits this special structure with a divide- and conquer type of parallel implementation. The algorithm solves a (p.N)-stage problem on N processors in O(p + log2 N) operations. The algorithm yields a factor of 8 speed-up over the fastest known serial algorithm when solving a 1024-stage test problem on 32 processors.
Time-domain Raman analytical forward solvers.
Martelli, Fabrizio; Binzoni, Tiziano; Sekar, Sanathana Konugolu Venkata; Farina, Andrea; Cavalieri, Stefano; Pifferi, Antonio
2016-09-01
A set of time-domain analytical forward solvers for Raman signals detected from homogeneous diffusive media is presented. The time-domain solvers have been developed for two geometries: the parallelepiped and the finite cylinder. The potential presence of a background fluorescence emission, contaminating the Raman signal, has also been taken into account. All the solvers have been obtained as solutions of the time dependent diffusion equation. The validation of the solvers has been performed by means of comparisons with the results of "gold standard" Monte Carlo simulations. These forward solvers provide an accurate tool to explore the information content encoded in the time-resolved Raman measurements. PMID:27607645
Coordinate Projection-based Solver for ODE with Invariants
2008-04-08
CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.
Performance Models for the Spike Banded Linear System Solver
Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; Grama, Ananth
2011-01-01
With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated
Using the scalable nonlinear equations solvers package
Gropp, W.D.; McInnes, L.C.; Smith, B.F.
1995-02-01
SNES (Scalable Nonlinear Equations Solvers) is a software package for the numerical solution of large-scale systems of nonlinear equations on both uniprocessors and parallel architectures. SNES also contains a component for the solution of unconstrained minimization problems, called SUMS (Scalable Unconstrained Minimization Solvers). Newton-like methods, which are known for their efficiency and robustness, constitute the core of the package. As part of the multilevel PETSc library, SNES incorporates many features and options from other parts of PETSc. In keeping with the spirit of the PETSc library, the nonlinear solution routines are data-structure-neutral, making them flexible and easily extensible. This users guide contains a detailed description of uniprocessor usage of SNES, with some added comments regarding multiprocessor usage. At this time the parallel version is undergoing refinement and extension, as we work toward a common interface for the uniprocessor and parallel cases. Thus, forthcoming versions of the software will contain additional features, and changes to parallel interface may result at any time. The new parallel version will employ the MPI (Message Passing Interface) standard for interprocessor communication. Since most of these details will be hidden, users will need to perform only minimal message-passing programming.
On code verification of RANS solvers
NASA Astrophysics Data System (ADS)
Eça, L.; Klaij, C. M.; Vaz, G.; Hoekstra, M.; Pereira, F. S.
2016-04-01
This article discusses Code Verification of Reynolds-Averaged Navier Stokes (RANS) solvers that rely on face based finite volume discretizations for volumes of arbitrary shape. The study includes test cases with known analytical solutions (generated with the method of manufactured solutions) corresponding to laminar and turbulent flow, with the latter using eddy-viscosity turbulence models. The procedure to perform Code Verification based on grid refinement studies is discussed and the requirements for its correct application are illustrated in a simple one-dimensional problem. It is shown that geometrically similar grids are recommended for proper Code Verification and so the data should not have scatter making the use of least square fits unnecessary. Results show that it may be advantageous to determine the extrapolated error to cell size/time step zero instead of assuming that it is zero, especially when it is hard to determine the asymptotic order of grid convergence. In the RANS examples, several of the features of the ReFRESCO solver are checked including the effects of the available turbulence models in the convergence properties of the code. It is shown that it is required to account for non-orthogonality effects in the discretization of the diffusion terms and that the turbulence quantities transport equations can deteriorate the order of grid convergence of mean flow quantities.
Cederlöf, Martin; Pettersson, Erik; Sariaslan, Amir; Larsson, Henrik; Östberg, Per; Kelleher, Ian; Långström, Niklas; Gumpert, Clara Hellner; Lundström, Sebastian; Lichtenstein, Paul
2016-03-01
Studies suggest associations between childhood autistic traits and adolescent psychotic experiences. However, recent research suggests that a general neuropsychiatric problems factor predicts adverse outcomes better than specific diagnostic entities. To examine if the alleged association between autistic traits and psychotic experiences could rather be explained by a general neuropsychiatric problems factor comprising symptoms of ADHD, tic disorder, developmental coordination disorder, and learning disorder, we conducted a prospective cohort study based on the Child and Adolescent Twin Study in Sweden. In addition, we examined the genetic and environmental influences on the associations. A total of 9,282 twins with data on childhood autistic traits and other neuropsychiatric problems, and follow-up data on psychotic experiences at ages 15 and/or 18 years were included. First, psychotic experiences were regressed on autistic traits and second, the general neuropsychiatric problems factor was added to the model. Auditory hallucinations were analyzed separately from the other psychotic experiences. Finally, twin analyses were employed to disentangle genetic from environmental influences in the observed associations. Replicating prior research, significant associations were found between autistic traits in childhood and auditory hallucinations at ages 15 and 18. However, after controlling for the general neuropsychiatric problems factor, the associations between autistic traits and auditory hallucinations disappeared, whereas the association between the general neuropsychiatric problems factor and auditory hallucinations persisted after controlling for autistic traits. Twin analyses revealed that the association between the general neuropsychiatric problems factor and auditory hallucinations was driven by shared genetic influences. © 2015 Wiley Periodicals, Inc. PMID:26464122
Shanahan, Lilly; Copeland, William E.; Angold, Adrian; Bondy, Carmen L.; Costello, E. Jane
2014-01-01
Objective We tested whether sleep problems co-occur with, precede, and/or follow common psychiatric disorders during childhood and adolescence. We also clarified the role of comorbidity, and tested for specificity of associations among sleep problems and psychiatric disorders. Method Data came from the Great Smoky Mountains Study, a representative population sample of 1,420 children, assessed 4 to 7 times per person between ages 9 and 16 for major DSM-IV disorders and sleep problems. Sleep-related symptoms were removed from diagnostic criteria when applicable. Results Sleep problems during childhood and adolescence were common, with restless sleep and difficulty falling asleep being the most common symptoms. Cross-sectional analyses showed that sleep problems co-occurred with many psychiatric disorders. Longitudinal analyses revealed that sleep problems predicted increases in the prevalence of later generalized anxiety disorder and high generalized anxiety disorder/depression symptoms, and oppositional defiant disorder. In turn, generalized anxiety disorder and/or depression and oppositional defiant disorder predicted increases in sleep problems over time. Conclusions Sleep problems both predict and are predicted by a diagnostic cluster that includes oppositional defiant disorder, generalized anxiety disorder and depression. Screening children for sleep problems could offer promising opportunities for reducing the burden from mental illness during the early life course. PMID:24745954
On unstructured grids and solvers
NASA Technical Reports Server (NTRS)
Barth, T. J.
1990-01-01
The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.
van den Brink-Muinen, A; de Bakker, D H; Bensing, J M
1994-01-01
AIM. This study set out to examine the degree to which women choose to visit a woman doctor for women's health problems and the determinants of this choice. The differences between women and men doctors with regard to treating women's health problems were also studied. METHOD. Data from the Dutch national survey of general practice were used. All group practices with both women and men general practitioners were selected. Analyses were restricted to consultations among women aged 15-65 years about menstruation, the menopause, vaginal discharge, breast examination and cervical smear tests. RESULts. Given the size of their female practice population, women doctors saw considerably more women with women's health problems than did their male colleagues. Women were more likely to consult a woman general practitioner if she was more available (that is, working longer hours), and younger women were more likely than older women to choose women general practitioners. Sex differences in the treatment of women's health problems were small and mainly related to the verbal part of the consultation: counselling and providing information. The doctors' availability and their certainty about the working diagnosis explained differences in the verbal aspects of consultations. Women general practitioners had longer consultations than their male colleagues mainly because more health problems were presented per consultation. CONCLUSION. In order to increase the possibility of patients choosing women general practitioners, policy should be directed towards the education of more women general practitioners and women general practitioners should be encouraged to work more days a week. PMID:8204333
Generalized 2D problem of icosahedral quasicrystals containing an elliptic hole
NASA Astrophysics Data System (ADS)
Li, Lian-He
2013-11-01
The generalized 2D problem of icosahedral quasicrystals containing an elliptic hole is considered by using the extended Stroh formalism. The closed-form solutions for the displacements and stresses are obtained under general loading conditions. The solution of the Griffith crack problem as a special case of the results is also observed. The stress intensity factor and strain energy release rate are given. The effect of the phonon—phason coupling elastic constant on the mechanical behavior is also discussed.
Generalized solutions to Protter problems for 3-D Keldysh type equations
NASA Astrophysics Data System (ADS)
Hristov, T.; Popivanov, N.; Schneider, M.
2014-12-01
Some three-dimensional boundary value problems for equations of Keldysh type are studied. Such type problems, but for equations of Tricomi type are stated by M. H. Protter [25] as 3-D analogues of Darboux or Cauchy-Goursat plane problems. It is well known that in contrast of well-posedness of 2D problems, the Protter problems are strongly ill-posed. In [12] Protter problem for Keldysh type equations is formulated and it is shown that it is not correctly set since the homogeneous adjoint problem has infinitely many nontrivial classical solutions. In the present paper a notion for generalized solution to Protter problem for Keldysh type equations is introduced. Further, results for existence and uniqueness of such solution are obtained.
Some properties of eigenvalues and generalized eigenvectors of one boundary-value problem
NASA Astrophysics Data System (ADS)
Olgar, Hayati; Mukhtarov, Oktay; Aydemir, Kadriye
2016-08-01
We investigate a discontinuous boundary value problem which consists of a Sturm-Liouville equation with piece-wise continuous potential together with eigenparameter-dependent boundary conditions and supplementary transmission conditions. We establish some spectral properties of the considered problem. In particular it is shown that the generalized eigen-functions form a Riesz basis of the adequate Hilbert space.
An automatic ordering method for incomplete factorization iterative solvers
Forsyth, P.A.; Tang, W.P. . Dept. of Computer Science); D'Azevedo, E.F.D. )
1991-01-01
The minimum discarded fill (MDF) ordering strategy for incomplete factorization iterative solvers is developed. MDF ordering is demonstrated for several model son-symmetric problems, as well as a water-flooding simulation which uses an unstructured grid. The model problems show a three to five fold decrease in the number of iterations compared to natural orderings. Greater than twofold improvement was observed for the waterflooding simulation. 26 refs., 7 figs., 3 tabs.
Generalized Compliance Training: A Direct Instruction Program for Managing Severe Behavior Problems.
ERIC Educational Resources Information Center
Colvin, Geoffrey; And Others
Five case studies illustrate the use of generalized compliance training with students who have severe behavior problems. Based on extinction and generalization processes, the approach consists of five phases: (1) assessment to determine the nature and severity of noncompliance; (2)initial instruction demonstrating the consequences of compliance…
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.
1990-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
Robust large-scale parallel nonlinear solvers for simulations.
Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson
2005-11-01
This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write
Guevremont, D C; Foster, S L
1993-02-01
This study examined the impact of social problem-solving training on the behavior of five aggressive boys. Acquisition of problem-solving skills and changes in classroom behavior were evaluated using multiple-baseline designs within and across subjects. A generalization-programming procedure to promote the use of problem-solving skills in the natural environment was introduced across children in multiple-baseline fashion. Direct observation and behavior ratings were used to evaluate the treatment. Results indicated that each subject acquired the problem-solving skills at levels comparable to well-adjusted peers. Only one child showed behavioral improvement coincident with problem-solving skill acquisition. Three others showed moderate behavior change after the generalization-programming procedure was introduced. Only one child's gains on teacher ratings were maintained at the 6-month followup. The results suggest that cognitive-behavioral treatment of childrens' aggressive behavior may produce changes of limited magnitude and durability.
Teaching Problem Solving: Don't Forget the Problem Solver(s)
ERIC Educational Resources Information Center
Ranade, Saidas M.; Corrales, Angela
2013-01-01
The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the…
A recurrent neural network for solving a class of generalized convex optimization problems.
Hosseini, Alireza; Wang, Jun; Hosseini, S Mohammad
2013-08-01
In this paper, we propose a penalty-based recurrent neural network for solving a class of constrained optimization problems with generalized convex objective functions. The model has a simple structure described by using a differential inclusion. It is also applicable for any nonsmooth optimization problem with affine equality and convex inequality constraints, provided that the objective function is regular and pseudoconvex on feasible region of the problem. It is proven herein that the state vector of the proposed neural network globally converges to and stays thereafter in the feasible region in finite time, and converges to the optimal solution set of the problem.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient. PMID:27547676
The general form of 0-1 programming problem based on DNA computing.
ZhiXiang, Yin; Fengyue, Zhang; Jin, Xu
2003-06-01
DNA computing is a novel method of solving a class of intractable computational problems, in which the computing speeds up exponentially with the problem size. Up to now, many accomplishments have been made to improve its performance and increase its reliability. In this paper, we solved the general form of 0-1 programming problem with fluorescence labeling techniques based on surface chemistry by attempting to apply DNA computing to a programming problem. Our method has some significant advantages such as simple encoding, low cost, and short operating time.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Zhuang, Yu
1997-01-01
In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.
Linear solvers on multiprocessor machines
Kalogerakis, M.A.
1986-01-01
Two new methods are introduced for the parallel solution of banded linear systems on multiprocessor machines. Moreover, some new techniques are obtained as variations of the two methods that are applicable to special instances of the problem. Comparisons with the best known methods are performed, from which it is concluded that the two methods are superior, while their variations for special instances are, in general, competitive and in some cases best. In the process, some new results on the parallel prefix problem are obtained and a new design for this problem is presented that is suitable for VLSI implementation. Furthermore, a general model is introduced for the analysis and classification of methods that are based on row transformations of matrices. It is seen that most known methods are included in this model. It is demonstrated that this model may be used as a basis for the analysis as well as the generation of important aspects of those methods, such as their arithmetic complexity and interprocessor communication requirements.
Direct linear programming solver in C for structural applications
NASA Astrophysics Data System (ADS)
Damkilde, L.; Hoyer, O.; Krenk, S.
1994-08-01
An optimization problem can be characterized by an object-function, which is maximized, and restrictions, which limit the variation of the variables. A subclass of optimization is Linear Programming (LP), where both the object-function and the restrictions are linear functions of the variables. The traditional solution methods for LP problems are based on the simplex method, and it is customary to allow only non-negative variables. Compared to other optimization routines the LP solvers are more robust and the optimum is reached in a finite number of steps and is not sensitive to the starting point. For structural applications many optimization problems can be linearized and solved by LP routines. However, the structural variables are not always non-negative, and this requires a reformation, where a variable x is substituted by the difference of two non-negative variables, x(sup + ) and x(sup - ). The transformation causes a doubling of the number of variables, and in a computer implementation the memory allocation doubles and for a typical problem the execution time at least doubles. This paper describes a LP solver written in C, which can handle a combination of non-negative variables and unlimited variables. The LP solver also allows restart, and this may reduce the computational costs if the solution to a similar LP problem is known a priori. The algorithm is based on the simplex method, and differs only in the logical choices. Application of the new LP solver will at the same time give both a more direct problem formulation and a more efficient program.
Trajectories of gambling problems from mid-adolescence to age 30 in a general population cohort.
Carbonneau, René; Vitaro, Frank; Brendgen, Mara; Tremblay, Richard E
2015-12-01
Studies of gambling starting before adulthood in the general population are either cross-sectional, based on the stability of these behaviors between 2 time points, or cover a short developmental period. The present study aimed at investigating the developmental trajectories of gambling problems across 3 key periods of development, mid-adolescence, early adulthood, and age 30, in a mixed-gender cohort from the general population. Using a semiparametric mixture model, trajectories were computed based on self-reports collected at ages 15 (N = 1,882), 22 (N = 1,785), and 30 (N = 1,358). Two distinct trajectories were identified: 1 trajectory including males and females who were unlikely to have experienced gambling problems across the 15-year period, and 1 trajectory including participants likely to have experienced at least 1 problem over the last 12 months at each time of assessment. Participants following a high trajectory were predominantly male, participated frequently in 3 to 4 different gambling activities, and were more likely to report substance use and problems related to their alcohol and drug consumption at age 30. Thus, gambling problems in the general population are already observable at age 15 in a small group of individuals, who maintain some level of these problems through early adulthood, before moderately but significantly desisting by age 30, while also experiencing other addictive behaviors and related problems. PMID:26168229
A general optimality criteria algorithm for a class of engineering optimization problems
NASA Astrophysics Data System (ADS)
Belegundu, Ashok D.
2015-05-01
An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.
Migration of vectorized iterative solvers to distributed memory architectures
Pommerell, C.; Ruehl, R.
1994-12-31
Both necessity and opportunity motivate the use of high-performance computers for iterative linear solvers. Necessity results from the size of the problems being solved-smaller problems are often better handled by direct methods. Opportunity arises from the formulation of the iterative methods in terms of simple linear algebra operations, even if this {open_quote}natural{close_quotes} parallelism is not easy to exploit in irregularly structured sparse matrices and with good preconditioners. As a result, high-performance implementations of iterative solvers have attracted a lot of interest in recent years. Most efforts are geared to vectorize or parallelize the dominating operation-structured or unstructured sparse matrix-vector multiplication, or to increase locality and parallelism by reformulating the algorithm-reducing global synchronization in inner products or local data exchange in preconditioners. Target architectures for iterative solvers currently include mostly vector supercomputers and architectures with one or few optimized (e.g., super-scalar and/or super-pipelined RISC) processors and hierarchical memory systems. More recently, parallel computers with physically distributed memory and a better price/performance ratio have been offered by vendors as a very interesting alternative to vector supercomputers. However, programming comfort on such distributed memory parallel processors (DMPPs) still lags behind. Here the authors are concerned with iterative solvers and their changing computing environment. In particular, they are considering migration from traditional vector supercomputers to DMPPs. Application requirements force one to use flexible and portable libraries. They want to extend the portability of iterative solvers rather than reimplementing everything for each new machine, or even for each new architecture.
A manifold of periodic orbits in the planar general three-body problem with equal masses
NASA Astrophysics Data System (ADS)
Davoust, E.; Broucke, R.
1982-08-01
The article describes about two dozen families of periodic orbits in the planar general problem of three bodies with three equal masses. These orbits have been obtained with a numerical integration of the regularized equations of motion. The regularization is of the Levi-Civita type and it handles only the three binary collisions. The stability of the periodic solutions is determined on the basis of the two coefficients (a1, a2) of the characteristic equation of the monodromy matrix. A detailed study of the stability coefficients reveals the existence of a large number of critical periodic orbits and bifurcations between different familities. Our study shows several general symmetry properties of the periodic solutions, reminiscent of the restricted problem. It shows seveal important connections of the general problem with some of its special cases: the rectilinear, collinear and isosceles configurations. It finally reveals that several families of periodic solutions terminate with a triple collision orbit.
Cai, Yunfeng; Bai, Zhaojun; Pask, John E.; Sukumar, N.
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.
On the characteristic exponents of the general three-body problem
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
A description is given of some properties of the characteristic exponents of the general three-body problem. The variational equations on which the analysis is based are obtained by linearizing the Lagrangian equations of motion in the neighborhood of a given known solution. Attention is given to the fundamental matrix of solutions, the characteristic equation, the three trivial solutions of the variational equations of the three-body problem, symmetric periodic orbits, and the half-period properties of symmetric periodic orbits.
Learning generalization in problem solving by a blue-fronted parrot (Amazona aestiva).
de Mendonça-Furtado, Olívia; Ottoni, Eduardo B
2008-10-01
Pepperberg (The Alex studies: cognitive and communicative abilities of gray parrots. Harvard University Press, Cambridge;1999) showed that some of the complex cognitive capabilities found in primates are also present in psittacine birds. Through the replication of an experiment performed with cotton-top tamarins (Saguinus oedipus oedipus) by Hauser et al. (Anim Behav 57:565-582; 1999), we examined a blue-fronted parrot's (Amazona aestiva) ability to generalize the solution of a particular problem in new but similar cases. Our results show that, at least when it comes to solving this particular problem, our parrot subject exhibited learning generalization capabilities resembling the tamarins'.
