Sample records for general purpose algorithm

  1. On the utility of the multi-level algorithm for the solution of nearly completely decomposable Markov chains

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Horton, Graham

    1994-01-01

    Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.

  2. An acceleration framework for synthetic aperture radar algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoo; Gloster, Clay S.; Alexander, Winser E.

    2017-04-01

    Algorithms for radar signal processing, such as Synthetic Aperture Radar (SAR) are computationally intensive and require considerable execution time on a general purpose processor. Reconfigurable logic can be used to off-load the primary computational kernel onto a custom computing machine in order to reduce execution time by an order of magnitude as compared to kernel execution on a general purpose processor. Specifically, Field Programmable Gate Arrays (FPGAs) can be used to accelerate these kernels using hardware-based custom logic implementations. In this paper, we demonstrate a framework for algorithm acceleration. We used SAR as a case study to illustrate the potential for algorithm acceleration offered by FPGAs. Initially, we profiled the SAR algorithm and implemented a homomorphic filter using a hardware implementation of the natural logarithm. Experimental results show a linear speedup by adding reasonably small processing elements in Field Programmable Gate Array (FPGA) as opposed to using a software implementation running on a typical general purpose processor.

  3. Simplification of multiple Fourier series - An example of algorithmic approach

    NASA Technical Reports Server (NTRS)

    Ng, E. W.

    1981-01-01

    This paper describes one example of multiple Fourier series which originate from a problem of spectral analysis of time series data. The example is exercised here with an algorithmic approach which can be generalized for other series manipulation on a computer. The generalized approach is presently pursued towards applications to a variety of multiple series and towards a general purpose algorithm for computer algebra implementation.

  4. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  5. A General Event Location Algorithm with Applications to Eclipse and Station Line-of-Sight

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  6. A General Event Location Algorithm with Applications to Eclispe and Station Line-of-Sight

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  7. Image processing via VLSI: A concept paper

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1982-01-01

    Implementing specific image processing algorithms via very large scale integrated systems offers a potent solution to the problem of handling high data rates. Two algorithms stand out as being particularly critical -- geometric map transformation and filtering or correlation. These two functions form the basis for data calibration, registration and mosaicking. VLSI presents itself as an inexpensive ancillary function to be added to almost any general purpose computer and if the geometry and filter algorithms are implemented in VLSI, the processing rate bottleneck would be significantly relieved. A set of image processing functions that limit present systems to deal with future throughput needs, translates these functions to algorithms, implements via VLSI technology and interfaces the hardware to a general purpose digital computer is developed.

  8. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  9. A special purpose silicon compiler for designing supercomputing VLSI systems

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.

    1991-01-01

    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.

  10. Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces

    DTIC Science & Technology

    2011-02-28

    Final Report for AFOSR #FA9550-08-1-0422 Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces August 1, 2008 to November 30...focused on developing high level general purpose algorithms , such as Tabu Search and Genetic Algorithms . However, understanding of when and why these... algorithms perform well still lags. Our project extended the theory of certain combi- natorial optimization problems to develop analytical

  11. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  12. Development and Validation of Various Phenotyping Algorithms for Diabetes Mellitus Using Data from Electronic Health Records.

    PubMed

    Esteban, Santiago; Rodríguez Tablado, Manuel; Peper, Francisco; Mahumud, Yamila S; Ricci, Ricardo I; Kopitowski, Karin; Terrasa, Sergio

    2017-01-01

    Precision medicine requires extremely large samples. Electronic health records (EHR) are thought to be a cost-effective source of data for that purpose. Phenotyping algorithms help reduce classification errors, making EHR a more reliable source of information for research. Four algorithm development strategies for classifying patients according to their diabetes status (diabetics; non-diabetics; inconclusive) were tested (one codes-only algorithm; one boolean algorithm, four statistical learning algorithms and six stacked generalization meta-learners). The best performing algorithms within each strategy were tested on the validation set. The stacked generalization algorithm yielded the highest Kappa coefficient value in the validation set (0.95 95% CI 0.91, 0.98). The implementation of these algorithms allows for the exploitation of data from thousands of patients accurately, greatly reducing the costs of constructing retrospective cohorts for research.