On the generalized VIP time integral methodology for transient thermal problems
NASA Technical Reports Server (NTRS)
Mei, Youping; Chen, Xiaoqin; Tamma, Kumar K.; Sha, Desong
1993-01-01
The paper describes the development and applicability of a generalized VIrtual-Pulse (VIP) time integral method of computation for thermal problems. Unlike past approaches for general heat transfer computations, and with the advent of high speed computing technology and the importance of parallel computations for efficient use of computing environments, a major motivation via the developments described in this paper is the need for developing explicit computational procedures with improved accuracy and stability characteristics. As a consequence, a new and effective VIP methodology is described which inherits these improved characteristics. Numerical illustrative examples are provided to demonstrate the developments and validate the results obtained for thermal problems.
Study to determine the IFR operational profile and problems of the general aviation single pilot
NASA Technical Reports Server (NTRS)
Weislogel, G. S.
1983-01-01
General aviation single pilot operating under instrument flight rules (GA SPIFR) was studied. The objectives of the study were to (1) develop a GA SPIFR operational profile, (2) identify problems experienced by the GA SPIFR pilot, and (3) identify research tasks which have the potential for eliminating or reducing the severity of the problems. To obtain the information necessary to accomplish these objectives, a mail questionnaire survey of instrument rated pilots was conducted. The general aviation IFR single pilot operational profile and selected data analysis examples are presented.
Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries
Phillip, B.
2000-07-24
Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.
NASA Astrophysics Data System (ADS)
Malmivuo, Jaakko
2010-04-01
Though the principle of reciprocity was invented by Hermann von Helmholtz already over 150 years ago, and though it is a very powerful tool in solving various important problems in bioelectromagnetism, it is not generally used. In impedance tomography the measurement sensitivity distribution has generally been misunderstood. This can be easily demonstrated with the principle of reciprocity. Some other applications of the principle of reciprocity are also discussed.
Solvers for $$\\mathcal{O} (N)$$ Electronic Structure in the Strong Scaling Limit
Bock, Nicolas; Challacombe, William M.; Kale, Laxmikant
2016-01-26
Here we present a hybrid OpenMP/Charm\\tt++ framework for solving themore » $$\\mathcal{O} (N)$$ self-consistent-field eigenvalue problem with parallelism in the strong scaling regime, $$P\\gg{N}$$, where $P$ is the number of cores, and $N$ is a measure of system size, i.e., the number of matrix rows/columns, basis functions, atoms, molecules, etc. This result is achieved with a nested approach to spectral projection and the sparse approximate matrix multiply [Bock and Challacombe, SIAM J. Sci. Comput., 35 (2013), pp. C72--C98], and involves a recursive, task-parallel algorithm, often employed by generalized $N$-Body solvers, to occlusion and culling of negligible products in the case of matrices with decay. Lastly, employing classic technologies associated with generalized $N$-Body solvers, including overdecomposition, recursive task parallelism, orderings that preserve locality, and persistence-based load balancing, we obtain scaling beyond hundreds of cores per molecule for small water clusters ([H$${}_2$$O]$${}_N$$, $$N \\in \\{ 30, 90, 150 \\}$$, $$P/N \\approx \\{ 819, 273, 164 \\}$$) and find support for an increasingly strong scalability with increasing system size $N$.« less
NASA Astrophysics Data System (ADS)
Raskin, Cody; Owen, J. Michael
2016-11-01
We discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.
[The Dutch College of General Practitioners practice guideline on 'Sexual problems'].
de Jong, Jip; Leusink, Peter; Wiersma, Tjerk
2016-01-01
The Dutch College of General Practitioners practice guideline on 'Sexual problems' describes the diagnostics and management of common sexual problems. An adequate sexual anamnesis is essential in order to obtain a good picture of the patient's symptoms and of any underlying causes. Additional physical or other medical examination is of limited value. The provision of information and advice are central to the treatment of sexual problems. Attention should be paid to the different aspects of sexual functioning: physical, psychological, relational and sociocultural, and to gender differences. In many cases, management is determined by the causal factor, for instance comorbidity, sexual trauma or relational problems. In other cases, a more specific problem is diagnosed, and management is based on this. PMID:27122071
Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver
NASA Astrophysics Data System (ADS)
Amritkar, Amit; de Sturler, Eric; Świrydowicz, Katarzyna; Tafti, Danesh; Ahuja, Kapil
2015-12-01
We focus on robust and efficient iterative solvers for the pressure Poisson equation in incompressible Navier-Stokes problems. Preconditioned Krylov subspace methods are popular for these problems, with BiCGStab and GMRES(m) most frequently used for nonsymmetric systems. BiCGStab is popular because it has cheap iterations, but it may fail for stiff problems, especially early on as the initial guess is far from the solution. Restarted GMRES is better, more robust, in this phase, but restarting may lead to very slow convergence. Therefore, we evaluate the rGCROT method for these systems. This method recycles a selected subspace of the search space (called recycle space) after a restart. This generally improves the convergence drastically compared with GMRES(m). Recycling subspaces is also advantageous for subsequent linear systems, if the matrix changes slowly or is constant. However, rGCROT iterations are still expensive in memory and computation time compared with those of BiCGStab. Hence, we propose a new, hybrid approach that combines the cheap iterations of BiCGStab with the robustness of rGCROT. For the first few time steps the algorithm uses rGCROT and builds an effective recycle space, and then it recycles that space in the rBiCGStab solver. We evaluate rGCROT on a turbulent channel flow problem, and we evaluate both rGCROT and the new, hybrid combination of rGCROT and rBiCGStab on a porous medium flow problem. We see substantial performance gains for both the problems.
KLU2 Direct Linear Solver Package
2012-01-04
KLU2 is a direct sparse solver for solving unsymmetric linear systems. It is related to the existing KLU solver, (in Amesos package and also as a stand-alone package from University of Florida) but provides template support for scalar and ordinal types. It uses a left looking LU factorization method.
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em
2015-09-01
Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em
2015-09-15
Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)
Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers
NASA Technical Reports Server (NTRS)
Bjorner, Nikolaj
2010-01-01
The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings
Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications
NASA Technical Reports Server (NTRS)
Biedron, Robert T,; Thomas, James L.
2009-01-01
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.
NASA Astrophysics Data System (ADS)
Iyer, Bala R.
2016-05-01
Over the last two decades, the search for gravitational waves from coalescing compact binaries by detectors like LIGO and Virgo has crucially required and consequently spurred tremendous progress in the two body problem in general relativity. A broad brush overview of these major developments and the current status of these significant results is presented.
Problem Solving Videos for General Chemistry Review: Students' Perceptions and Use Patterns
ERIC Educational Resources Information Center
Richards-Babb, Michelle; Curtis, Reagan; Smith, Valerie J.; Xu, Mingming
2014-01-01
We examined the use of problem solving videos (PSVs) as a substitute for general chemistry exam review sessions. We investigated student perceptions of course aspects regarding usefulness for supporting their learning of chemistry content. We also examined "how" students used the PSVs to further their learning. Students ranked the PSVs…
Improving Resource-Unaware SAT Solvers
NASA Astrophysics Data System (ADS)
Hölldobler, Steffen; Manthey, Norbert; Saptawijaya, Ari
The paper discusses cache utilization in state-of-the-art SAT solvers. The aim of the study is to show how a resource-unaware SAT solver can be improved by utilizing the cache sensibly. The analysis is performed on a CDCL-based SAT solver using a subset of the industrial SAT Competition 2009 benchmark. For the analysis, the total cycles, the resource stall cycles, the L2 cache hits and the L2 cache misses are traced using sample based profiling. Based on the analysis, several techniques - some of which have not been used in SAT solvers so far - are proposed resulting in a combined speedup up to 83% without affecting the search path of the solver. The average speedup on the benchmark is 60%. The new techniques are also applied to MiniSAT2.0 improving its runtime by 20% on average.
Baker, J.R.; Budinger, T.F.; Huesman, R.H.
1992-10-01
A major limitation in tomographic inverse problems is inadequate computation speed, which frequently impedes the application of engineering ideas and principles in medical science more than in the physical and engineering sciences. Medical problems are computationally taxing because a minimum description of the system often involves 5 dimensions (3 space, 1 energy, 1 time), with the range of each space coordinate requiring up to 512 samples. The computational tasks for this problem can be simply expressed by posing the problem as one in which the tomograph system response function is spatially invariant, and the noise is additive and Gaussian. Under these assumptions, a number of reconstruction methods have been implemented with generally satisfactory results for general medical imaging purposes. However, if the system response function of the tomograph is assumed more realistically to be spatially variant and the noise to be Poisson, the computational problem becomes much more difficult. Some of the algorithms being studied to compensate for position dependent resolution and statistical fluctuations in the data acquisition process, when expressed in canonical form, are not practical for clinical applications because the number of computations necessary exceeds the capabilities of high performance computer systems currently available. Reconstruction methods based on natural pixels, specifically orthonormal natural pixels, preserve symmetries in the data acquisition process. Fast implementations of orthonormal natural pixel algorithms can achieve orders of magnitude speedup relative to general implementations. Thus, specialized thought in algorithm development can lead to more significant increases in performance than can be achieved through hardware improvements alone.
Nakai, Minori; Hotta, Hiroshi; Ootsuru, Taku; Hiejima, Shigeto; Murakami, Masaru; Yuzuriha, Takefumi; Kondo, Tsuyoshi
2013-04-01
In Japan, many problems related to alcohol are pointed out from before. We believe that there is a unique drinking culture in Okinawa, such as a large amount of alcohol. Therefore, we estimate many people in Okinawa have a drinking problem. We conducted a survey of patients who visited general hospital (medical or surgical or orthopedic) in 2007. The purpose of this study is to collect basic data for introducing alcoholics to specialized treatment as early as possible, detecting the person who drink large amounts of alcohol, performing early intervention for people who drink large amount of alcohol, and advancing cooperation with specialized medical agencies of alcohol. As a result, Among the patients who visited general hospital in Okinawa, many problem drinkers are concentrated in the young age. and they have strong fears of health. The possibility of early intervention with intervention techniques, such as brief intervention, has been suggested.
Performance issues for iterative solvers in device simulation
NASA Technical Reports Server (NTRS)
Fan, Qing; Forsyth, P. A.; Mcmacken, J. R. F.; Tang, Wei-Pai
1994-01-01
Due to memory limitations, iterative methods have become the method of choice for large scale semiconductor device simulation. However, it is well known that these methods still suffer from reliability problems. The linear systems which appear in numerical simulation of semiconductor devices are notoriously ill-conditioned. In order to produce robust algorithms for practical problems, careful attention must be given to many implementation issues. This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix solver on a variety of problems.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods for unstructured mesh computations are developed and tested. The approximate system which arises from the Newton-linearization of the nonlinear evolution operator is solved by using the preconditioned generalized minimum residual technique. These different preconditioners are investigated: the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over-relaxation (SSOR). The preconditioners have been optimized to have good vectorization properties. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also investigated. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
Development of a New and Fast Linear Solver for Multi-component Reactive Transport Simulation
NASA Astrophysics Data System (ADS)
Qiao, C.; Li, L.; Bao, C.; Hu, X.; Johns, R.; Xu, J.
2013-12-01
Reactive transport models (RTM) have been extensively used to understand the coupling between solute transport and (bio) geochemical reactions in complex earth systems. RTM typically involves a large number of primary and secondary species with a complex reaction network in large domains. The computational expenses increase significantly with the number of grid blocks and the number of chemical species. Within both the operator splitting approach (OS) and the global implicit approach (GI) that are commonly used, the steps that involve Newton-Raphson method are typically one of the most time-consuming parts (up to 80% to 90% of CPU times). Under such circumstances, accelerating reactive transport simulation is very essential. In this research, we present a physics-based linear system solution strategy for general reactive transport models with many species. We observed up to five times speed up for the linear solver portion of the simulations in our test cases. Our new linear solver takes advantage of the sparsity of the Jacobian matrix arising from the reaction network. The Jacobian matrix for the speciation problem is typically considered as a dense matrix and solved with a direct method such as Gaussian elimination. For the reactive transport problem, the graph of the local Jacobian matrix has a one-to-one correspondence to the reaction network graph. The Jacobian matrix is commonly sparse and has the same sparsity structure for the same reaction network. We developed a strategy that performs a minimum degree of reordering and symbolic factorization to determine the non-zero pattern at the beginning of the OS and GI simulation. During the speciation calculation in OS, we calculate the L and U factors and solve the triangular matrices according to the non-zero pattern. For GI, our strategy can be applied to inverse the diagonal blocks in the block-Jacobi preconditioner and smoothers of the multigrid preconditioners in iterative solvers. Our strategy is naturally
Elliptic Solvers for Adaptive Mesh Refinement Grids
Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.
1999-06-03
We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.
Oasis: A high-level/high-performance open source Navier-Stokes solver
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Valen-Sendstad, Kristian
2015-03-01
Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.
The impact of improved sparse linear solvers on industrial engineering applications
Heroux, M.; Baddourah, M.; Poole, E.L.; Yang, Chao Wu
1996-12-31
There are usually many factors that ultimately determine the quality of computer simulation for engineering applications. Some of the most important are the quality of the analytical model and approximation scheme, the accuracy of the input data and the capability of the computing resources. However, in many engineering applications the characteristics of the sparse linear solver are the key factors in determining how complex a problem a given application code can solve. Therefore, the advent of a dramatically improved solver often brings with it dramatic improvements in our ability to do accurate and cost effective computer simulations. In this presentation we discuss the current status of sparse iterative and direct solvers in several key industrial CFD and structures codes, and show the impact that recent advances in linear solvers have made on both our ability to perform challenging simulations and the cost of those simulations. We also present some of the current challenges we have and the constraints we face in trying to improve these solvers. Finally, we discuss future requirements for sparse linear solvers on high performance architectures and try to indicate the opportunities that exist if we can develop even more improvements in linear solver capabilities.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.; Sauer, Jeremy A.
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.
Generalized CNF satisfiability, local reductions and complexity of succinctly specified problems
Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.; Radhakrishnan, V.
1995-02-01
We, study the complexity and efficient approximability of various decision, counting and optimization problems when instances are specified using (1) the 1-dimensional finite periodic narrow specifications of Wanke, (2) the 2-way infinite 1-dimensional narrow periodic (sometimes called dynamic) specifications of Karp and Orlin et al., and (3) the hierarchical specification language of Lengauer et al. We outline how generalized CNF satisfiability problems and local reductions can be used to obtain both hardness and easiness results for a number of decision, counting, optimization and approximate optimization problems when instances are specified as in (1), (2) or (3). As corollaries we obtain a number of new PSPACE-hardness and {number_sign}PSPACE-hardness,9 results and a number of new polynomial time approximation algorithms for natural PSPACE-hard optimization problems. In particular assuming P {ne} PSPACE, we characterize completely the complexities of the generalized CNF satisfiability problems SAT(S) of Schaefer [Sc78], when instances are specified as in (1), (2) or (3).
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems
NASA Astrophysics Data System (ADS)
Geissert, Matthias; Hieber, Matthias; Nguyen, Thieu Huy
2016-06-01
This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier-Stokes-Oseen flow, the Navier-Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein-Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.
A note on relative motion in the general three-body problem.
NASA Technical Reports Server (NTRS)
Broucke, R.; Lass, H.
1973-01-01
It is shown that the equations of the general three-body problem take on a very symmetric form when one considers only their relative positions, rather than position vectors relative to some given coordinate system. From these equations one quickly surmises some well known classical properties of the three-body problem, such as the first integrals and the equilateral triangle solutions. Some new Lagrangians with relative coordinates are also obtained. Numerical integration of the new equations of motion is about 10% faster than with barycentric or heliocentric coordinates.
Potential well method for Cauchy problem of generalized double dispersion equations
NASA Astrophysics Data System (ADS)
Liu, Yacheng; Xu, Runzhang
2008-02-01
In this paper we study Cauchy problem of generalized double dispersion equations utt-uxx-uxxtt+uxxxx=f(u)xx, where f(u)=up, p>1 or u2k, . By introducing a family of potential wells we not only get a threshold result of global existence and nonexistence of solutions, but also obtain the invariance of some sets and vacuum isolating of solutions. In addition, the global existence and finite time blow up of solutions for problem with critical initial conditions E(0)=d, I(u0)[greater-or-equal, slanted]0 or I(u0)<0 are proved.
Generalized Thomson problem in arbitrary dimensions and non-euclidean geometries
NASA Astrophysics Data System (ADS)
Batle, J.; Bagdasaryan, Armen; Abdel-Aty, M.; Abdalla, S.
2016-06-01
Systems of identical particles with equal charge are studied under a special type of confinement. These classical particles are free to move inside some convex region S and on the boundary of it Ω (the S d - 1 -sphere, in our case). We shall show how particles arrange themselves under the sole action of the Coulomb repulsion in many dimensions in the usual Euclidean space, therefore generalizing the so called Thomson problem to many dimensions. Also, we explore how the problem varies when non-Euclidean geometries are considered. We shall see that optimal configurations in all cases possess a high degree of symmetry, regardless of the concomitant dimension or geometry.
The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code.
Rethinking Electrostatic Solvers in Particle Simulations for the Exascale Era
NASA Astrophysics Data System (ADS)
Deca, Jan; Markidis, Stefano; Lapenta, Giovanni; Járleberg, Erik; Apostolov, Rossen; Laure, Erwin
2012-10-01
In preparation to the exascale era, an alternative approach to calculate the electrostatic forces in Particle Mesh (PM) methods is proposed. While the traditional techniques are based on the calculation of the electrostatic potential by solving the Poisson equation, in the new approach the electric field is calculated by solving Ampère's law. When the Ampere's law is discretized explicitly in time, the electric field values on the mesh are simply updated from the previous values. In this way, the electrostatic solver becomes an embarrassingly parallel problem, making the algorithm extremely scalable and suitable for exascale computing platforms. An implementation PM code with the new electrostatic solver is presented to show that the proposed method produces correct results. It is a very promising algorithm for exascale PM simulations.
A spectral Poisson solver for kinetic plasma simulation
NASA Astrophysics Data System (ADS)
Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf
2011-10-01
Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.
On improving linear solver performance: a block variant of GMRES
Baker, A H; Dennis, J M; Jessup, E R
2004-05-10
The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors. Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.
Koyanagi, Ai; Stickley, Andrew
2015-01-01
Study Objectives: To assess the prevalence of sleep problems and their association with psychotic symptoms using a global database. Design: Community-based cross-sectional study. Setting: Data were analyzed from the World Health Organization's World Health Survey (WHS), a population-based survey conducted in 70 countries between 2002 and 2004. Patients or Participants: 261,547 individuals aged ≥ 18 years from 56 countries. Interventions: N/A. Measurements and Results: The presence of psychotic symptoms in the past 12 months was established using 4 questions pertaining to positive symptoms from the psychosis screening module of the Composite International Diagnostic Interview. Sleep problems referred to severe or extreme sleep problems in the past 30 days. Multivariable logistic regression was used to estimate the associations. The overall prevalence of sleep problems was 7.6% and ranged from 1.6% (China) to 18.6% (Morocco). Sleep problems were associated with significantly higher odds for at least one psychotic symptom in the vast majority of countries. In the pooled sample, after adjusting for demographic factors, alcohol consumption, smoking, and chronic medical conditions, having sleep problems resulted in an odds ratio (OR) for at least one psychotic symptom of 2.41 (95% confidence interval [CI] 2.18–2.65). This OR was 1.59 (1.40–1.81) when further adjusted for anxiety and depression. Conclusions: A strong association between sleep problems and psychotic symptoms was observed globally. These results have clinical implications and serve as a basis for future studies to elucidate the causal association between psychotic symptoms and sleep problems. Citation: Koyanagi A, Stickley A. The association between sleep problems and psychotic symptoms in the general population: a global perspective. SLEEP 2015;38(12):1875–1885. PMID:26085291
GARDNER, P.R.
2006-04-01
Sudoku, also known as Number Place, is a logic-based placement puzzle. The aim of the puzzle is to enter a numerical digit from 1 through 9 in each cell of a 9 x 9 grid made up of 3 x 3 subgrids (called ''regions''), starting with various digits given in some cells (the ''givens''). Each row, column, and region must contain only one instance of each numeral. Completing the puzzle requires patience and logical ability. Although first published in a U.S. puzzle magazine in 1979, Sudoku initially caught on in Japan in 1986 and attained international popularity in 2005. Last fall, after noticing Sudoku puzzles in some newspapers and magazines, I attempted a few just to see how hard they were. Of course, the difficulties varied considerably. ''Obviously'' one could use Trial and Error but all the advice was to ''Use Logic''. Thinking to flex, and strengthen, those powers, I began to tackle the puzzles systematically. That is, when I discovered a new tactical rule, I would write it down, eventually generating a list of ten or so, with some having overlap. They served pretty well except for the more difficult puzzles, but even then I managed to develop an additional three rules that covered all of them until I hit the Oregonian puzzle shown. With all of my rules, I could not seem to solve that puzzle. Initially putting my failure down to rapid mental fatigue (being unable to hold a sufficient quantity of information in my mind at one time), I decided to write a program to implement my rules and see what I had failed to notice earlier. The solver, too, failed. That is, my rules were insufficient to solve that particular puzzle. I happened across a book written by a fellow who constructs such puzzles and who claimed that, sometimes, the only tactic left was trial and error. With a trial and error routine implemented, my solver successfully completed the Oregonian puzzle, and has successfully solved every puzzle submitted to it since.
SIERRA framework version 4 : solver services.
Williams, Alan B.
2005-02-01
Several SIERRA applications make use of third-party libraries to solve systems of linear and nonlinear equations, and to solve eigenproblems. The classes and interfaces in the SIERRA framework that provide linear system assembly services and access to solver libraries are collectively referred to as solver services. This paper provides an overview of SIERRA's solver services including the design goals that drove the development, and relationships and interactions among the various classes. The process of assembling and manipulating linear systems will be described, as well as access to solution methods and other operations.
The management of alcohol-related problems in general practice in north India.
Varma, V K; Malhotra, A K
1988-07-01
Twenty-seven general medical practitioners (GPs) were administered WHO semi-structured schedule enquiring "The Management of Alcohol-Related Problems in General Practice". Majority of the GPs had some involvement in each one of the specified alcohol-related problems. The involvement in alcohol and health education had been modest. Involvement in the control and regulatory activities was minimal. None of them felt that they had any role in the development of health and alcohol policy. Treatment response lo three typical situations appeared to be quite appropriate. To regulate production, to market less potent drinks at cheaper rates, to organize public health education programme through mass media were the suggestions made by them. It is suggested that GPs can and should be encouraged in leadership roles in policy decisions regarding the delivery of services, control and regulation of alcohol and research.
A generalized Green`s formula for elliptic problems in domains with edges
Nazarov, S.A.; Plamenevskii, B.A.
1995-03-01
The usual Green`s formula connected with the operator of a boundary-value problem fails when both of the solutions u and v that occur in it have singularities that are too strong at a conic point or at an edge on the boundary of the domain. We deduce a generalized Green`s formula that acquires an additional bilinear form in u and v and is determined by the coefficients in the expansion of solutions near singularities of the boundary. We obtain improved asymptotic representations of solutions in a neighborhood of an edge of positive dimension, which together with the generalized Green`s formula makes it possible, for example, to describe the infinite-dimensional kernel of the operator of an elliptic problem in a domain with edge.
On relative periodic solutions of the planar general three-body problem
NASA Technical Reports Server (NTRS)
Broucke, R.
1975-01-01
We describe two relatively simple reductions to order 6 for the planar general three-body problem. We also show that this reduction leads to the distinction between two types of periodic solutions: absolute or relative periodic solutions. An algorithm for obtaining relative periodic solutions using heliocentric coordinates is then described. It is concluded from the periodicity conditions that relative periodic solutions must form families with a single parameter. Finally, two such families have been obtained numerically and are described in some detail.
Generalization of Levi-Civita regularization in the restricted three-body problem
NASA Astrophysics Data System (ADS)
Roman, R.; Szücs-Csillik, I.
2014-01-01
A family of polynomial coupled function of n degree is proposed, in order to generalize the Levi-Civita regularization method, in the restricted three-body problem. Analytical relationship between polar radii in the physical plane and in the regularized plane are established; similar for polar angles. As a numerical application, trajectories of the test particle using polynomial functions of 2,3,…,8 degree are obtained. For the polynomial of second degree, the Levi-Civita regularization method is found.
A Survey of Solver-Related Geometry and Meshing Issues
NASA Technical Reports Server (NTRS)
Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris
2016-01-01
There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.
A Nonlinear Modal Aeroelastic Solver for FUN3D
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
NASA Astrophysics Data System (ADS)
Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.
2016-05-01
Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.
Three-dimensional crack and contact problems with a general geometric configuration
NASA Astrophysics Data System (ADS)
Yong, Z.; Hanson, M. T.
1994-02-01
A NEW METHOD, based on point set theory and properties of orthogonal functions, is developed for determining exact solutions to three-dimensional crack and contact problems with complicated geometric configurations (e.g. a star-convex domain) in an infinite linear elastic medium. The governing equation is a two-dimensional Fredholm integral equation of the first kind. The central idea of this method is the chain extension of an exact solution from a regular subdomain to an irregular entire domain. Examples are given illustrating how this solution procedure can be used to obtain exact closed form solutions for a general Hertz contact problem and various crack problems in an inhomogeneous isotropic medium with an elastic modulus which is a power function of depth.
Stathopoulos, A.; Fischer, C.F.; Saad, Y.
1994-12-31
The solution of the large, sparse, symmetric eigenvalue problem, Ax = {lambda}x, is central to many scientific applications. Among many iterative methods that attempt to solve this problem, the Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos method builds an orthogonal basis for the Krylov subspace, from which the required eigenvectors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical to compute but the number of iterations may grow significantly for difficult problems. The GD method can be considered a preconditioned version of Lanczos. In each step the Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual ((M {minus} {lambda}I){sup {minus}1}(A {minus} {lambda}I)x) is performed. Therefore, the GD method attempts to improve convergence and robustness at the expense of a more complicated step.
General Pade Effective Potential for Coulomb Problems in Condensed and Soft Matters
NASA Astrophysics Data System (ADS)
Quyen, B. L.; Mai, D. N.; Hoa, N. M.; Van, T. T. T.; Hoai, N. L.; Viet, N. A.
2014-09-01
Effective potentials for finding the ground states and physical configurations have essential meaning in many Coulomb problems of condensed and soft matters. The ordinary n-Pade approximation potentials define as the ratio of Pi(r)/Pi+1(r), where Pi(r) are the polynomials of i-th order of charge separation r, give quite good fit and agreement of calculation results and experimental data for Coulomb problems, where screening effects are not important or exchange photons still are massless. In this work we consider a general Pade effective potential by included a factor of exponential form, which could give more accurate results also for above mentioned cases. This general Pade effective potentials with analytical expressions were useful to perform analytical calculations, estimations and to reduce the amount of computational time for future investigations in condensed and soft matter topics. For example of soft matter problems, we study the case of MS2 virus, the general Pade potential gives much more correct results comparing with ordinary Pade approximation.
NASA Astrophysics Data System (ADS)
Willemsen, Bram; Malcolm, Alison; Lewis, Winston
2016-03-01
In a set of problems ranging from 4-D seismic to salt boundary estimation, updates to the velocity model often have a highly localized nature. Numerical techniques for these applications such as full-waveform inversion (FWI) require an estimate of the wavefield to compute the model updates. When dealing with localized problems, it is wasteful to compute these updates in the global domain, when we only need them in our region of interest. This paper introduces a local solver that generates forward and adjoint wavefields which are, to machine precision, identical to those generated by a full-domain solver evaluated within the region of interest. This means that the local solver computes all interactions between model updates within the region of interest and the inhomogeneities in the background model outside. Because no approximations are made in the calculation of the forward and adjoint wavefields, the local solver can compute the identical gradient in the region of interest as would be computed by the more expensive full-domain solver. In this paper, the local solver is used to efficiently generate the FWI gradient at the boundary of a salt body. This gradient is then used in a level set method to automatically update the salt boundary.
Irrelevance in Problem Solving
NASA Technical Reports Server (NTRS)
Levy, Alon Y.
1992-01-01
The notion of irrelevance underlies many different works in AI, such as detecting redundant facts, creating abstraction hierarchies and reformulation and modeling physical devices. However, in order to design problem solvers that exploit the notion of irrelevance, either by automatically detecting irrelevance or by being given knowledge about irrelevance, a formal treatment of the notion is required. In this paper we present a general framework for analyzing irrelevance. We discuss several properties of irrelevance and show how they vary in a space of definitions outlined by the framework. We show how irrelevance claims can be used to justify the creation of abstractions thereby suggesting a new view on the work on abstraction.
Parallelizing alternating direction implicit solver on GPUs
Technology Transfer Automated Retrieval System (TEKTRAN)
We present a parallel Alternating Direction Implicit (ADI) solver on GPUs. Our implementation significantly improves existing implementations in two aspects. First, we address the scalability issue of existing Parallel Cyclic Reduction (PCR) implementations by eliminating their hardware resource con...
NASA Astrophysics Data System (ADS)
Cottrill, Gerald C.
A hybrid numerical algorithm combining the Gauss Pseudospectral Method (GPM) with a Generalized Polynomial Chaos (gPC) method to solve nonlinear stochastic optimal control problems with constraint uncertainties is presented. TheGPM and gPC have been shown to be spectrally accurate numerical methods for solving deterministic optimal control problems and stochastic differential equations, respectively. The gPC uses collocation nodes to sample the random space, which are then inserted into the differential equations and solved by applying standard differential equation methods. The resulting set of deterministic solutions is used to characterize the distribution of the solution by constructing a polynomial representation of the output as a function of uncertain parameters. Optimal control problems are especially challenging to solve since they often include path constraints, bounded controls, boundary conditions, and require solutions that minimize a cost functional. Adding random parameters can make these problems even more challenging. The hybrid algorithm presented in this dissertation is the first time the GPM and gPC algorithms have been combined to solve optimal control problems with random parameters. Using the GPM in the gPC construct provides minimum cost deterministic solutions used in stochastic computations that meet path, control, and boundary constraints, thus extending current gPC methods to be applicable to stochastic optimal control problems. The hybrid GPM-gPC algorithm was applied to two concept demonstration problems: a nonlinear optimal control problem with multiplicative uncertain elements and a trajectory optimization problem simulating an aircraft flying through a threat field where exact locations of the threats are unknown. The results show that the expected value, variance, and covariance statistics of the polynomial output function approximations of the state, control, cost, and terminal time variables agree with Monte-Carlo simulation
User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.
NASA Technical Reports Server (NTRS)
Reddy, C. J.
2000-01-01
PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.
NASA Astrophysics Data System (ADS)
Gainullin, I. K.; Sonkin, M. A.
2015-03-01
A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.
Fast linear solvers for variable density turbulent flows
NASA Astrophysics Data System (ADS)
Pouransari, Hadi; Mani, Ali; Darve, Eric
2015-11-01
Variable density flows are ubiquitous in variety of natural and industrial systems. Two-phase and multi-phase flows in natural and industrial processes, astrophysical flows, and flows involved in combustion processes are such examples. For an ideal gas subject to low-Mach approximation, variations in temperature can lead to a non-uniform density field. In this work, we consider radiatively heated particle-laden turbulent flows as an example application in which density variability is resulted from inhomogeneities in the heat absorption by an inhomogeneous particle field. Under such conditions, the divergence constraint of the fluid is enforced through a variable coefficient Poisson equation. Inversion of the discretized variable coefficient Poisson operator is difficult using the conventional linear solvers as the size of the problem grows. We apply a novel hierarchical linear solve algorithm based on low-rank approximations. The proposed linear solver could be applied to variety of linear systems arising from discretized partial differential equations. It can be used as a standalone direct-solver with tunable accuracy and linear complexity, or as a high-accuracy pre-conditioner in conjunction with other iterative methods.
NITSOL: A Newton iterative solver for nonlinear systems
Pernice, M.; Walker, H.F.
1996-12-31
Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.
NASA Astrophysics Data System (ADS)
Rogovtsov, Nikolai N.; Borovik, Felix
2016-11-01
A brief analysis of different properties and principles of invariance to solve a number of classical problems of the radiation transport theory is presented. The main ideas, constructions, and assertions used in the general invariance relations reduction method are described in outline. The most important distinctive features of this general method of solving a wide enough range of problems of the radiation transport theory and mathematical physics are listed. To illustrate the potential of this method, a number of problems of the scalar radiative transfer theory have been solved rigorously in the article. The main stages of rigorous derivations of asymptotical formulas for the smallest in modulo elements of the discrete spectrum and the eigenfunctions, corresponding to them, of the characteristic equation for the case of an arbitrary phase function and almost conservative scattering are described. Formulas of the same type for the azimuthal averaged reflection function, the plane and spherical albedos have been obtained rigorously. New analytical representations for the reflection function, the plane and spherical albedos have been obtained, and effective algorithms for calculating these values have been offered for the case of a practically arbitrary phase function satisfying the Hölder condition. New analytical representation of the «surface» Green function of the scalar radiative transfer equation for a semi-infinite plane-parallel conservatively scattering medium has been found. The deep regime asymptotics of the "volume" Green function has been obtained for the case of a turbid medium of cylindrical form.
Analytical solutions to general anti-plane shear problems in finite elasticity
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-03-01
This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical duality-triality theory developed by the author, the nonlinear/nonconvex partial differential equations for the large deformation problem are converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a complete set of stress solutions. Therefore, a general analytical solution form of the deformation is obtained subjected to a compatibility condition. Applications are illustrated by examples with both convex and nonconvex stored strain energies governed by quadratic-exponential and power-law material models, respectively. Results show that the nonconvex variational problem could have multiple solutions at each material point, the complementary gap function and the triality theory can be used to identify both global and local extremal solutions, while the popular convexity conditions (including rank-one condition) provide mainly local minimal criteria and the Legendre-Hadamard condition (i.e., the so-called strong ellipticity condition) does not guarantee uniqueness of solutions. This paper demonstrates again that the pure complementary energy principle and the triality theory play important roles in finite deformation theory and nonconvex analysis.
Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem
Mendez, M.A.; Blasiak, P.; Penson, K.A.
2005-08-01
We consider the numbers arising in the problem of normal ordering of expressions in boson creation a{sup {dagger}} and annihilation a operators ([a,a{sup {dagger}}]=1). We treat a general form of a boson string (a{sup {dagger}}){sup r{sub n}}a{sup s{sub n}}...(a{sup {dagger}}){sup r{sub 2}}a{sup s{sub 2}}(a{sup {dagger}}){sup r{sub 1}}a{sup s{sub 1}} which is shown to be associated with generalizations of Stirling and Bell numbers. The recurrence relations and closed-form expressions (Dobinski-type formulas) are obtained for these quantities by both algebraic and combinatorial methods. By extensive use of methods of combinatorial analysis we prove the equivalence of the aforementioned problem to the enumeration of special families of graphs. This link provides a combinatorial interpretation of the numbers arising in this normal ordering problem.
Miller, Gregory H.
2003-08-06
In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in common practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.
QED multi-dimensional vacuum polarization finite-difference solver
NASA Astrophysics Data System (ADS)
Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo
2015-11-01
The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph
Association of Problem Gambling with Type of Gambling Among Italian General Population.
Scalese, Marco; Bastiani, Luca; Salvadori, Stefano; Gori, Mercedes; Lewis, Isabella; Jarre, Paolo; Molinaro, Sabrina
2016-09-01
The origin of gambling disorders is uncertain; however, research has shown a tendency to focus on specific types of games as a potential important risk factor. The principal aim of this study is to examine the relationships between types of gambling practices and gambling disorder. The data were extracted from IPSAD-Italia(®) 2010-2011 (Italian Population Survey on Alcohol and other Drugs), a survey among the Italian general population which collects socio-cultural information, information about the use of drugs, legal substances and gambling habits. In order to identify the "problem gambler" we used the Problem Gambling Severity Index. Three groups are considered in this analysis: no-risk gamblers, low-risk gamblers, moderate-risk/problem gamblers. Type of gambling practice was considered among two types of gambler: one-game players and multi-games players. 1.9 % of multi-game players were considered problem gamblers, only 0.6 % of one-game players were problem gamblers (p < 0.001). The percentage of players who were low and moderate-risk gamblers was approximately double among multi-game players, with 14.4 % low-risk and 5.8 % moderate-risk; compared with 7.7 % low-risk and 2.5 % moderate risk among one-game players. Results of ordinal logistic regression analysis confirmed that higher level of gambling severity was associated with multi-game players (OR = 2.23, p < 0.0001). Video-poker/slot-machines show the highest association with gambling severity among both one-game players and multi-game players, with scores of OR equal to 4.3 and 4.5 respectively. These findings suggest a popular perception of risk associated with this type of gambling for the development of gambling problems.
Association of Problem Gambling with Type of Gambling Among Italian General Population.
Scalese, Marco; Bastiani, Luca; Salvadori, Stefano; Gori, Mercedes; Lewis, Isabella; Jarre, Paolo; Molinaro, Sabrina
2016-09-01
The origin of gambling disorders is uncertain; however, research has shown a tendency to focus on specific types of games as a potential important risk factor. The principal aim of this study is to examine the relationships between types of gambling practices and gambling disorder. The data were extracted from IPSAD-Italia(®) 2010-2011 (Italian Population Survey on Alcohol and other Drugs), a survey among the Italian general population which collects socio-cultural information, information about the use of drugs, legal substances and gambling habits. In order to identify the "problem gambler" we used the Problem Gambling Severity Index. Three groups are considered in this analysis: no-risk gamblers, low-risk gamblers, moderate-risk/problem gamblers. Type of gambling practice was considered among two types of gambler: one-game players and multi-games players. 1.9 % of multi-game players were considered problem gamblers, only 0.6 % of one-game players were problem gamblers (p < 0.001). The percentage of players who were low and moderate-risk gamblers was approximately double among multi-game players, with 14.4 % low-risk and 5.8 % moderate-risk; compared with 7.7 % low-risk and 2.5 % moderate risk among one-game players. Results of ordinal logistic regression analysis confirmed that higher level of gambling severity was associated with multi-game players (OR = 2.23, p < 0.0001). Video-poker/slot-machines show the highest association with gambling severity among both one-game players and multi-game players, with scores of OR equal to 4.3 and 4.5 respectively. These findings suggest a popular perception of risk associated with this type of gambling for the development of gambling problems. PMID:26475172
Search for periodic orbits in the general three-body problem
NASA Astrophysics Data System (ADS)
Iasko, P. P.; Orlov, V. V.
2014-11-01
An original method for searching for regions of initial conditions giving rise to close to periodic orbits is proposed in the framework of the general three-body problem with equal masses and zero angular momentum. Until recently, three stable periodic orbits were known: the Schubart orbit for the rectilinear problem, the Broucke orbit for the isosceles problem, and the Moore eight-figure orbit. Recent studies have also found new periodic orbits for this problem. The proposed method minimizes a functional that calculates the sum of squared differences between the initial and current coordinates and the velocities of the bodies. The search is applied to short-period orbits with periods T < 10 τ, where τ is the mean crossing time for the components of the triple system. Twenty one regions of initial conditions, each corresponding to a particular periodic orbit, have been found in the current study. A criterion for the reliability of the results is that the initial conditions for the previously known stable periodic orbits are located inside the regions found. The trajectories of the bodies with the corresponding initial conditions are presented. The dynamics and geometry of the orbits constructed are described.
Beliefs about gambling problems and recovery: results from a general population telephone survey.
Cunningham, John A; Cordingley, Joanne; Hodgins, David C; Toneatto, Tony
2011-12-01
Respondents were asked their beliefs about gambling abuse as part of a general population telephone survey. The random digit dialing survey consisted of 8,467 interviews of adults, 18 years and older, from Ontario, Canada (45% male; mean age = 46.2). The predominant conception of gambling abuse was that of an addiction, similar to drug addiction. More than half of respondents reported that treatment was necessary and almost three-quarters of respondents felt that problem gamblers would have to give up gambling completely in order to overcome their gambling problem. Problem gamblers (past or current) were less likely than non- or social gamblers to believe that treatment was needed, and current problem gamblers were least likely to believe that abstinence was required, as compared to all other respondents. Strong agreement with conceptions of gambling abuse as disease or addiction were positively associated with belief that treatment is needed, while strong agreement with conceptions of disease or wrongdoing were positively associated with belief that abstinence is required.