  13. SU-F-T-268: A Feasibility Study of Independent Dose Verification for Vero4DRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, M; Kokubo, M; Institute of Biomedical Research and Innovation, Kobe, Hyogo

    2016-06-15

    Purpose: Vero4DRT (Mitsubishi Heavy Industries Ltd.) has been released for a few years. The treatment planning system (TPS) of Vero4DRT is dedicated, so the measurement is the only method of dose verification. There have been no reports of independent dose verification using Clarksonbased algorithm for Vero4DRT. An independent dose verification software program of the general-purpose linac using a modified Clarkson-based algorithm was modified for Vero4DRT. In this study, we evaluated the accuracy of independent dose verification program and the feasibility of the secondary check for Vero4DRT. Methods: iPlan (Brainlab AG) was used as the TPS. PencilBeam Convolution was used formore » dose calculation algorithm of IMRT and X-ray Voxel Monte Carlo was used for the others. Simple MU Analysis (SMU, Triangle Products, Japan) was used as the independent dose verification software program in which CT-based dose calculation was performed using a modified Clarkson-based algorithm. In this study, 120 patients’ treatment plans were collected in our institute. The treatments were performed using the conventional irradiation for lung and prostate, SBRT for lung and Step and shoot IMRT for prostate. Comparison in dose between the TPS and the SMU was done and confidence limits (CLs, Mean ± 2SD %) were compared to those from the general-purpose linac. Results: As the results of the CLs, the conventional irradiation (lung, prostate), SBRT (lung) and IMRT (prostate) show 2.2 ± 3.5% (CL of the general-purpose linac: 2.4 ± 5.3%), 1.1 ± 1.7% (−0.3 ± 2.0%), 4.8 ± 3.7% (5.4 ± 5.3%) and −0.5 ± 2.5% (−0.1 ± 3.6%), respectively. The CLs for Vero4DRT show similar results to that for the general-purpose linac. Conclusion: The independent dose verification for the new linac is clinically available as a secondary check and we performed the check with the similar tolerance level of the general-purpose linac. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  14. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    PubMed

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  15. Population-based metaheuristic optimization in neutron optics and shielding design

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P. M.

    2016-11-01

    Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.

  16. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures.

    PubMed

    Dong, J; Hayakawa, Y; Kober, C

    2014-01-01

    When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.

  17. Optimization of Selected Remote Sensing Algorithms for Embedded NVIDIA Kepler GPU Architecture

    NASA Technical Reports Server (NTRS)

    Riha, Lubomir; Le Moigne, Jacqueline; El-Ghazawi, Tarek

    2015-01-01

    This paper evaluates the potential of embedded Graphic Processing Units in the Nvidias Tegra K1 for onboard processing. The performance is compared to a general purpose multi-core CPU and full fledge GPU accelerator. This study uses two algorithms: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery and Automated Cloud-Cover Assessment (ACCA) Algorithm. Tegra K1 achieved 51 for ACCA algorithm and 20 for the dimension reduction algorithm, as compared to the performance of the high-end 8-core server Intel Xeon CPU with 13.5 times higher power consumption.

  18. Weather Radar Studies

    DTIC Science & Technology

    1988-03-31

    radar operation and data - collection activities, a large data -analysis effort has been under way in support of automatic wind-shear detection algorithm ...REDUCTION AND ALGORITHM DEVELOPMENT 49 A. General-Purpose Software 49 B. Concurrent Computer Systems 49 C. Sun Workstations 51 D. Radar Data Analysis 52...1. Algorithm Verification 52 2. Other Studies 53 3. Translations 54 4. Outside Distributions 55 E. Mesonet/LLWAS Data Analysis 55 1. 1985 Data 55 2

  19. Composeable Chat over Low-Bandwidth Intermittent Communication Links

    DTIC Science & Technology

    2007-04-01

    Compression (STC), introduced in this report, is a data compression algorithm intended to compress alphanumeric... Ziv - Lempel coding, the grandfather of most modern general-purpose file compression programs, watches for input symbol sequences that have previously... data . This section applies these techniques to create a new compression algorithm called Small Text Compression . Various sequence compression

  20. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    PubMed Central

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-01-01

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382

  1. Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithms to improve outcome. Feasibility of artificial intelligence to customize algorithms.