NASA Astrophysics Data System (ADS)
Guo, Peng; Cheng, Wenming; Wang, Yi
2014-10-01
The quay crane scheduling problem (QCSP) determines the handling sequence of tasks at ship bays by a set of cranes assigned to a container vessel such that the vessel's service time is minimized. A number of heuristics or meta-heuristics have been proposed to obtain the near-optimal solutions to overcome the NP-hardness of the problem. In this article, the idea of generalized extremal optimization (GEO) is adapted to solve the QCSP with respect to various interference constraints. The resulting GEO is termed the modified GEO. A randomized searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC assignment is developed in executing the modified GEO. In addition, a unidirectional search decoding scheme is employed to transform a task-to-QC assignment to an active quay crane schedule. The effectiveness of the developed GEO is tested on a suite of benchmark problems introduced by K.H. Kim and Y.M. Park in 2004 (European Journal of Operational Research, Vol. 156, No. 3). Compared with other well-known existing approaches, the experiment results show that the proposed modified GEO is capable of obtaining the optimal or near-optimal solution in a reasonable time, especially for large-sized problems.
Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem
Alchalabi, R.M.; Turinsky, P.J.
1996-12-31
The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.
The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem
NASA Astrophysics Data System (ADS)
Golse, François; Salvarani, Francesco
2007-04-01
Consider the initial-boundary value problem for the 2-speed Carleman model of the Boltzmann equation of the kinetic theory of gases, (see Carleman 1957 Problèmes Mathématiques Dans la Théorie Cinétique des Gaz (Uppsala: Almqvist-Wiksells)), set in some bounded interval with boundary conditions prescribing the density of particles entering the interval. Under the usual parabolic scaling, a nonlinear diffusion limit is established for this problem. In fact, the techniques presented here allow treatment generalizations of the Carleman system where the collision frequency is proportional to the αth power of the macroscopic density, with α ∈ [-1, 1].
Some problems of human adaptation and ecology under the aspect of general pathology
NASA Technical Reports Server (NTRS)
Kaznacheyev, V. P.
1980-01-01
The main problems of human adaptation at the level of the body and the population in connection with the features of current morbidity of the population and certain demographic processes are analyzed. The concepts of health and adaptation of the individual and human populations are determined. The importance of the anthropo-ecological approach to the investigation of the adaptation process of human populations is demonstrated. Certain features of the etiopathogenesis of diseases are considered in connection with the population-ecological regularities of human adaptation. The importance of research on general pathology aspects of adaptation and the ecology of man for planning, and organization of public health protection is discussed.
One-dimensional Coulomb-like problem in general case of deformed space with minimal length
NASA Astrophysics Data System (ADS)
Samar, M. I.; Tkachuk, V. M.
2016-08-01
In general case of deformed Heisenberg algebra leading to the minimal length, we present a definition of the inverse of position operator which is linear and two-sided. Our proposal is based on the functional analysis of the position operator. Using this definition, 1D Coulomb-like problem is studied. We find exactly the energy spectrum and the eigenfunctions for the 1D Coulomb-like potential in deformed space with arbitrary function of deformation. We analyze the energy spectrum for different partial cases of deformation function and find that the correction caused by the deformation highly depends on the type of the deformation function.
Multi-choice stochastic transportation problem involving general form of distributions.
Quddoos, Abdul; Ull Hasan, Md Gulzar; Khalid, Mohammad Masood
2014-01-01
Many authors have presented studies of multi-choice stochastic transportation problem (MCSTP) where availability and demand parameters follow a particular probability distribution (such as exponential, weibull, cauchy or extreme value). In this paper an MCSTP is considered where availability and demand parameters follow general form of distribution and a generalized equivalent deterministic model (GMCSTP) of MCSTP is obtained. It is also shown that all previous models obtained by different authors can be deduced with the help of GMCSTP. MCSTP with pareto, power function or burr-XII distributions are also considered and equivalent deterministic models are obtained. To illustrate the proposed model two numerical examples are presented and solved using LINGO 13.0 software package. PMID:25332865
Some problems of the calculation of three-dimensional boundary layer flows on general configurations
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.
1973-01-01
An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.
The dynamic generalization of the Eshelby inclusion problem and its static limit
NASA Astrophysics Data System (ADS)
Ni, Luqun; Markenscoff, Xanthippi
2016-07-01
The dynamic generalization of the celebrated Eshelby inclusion with transformation strain is the (subsonically) self-similarly expanding ellipsoidal inclusion starting from the zero dimension. The solution of the governing system of partial differential equations was obtained recently by Ni & Markenscoff (In press. J. Mech. Phys. Solids (doi:10.1016/j.jmps.2016.02.025)) on the basis of the Radon transformation, while here an alternative method is presented. In the self-similarly expanding motion, the Eshelby property of constant constrained strain is valid in the interior domain of the expanding ellipsoid where the particle velocity vanishes (lacuna). The dynamic Eshelby tensor is obtained in integral form. From it, the static Eshelby tensor is obtained by a limiting procedure, as the axes' expansion velocities tend to zero and time to infinity, while their product is equal to the length of the static axis. This makes the Eshelby problem the limit of its dynamic generalization.
Extension of the Time-Spectral Approach to Overset Solvers for Arbitrary Motion
NASA Technical Reports Server (NTRS)
Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas H.
2012-01-01
demonstrated marked success in reducing the computational costs associated with simulating periodic forced flows, but have yet to be fully applied to overset or Cartesian solvers for arbitrary motion with dynamic hole-cutting. Overset and Cartesian grid methodologies are versatile techniques capable of handling complex geometry configurations in practical engineering applications, and the combination of the Time-Spectral approach with this general capability potentially provides an enabling new design and analysis tool. In an arbitrary moving-body scenario for these approaches, a Lagrangian body moves through a fixed Eulerian mesh and mesh points in the Eulerian mesh interior to the solid body are removed (cut or blanked), leaving a hole in the Eulerian mesh. During the dynamic motion some gridpoints in the domain are blanked and do not have a complete set of time-samples preventing a direct implementation of the Time-Spectral method. Murman[6] demonstrated the Time-Spectral approach for a Cartesian solver with a rigid domain motion, wherein the hole cutting remains constant. Similarly, Custer et al. [15, 16] used the NASA overset OVERFLOW solver and limited the amount of relative motion to ensure static hole-cutting and interpolation. Recently, Mavriplis and Mundis[17] demonstrated a qualitative method for applying the Time-Spectral approach to an unstructured overset solver for arbitrary motion. The goal of the current work is to develop a robust and general method for handling arbitrary motion with the Time-Spectral approach within an overset or Cartesian mesh method, while still approaching the spectral convergence rate of the original Time-Spectral approach. The viscous OVERFLOW solver will be augmented with the new Time-Spectral algorithm and the capability of the method for benchmark problems in rotorcraft and turbomachinery will be demonstrated. This abstract begins with a brief synopsis of the Time-Spectral approach for overset grids and provides details of e current
3-D seakeeping analysis with water on deck and slamming. Part 1: Numerical solver
NASA Astrophysics Data System (ADS)
Greco, M.; Lugni, C.
2012-08-01
A three-dimensional seakeeping numerical solver is developed to handle occurrence and effects of water-on-deck and bottom slamming. It couples (A) the rigid-ship motions with (B) the water flowing along the deck and (C) bottom slamming events. Problem A is studied with a 3-D weakly nonlinear potential flow solver based on the weak-scatterer hypothesis. Problem B, and so local and global induced green-water loads, are investigated by assuming shallow-water conditions onto the deck. Problem C is examined through a Wagner-type wedge-impact analysis. Within the coupling between A and B: the external seakeeping problem furnishes the initial and boundary conditions to the in-deck solver in terms of water level and velocity along the deck profile; in return the shallow-water problem makes available to the seakeeping solver the green-water loads to be introduced as additional loads into the rigid-motion equations. Within the coupling between A and C: the instantaneous ship configuration and its kinematic and dynamic conditions with respect to the incident waves will fix the parameters for the local impact problem; in return the slamming and water-entry pressures are integrated in the vessel region of interest and introduced as additional loads into the rigid-motion equations. The resulting numerical solver can study efficiently the ship interaction with regular and irregular sea states and the forward motion with limited speed of the vessel. This is crucial to perform reliable and feasible statistical investigations of vessel behavior. Main elements of the solver are described and validated against reference numerical solutions and model tests.
ERIC Educational Resources Information Center
Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George
2014-01-01
This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for…
ERIC Educational Resources Information Center
Neman, Robert Lynn
This study was designed to assess the effects of the problem-oriented method compared to those of the traditional approach in general chemistry at the college level. The problem-oriented course included topics such as air and water pollution, drug addiction and analysis, tetraethyl-lead additives, insecticides in the environment, and recycling of…
Finite Element Interface to Linear Solvers (FEI) version 2.9 : users guide and reference manual.
Williams, Alan B.
2005-02-01
The Finite Element Interface to Linear Solvers (FEI) is a linear system assembly library. Sparse systems of linear equations arise in many computational engineering applications, and the solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver package capable of solving all of the linear systems that arise. This motivates the need to switch an application from one solver library to another, depending on the problem being solved. The interfaces provided by various solver libraries for data assembly and problem solution differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application can be greatly reduced by having an abstraction layer that puts a 'common face' on various solver libraries. The FEI has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory. The original FEI offered several advantages over using linear algebra libraries directly, but also imposed significant limitations and disadvantages. A new set of interfaces has been added with the goal of removing the limitations of the original FEI while maintaining and extending its strengths.
Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers
Pernice, M.
1994-12-31
Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.
Minesaki, Yukitaka
2013-08-01
For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators.
Transition regions between stable periodic solutions of the general three-body problem
NASA Astrophysics Data System (ADS)
Iasko, P. P.; Orlov, V. V.
2014-11-01
The behavior of triple systems in the transition zones located between regions of stability is studied in the framework of the general three-body problem with equal masses and zero angular momentum. It is well known that there are exist three stable periodic orbits, namely, the Schubart orbit for the rectilinear problem, the Broucke orbit for the isosceles problem, and the Moore eight-figure orbit. In the space of the initial conditions, these orbits are surrounded by sets of points where bounded motions are observed over substantial time intervals. The transition zones between the Schubart and Moore orbits and the Moore and Broucke orbits are studied. It is shown that the boundaries of the regions of stability can be either smooth and sharp or diffuse. Beyond these boundary regions, the dynamical evolution of triple systems results in a distant ejection of one of the components, or the decay of the system. The distribution of the times when the stability is lost is constructed, and obeys a power law for long time intervals. Three stages in the evolution of an unstable triple system are identified.
Manuscript "Collection of Solved Problems of General Astronomy" by Vojislav Miskovic
NASA Astrophysics Data System (ADS)
Pejovic, N.
2009-09-01
In this paper we present the first university problems book concerning astronomy written in Serbian. The topic is "Zbirka rešenih zadataka iz opšte astronomije" (A Collection of Solved Problems of General Astronomy) by Prof. Vojislav Mi\\vsković. The first part of this collection was published in 1956 in Belgrade. The second one is still in the form of a manuscript. Though completely prepared for publishing, it has never been published. From the methodical point of view the collection was interestingly and nicely arranged. All astronomical notions and formulae are treated in details and well explained so that no complementary textbook is needed. A special attention is devoted to the numerical solution of the problems, which is not only missing in Serbian schools, but also, as said by Mi\\vsković in the Preface, is not properly valued. This paper treats both parts of this Collection which have been digitized and are available in the Virtual Library of the National Digitization Centre (Virtual Library, http://elib.matf.bg.ac.yu:8080/virlib/). By means of the manuscript digitization the second part of the Collection has become available to public use.
Generation of Minimum-Consistent DFA Using SAT Solver
NASA Astrophysics Data System (ADS)
Inui, Nobuo; Aizawa, Akiko
The purpose of this study is to develop efficient methods for the minimum-consistent DFA (deterministic finite state automaton) problem. The graph-coloring based SAT (satisfiability) approach proposed by Heule is a state of the art method for this problem. It specially achieves high performance computing in dense problems such as in a popular benchmark problem where rich information about labels is included. In contrast, to solve sparse problems is a challenge for the minimum-consistent DFA problem. To solve sparse problems, we propose three approaches to the SAT formulation: a) the binary color representation, b) the dynamic symmetry breaking and c) the hyper-graph coloring constraint. We organized an experiment using the existing benchmark problems and sparse problems made from them. We observed that our symmetry breaking constraints made the speed up the running time of SAT solver. In addition with this, our other proposed methods were showing the possibility to improve the performance. Then we simulated the perfomance of our methods under the condition that we executed the several program set-ups in parallel. Compared with the previous research results, we finally could reduce the average relative time by 66.5% and the total relative time by 7.6% for sparse problems and by 79.7% and 38.5% for dense problems, respectively. These results showed that our proposed methods were effective for difficult problems.
Hertz-Mindlin problem for arbitrary oblique 2D loading: General solution by memory diagrams
NASA Astrophysics Data System (ADS)
Aleshin, V.; Van Den Abeele, K.
2012-01-01
In this paper we present a new general solution to the fundamental problem of frictional contact of two elastic spheres, also known as the Hertz-Mindlin (HM) problem. The description of spheres in contact is a central topic in contact mechanics. It became a foundation of many applications, such as the friction of rough surfaces and the mechanics of granular materials and rocks, etc. Moreover, it serves as a theoretical background in modern nonlinear acoustics and elasticity, e.g. seismology and nondestructive testing. However, despite many efforts, a rigorous analytical solution for the general case when arbitrary normal and tangential forces are present is still missing, mainly because the traction distribution within the contact zone is convoluted and hardly tractable, even under relatively simple external action. Here, accepting a number of traditional limitations such as 2D loading and the existence of a functional dependence between normal and tangential forces, we propose an original way of replacing the complex traction distributions by simple graphical counterparts called memory diagrams, and we formulate a procedure that enables initiating and maintaining these memory diagrams following an arbitrary loading history. For each memory diagram, the solution can be expressed by closed-form analytical formulas that we have derived using known techniques suggested by Mindlin, Deresiewicz, and others. So far, to the best of our knowledge, arbitrary loading histories have been treated only numerically. Implementation of the proposed memory diagram method provides an easy-to-use computer-assisted analytical solution with a high level of generality. Examples and results illustrate the variety and richness of effects that can be encountered in a geometrically simple system of two contacting spheres.
Using SPARK as a Solver for Modelica
Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.
2008-06-30
Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.
New iterative solvers for the NAG Libraries
Salvini, S.; Shaw, G.
1996-12-31
The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.
Mahinthakumar, G.; Saied, F.; Valocchi, A.J.
1997-03-01
Some popular iterative solvers for non-symmetric systems arising from the finite-element discretization of three-dimensional groundwater contaminant transport problem are implemented and compared on distributed memory parallel platforms. This paper attempts to determine which solvers are most suitable for the contaminant transport problem under varied conditions for large scale simulations on distributed parallel platforms. The original parallel implementation was targeted for the 1024 node Intel paragon platform using explicit message passing with the NX library. This code was then ported to SGI Power Challenge Array, Convex Exemplar, and Origin 2000 machines using an MPI implementation. The performance of these solvers is studied for increasing problem size, roughness of the coefficients, and selected problem scenarios. These conditions affect the properties of the matrix and hence the difficulty level of the solution process. Performance is analyzed in terms of convergence behavior, overall time, parallel efficiency, and scalability. The solvers that are presented are BiCGSTAB, GMRES, ORTHOMIN, and CGS. A simple diagonal preconditioner is used in this parallel implementation for all the methods. The results indicate that all methods are comparable in performance with BiCGSTAB slightly outperforming the other methods for most problems. The authors achieved very good scalability in all the methods up to 1024 processors of the Intel Paragon XPS/150. They demonstrate scalability by solving 100 time steps of a 40 million element problem in about 5 minutes using either BiCGSTAB or GMRES.
Implementation of An Implicit Unsplit Staggered Mesh MHD Solver in FLASH
NASA Astrophysics Data System (ADS)
Xia, G.; Lee, D.
2010-11-01
FLASH is a publicly available community code designed to solve highly compressible multi-physics reactive flows. We have been adding capabilities to FLASH to make it an open science code for the academic HEDP community. A key need is to provide a computationally efficient time-stepping integration method that overcomes the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To address this problem, we are developing a fully implicit solver based on a Jacobian-Free Newton-Krylov implicit formulation. The method has been integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver. We are also integrating this solver into an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines, and into a treatment of the Biermann Battery effect that accounts for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.
Some fast elliptic solvers on parallel architectures and their complexities
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Y.
1989-01-01
The discretization of separable elliptic partial differential equations leads to linear systems with special block tridiagonal matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconstant coefficients. A method was recently proposed to parallelize and vectorize BCR. In this paper, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational compelxity lower than that of parallel BCR.
Some fast elliptic solvers on parallel architectures and their complexities
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Youcef
1989-01-01
The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR.
Hierarchically parallelized constrained nonlinear solvers with automated substructuring
NASA Technical Reports Server (NTRS)
Padovan, J.; Kwang, A.
1991-01-01
This paper develops a parallelizable multilevel constrained nonlinear equation solver. The substructuring process is automated to yield appropriately balanced partitioning of each succeeding level. Due to the generality of the procedure, both sequential, partially and fully parallel environments can be handled. This includes both single and multiprocessor assignment per individual partition. Several benchmark examples are presented. These illustrate the robustness of the procedure as well as its capacity to yield significant reductions in memory utilization and calculational effort due both to updating and inversion.
Hierarchically Parallelized Constrained Nonlinear Solvers with Automated Substructuring
NASA Technical Reports Server (NTRS)
Padovan, Joe; Kwang, Abel
1994-01-01
This paper develops a parallelizable multilevel multiple constrained nonlinear equation solver. The substructuring process is automated to yield appropriately balanced partitioning of each succeeding level. Due to the generality of the procedure,_sequential, as well as partially and fully parallel environments can be handled. This includes both single and multiprocessor assignment per individual partition. Several benchmark examples are presented. These illustrate the robustness of the procedure as well as its capability to yield significant reductions in memory utilization and calculational effort due both to updating and inversion.
ODE System Solver W. Krylov Iteration & Rootfinding
1991-09-09
LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less
A Minds-On Approach to Active Learning in General Music
ERIC Educational Resources Information Center
Scott, Sheila
2010-01-01
Minds-on engagement in active learning is explored through the experiences of Margaret Sanders, a general music teacher. Minds-on learners think about their experiences. They are actively involved as questioners and problem solvers while they complete musical tasks and reflect on their work after it is completed. Minds-off learners focus on their…
Application of Aeroelastic Solvers Based on Navier Stokes Equations
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2001-01-01
The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors
Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C
2014-01-01
This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.
Mikami, Katsunaka; Jorge, Ricardo E; Moser, David J; Arndt, Stephan; Jang, Mijin; Solodkin, Ana; Small, Steven L; Fonzetti, Pasquale; Hegel, Mark T; Robinson, Robert G
2014-01-01
This study examined the efficacy of antidepressant treatment for preventing the onset of generalized anxiety disorder (GAD) among patients with recent stroke. Of 799 patients assessed, 176 were randomized, and 149 patients without evidence of GAD at the initial visit were included in this double-blind treatment with escitalopram (N=47) or placebo (N=49) or non-blinded problem-solving therapy (PST; 12 total sessions; N=53). Participants given placebo over 12 months were 4.95 times more likely to develop GAD than patients given escitalopram and 4.00 times more likely to develop GAD than patients given PST. Although these results should be considered preliminary, the authors found that both escitalopram and PST were effective in preventing new onset of post-stroke GAD.
Solving the Linear Balance Equation on the Globe as a Generalized Inverse Problem
NASA Technical Reports Server (NTRS)
Lu, Huei-Iin; Robertson, Franklin R.
1999-01-01
A generalized (pseudo) inverse technique was developed to facilitate a better understanding of the numerical effects of tropical singularities inherent in the spectral linear balance equation (LBE). Depending upon the truncation, various levels of determinancy are manifest. The traditional fully-determined (FD) systems give rise to a strong response, while the under-determined (UD) systems yield a weak response to the tropical singularities. The over-determined (OD) systems result in a modest response and a large residual in the tropics. The FD and OD systems can be alternatively solved by the iterative method. Differences in the solutions of an UD system exist between the inverse technique and the iterative method owing to the non- uniqueness of the problem. A realistic balanced wind was obtained by solving the principal components of the spectral LBE in terms of vorticity in an intermediate resolution. Improved solutions were achieved by including the singular-component solutions which best fit the observed wind data.
Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem
NASA Astrophysics Data System (ADS)
Oltean, Marius; Bonetti, Luca; Spallicci, Alessandro D. A. M.; Sopuerta, Carlos F.
2016-09-01
In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the nonexistence of entropy in the latter sense. We explicate, clarify, and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the noncompactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy production.