    PubMed

    Shoemaker, W C; Patil, R; Appel, P L; Kram, H B

    1992-11-01

    A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.

  2. SpikeGUI: software for rapid interictal discharge annotation via template matching and online machine learning.

    PubMed

    Jing Jin; Dauwels, Justin; Cash, Sydney; Westover, M Brandon

    2014-01-01

    Detection of interictal discharges is a key element of interpreting EEGs during the diagnosis and management of epilepsy. Because interpretation of clinical EEG data is time-intensive and reliant on experts who are in short supply, there is a great need for automated spike detectors. However, attempts to develop general-purpose spike detectors have so far been severely limited by a lack of expert-annotated data. Huge databases of interictal discharges are therefore in great demand for the development of general-purpose detectors. Detailed manual annotation of interictal discharges is time consuming, which severely limits the willingness of experts to participate. To address such problems, a graphical user interface "SpikeGUI" was developed in our work for the purposes of EEG viewing and rapid interictal discharge annotation. "SpikeGUI" substantially speeds up the task of annotating interictal discharges using a custom-built algorithm based on a combination of template matching and online machine learning techniques. While the algorithm is currently tailored to annotation of interictal epileptiform discharges, it can easily be generalized to other waveforms and signal types.

  3. SpikeGUI: Software for Rapid Interictal Discharge Annotation via Template Matching and Online Machine Learning

    PubMed Central

    Jin, Jing; Dauwels, Justin; Cash, Sydney; Westover, M. Brandon

    2015-01-01

    Detection of interictal discharges is a key element of interpreting EEGs during the diagnosis and management of epilepsy. Because interpretation of clinical EEG data is time-intensive and reliant on experts who are in short supply, there is a great need for automated spike detectors. However, attempts to develop general-purpose spike detectors have so far been severely limited by a lack of expert-annotated data. Huge databases of interictal discharges are therefore in great demand for the development of general-purpose detectors. Detailed manual annotation of interictal discharges is time consuming, which severely limits the willingness of experts to participate. To address such problems, a graphical user interface “SpikeGUI” was developed in our work for the purposes of EEG viewing and rapid interictal discharge annotation. “SpikeGUI” substantially speeds up the task of annotating interictal discharges using a custom-built algorithm based on a combination of template matching and online machine learning techniques. While the algorithm is currently tailored to annotation of interictal epileptiform discharges, it can easily be generalized to other waveforms and signal types. PMID:25570976

  4. A noniterative greedy algorithm for multiframe point correspondence.

    PubMed

    Shafique, Khurram; Shah, Mubarak

    2005-01-01

    This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames. The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.

  5. Generalized SMO algorithm for SVM-based multitask learning.

    PubMed

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  6. Ndarts

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2011-01-01

    Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.

  7. No-reference image quality assessment based on natural scene statistics and gradient magnitude similarity

    NASA Astrophysics Data System (ADS)

    Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang

    2014-11-01

    The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.

  8. Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor

    NASA Astrophysics Data System (ADS)

    Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez

    A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.

  9. Runway Incursion Prevention for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  10. Runway Incursion Prevention System for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel III, Lawrence J.

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  11. Recursive partitioned inversion of large (1500 x 1500) symmetric matrices

    NASA Technical Reports Server (NTRS)

    Putney, B. H.; Brownd, J. E.; Gomez, R. A.

    1976-01-01

    A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.

  12. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    PubMed

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  13. A novel feature extraction approach for microarray data based on multi-algorithm fusion

    PubMed Central

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277

  14. A novel feature extraction approach for microarray data based on multi-algorithm fusion.

    PubMed

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.