Parallel computing study for the large-scale generalized eigenvalue problems in modal analysis
NASA Astrophysics Data System (ADS)
Fan, XuanHua; Chen, Pu; Wu, RuiAn; Xiao, ShiFu
2014-03-01
In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis. Three predominant subspace algorithms, i.e., Krylov-Schur method, implicitly restarted Arnoldi method and Jacobi-Davidson method, are modified with some complementary techniques to make them suitable for modal analysis. Detailed descriptions of the three algorithms are given. Based on these algorithms, a parallel solution procedure is established via the PANDA framework and its associated eigensolvers. Using the solution procedure on a machine equipped with up to 4800 processors, the parallel performance of the three predominant methods is evaluated via numerical experiments with typical engineering structures, where the maximum testing scale attains twenty million degrees of freedom. The speedup curves for different cases are obtained and compared. The results show that the three methods are good for modal analysis in the scale of ten million degrees of freedom with a favorable parallel scalability.
LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM
Minesaki, Yukitaka
2013-03-15
There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.
NASA Astrophysics Data System (ADS)
Tatsii, R. M.; Pazen, O. Yu.
2016-03-01
A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.
A fast and Robust Algorithm for general inequality/equality constrained minimum time problems
Briessen, B.; Sadegh, N.
1995-12-01
This paper presents a new algorithm for solving general inequality/equality constrained minimum time problems. The algorithm`s solution time is linear in the number of Runge-Kutta steps and the number of parameters used to discretize the control input history. The method is being applied to a three link redundant robotic arm with torque bounds, joint angle bounds, and a specified tip path. It solves case after case within a graphical user interface in which the user chooses the initial joint angles and the tip path with a mouse. Solve times are from 30 to 120 seconds on a Hewlett Packard workstation. A zero torque history is always used in the initial guess, and the algorithm has never crashed, indicating its robustness. The algorithm solves for a feasible solution for large trajectory execution time t{sub f} and then reduces t{sub f} and then reduces t{sub f} by a small amount and re-solves. The fixed time re- solve uses a new method of finding a near-minimum-2-norm solution to a set of linear equations and inequalities that achieves quadratic convegence to a feasible solution of the full nonlinear problem.
Recruitment and retention of general practitioners in the UK: what are the problems and solutions?
Young, R; Leese, B
1999-10-01
Recruitment and retention of general practitioners (GPs) has become an issue of major concern in recent years. However, much of the evidence is anecdotal and some commentators continue to question the scale of workforce problems. Hence, there is a need to establish a clear picture of those instabilities (i.e. imbalances between demand and supply) that do exist in the GP labour market in the UK. Based on a review of the published literature, we identify problems that stem from: (i) the changing social composition of the workforce and the fact that a large proportion of qualified GPs are significantly underutilized within traditional career structures; and (ii) the considerable differences in the ability of local areas to match labour demand and supply. We argue that one way to address these problems would be to encourage greater flexibility in a number of areas highlighted in the literature: (i) time commitment across the working day and week; (ii) long-term career paths; (iii) training and education; and (iv) remuneration and contract conditions. Overall, although the evidence suggests that the predicted 'crisis' has not yet occurred in the GP labour market as a whole, there is no room for lack of imagination in planning terms. Workforce planners continue to emphasize national changes to the medical school intake as the means to balance labour demand and supply between the specialities; however, better retention and deployment of existing GP labour would arguably produce more effective supply-side solutions. In this context, current policy and practice developments (e.g. Primary Care Groups and Primary Care Act Pilot Sites) offer a unique learning base upon which to move forward.
Ordinary Differential Equation System Solver
1992-03-05
LSODE is a package of subroutines for the numerical solution of the initial value problem for systems of first order ordinary differential equations. The package is suitable for either stiff or nonstiff systems. For stiff systems the Jacobian matrix may be treated in either full or banded form. LSODE can also be used when the Jacobian can be approximated by a band matrix.
Bordner, J.; Saied, F.
1996-12-31
GLab3D is an enhancement of an interactive environment (MGLab) for experimenting with iterative solvers and multigrid algorithms. It is implemented in MATLAB. The new version has built-in 3D elliptic pde`s and several iterative methods and preconditioners that were not available in the original version. A sparse direct solver option has also been included. The multigrid solvers have also been extended to 3D. The discretization and pde domains are restricted to standard finite differences on the unit square/cube. The power of this software studies in the fact that no programming is needed to solve, for example, the convection-diffusion equation in 3D with TFQMR and a customized V-cycle preconditioner, for a variety of problem sizes and mesh Reynolds, numbers. In addition to the graphical user interface, some sample drivers are included to show how experiments can be composed using the underlying suite of problems and solvers.
Regularized Newton methods for x-ray phase contrast and general imaging problems
NASA Astrophysics Data System (ADS)
Maretzke, Simon; Bartels, Matthias; Krenkel, Martin; Salditt, Tim; Hohage, Thorsten
2016-03-01
Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern without homogeneity constraints is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retrieval and tomographic inversion. We demonstrate the potential of this approach by three-dimensional imaging of a colloidal crystal at 95 nm isotropic resolution.
1990-01-01
Thirteen general practitioners examined the notes of 1072 patients born in 1974 for evidence of enuresis, suspected urinary tract infection, and renal tract imaging. Of these children 63 (5.9%) had presented with enuresis -6.7% of the boys and 5.0% of the girls. Of the 63 children 65.1% had had midstream urinalysis. One hundred and ninety five children (18.2%, 64 boys and 131 girls) had experienced 303 episodes of possible urinary infections. Midstream urine samples were obtained in 80.2% of episodes and 17.7% of samples were positive. Ten boys (1.9% of the total) and 28 girls (5.2%) had proven infections. Only 14 of these 38 children (36.8%) had undergone renal tract imaging, 30.9% of the boys and 39.3% of the girls. All imaging was normal except in the case of one girl whose micturating cystourethrogram showed reflux. Fifteen other children were investigated; two further abnormalities were detected, one renal scar with reflux and one duplex system. This study demonstrates deficiencies in the investigation and follow up of children with urinary problems by general practitioners. Possible means of improvement are discussed. PMID:2115350
High order methods for elliptic problems in plasma physics
NASA Astrophysics Data System (ADS)
Pataki, Andras
In this dissertation, we develop fast high order solvers for two elliptic problems in plasma physics. The first is the Grad-Shafranov equation, a nonlinear elliptic PDE that describes the magnetohydrodynamic equilibrium of three dimensional, axisymmetric plasmas. A high order solver is desirable to ensure the accurate evaluation of derivatives, required both for the computation of physical quantities and for studying perturbations near equilibrium. Using suitable scaling, we transform the problem from cylindrical coordinates to a nonlinear Poisson problem in Cartesian coordinates. We compute the conformal map from the original domain to the unit circle where we build a separation of variables based solver to obtain a high order, accurate solution. A fixed point or eigenvalue outer iteration is used to solve the nonlinear equation. Our second problem is the computation of the Coulomb collision operator that arises in kinetic models of plasmas. The collision operator can be written in terms of two Rosenbluth potentials obtained by solving a Poisson and a biharmonic problem in the velocity variables. For these PDEs we describe a new class of fast solvers in cylindrical coordinates with free-space radiation conditions. By combining integral equation methods in the radial variable with Fourier methods in the angular and z directions, we show that high-order accuracy can be achieved in both the solution and its derivatives. A weak singularity arises in the Fourier transform with respect to z that is handled with special purpose quadratures. Such solvers are ideally suited to the Rosenbluth potentials, since the collision operator is expressed in terms of up to fourth derivatives of the potentials, placing stringent demands on the computational order. Also, since axisymmetry is generally assumed in the velocity variables, the use of cylindrical coordinates reduces the three dimensional problem to a two dimensional computation.
Parallel solvers for reservoir simulation on MIMD computers
Piault, E.; Willien, F.; Roux, F.X.
1995-12-01
We have investigated parallel solvers for reservoir simulation. We compare different solvers and preconditioners using T3D and SP1 parallel computers. We use block diagonal domain decomposition preconditioner with non-overlapping sub-domains.
Collaborative Problem Solving in Shared Space
ERIC Educational Resources Information Center
Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk
2015-01-01
The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…
NASA Astrophysics Data System (ADS)
Carré, G.; Del Pino, S.; Després, B.; Labourasse, E.
2009-08-01
We describe a cell-centered Godunov scheme for Lagrangian gas dynamics on general unstructured meshes in arbitrary dimension. The construction of the scheme is based upon the definition of some geometric vectors which are defined on a moving mesh. The finite volume solver is node based and compatible with the mesh displacement. We also discuss boundary conditions. Numerical results on basic 3D tests problems show the efficiency of this approach. We also consider a quasi-incompressible test problem for which our nodal solver gives very good results if compared with other Godunov solvers. We briefly discuss the compatibility with ALE and/or AMR techniques at the end of this work. We detail the coefficients of the isoparametric element in the appendix.
Experimental validation of a coupled neutron-photon inverse radiation transport solver.
Mattingly, John K.; Harding, Lee; Mitchell, Dean James
2010-03-01
Forward radiation transport is the problem of calculating the radiation field given a description of the radiation source and transport medium. In contrast, inverse transport is the problem of inferring the configuration of the radiation source and transport medium from measurements of the radiation field. As such, the identification and characterization of special nuclear materials (SNM) is a problem of inverse radiation transport, and numerous techniques to solve this problem have been previously developed. The authors have developed a solver based on nonlinear regression applied to deterministic coupled neutron-photon transport calculations. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5-kg sphere of alpha-phase, weapons-grade plutonium. The source was measured in six different configurations: bare, and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses of 1.27, 2.54, 3.81, 7.62, and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to characterize the solver's ability to correctly infer the configuration of the source from its measured signatures.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.
2005-01-01
We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.
Wavelet-based Poisson solver for use in particle-in-cell simulations.
Terzić, Balsa; Pogorelov, Ilya V
2005-06-01
We report on a successful implementation of a wavelet-based Poisson solver for use in three-dimensional particle-in-cell simulations. Our method harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and additional compression of relevant data sets. We present and discuss preliminary results relating to the application of the new solver to test problems in accelerator physics and astrophysics. PMID:15980304
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Fowler, Michael James
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy
NASA Astrophysics Data System (ADS)
Giudici, M.; Baratelli, F.; Comunian, A.; Vassena, C.; Cattaneo, L.
2014-10-01
Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBCs) on ice velocity, stress and temperature; on the other hand the constitutive laws involve many physical parameters, some of which depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws. As these quantities cannot be easily measured at the study scale in the field, they are often obtained through model calibration by solving an inverse problem (IP). The objective of this paper is to provide a thorough and rigorous conceptual framework for IPs in cryospheric studies and in particular: to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed; to define and characterise identifiability, a property related to the solution to the forward problem; to study well-posedness in a correct way, without confusing instability with ill-conditioning or with the properties of the method applied to compute a solution; to cast sensitivity analysis in a general framework and to differentiate between the computation of local sensitivity indicators with a one-at-a-time approach and first-order sensitivity indicators that consider the whole possible variability of the model parameters. The conceptual framework and the relevant properties are illustrated by means of a simple numerical example of isothermal ice flow, based on the shallow-ice approximation.
Assessment of elderly people in general practice. 2. Functional abilities and medical problems.
Iliffe, S; Haines, A; Gallivan, S; Booroff, A; Goldenberg, E; Morgan, P
1991-01-01
A random sample of 239 patients aged 75 years and over registered with general practitioners in north and north west London was selected for home assessment to determine the functional abilities and medical problems of this group of patients. Nearly one in five of the patients were incontinent of urine (18.4%), although this was on a daily basis for only 4.1%. Around one in 20 patients were incontinent of faeces (5.9%), yet only one patient had laundry service support. Unassisted mobility outdoors was reported as possible by 81.2% of the patients. Fourteen different types of aids were present in the participants' homes, the commonest being walking sticks, bath aids and stair rails. Only a small proportion of aids seemed to be currently unused. The major functional problems were bathing, housework, shopping, washing and ironing, and cooking main meals, but the level of demand for extra help was low. One in five patients had a hearing aid (19.8%) but for only 30% of these patients was it in continuous use. Polypharmacy was common, with 29.7% of patients taking three or more prescribed medicines. The workload implications of this approach to anticipatory care of elderly people are considerable. In an average practice of 2000 patients with 130 patients aged 75 years and over the primary care team would need over 150 hours of face-to-face contact per year with these patients to fulfil the new contractual obligation and the yield of new information leading to effective medical or social intervention is limited.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Johnson, David T.
Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
Boschitsch, Alexander H; Fenley, Marcia O
2011-05-10
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous
User documentation for KINSOL, a nonlinear solver for sequential and parallel computers
Taylor, A. G., LLNL
1998-07-01
KINSOL is a general purpose nonlinear system solver callable from either C or Fortran programs It is based on NKSOL [3], but is written in ANSI-standard C rather than Fortran77 Its most notable feature is that it uses Krylov Inexact Newton techniques in the system`s approximate solution, thus sharing significant modules previously written within CASC at LLNL to support CVODE[6, 7]/PVODE[9, 5] It also requires almost no matrix storage for solving the Newton equations as compared to direct methods The name KINSOL is derived from those techniques Krylov Inexact Newton SOLver The package was arranged so that selecting one of two forms of a single module in the compilation process will allow the entire package to be created in either sequential (serial) or parallel form The parallel version of KINSOL uses MPI (Message-Passing Interface) [8] and an appropriately revised version of the vector module NVECTOR, as mentioned above, to achieve parallelism and portability KINSOL in parallel form is intended for the SPMD (Single Program Multiple Data) model with distributed memory, in which all vectors are identically distributed across processors In particular, the vector module NVECTOR is designed to help the user assign a contiguous segment of a given vector to each of the processors for parallel computation Several primitives were added to NVECTOR as originally written for PVODE to implement KINSOL KINSOL has been run on a Cray-T3D, an eight- processor DEC ALPHA and a cluster of workstations It is currently being used in a simulation of tokamak edge plasmas and in groundwater two-phase flow studies at LLNL The remainder of this paper is organized as follows Section 2 sets the mathematical notation and summarizes the basic methods Section 3 summarizes the organization of the KINSOL solver, while Section 4 summarizes its usage Section 5 describes a preconditioner module, Section 6 describes a set of Fortran/C interfaces, Section 7 describes an example problem, and Section 8
A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA)
NASA Astrophysics Data System (ADS)
Zaveri, Rahul A.; Easter, Richard C.; Peters, Leonard K.
2005-12-01
Development and application of a new Multicomponent Equilibrium Solver for Aerosols (MESA) is described for systems containing H+, NH4+, Na+, Ca2+, SO42-, HSO4-, NO3-, and Cl- ions. The equilibrium solution is obtained by integrating a set of pseudo-transient ordinary differential equations describing the precipitation and dissolution reactions for all the possible salts to steady state. A comprehensive temperature dependent mutual deliquescence relative humidity (MDRH) parameterization is developed for all the possible salt mixtures, thereby eliminating the need for a rigorous numerical solution when ambient RH is less than MDRH(T). The solver is unconditionally stable, mass conserving, and shows robust convergence. Performance of MESA was evaluated against the Web-based AIM Model III, which served as a benchmark for accuracy, and the EQUISOLV II solver for speed. Important differences in the convergence and thermodynamic errors in MESA and EQUISOLV II are discussed. The average ratios of speeds of MESA over EQUISOLV II ranged between 1.4 and 5.8, with minimum and maximum ratios of 0.6 and 17, respectively. Because MESA directly diagnoses MDRH, it is significantly more efficient when RH < MDRH. MESA's superior performance is partially due to its "hard-wired" code for the present system as opposed to EQUISOLV II, which has a more generalized structure for solving any number and type of reactions at temperatures down to 190 K. These considerations suggest that MESA is highly attractive for use in 3-D aerosol/air-quality models for lower tropospheric applications (T > 240 K) in which both accuracy and computational efficiency are critical.
George, D.L.
2011-01-01
The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Progress in developing Poisson-Boltzmann equation solvers
Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil
2013-01-01
This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185
Application of sparse matrix solvers as effective preconditioners
Young, D.P.; Melvin, R.G.; Johnson, F.T.; Bussoletti, J.E.; Wigton, L.B.; Samant, S.S. )
1989-11-01
In this paper the use of a new out-of-core sparse matrix package for the numerical solution of partial differential equations involving complex geometries arising from aerospace applications is discussed. The sparse matrix solver accepts contributions to the matrix elements in random order and assembles the matrix using fast sort/merge routines. Fill-in is reduced through the use of a physically based nested dissection ordering. For very large problems a drop tolerance is used during the matrix decomposition phase. The resulting incomplete factorization is an effective preconditioner for Krylov subspace methods, such as GMRES. Problems involving 200,000 unknowns routinely are solved on the Cray X-MP using 64MW of solid-state storage device (SSD).
Generalized Supersoft Supersymmetry Breaking and a Solution to the μ Problem
NASA Astrophysics Data System (ADS)
Nelson, Ann E.; Roy, Tuhin S.
2015-05-01
We propose the framework generalized supersoft supersymmetry breaking. "Supersoft" models, with D -type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and C P problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, μ ) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T parameter. In this Letter, we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new μ term can give unequal masses to the up and down type Higgs fields, and the Higgsinos can be much heavier than the Higgs boson without fine-tuning. However, unequal Higgs and Higgsino masses also remove some attractive features of supersoft supersymmetry.
On some generalization of the area theorem with applications to the problem of rolling balls
NASA Astrophysics Data System (ADS)
Chaplygin, Sergey A.
2012-04-01
This publication contributes to the series of RCD translations of Sergey Alexeevich Chaplygin's scientific heritage. Earlier we published three of his papers on non-holonomic dynamics (vol. 7, no. 2; vol. 13, no. 4) and two papers on hydrodynamics (vol. 12, nos. 1, 2). The present paper deals with mechanical systems that consist of several spheres and discusses generalized conditions for the existence of integrals of motion (linear in velocities) in such systems. First published in 1897 and awarded by the Gold Medal of Russian Academy of Sciences, this work has not lost its scientific significance and relevance. (In particular, its principal ideas are further developed and extended in the recent article "Two Non-holonomic Integrable Problems Tracing Back to Chaplygin", published in this issue, see p. 191). Note that non-holonomic models for rolling motion of spherical shells, including the case where the shells contain intricate mechanisms inside, are currently of particular interest in the context of their application in the design of ball-shaped mobile robots. We hope that this classical work will be estimated at its true worth by the English-speaking world.
On the stability of the solutions of the general problem of three bodies
NASA Technical Reports Server (NTRS)
Standish, E. M., Jr.
1976-01-01
The extent through which the initial conditions of a given three-body system may be varied without completely changing the qualitative nature of the subsequent system evolution is investigated. It is assumed that the three masses are equal, all initial velocities are zero, the first two bodies initially lie on the x-axis, and the position of the third body is confined to a specific region of space. Analysis of the system evolution for different initial positions of the third body shows that there is a whole area or 'island' in the x-y plane throughout which the initial position of the third body may be moved in a continuous fashion to produce an evolution which also changes in a continuous manner. A Monte Carlo approach is adopted to determine the full extent of this island in the general problem. It is concluded that the stability of a full solution may be directly related to the size of its island in phase space.
ERIC Educational Resources Information Center
Baeza-Baeza, Juan J.; Garcia-Alvarez-Coque, M. Celia
2012-01-01
A general systematic approach including ionic strength effects is proposed for the numerical calculation of concentrations of chemical species in multiequilibrium problems. This approach extends the versatility of the approach presented in a previous article and is applied using the Solver option of the Excel spreadsheet to solve real problems…
Algorithms for parallel flow solvers on message passing architectures
NASA Astrophysics Data System (ADS)
Vanderwijngaart, Rob F.
1995-01-01
The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those
NASA Astrophysics Data System (ADS)
Vozmishcheva, Tatiana
2016-09-01
The connection between the problems of celestial mechanics: the Kepler problem, the two-center problem and the two body problem in spaces of constant curvature with the generalized Kepler and Hooke potentials is investigated. The limit passage in the two-center and two body problems in the Lobachevsky space and on a sphere is carried out as λto0 (λ is the curvature of the corresponding space) for the two potentials. The potentials and metrics in spaces under study are written in the gnomonic coordinates. It is shown that as the curvature radius tends to infinity, the generalized gravitational and elastic potentials transform to the Kepler and Hooke forms in the Euclidean space.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Kim, Jinho
2016-05-01
The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen an increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. The current generation of RMHD codes does not have any particularly good strategy for avoiding such an unphysical situation. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The methods presented here are very general and should apply to other PDE systems where physical realizability is most easily asserted in the primitive variables. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we show that similar advances extend to RMHD. As a result, the face-centered magnetic fields can be evolved much more accurately using the edge-centered electric fields in the corrector step. Those edge-centered electric fields come from a multidimensional Riemann solver for RMHD which we present in this paper. The overall update results in a one-step, fully conservative scheme that is suited for AMR. In this paper we also develop several new test problems for RMHD. We show that RMHD vortices can be designed that propagate on the computational mesh as self-preserving structures. These RMHD vortex test problems provide a means to do truly multidimensional accuracy testing for
Kinugawa, Tohru
2014-02-15
This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In discussing
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Matrix decomposition graphics processing unit solver for Poisson image editing
NASA Astrophysics Data System (ADS)
Lei, Zhao; Wei, Li
2012-10-01
In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.
ERIC Educational Resources Information Center
Lower, Stephen K.
A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…
Domain decomposition for the SPN solver MINOS
Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques
2012-07-01
In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nedelec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3 (R) code. (authors)
KADATH: A spectral solver for theoretical physics
Grandclement, Philippe
2010-05-01
KADATH is a library that implements spectral methods in a very modular manner. It is designed to solve a wide class of problems that arise in the context of theoretical physics. Several types of coordinates are implemented and additional geometries can be easily encoded. Partial differential equations of various types are discretized by means of spectral methods. The resulting system is solved using a Newton-Raphson iteration. Doing so, KADATH is able to deal with strongly non-linear situations. The algorithms are validated by applying the library to four different problems of contemporary physics, in the fields of gauge field theory and general relativity.
Trust-region based solver for nonlinear transport in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Wang, Xiaochen; Tchelepi, Hamdi A.
2013-11-01
We describe a new nonlinear solver for immiscible two-phase transport in porous media, where viscous, buoyancy, and capillary forces are significant. The flux (fractional flow) function, F, is a nonlinear function of saturation and typically has inflection points and can be non-monotonic. The non-convexity and non-monotonicity of F are major sources of difficulty for nonlinear solvers of coupled multiphase flow and transport in natural porous media. We describe a modified Newton algorithm that employs trust regions of the flux function to guide the Newton iterations. The flux function is divided into saturation trust regions delineated by the inflection, unit-flux, and end points. The updates are performed such that two successive iterations cannot cross any trust-region boundary. If a crossing is detected, the saturation value is chopped back to the appropriate trust-region boundary. The proposed trust-region Newton solver, which is demonstrated across the parameter space of viscous, buoyancy and capillary effects, is a significant extension of the inflection-point strategy of Jenny et al. (JCP, 2009) [5] for viscous dominated flows. We analyze the discrete nonlinear transport equation obtained using finite-volume discretization with phase-based upstream weighting. Then, we prove convergence of the trust-region Newton method irrespective of the timestep size for single-cell problems. Numerical results across the full range of the parameter space of viscous, gravity and capillary forces indicate that our trust-region scheme is unconditionally convergent for 1D transport. That is, for a given choice of timestep size, the unique discrete solution is found independently of the initial guess. For problems dominated by buoyancy and capillarity, the trust-region Newton solver overcomes the often severe limits on timestep size associated with existing methods. To validate the effectiveness of the new nonlinear solver for large reservoir models with strong heterogeneity
Frequency Domain Modelling by a Direct-Iterative Solver: A Space and Wavelet Approach
NASA Astrophysics Data System (ADS)
Hustedt, B.; Operto, S.; Virieux, J.
2002-12-01
Seismic forward modelling of wave propagation phenomena in complex rheologic media using a frequency domain finite-difference (FDFD) technique is of special interest for multisource experiments and waveform inversion schemes, because the complete wavefield solution can be computed in a fast and efficient way. FDFD modelling requires the inversion of an extremely large matrix-equation A x x = b, by either a direct or an iterative solver. The direct solver computes an effective inverse of A, called LU factorization. The main handicap is additional computer memory required for storing matrix fill-in coefficients, that are created during the factorization process. Iterative solvers are not limited by memory constraints (additional coefficients), but the convergence depends on a good initial solution difficult to guess before hand. For both solvers, available computer resources has limited wide-spread FDFD modelling applications to mainly two-dimensional (2D) and rarely three-dimensional (3D) problems. In order to overcome these limits, we propose the combination of a direct solver and an iterative solver, called Direct-Iterative Solver (DIS). The direct solver is used to compute an exact wavefield solution on a coarse discretized grid. We use a multifrontal decomposition technique. The coarse-grid size is determined preliminary by limits of the available computer resources, rather than by the wave simulation problem. We project the exact coarse-grid solution on a fine-grid, and use it as an initial solution for an iterative solver, which convergences to an acceptable approximation of the desired fine-grid solution. Two different DIS schemes have been implemented and tested for numerical accuracy and computational performance. The first approach, called the Direct-Iterative-Space Solver (DISS), projects the coarse-grid solution on the fine-grid by a bilinear interpolation. Though the interpolated solution nicely approximates the desired fine-grid solution, still for
LORENE: Spectral methods differential equations solver
NASA Astrophysics Data System (ADS)
Gourgoulhon, Eric; Grandclément, Philippe; Marck, Jean-Alain; Novak, Jérôme; Taniguchi, Keisuke
2016-08-01
LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2004-06-01
A simple approach is discussed which associates to (solvable) matrix equations (solvable) dynamical systems, generally interpretable as (interesting) many-body problems, possibly involving auxiliary dependent variables in addition to those identifying the positions of the moving particles. We then focus on cases in which the auxiliary variables can be altogether eliminated, reobtaining thereby (via this unified approach) well-known solvable many-body problems, and moreover a (solvable) extension of the "goldfish" model.
Opening up the Collaborative Problem-Solving Process to Solvers
ERIC Educational Resources Information Center
Robison, Tyler
2013-01-01
In software systems, having features of openness means that some of the internal components of the system are made available for examination by users. Researchers have looked at different effects of open systems a great deal in the area of educational technology, but also in areas outside of education. Properly used, openness has the potential to…
Piping benchmark problems for the General Electric Advanced Boiling Water Reactor
Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.
1993-08-01
To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set.
Implementation of generalized optimality criteria in a multidisciplinary environment
NASA Technical Reports Server (NTRS)
Canfield, R. A.; Venkayya, V. B.
1989-01-01
A generalized optimality criterion method consisting of a dual problem solver combined with a compound scaling algorithm was implemented in the multidisciplinary design tool, ASTROS. This method enables, for the first time in a production design tool, the determination of a minimum weight design using thousands of independent structural design variables while simultaneously considering constraints on response quantities in several disciplines. Even for moderately large examples, the computational efficiency is improved significantly relative to the conventional approach.
Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.
1994-01-01
The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).
Aspiranti, Kathleen B; Skinner, Christopher H; McCleary, Daniel F; Cihak, David F
2011-01-01
We used a multiple baseline design across math facts to evaluate classwide use of a taped problem (TP) intervention on first graders' digits correct per minute in a general education classroom. During TP, students attempted to respond to each math fact before they heard the answer on an audiotape. As problems were repeated, response intervals were varied and individual and group feedback and rewards were provided contingent upon improved performance. Across all 3 sets of problems, digits correct per minute increased following the use of TP. We discuss the efficacy of TP as an instructional (as opposed to remedial) procedure, practical implications for teachers, and areas for future research. PMID:22649576
Petri Net Modeling and Decomposition Method for Solving Production Scheduling Problems
NASA Astrophysics Data System (ADS)
Nishi, Tatsushi; Maeno, Ryota
Considering the need to develop general scheduling problem solver, the recent integration of Petri Nets as modeling tools into effective optimization methods for scheduling problems is very promising. The paper addresses a Petri Net modeling and decomposition method for solving a wide variety of scheduling problems. The scheduling problems are represented as the optimal transition firing sequence problems for timed Petri Nets. The Petri Net is decomposed into several subnets in which each subproblem can be easily solved by Dijkstra' algorithm. The approach is applied to a flowshop scheduling problem. The performance of the proposed algorithm is compared with that of a simulated annealing method.
GPU accelerated FDTD solver and its application in MRI.
Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S
2010-01-01
The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.
ERIC Educational Resources Information Center
Donoghue, John R.
2015-01-01
At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…
de Moor, Marleen H M; Vink, Jacqueline M; van Beek, Jenny H D A; Geels, Lot M; Bartels, Meike; de Geus, Eco J C; Willemsen, Gonneke; Boomsma, Dorret I
2011-01-01
This study examined the heritability of problem drinking and investigated the phenotypic and genetic relationships between problem drinking and personality. In a sample of 5,870 twins and siblings and 4,420 additional family members from the Netherlands Twin Register. Data on problem drinking (assessed with the AUDIT and CAGE; 12 items) and personality [NEO Five-Factor Inventory (FFI); 60 items] were collected in 2009/2010 by surveys. Confirmatory factor analysis on the AUDIT and CAGE items showed that the items clustered on two separate but highly correlated (r = 0.74) underlying factors. A higher-order factor was extracted that reflected those aspects of problem drinking that are common to the AUDIT and CAGE, which showed a heritability of 40%. The correlations between problem drinking and the five dimensions of personality were small but significant, ranging from 0.06 for Extraversion to -0.12 for Conscientiousness. All personality dimensions (with broad-sense heritabilities between 32 and 55%, and some evidence for non-additive genetic influences) were genetically correlated with problem drinking. The genetic correlations were small to modest (between |0.12| and |0.41|). Future studies with longitudinal data and DNA polymorphisms are needed to determine the biological mechanisms that underlie the genetic link between problem drinking and personality.
Stevens, D.E.; Bretherton, S.
1996-12-01
This paper presents a new forward-in-time advection method for nearly incompressible flow, MU, and its application to an adaptive multilevel flow solver for atmospheric flows. MU is a modification of Leonard et al.`s UTOPIA scheme. MU, like UTOPIA, is based on third-order accurate semi-Lagrangian multidimensional upwinding for constant velocity flows. for varying velocity fields, MU is a second-order conservative method. MU has greater stability and accuracy than UTOPIA and naturally decomposes into a monotone low-order method and a higher-order accurate correction for use with flux limiting. Its stability and accuracy make it a computationally efficient alternative to current finite-difference advection methods. We present a fully second-order accurate flow solver for the anelastic equations, a prototypical low Mach number flow. The flow solver is based on MU which is used for both momentum and scalar transport equations. This flow solver can also be implemented with any forward-in-time advection scheme. The multilevel flow solver conserves discrete global integrals of advected quantities and includes adaptive mesh refinements. Its second-order accuracy is verified using a nonlinear energy conservation integral for the anelastic equations. For a typical geophysical problem in which the flow is most rapidly varying in a small part of the domain, the multilevel flow solver achieves global accuracy comparable to uniform-resolution simulation for 10% of the computational cost. 36 refs., 10 figs.
ERIC Educational Resources Information Center
Gauthier, N.
2008-01-01
A general method is presented for evaluating the sums of "m"th powers of the integers that can, and that cannot, be represented in the two-element Frobenius problem. Generating functions are introduced and used for that purpose. Explicit formulas for the desired sums are obtained and specific examples are discussed.
ERIC Educational Resources Information Center
Ertör, Eren; Akan, Durdagi
2016-01-01
In this study, it was aimed to analyze the problems that the nursery school teachers, who worked in primary schools of Ministry of National Education in Agri city center in 2014-2015 academic years, experience in personnel services and general services according to the views of the teachers. In the direction of this purpose, phenomenology design,…
ERIC Educational Resources Information Center
Gladman, Justin; Perkins, David
2013-01-01
Context and Objective: Australian rural general practitioners (GPs) require public health knowledge. This study explored the suitability of teaching complex public health issues related to Aboriginal health by way of a hybrid problem-based learning (PBL) model within an intensive training retreat for GP registrars, when numerous trainees have no…
ERIC Educational Resources Information Center
Madison, James H.
1984-01-01
In 1923 John D. Rockefeller's General Education Board (GED) undertook a project to reform the public schools in two rural Indiana counties. The GED demonstration project developed from more than two decades of concern about America's rural problems. The attempt by cosmopolitan outside experts to change the rural schools is described. (RM)
ERIC Educational Resources Information Center
Nygaard, Egil; Jensen, Tine K.; Dyb, Grete
2012-01-01
The aim of this study was to evaluate the structure of posttraumatic stress reaction factors and their relation to general mental health problems in Norwegian children exposed to the tsunami on December 26, 2004. A total of 133 children and adolescents (ages 6-17) were interviewed 10 months posttsunami using the UCLA PTSD Reaction Index, and 104…
NASA Astrophysics Data System (ADS)
Sadybekov, Makhmud A.; Sarsenbi, Abdizhahan; Tengayeva, Aizhan
2016-08-01
In this paper, we consider a spectral problem for a model differential operator of the second order with involution. The operator is given by a differential expression ℓu = -u″(-x) and boundary conditions of the general form. A criterion of the basis property of systems of eigenfunctions of the operator is set in the sense of coefficients of the boundary conditions.
Induction as an Empirical Problem: How Students Generalize during Practical Work.
ERIC Educational Resources Information Center
Wickman, Per-Olof; Ostman, Leif
2002-01-01
Examines how university students made generalizations when making morphological insect observations. Results showed students rarely made generalizations in terms of universal statements: they did not use induction or produce hypotheses for testing in an analytic philosophical sense but used induction in more familiar contexts. Discusses the…
Induction as an empirical problem: how students generalize during practical work
NASA Astrophysics Data System (ADS)
Wickman, Per-Olof
2002-05-01
We examined how university students made generalizations when making morphological observations of insects. Five groups of two or three students working together were audio recorded. The results were analysed by an approach based on the work of Wittgenstein and on a pragmatic and sociocultural perspective. Results showed that students rarely made generalizations in terms of universal statements and they did not use induction or produced hypotheses for testing in an analytic philosophical sense. The few generalizations they made of this kind were taken from zoological authorities like textbooks or lectures. However, students used induction when in more familiar contexts. Moreover, when generalizations were analysed in the sense of Dewey, it became evident that students are fully capable of making generalizations by transferring meaning from one experience to another. The implications of these results for using induction and hypotheses testing in instruction are discussed.
Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique
NASA Astrophysics Data System (ADS)
Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi
2013-09-01
According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.
Updates to the NEQAIR Radiation Solver
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Brandis, Aaron M.
2014-01-01
The NEQAIR code is one of the original heritage solvers for radiative heating prediction in aerothermal environments, and is still used today for mission design purposes. This paper discusses the implementation of the first major revision to the NEQAIR code in the last five years, NEQAIR v14.0. The most notable features of NEQAIR v14.0 are the parallelization of the radiation computation, reducing runtimes by about 30×, and the inclusion of mid-wave CO2 infrared radiation.
Input-output-controlled nonlinear equation solvers
NASA Technical Reports Server (NTRS)
Padovan, Joseph
1988-01-01
To upgrade the efficiency and stability of the successive substitution (SS) and Newton-Raphson (NR) schemes, the concept of input-output-controlled solvers (IOCS) is introduced. By employing the formal properties of the constrained version of the SS and NR schemes, the IOCS algorithm can handle indefiniteness of the system Jacobian, can maintain iterate monotonicity, and provide for separate control of load incrementation and iterate excursions, as well as having other features. To illustrate the algorithmic properties, the results for several benchmark examples are presented. These define the associated numerical efficiency and stability of the IOCS.
Jenny, Patrick Tchelepi, Hamdi A.; Lee, Seong H.
2009-11-01
This paper addresses the convergence properties of implicit numerical solution algorithms for nonlinear hyperbolic transport problems. It is shown that the Newton-Raphson (NR) method converges for any time step size, if the flux function is convex, concave, or linear, which is, in general, the case for CFD problems. In some problems, e.g., multiphase flow in porous media, the nonlinear flux function is S-shaped (not uniformly convex or concave); as a result, a standard NR iteration can diverge for large time steps, even if an implicit discretization scheme is used to solve the nonlinear system of equations. In practice, when such convergence difficulties are encountered, the current time step is cut, previous iterations are discarded, a smaller time step size is tried, and the NR process is repeated. The criteria for time step cutting and selection are usually based on heuristics that limit the allowable change in the solution over a time step and/or NR iteration. Here, we propose a simple modification to the NR iteration scheme for conservation laws with S-shaped flux functions that converges for any time step size. The new scheme allows one to choose the time step size based on accuracy consideration only without worrying about the convergence behavior of the nonlinear solver. The proposed method can be implemented in an existing simulator, e.g., for CO{sub 2} sequestration or reservoir flow modeling, quite easily. The numerical analysis is confirmed with simulation studies using various test cases of nonlinear multiphase transport in porous media. The analysis and numerical experiments demonstrate that the modified scheme allows for the use of arbitrarily large time steps for this class of problems.
NASA Astrophysics Data System (ADS)
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-08-01
We develop a new approach for solving the nonlinear Richards' equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioning strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. We also show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shu, C.; Huang, H. B.; Teo, C. J.
2015-01-01
A multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this paper for incompressible multiphase flows with low- and large-density-ratios. In the solver, the flow variables at cell centers are given from the solution of macroscopic governing differential equations (Navier-Stokes equations recovered by multiphase lattice Boltzmann (LB) model) by the finite volume method. At each cell interface, the viscous and inviscid fluxes are evaluated simultaneously by local reconstruction of solution for the standard lattice Boltzmann equation (LBE). The forcing terms in the governing equations are directly treated by the finite volume discretization. The phase interfaces are captured by solving the phase-field Cahn-Hilliard equation with a fifth order upwind scheme. Unlike the conventional multiphase LB models, which restrict their applications on uniform grids with fixed time step, the MLBFS has the capability and advantage to simulate multiphase flows on non-uniform grids. The proposed solver is validated by several benchmark problems, such as two-phase co-current flow, Taylor-Couette flow in an annulus, Rayleigh-Taylor instability, and droplet splashing on a thin film at density ratio of 1000 with Reynolds numbers ranging from 20 to 1000. Numerical results show the reliability of the proposed solver for multiphase flows with high density ratio and high Reynolds number.
NASA Astrophysics Data System (ADS)
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-12-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5-3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-04-29
We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less
Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.
2014-01-01
This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804
The Effect of General Versus Specific Heuristics in Mathematical Problem-Solving Tasks.
ERIC Educational Resources Information Center
Smith, James Philip
This study investigated differences in problem-solving performance following instruction varying in the type of heuristic advice given. The subjects, 176 college students with two years of high school mathematics experience, were provided programed instruction over a three-week period in three topic areas: finite geometry, Boolean algebra, and…
General and Specific Predictors of Behavioral and Emotional Problems Among Adolescents
ERIC Educational Resources Information Center
Windle, M.; Mason, W. A.
2004-01-01
Based on a sample of 1,218 students in the 10th and 11th grades, 14 variables measuring behavioral and emotional problems were modeled as four factors via confirmatory factor analysis. The factors were labeled Polydrug Use, Delinquency, Negative Affect, and Academic Orientation. A similar four-factor structure was supported 1 year later, and a…
ERIC Educational Resources Information Center
Bazo, Plácido; Rodríguez, Romén; Fumero, Dácil
2016-01-01
In this paper, we will introduce an innovative software platform that can be especially useful in a Content and Language Integrated Learning (CLIL) context. This tool is called Vocabulary Notebook, and has been developed to solve all the problems that traditional (paper) vocabulary notebooks have. This tool keeps focus on the personalisation of…
ERIC Educational Resources Information Center
Stormont, Melissa; Beckner, Rebecca; Mitchell, Barbara; Richter, Mary
2005-01-01
The purpose of this review is to present factors that impede and promote successful transition to kindergarten, with a focus on the specific needs of students with problem behavior. The review addresses competencies that teachers report are critical for success in kindergarten, traditional transition practices, and challenges in implementing…
Using Problem-Centered Learning for Teaching Collaboration in a General Methods Course
ERIC Educational Resources Information Center
Memory, David M.; Yoder, Carol Y.; Williams, Robert O.