  15. Design of synthetic biological logic circuits based on evolutionary algorithm.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.

  16. TIGER: A graphically interactive grid system for turbomachinery applications

    NASA Technical Reports Server (NTRS)

    Shih, Ming-Hsin; Soni, Bharat K.

    1992-01-01

    Numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to the use of general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical User Interactions are provided in the algorithm, allowing the user to design and manipulate the grid lines with a mouse.

  17. Algorithm for Compressing Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  18. Analysis and synthesis of abstract data types through generalization from examples

    NASA Technical Reports Server (NTRS)

    Wild, Christian

    1987-01-01

    The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing and run-time monitoring. Describing the behavior is characterized as a learning process in which general patterns can be easily characterized. The learning algorithm must choose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.

  19. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  20. Hyperspectral processing in graphical processing units

    NASA Astrophysics Data System (ADS)

    Winter, Michael E.; Winter, Edwin M.

    2011-06-01

    With the advent of the commercial 3D video card in the mid 1990s, we have seen an order of magnitude performance increase with each generation of new video cards. While these cards were designed primarily for visualization and video games, it became apparent after a short while that they could be used for scientific purposes. These Graphical Processing Units (GPUs) are rapidly being incorporated into data processing tasks usually reserved for general purpose computers. It has been found that many image processing problems scale well to modern GPU systems. We have implemented four popular hyperspectral processing algorithms (N-FINDR, linear unmixing, Principal Components, and the RX anomaly detection algorithm). These algorithms show an across the board speedup of at least a factor of 10, with some special cases showing extreme speedups of a hundred times or more.

  1. The Process of Parallelizing the Conjunction Prediction Algorithm of ESA's SSA Conjunction Prediction Service Using GPGPU

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Navarro, V.; Martin, L.; Fletcher, E.

    2013-08-01

    Space Situational Awareness[8] (SSA) is defined as the comprehensive knowledge, understanding and maintained awareness of the population of space objects, the space environment and existing threats and risks. As ESA's SSA Conjunction Prediction Service (CPS) requires the repetitive application of a processing algorithm against a data set of man-made space objects, it is crucial to exploit the highly parallelizable nature of this problem. Currently the CPS system makes use of OpenMP[7] for parallelization purposes using CPU threads, but only a GPU with its hundreds of cores can fully benefit from such high levels of parallelism. This paper presents the adaptation of several core algorithms[5] of the CPS for general-purpose computing on graphics processing units (GPGPU) using NVIDIAs Compute Unified Device Architecture (CUDA).

  2. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  3. Computer Solution of the Schrodinger Equation--Two Useful Programs.

    ERIC Educational Resources Information Center

    Evans, D. E.

    1980-01-01

    Describes a general purpose algorithm which enables one to calculate the allowed energy eigenvalues for an arbitrary potential. Results of a calculation where a centrifugal potential is added to the hydrogenic Coulomb potential are discussed. (Author/HM)

  4. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison

    NASA Astrophysics Data System (ADS)

    Zhang, Anqi; Zhang, Qinqin; Chen, Chieh-Li; Wang, Ruikang K.

    2015-10-01

    Optical coherence tomography (OCT)-based angiography is increasingly becoming a clinically useful and important imaging technique due to its ability to provide volumetric microvascular networks innervating tissue beds in vivo without a need for exogenous contrast agent. Numerous OCT angiography algorithms have recently been proposed for the purpose of contrasting microvascular networks. A general literature review is provided on the recent progress of OCT angiography methods and algorithms. The basic physics and mathematics behind each method together with its contrast mechanism are described. Potential directions for future technical development of OCT based angiography is then briefly discussed. Finally, by the use of clinical data captured from normal and pathological subjects, the imaging performance of vascular networks delivered by the most recently reported algorithms is evaluated and compared, including optical microangiography, speckle variance, phase variance, split-spectrum amplitude decorrelation angiography, and correlation mapping. It is found that the method that utilizes complex OCT signal to contrast retinal blood flow delivers the best performance among all the algorithms in terms of image contrast and vessel connectivity. The purpose of this review is to help readers understand and select appropriate OCT angiography algorithm for use in specific applications.