2003-01-01
The Interstate New Teacher Assessment and Support Consortium's (INTASC's) (1992) standards for beginning teachers and the National Board for Professional Teaching Standards' core propositions highlight the importance of collaborative problem solving for teachers. They suggest teachers work together with other school professionals, parents, and…
Common mental health problems in immigrants and refugees: general approach in primary care
Kirmayer, Laurence J.; Narasiah, Lavanya; Munoz, Marie; Rashid, Meb; Ryder, Andrew G.; Guzder, Jaswant; Hassan, Ghayda; Rousseau, Cécile; Pottie, Kevin
2011-01-01
Background: Recognizing and appropriately treating mental health problems among new immigrants and refugees in primary care poses a challenge because of differences in language and culture and because of specific stressors associated with migration and resettlement. We aimed to identify risk factors and strategies in the approach to mental health assessment and to prevention and treatment of common mental health problems for immigrants in primary care. Methods: We searched and compiled literature on prevalence and risk factors for common mental health problems related to migration, the effect of cultural influences on health and illness, and clinical strategies to improve mental health care for immigrants and refugees. Publications were selected on the basis of relevance, use of recent data and quality in consultation with experts in immigrant and refugee mental health. Results: The migration trajectory can be divided into three components: premigration, migration and postmigration resettlement. Each phase is associated with specific risks and exposures. The prevalence of specific types of mental health problems is influenced by the nature of the migration experience, in terms of adversity experienced before, during and after resettlement. Specific challenges in migrant mental health include communication difficulties because of language and cultural differences; the effect of cultural shaping of symptoms and illness behaviour on diagnosis, coping and treatment; differences in family structure and process affecting adaptation, acculturation and intergenerational conflict; and aspects of acceptance by the receiving society that affect employment, social status and integration. These issues can be addressed through specific inquiry, the use of trained interpreters and culture brokers, meetings with families, and consultation with community organizations. Interpretation: Systematic inquiry into patients’ migration trajectory and subsequent follow-up on culturally
Nakas, Christos T; Alonzo, Todd A; Yiannoutsos, Constantin T
2010-12-10
We study properties of the index J(3), defined as the accuracy, or the maximum correct classification, for a given three-class classification problem. Specifically, using J(3) one can assess the discrimination between the three distributions and obtain an optimal pair of cut-off points c(1)
NASA Astrophysics Data System (ADS)
Kishor, Ram
2016-07-01
We consider a generalized photogravitational Chermnykh-like problem and determine orbits in the basin of collinear equilibrium points. We suppose that bigger primary is radiating body; smaller primary is an oblate spheroid and a disk with power law density profile is rotating around the common center of mass of the system. We compute three types of orbits namely, periodic, hyperbolic and asymptotic orbit, of the infinitesimal body. Also, we analyse, effect of radiation pressure and oblateness and it is noticed that time period of the periodic orbits depends on these parameters. KEYWORDS: Chermnykh-like problem; Orbits; Radiation pressure; Oblateness; Disk; Collinear equilibrium points.
Flowfield Comparisons from Three Navier-Stokes Solvers for an Axisymmetric Separate Flow Jet
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2002-01-01
To meet new noise reduction goals, many concepts to enhance mixing in the exhaust jets of turbofan engines are being studied. Accurate steady state flowfield predictions from state-of-the-art computational fluid dynamics (CFD) solvers are needed as input to the latest noise prediction codes. The main intent of this paper was to ascertain that similar Navier-Stokes solvers run at different sites would yield comparable results for an axisymmetric two-stream nozzle case. Predictions from the WIND and the NPARC codes are compared to previously reported experimental data and results from the CRAFT Navier-Stokes solver. Similar k-epsilon turbulence models were employed in each solver, and identical computational grids were used. Agreement between experimental data and predictions from each code was generally good for mean values. All three codes underpredict the maximum value of turbulent kinetic energy. The predicted locations of the maximum turbulent kinetic energy were farther downstream than seen in the data. A grid study was conducted using the WIND code, and comments about convergence criteria and grid requirements for CFD solutions to be used as input for noise prediction computations are given. Additionally, noise predictions from the MGBK code, using the CFD results from the CRAFT code, NPARC, and WIND as input are compared to data.
A new algorithm for constrained nonlinear least-squares problems, part 1
NASA Technical Reports Server (NTRS)
Hanson, R. J.; Krogh, F. T.
1983-01-01
A Gauss-Newton algorithm is presented for solving nonlinear least squares problems. The problem statement may include simple bounds or more general constraints on the unknowns. The algorithm uses a trust region that allows the objective function to increase with logic for retreating to best values. The computations for the linear problem are done using a least squares system solver that allows for simple bounds and linear constraints. The trust region limits are defined by a box around the current point. In its current form the algorithm is effective only for problems with small residuals, linear constraints and dense Jacobian matrices. Results on a set of test problems are encouraging.
Parallel performance of a preconditioned CG solver for unstructured finite element applications
Shadid, J.N.; Hutchinson, S.A.; Moffat, H.K.
1994-12-31
A parallel unstructured finite element (FE) implementation designed for message passing MIMD machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung
1996-01-01
The I-D, quasi I-D and 2-D Euler solvers based on the method of space-time conservation element and solution element are used to simulate various flow phenomena including shock waves, Mach stem, contact surface, expansion waves, and their intersections and reflections. Seven test problems are solved to demonstrate the capability of this method for handling unsteady compressible flows in various configurations. Numerical results so obtained are compared with exact solutions and/or numerical solutions obtained by schemes based on other established computational techniques. Comparisons show that the present Euler solvers can generate highly accurate numerical solutions to complex flow problems in a straightforward manner without using any ad hoc techniques in the scheme.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
Thin-Layer Chromatography Experiments That Illustrate General Problems in Chromatography.
ERIC Educational Resources Information Center
Lederer, M.; Leipzig-Pagani, E.
1996-01-01
Describes experiments that illustrate a number of general principles such as pattern identification, displacement chromatography, and salting-out adsorption, plus an experiment that demonstrates that identification by chromatography alone is impossible. Illustrates that chromatography is still possible with quite simple means, notwithstanding the…
Unified formalism for the generalized kth-order Hamilton-Jacobi problem
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2014-08-01
The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.
A General Optimality Conditions for Stochastic Control Problems of Jump Diffusions
Bahlali, Seid; Chala, Adel
2012-02-15
We consider a stochastic control problem where the system is governed by a non linear stochastic differential equation with jumps. The control is allowed to enter into both diffusion and jump terms. By only using the first order expansion and the associated adjoint equation, we establish necessary as well as sufficient optimality conditions of controls for relaxed controls, who are a measure-valued processes.
The general solution to the classical problem of finite Euler Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1977-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
The general solution to the classical problem of the finite Euler-Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1978-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler-Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
Obstacle problem for a class of parabolic equations of generalized p-Laplacian type
NASA Astrophysics Data System (ADS)
Lindfors, Casimir
2016-11-01
We study nonlinear parabolic PDEs with Orlicz-type growth conditions. The main result gives the existence of a unique solution to the obstacle problem related to these equations. To achieve this we show the boundedness of weak solutions and that a uniformly bounded sequence of weak supersolutions converges to a weak supersolution. Moreover, we prove that if the obstacle is continuous, so is the solution.
Population problems: A constituent of general culture in the 21st century
NASA Astrophysics Data System (ADS)
Rath, Ferdinand J. C. M.
1993-03-01
Present world population growth is unprecedented. In Third World countries, the mere satisfaction of basic human needs is jeopardized; in the industrialized countries population pressure is felt differently, and to varying degrees; and some problems are common to rich and poor countries — for example, a galloping urbanization exacerbating the already critical social, economic and environmental problems of cities. Contrary to Malthus' time, the population debate is no longer confined to an elite. Moreover, demographic events in one part of the world are increasingly affecting other parts. Increased political awareness and maturity will encourage more and more people to participate in discussions on the factual and moral aspects of the problem. The question arises as to how society will prepare its citizens to take part in these discussions and the ensuing decision-making. "Population" must become an integral part of the socialization process, of which education is an essential element. In a time when the involvement of the average citizen in the national and international affairs of States and societies will be greater than ever before, adequate information and education will help to avoid the debate's being dominated by prejudice and sentiment instead of by insight.
An algorithm for a general class of routing problems derived from Huygens' principle
NASA Technical Reports Server (NTRS)
Avis, L. M.; Young, G. R.
1974-01-01
If a set of N points or nodes with a nonnegative cost associated with each ordered pair is known, it is desired to find a path from one given node to another given node which minimizes the cost sum. An algorithm is presented which yields a global minimum solution after at most N - 1 iterations or on a typical large third-generation computer, after 1 hour of computation time for a 10,000-node problem. The rapid-access data storage capacity demanded by the algorithm is approximately 3N words for costs read in from slow-access storage or 2N words for calculable costs. The time-storage requirements of the algorithm known to the authors. When the problem is viewed as a discretized optimal control problem, after N-1 iterations, an optimal control or node transition is established for each of the N nodes or states; thus, the algorithm can be applied to situations were there may be errors in the control that necessitate a closed loop control that necessitate a closed loop control philosophy.
2d PDE Linear Asymmetric Matrix Solver
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Population problems: a constituent of general culture in the 21st century.
Rath, F J
1993-03-01
World population doubled in less than two centuries after 1650 reaching 1 billion. Between 1830 and 1930 the population doubled again. By 1975, the world population was 4 billion. Population is currently increasing at the rate of 250,000 people per day. The population problems is one of an intertwining of population, poverty, and environmental damage. Both developing and developed countries have population problems, which vary in intensity and nature. The consequences of high growth rates are reflected in population and development problems and pose a threat to long term survival of the human species. Quality of life is threatened. In 1948, UNESCO reported that using technology to provide sufficiently for food, shelter, and basic amenities only postponed the point at which problems would become acute; demographic growth cannot continue in a finite world. For example, by 2025 Nigeria could have more inhabitants than the US, and a population density of 327 people per sq kilometer. The demographic characteristics of population vary by country. There is growing awareness, however, that there is an interdependence between people and regions, and inter-relationships between demographic, economic, social, cultural, environmental, and political factors. Examples of the implications of demographic growth are given for school enrollments, landless farmers in Honduras, development strategies, and urbanization and migration. Population pressure in one country will lead to migration of the excess population to another country. Rural-urban migration already is motivated by economic gain; the economic recession in urban areas means competition for jobs, housing, welfare benefits. Political conditions can contribute to migration in the case of war or civil unrest or can halt migration because of fear of multi-ethnicity. The Malthusian checks were increased mortality; today population stabilization can be achieved through control of reproduction. The prospects for the immediate
NASA Astrophysics Data System (ADS)
Kalainoff, Melinda Zapata
Studio classrooms, designed such that laboratory and lecture functions can occur in the same physical space, have been recognized as a promising contributing factor in promoting collaborative learning in the sciences (NRC, 2011). Moreover, in designing for instruction, a critical goal, especially in the sciences and engineering, is to foster an environment where students have opportunities for learning problem solving practices (NRC, 2012a). However, few studies show how this type of innovative learning environment shapes opportunities for learning in the sciences, which is critical to informing future curricular and instructional designs for these environments. Even fewer studies show how studio environments shape opportunities to develop problem solving practices specifically. In order to make visible how the learning environment promotes problem solving practices, this study explores problem solving phenomena in the daily life of an undergraduate General Chemistry studio class using an ethnographic perspective. By exploring problem solving as a sociocultural process, this study shows how the instructor and students co-construct opportunities for learning in whole class and small group interactional spaces afforded in this studio environment and how the differential demands on students in doing problems requires re-conceptualizing what it means to "apply a concept".
Prayudhatama, D.; Waris, A.; Kurniasih, N.; Kurniadi, R.
2010-06-22
In-core fuel management study is a crucial activity in nuclear power plant design and operation. Its common problem is to find an optimum arrangement of fuel assemblies inside the reactor core. Main objective for this activity is to reduce the cost of generating electricity, which can be done by altering several physical properties of the nuclear reactor without violating any of the constraints imposed by operational and safety considerations. This research try to address the problem of nuclear fuel arrangement problem, which is, leads to the multi-objective optimization problem. However, the calculation of the reactor core physical properties itself is a heavy computation, which became obstacle in solving the optimization problem by using genetic algorithm optimization.This research tends to address that problem by using the emerging General Purpose Computation on Graphics Processing Units (GPGPU) techniques implemented by C language for CUDA (Compute Unified Device Architecture) parallel programming. By using this parallel programming technique, we develop parallelized nuclear reactor fitness calculation, which is involving numerical finite difference computation. This paper describes current prototype of the parallel algorithm code we have developed on CUDA, that performs one hundreds finite difference calculation for nuclear reactor fitness evaluation in parallel by using GPU G9 Hardware Series developed by NVIDIA.
Hybrid MPI+OpenMP Programming of an Overset CFD Solver and Performance Investigations
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Jin, Haoqiang H.; Biegel, Bryan (Technical Monitor)
2002-01-01
This report describes a two level parallelization of a Computational Fluid Dynamic (CFD) solver with multi-zone overset structured grids. The approach is based on a hybrid MPI+OpenMP programming model suitable for shared memory and clusters of shared memory machines. The performance investigations of the hybrid application on an SGI Origin2000 (O2K) machine is reported using medium and large scale test problems.
A Newton-Krylov Solver for Implicit Solution of Hydrodynamics in Core Collapse Supernovae
Reynolds, D R; Swesty, F D; Woodward, C S
2008-06-12
This paper describes an implicit approach and nonlinear solver for solution of radiation-hydrodynamic problems in the context of supernovae and proto-neutron star cooling. The robust approach applies Newton-Krylov methods and overcomes the difficulties of discontinuous limiters in the discretized equations and scaling of the equations over wide ranges of physical behavior. We discuss these difficulties, our approach for overcoming them, and numerical results demonstrating accuracy and efficiency of the method.
ERIC Educational Resources Information Center
Martinez, Michael E.
1998-01-01
Many important human activities involve accomplishing goals without a script. There is no formula for true problem-solving. Heuristic, cognitive "rules of thumb" are the problem-solver's best guide. Learners should understand heuristic tools such as means-end analysis, working backwards, successive approximation, and external representation. Since…
ACCURATE ORBITAL INTEGRATION OF THE GENERAL THREE-BODY PROBLEM BASED ON THE D'ALEMBERT-TYPE SCHEME
Minesaki, Yukitaka
2013-03-15
We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.
Accurate Orbital Integration of the General Three-body Problem Based on the d'Alembert-type Scheme
NASA Astrophysics Data System (ADS)
Minesaki, Yukitaka
2013-03-01
We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.
jShyLU Scalable Hybrid Preconditioner and Solver
2012-09-11
ShyLU is numerical software to solve sparse linear systems of equations. ShyLU uses a hybrid direct-iterative Schur complement method, and may be used either as a preconditioner or as a solver. ShyLU is parallel and optimized for a single compute Solver node. ShyLU will be a package in the Trilinos software framework.
Gromov, E. V.; Reddy, V. Sivaranjana; Köppel, H.; Gatti, F.
2013-12-21
A new general framework for treating the dynamics on intersecting multidimensional potential energy surfaces is presented. It rests on a sub-division of the nuclear coordinates into different classes, one of primary importance with large-amplitude displacements during the process of interest and another one with smaller displacements, thus permitting a more approximate description. The latter are treated within the well-known linear + quadratic vibronic coupling scheme, where, however, the expansion “coefficients” are general functions of the “primary” coordinates. This may be augmented by an effective-mode approach for further degrees of freedom acting as an environment for the dynamics of the original modes. Following the general considerations, the approach is applied to the nonadiabatic photodynamics of furan and is shown to allow for an eight-dimensional quantum treatment, of higher dimension than was possible so far. The influence of the various degrees of freedom on the dynamics and lifetime of furan due to nonadiabatic ring-opening is discussed.
The two-piston problem revisited: Generalization from reversible to irreversible expansion
NASA Astrophysics Data System (ADS)
Anacleto, Joaquim; Anacleto, Joaquim Alberto C.; Ferreira, J. M.
2011-10-01
We discuss the adiabatic two-piston problem for an ideal gas confined between two pistons of equal mass and extend recent work based on the reversible approximation. More realistic equations that account for the roles of the gas temperature and particle mass are applied to extend the analysis of the expansion of the gas from reversible to irreversible behavior to the limit of free expansion. The evolution of quantities, such as temperature, piston speed, adiabatic reversibility coefficients, and entropy, is obtained, and differences between the irreversible and the reversible solutions are investigated.
Global stability of steady states in the classical Stefan problem for general boundary shapes
Hadžić, Mahir; Shkoller, Steve
2015-01-01
The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Hadžić & Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes. PMID:26261359
Govender, Indiran; Hugo, Jannie
2015-01-01
Abstract Background Sexual problems are common. Many patients with sexual health dysfunction use self-help literature or are often managed in general practice. However, many general practitioners (GPs) find it difficult to discuss sexual health issues because they feel uncomfortable with this and lack training in these matters. These GPs are now referring patients with sexual dysfunction to specialists. Aim We sought to explore how GPs working in the Mabopane and Ga-Rankuwa areas of handle sexual problems of their patients. Setting The setting was the Mabopane and Ga-Rankuwa areas of North-West Tshwane, in Gauteng Province. Methods A qualitative study comprising eight free attitude interviews with purposefully selected four male and four female GPs. All interviews were conducted in English and tape-recorded. Field notes in the form of a detailed diary was kept. The tapes were transcribed verbatim, and the transcriptions were checked against the tapes for omissions and inaccuracies. Results Six themes emerged from the interviews: causes of sexual problems; presentation of sexual problems to the doctor; management of sexual health problems; sex is a taboo topic; society's need for sexual health discussions, and these discussions have already begun; previous limited exposure and training, and a need for more sexual health training. Conclusion This study confirms earlier findings that patients could be either reluctant to discuss their problems or are open about them when presenting to doctors with sexual dysfunction. GPs were not exposed to sexual health training at medical school and, because of this shortcoming, felt that training in sexual medicine should be part of the curriculum. PMID:26842520
Two-dimensional flux-corrected transport solver for convectively dominated flows
Baer, M.R.; Gross, R.J.
1986-01-01
A numerical technique designed to solve a wide class of convectively dominated flow problems is presented. An attractive feature of the technique is its ability to resolve the behavior of field quantities possessing large gradients and/or shocks. The method is a finite-difference technique known as flux-corrected transport (FCT) that maintains four important numerical considerations - stability, accuracy, monotonicity, and conservation. The theory and methodology of two-dimensional FCT is presented. The method is applied in demonstrative example calculations of a 2-D Riemann problem with known exact solutions and to the Euler equations in a study of classical Rayleigh-Taylor and Kelvin-Helmholtz instability problems. The FCT solver has been vectorized for execution on the Cray 1S - a typical call with a 50 by 50 mesh requires about 0.00428 cpu seconds of execution time per call to the routine. Additionally, we have maintained a modular structure for the solver that eases its implementation. Fortran listings of two versions of the 2-D FCT solvers are appended with a driver main program illustrating the call sequence for the modules. 59 refs., 49 figs.
GENERAL: An improved boundary element-free method (IBEFM) for two-dimensional potential problems
NASA Astrophysics Data System (ADS)
Ren, Hong-Ping; Cheng, Yu-Min; Zhang, Wu
2009-10-01
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker δ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker δ function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.
[Medical Problems in Air Travel from a General Practitioner’s Perspective].
Stutz, Andreas; Ensslin, Angela
2016-07-01
As travel by air increases, so does the number of passengers with chronic or acute medical issues. To evaluate fitness for air travel, it is necessary to consider the impact of the altered atmospheric surroundings in an airplane on the current illness to avoid a worsening of health conditions or even an emergency. As first medical contact person, the general practitioner will define supportive measures together with the patient and discuss these with the Medical Service of the airline for implementation. After a thorough evaluation, most patients will be classified fit to fly. Furthermore, a pre-travel consultation should address necessary vaccinations and information on infectious diseases.
[Medical Problems in Air Travel from a General Practitioner’s Perspective].
Stutz, Andreas; Ensslin, Angela
2016-07-01
As travel by air increases, so does the number of passengers with chronic or acute medical issues. To evaluate fitness for air travel, it is necessary to consider the impact of the altered atmospheric surroundings in an airplane on the current illness to avoid a worsening of health conditions or even an emergency. As first medical contact person, the general practitioner will define supportive measures together with the patient and discuss these with the Medical Service of the airline for implementation. After a thorough evaluation, most patients will be classified fit to fly. Furthermore, a pre-travel consultation should address necessary vaccinations and information on infectious diseases. PMID:27381306
Davidsen, Annette Sofie; Reventlow, Susanne
2011-09-01
General practitioners are not trained in psychotherapy. They are, however, experienced in hearing people's stories. This qualitative interview study aimed to explore the stories GPs recounted about psychological interventions with patients. It showed that the GPs had recounted very different types of narrative, and that the same GP recounted the same type of narrative throughout the interview. Some told detailed narratives including the patient's life situation, whereas others kept to biomedical matters. Co-creation of patients' narratives had a therapeutic function, and patients obtained agency and power in these stories. The narrative style reflected the professional identity of the GP.
Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers
NASA Technical Reports Server (NTRS)
Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.
2014-01-01
This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.
Performance of the block-Krylov energy group solvers in Jaguar
Watson, A. M.; Kennedy, R. A.
2012-07-01
A new method of coupling the inner and outer iterations for deterministic transport problems is proposed. This method is termed the Multigroup Energy Blocking Method (MEBM) and has been implemented in the deterministic transport solver Jaguar, which is currently under development at KAPL. The method is derived for both fixed-source and eigenvalue problems. The method is then applied to a PWR pin cell model, both in fixed-source mode and eigenvalue mode. The results show that the MEBM improves the convergence of both types of problems when applied to the thermal (up-scattering) groups. (authors)
Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.
2004-01-01
A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not
ERIC Educational Resources Information Center
Cor, Ken; Alves, Cecilia; Gierl, Mark J.
2008-01-01
This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…
NASA Technical Reports Server (NTRS)
Bortolussi, Michael R.
1997-01-01
The General Aviation (GA) industry has suffered a ten-year decline in the number of airplanes sold. This decline is due mainly to the increase cost associated with purchasing, insuring, maintaining, operating, and pilot training a GA airplane. In response to this decline the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) developed a program (Advanced General Aviation Transport Experiments - AGATE) to address these issues. The purpose of AGATE focused within this report is to reduce the costs to acquire and maintain instrument-flight-proficiency. The AGATE program defined four elements necessary to accomplish these goals: (1) new and intuitive cockpit displays and controls, (2) situation technologies for weather, traffic, and navigation, (3) expert systems for system monitoring, and (4) reduced cost training methods. One recognized need for the GA pilot and airplane is to provide cockpit displays and systems already available to transport category airplane. These displays such as Electronic Flight and Instrument System (EFIS), graphic weather and traffic displays, and flight management systems. The goal of this grant was to develop the AGATE GA Display Evaluation Workstation as a tool to test these existing and emerging technologies in the GA environment.
Periodic solutions about the collinear Lagrangian solution in the general problem of three bodies
NASA Technical Reports Server (NTRS)
Broucke, R.; Davoust, E.; Anderson, J. D.; Lass, H.; Blitzer, L.
1981-01-01
The article describes the solutions near Lagrange's circular collinear configuration in the planar problem of three bodies with three finite masses. The article begins with a detailed review of the properties of Lagrange's collinear solution. Lagrange's quintic equation is derived and several expressions are given for the angular velocity of the rotating frame. The equations of motion are then linearized near the circular collinear solution, and the characteristic equation is also derived in detail. The different types of roots and their corresponding solutions are discussed. The special case of two equal outer masses receives special attention, as well as the special case of two small outer masses. Finally, the fundamental family of periodic solutions is extended by numerical integration all the way up to and past a binary collision orbit. The stability and the bifurcations of this family are briefly enumerated.
Periodic solutions about the collinear Lagrangian solution in the general problem of three bodies
NASA Astrophysics Data System (ADS)
Broucke, R.; Davoust, E.; Anderson, J. D.; Lass, H.; Blitzer, L.
1981-05-01
The article describes the solutions near Lagrange's circular collinear configuration in the planar problem of three bodies with three finite masses. The article begins with a detailed review of the properties of Lagrange's collinear solution. Lagrange's quintic equation is derived and several expressions are given for the angular velocity of the rotating frame. The equations of motion are then linearized near the circular collinear solution, and the characteristic equation is also derived in detail. The different types of roots and their corresponding solutions are discussed. The special case of two equal outer masses receives special attention, as well as the special case of two small outer masses. Finally, the fundamental family of periodic solutions is extended by numerical integration all the way up to and past a binary collision orbit. The stability and the bifurcations of this family are briefly enumerated.
Webster, Clayton G; Gunzburger, Max D
2013-01-01
We present a scalable, parallel mechanism for stochastic identification/control for problems constrained by partial differential equations with random input data. Several identification objectives will be discussed that either minimize the expectation of a tracking cost functional or minimize the difference of desired statistical quantities in the appropriate $L^p$ norm, and the distributed parameters/control can both deterministic or stochastic. Given an objective we prove the existence of an optimal solution, establish the validity of the Lagrange multiplier rule and obtain a stochastic optimality system of equations. The modeling process may describe the solution in terms of high dimensional spaces, particularly in the case when the input data (coefficients, forcing terms, boundary conditions, geometry, etc) are affected by a large amount of uncertainty. For higher accuracy, the computer simulation must increase the number of random variables (dimensions), and expend more effort approximating the quantity of interest in each individual dimension. Hence, we introduce a novel stochastic parameter identification algorithm that integrates an adjoint-based deterministic algorithm with the sparse grid stochastic collocation FEM approach. This allows for decoupled, moderately high dimensional, parameterized computations of the stochastic optimality system, where at each collocation point, deterministic analysis and techniques can be utilized. The advantage of our approach is that it allows for the optimal identification of statistical moments (mean value, variance, covariance, etc.) or even the whole probability distribution of the input random fields, given the probability distribution of some responses of the system (quantities of physical interest). Our rigorously derived error estimates, for the fully discrete problems, will be described and used to compare the efficiency of the method with several other techniques. Numerical examples illustrate the theoretical
Elhai, Jon D; Don Richardson, J; Pedlar, David J
2007-01-01
We investigated general medical and psychological treatment use predictors among peacekeeping veterans with health problems, aiming to find those characteristics most associated with treatment use intensity (i.e., visit counts). One thousand one hundred and thirty-two male Canadian Forces peacekeeping veterans registered with Veterans Affairs for health problems were randomly recruited for a prospective national survey. Regression analyses for treatment use intensity controlled for age, total time deployed and health problems (covariates), and examined the incremental contribution of depression and post-traumatic stress disorder (PTSD) severity on health service use intensity. Results revealed that after controlling for covariates, the depression and PTSD model was associated with increased medical and psychological treatment use intensity. Medical use intensity was significantly predicted by married status, greater depression and health problems; psychological treatment use intensity was predicted by younger age, greater PTSD severity and health problems. This study highlights the importance of an integrated primary care-mental health service delivery model for veterans. PMID:16965892
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard
2016-01-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/~dbalsara/Numerical-PDE-Course.
ERIC Educational Resources Information Center
Math Forum @ Drexel, 2009
2009-01-01
Different techniques for understanding a problem can lead to ideas for never-used-before solutions. Good problem-solvers use a problem-solving strategy and may come back to it frequently while they are working on the problem to refine their strategy, see if they can find better solutions, or find other questions. Writing is an integral part of…
Towards Batched Linear Solvers on Accelerated Hardware Platforms
Haidar, Azzam; Dong, Tingzing Tim; Tomov, Stanimire; Dongarra, Jack J
2015-01-01
As hardware evolves, an increasingly effective approach to develop energy efficient, high-performance solvers, is to design them to work on many small and independent problems. Indeed, many applications already need this functionality, especially for GPUs, which are known to be currently about four to five times more energy efficient than multicore CPUs for every floating-point operation. In this paper, we describe the development of the main one-sided factorizations: LU, QR, and Cholesky; that are needed for a set of small dense matrices to work in parallel. We refer to such algorithms as batched factorizations. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-contained execution. Note that this is similar in functionality to the LAPACK and the hybrid MAGMA algorithms for large-matrix factorizations. But it is different from a straightforward approach, whereby each of GPU's symmetric multiprocessors factorizes a single problem at a time. We illustrate how our performance analysis together with the profiling and tracing tools guided the development of batched factorizations to achieve up to 2-fold speedup and 3-fold better energy efficiency compared to our highly optimized batched CPU implementations based on the MKL library on a two-sockets, Intel Sandy Bridge server. Compared to a batched LU factorization featured in the NVIDIA's CUBLAS library for GPUs, we achieves up to 2.5-fold speedup on the K40 GPU.
First results of a general circulation model applied to the SST-NOx problem. [ozone decomposition
NASA Technical Reports Server (NTRS)
Cunnold, D. M.; Alyea, F. N.; Phillips, N. A.; Prinn, R. G.
1974-01-01
Results of model runs, one using two-dimensional distribution of NO2 in the unperturbed stratosphere and another including an additional localized source of NO2 to approximate the effect of SSTs, are reported. The general circulation model and chemical reactions are described, and corrections in the previous latitudinal and seasonal gradients of total columnar ozone and the diffusion coefficient in the neighborhood of the tropopause are noted. Excellent agreement with previous observations was obtained. Global distributions of ozone and NO2 are described and represented in graphs. Results indicate ozone reduction of approximately 16% in the Northern Hemisphere and approximately 8% in the Southern Hemisphere, with the mid-latitude source of NO2 apparently having a blocking effect on the horizontal transport of ozone, resulting in larger reductions of ozone at high latitudes than at low ones.
The problem of exact interior solutions for rotating rigid bodies in general relativity
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.
1993-01-01
The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.
Children with Generalized Anxiety Disorder Do Not Have Peer Problems, Just Fewer Friends
Alfano, Candice; Beidel, Deborah; Wong, Nina
2011-01-01
A common assumption is that all youth with anxiety disorders (AD) experience impaired peer relationships relative to healthy control children. Social impairments have been identified among youth with certain AD (e.g., social anxiety disorder; SAD), but less is known about the peer relationships of children with generalized anxiety disorder (GAD). We therefore compared the interpersonal functioning of youth with GAD, SAD, and controls (6 to 13 years). Despite having relatively fewer friends overall, children with GAD did not differ from controls in terms of the likelihood of having a best friend, participation in groups/clubs, and parent ratings of social competence. In comparison, youth with SAD were less socially competent, had fewer friends and difficulty making new friends compared to controls. Findings suggest that peer difficulties are not a universal feature of all childhood AD and highlight a need to better understand the social experiences and functioning of children with GAD. PMID:21739298
Mode-I crack in a two-dimensional fibre-reinforced generalized thermoelastic problem
NASA Astrophysics Data System (ADS)
Kh., Lotfy
2012-01-01
A general model of the equations of the Lord—Şulman theory including one relaxation time and the Green—Lindsay theory with two relaxation times, as well as the classical dynamical coupled theory, are applied to the study of the influence of reinforcement on the total deformation for an infinite space weakened by a finite linear opening mode-I crack. We study the influence of reinforcement on the total deformation of rotating thermoelastic half-space and their interaction with each other. The material is homogeneous isotropic elastic half space. The crack is subjected to prescribed temperature and stress distributions. The normal mode analysis is used to obtain the exact expressions for displacement components, force stresses, and temperature. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results obtained in the three theories with and without rotation. A comparison is also made between the two theories for different depths.
Progress in Application of Generalized Wigner Distribution to Growth and Other Problems
NASA Astrophysics Data System (ADS)
Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto; Gonzalez, Diego Luis
We recap the use of the (single-parameter) Generalized Wigner Distribution (GWD) to analyze capture-zone distributions associated with submonolayer epitaxial growth. We discuss recent applications to physical systems, as well as key simulations. We pay particular attention to how this method compares with other methods to assess the critical nucleus size characterizing growth. The following talk discusses a particular case when special insight is needed to reconcile the various methods. We discuss improvements that can be achieved by going to a 2-parameter fragmentation approach. At a much larger scale we have applied this approach to various distributions in socio-political phenomena (areas of secondary administrative units [e.g., counties] and distributions of subway stations). Work at UMD supported by NSF CHE 13-05892.
corr3p_tr: A particle approach for the general three-body problem
NASA Astrophysics Data System (ADS)
Edvardsson, S.; Karlsson, K.; Olin, H.
2016-03-01
This work presents a convenient way to solve the non-relativistic Schrödinger equation numerically for a general three-particle system including full correlation and mass polarization. Both Coulombic and non-Coulombic interactions can be studied. The eigensolver is based on a second order dynamical system treatment (particle method). The Hamiltonian matrix never needs to be realized. The wavefunction evolves towards the steady state solution for which the Schrödinger equation is fulfilled. Subsequent Richardson extrapolations for several meshes are then made symbolically in matlab to obtain the continuum solution. The computer C code is tested under Linux 64 bit and both double and extended precision versions are provided. Test runs are exemplified and, when possible, compared with corresponding values in the literature. The computer code is small and self contained making it unusually simple to compile and run on any system. Both serial and parallel computer runs are straight forward.
NASA Astrophysics Data System (ADS)
Vincenti, H.; Vay, J.-L.
2016-03-01
Very high order or pseudo-spectral Maxwell solvers are the method of choice to reduce discretization effects (e.g. numerical dispersion) that are inherent to low order Finite-Difference Time-Domain (FDTD) schemes. However, due to their large stencils, these solvers are often subject to truncation errors in many electromagnetic simulations. These truncation errors come from non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the simulation results. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of the errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solvers and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.
2013-01-01
Background Refugees are a particularly vulnerable group in relation to the development of mental illness and many may have been subjected to torture or other traumatic experiences. General practitioners are gatekeepers for access to several parts of the psychiatric system and knowledge of their patients’ refugee background is crucial to secure adequate care. The aim of this study is to investigate how general practitioners experience providing care to refugees with mental health problems. Methods The study was conducted as part of an EU project on European Best Practices in Access, Quality and Appropriateness of Health Services for Immigrants in Europe (EUGATE). Semi-structured interviews were carried out with nine general practitioners in the vicinity of Copenhagen purposively selected from areas with a high proportion of immigrants. The analysis of the interviews is inspired by qualitative content analysis. Results One of the main themes identified in the analysis is communication. This includes the use of professional interpreters and that communication entails more than sharing a common language. Quality of care is another theme that emerges and includes awareness of possible trauma history, limited possibilities for refugees to participate in certain treatments due to language barriers and feelings of hopelessness in the general practitioners. The general practitioners may also choose different referral pathways for refugees and they report that their patients lack understanding regarding the differences between psychological problems and physical symptoms. Conclusion General practitioners experience that providing care to refugees differs from providing care for patients from the majority population. The different strategies employed by the general practitioners in the health care treatment of refugees may be the result of the great diversity in the organisation of general practice in Denmark and the lack of a national strategy in the health care management
Variational elliptic solver for atmospheric applications
Smolarkiewicz, P.K.; Margolin, L.G.
1994-03-01
We discuss a conjugate gradient type method -- the conjugate residual -- suitable for solving linear elliptic equations that result from discretization of complex atmospheric dynamical problems. Rotation and irregular boundaries typically lead to nonself-adjoint elliptic operators whose matrix representation on the grid is definite but not symmetric. On the other hand, most established methods for solving large sparse matrix equations depend on the symmetry and definiteness of the matrix. Furthermore, the explicit construction of the matrix can be both difficult and computationally expensive. An attractive feature of conjugate gradient methods in general is that they do not require any knowledge of the matrix; and in particular, convergence of conjugate residual algorithms do not rely on symmetry for definite operators. We begin by reviewing some basic concepts of variational algorithms from the perspective of a physical analogy to the damped wave equation, which is a simple alternative to the traditional abstract framework of the Krylov subspace methods. We derive two conjugate residual schemes from variational principles, and prove that either definiteness or symmetry ensures their convergence. We discuss issues related to computational efficiency and illustrate our theoretical considerations with a test problem of the potential flow of a Boussinesq fluid flow past a steep, three-dimensional obstacle.
2d PDE Linear Symmetric Matrix Solver
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
General Features of Supersymmetric Signals at the ILC: Solving the LHC Inverse Problem
Berger, Carola F.; Gainer, James S.; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.
2007-12-19
We examine whether the {radical}s = 500 GeV International Linear Collider with 80% electron beam polarization can be used to solve the LHC Inverse Problem within the framework of the MSSM. We investigate 242 points in the MSSM parameter space, which we term models, that correspond to the 162 pairs of models found by Arkani-Hamed et al. to give indistinguishable signatures at the LHC. We first determine whether the production of the various SUSY particles is visible above the Standard Model background for each of these parameter space points, and then make a detailed comparison of their various signatures. Assuming an integrated luminosity of 500 fb{sup -1}, we find that only 82 out of 242 models lead to visible signatures of some kind with a significance {ge} 5 and that only 57(63) out of the 162 model pairs are distinguishable at 5(3){sigma}. Our analysis includes PYTHIA and CompHEP SUSY signal generation, full matrix element SM backgrounds for all 2 {yields} 2, 2 {yields} 4, and 2 {yields} 6 processes, ISR and beamstrahlung generated via WHIZARD/GuineaPig, and employs the fast SiD detector simulation org.lcsim.
Nygaard, Egil; Jensen, Tine K; Dyb, Grete
2012-01-01
The aim of this study was to evaluate the structure of posttraumatic stress reaction factors and their relation to general mental health problems in Norwegian children exposed to the tsunami on December 26, 2004. A total of 133 children and adolescents (ages 6-17) were interviewed 10 months posttsunami using the UCLA PTSD Reaction Index, and 104 were interviewed again 2.5 years after the tsunami. Confirmatory factor analyses supported the theory of a four-factor model of intrusion, active avoidance, numbing, and arousal as a better division of symptoms than the three-factor model used in the present diagnostic criteria. The factors of intrusion and active avoidance were highly correlated 2.5 years posttsunami. This association may be due to nonspecificity in these trauma-related factors as posttraumatic stress reaction levels diminish over time. General mental health problems were highly related to arousal at both assessments, supporting the theory that some symptoms of posttraumatic stress reactions overlap with other, concurrent mental problems.
Fan, Yurui; Huang, Guohe; Veawab, Amornvadee
2012-01-01
In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.
NASA Astrophysics Data System (ADS)
Giudici, Mauro; Baratelli, Fulvia; Vassena, Chiara; Cattaneo, Laura
2014-05-01
Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBC) on ice velocity, stress and temperature; on the other hand the constitutive laws involves many physical parameters, which possibly depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP) requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws and which cannot be easily measured at the study scale in the field. Therefore these quantities can be obtained through model calibration, i.e. by the solution of an inverse problem (IP). Roughly speaking, the IP aims at finding the optimal values of the model parameters that yield the best agreement of the model output with the field observations and data. The practical application of IPs is usually formulated as a generalised least squares approach, which can be cast in the framework of Bayesian inference. IPs are well developed in several areas of science and geophysics and several applications were proposed also in glaciology. The objective of this paper is to provide a further step towards a thorough and rigorous theoretical framework in cryospheric studies. Although the IP is often claimed to be ill-posed, this is rigorously true for continuous domain models, whereas for numerical models, which require the solution of algebraic equations, the properties of the IP must be analysed with more care. First of all, it is necessary to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed
Junius-Walker, Ulrike; Wiese, Birgitt; Klaaßen-Mielke, Renate; Theile, Gudrun; Müller, Christiane Annette; Hummers-Pradier, Eva
2015-01-01
Background Older patients often experience the burden of multiple health problems. Physicians need to consider them to arrive at a holistic treatment plan. Yet, it has not been systematically investigated as to which personal burdens ensue from certain health conditions. Objective The objective of this study is to examine older patients’ perceived burden of their health problems. Patients and methods The study presents a cross-sectional analysis in 74 German general practices; 836 patients, 72 years and older (mean 79±4.4), rated the burden of each health problem disclosed by a comprehensive geriatric assessment. Patients rated each burden using three components: importance, emotional impact, and impact on daily activities. Cluster analyses were performed to define patterns in the rating of these components of burden. In a multilevel logistic regression analysis, independent factors that predict high and low burden were explored. Results Patients had a median of eleven health problems and rated the burden of altogether 8,900 health problems. Four clusters provided a good clustering structure. Two clusters describe a high burden, and a further two, a low burden. Patients attributed a high burden to social and psychological health problems (especially being a caregiver: odds ratio [OR] 10.4, 95% confidence interval [CI] 4.4–24.4), to specific symptoms (eg, claudication: OR 2.3, 95% CI 1.3–4.0; pain: OR 2.3, 95% CI 1.6–3.1), and physical disabilities. Patients rated a comparatively low burden for most of their medical findings, for cognitive impairment, and lifestyle issues (eg, hypertension: OR 0.2, 95% CI 0.2–0.3). Conclusion The patients experienced a relatively greater burden for physical disabilities, mood, or social issues than for diseases themselves. Physicians should interpret these burdens in the individual context and consider them in their treatment planning. PMID:26124648
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; Thornquist, Heidi
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less