  6. Generalized look-ahead number conversion from signed digit to complement representation with optical logic operations

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Li, Guoqiang

    2001-12-01

    In this paper a generalized look-ahead logic algorithm for number conversion from signed-digit to its complement representation is developed. By properly encoding the signed digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed-digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quaternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using electron-trapping device is employed, which is suitable for realizing complex logic functions in the form of sum-of-product. The proposed algorithm and architecture are compatible with a general-purpose optoelectronic computing system.

  7. Polarization transformation as an algorithm for automatic generalization and quality assessment

    NASA Astrophysics Data System (ADS)

    Qian, Haizhong; Meng, Liqiu

    2007-06-01

    Since decades it has been a dream of cartographers to computationally mimic the generalization processes in human brains for the derivation of various small-scale target maps or databases from a large-scale source map or database. This paper addresses in a systematic way the polarization transformation (PT) - a new algorithm that serves both the purpose of automatic generalization of discrete features and the quality assurance. By means of PT, two dimensional point clusters or line networks in the Cartesian system can be transformed into a polar coordinate system, which then can be unfolded as a single spectrum line r = f(α), where r and a stand for the polar radius and the polar angle respectively. After the transformation, the original features will correspond to nodes on the spectrum line delimited between 0° and 360° along the horizontal axis, and between the minimum and maximum polar radius along the vertical axis. Since PT is a lossless transformation, it allows a straighforward analysis and comparison of the original and generalized distributions, thus automatic generalization and quality assurance can be down in this way. Examples illustrate that PT algorithm meets with the requirement of generalization of discrete spatial features and is more scientific.

  8. Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.

  9. Purpose-Driven Communities in Multiplex Networks: Thresholding User-Engaged Layer Aggregation

    DTIC Science & Technology

    2016-06-01

    dark networks is a non-trivial yet useful task. Because terrorists work hard to hide their relationships/network, analysts have an incomplete picture...them identify meaningful terrorist communities. This thesis introduces a general-purpose algorithm for community detection in multiplex dark networks...aggregation, dark networks, conductance, cluster adequacy, mod- ularity, Louvain method, shortest path interdiction 15. NUMBER OF PAGES 155 16. PRICE CODE

  10. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Tian, Wenli; Cao, Chengxuan

    2017-03-01

    A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.

  11. Cloud classification from satellite data using a fuzzy sets algorithm: A polar example

    NASA Technical Reports Server (NTRS)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1988-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  12. Optimisation by hierarchical search

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  13. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  14. Single-Scale Retinex Using Digital Signal Processors

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2005-01-01

    The Retinex is an image enhancement algorithm that improves the brightness, contrast and sharpness of an image. It performs a non-linear spatial/spectral transform that provides simultaneous dynamic range compression and color constancy. It has been used for a wide variety of applications ranging from aviation safety to general purpose photography. Many potential applications require the use of Retinex processing at video frame rates. This is difficult to achieve with general purpose processors because the algorithm contains a large number of complex computations and data transfers. In addition, many of these applications also constrain the potential architectures to embedded processors to save power, weight and cost. Thus we have focused on digital signal processors (DSPs) and field programmable gate arrays (FPGAs) as potential solutions for real-time Retinex processing. In previous efforts we attained a 21 (full) frame per second (fps) processing rate for the single-scale monochromatic Retinex with a TMS320C6711 DSP operating at 150 MHz. This was achieved after several significant code improvements and optimizations. Since then we have migrated our design to the slightly more powerful TMS320C6713 DSP and the fixed point TMS320DM642 DSP. In this paper we briefly discuss the Retinex algorithm, the performance of the algorithm executing on the TMS320C6713 and the TMS320DM642, and compare the results with the TMS320C6711.

  15. Genetic algorithms for the vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Volna, Eva

    2016-06-01

    The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.

  16. An Attempt of Formalizing the Selection Parameters for Settlements Generalization in Small-Scales

    NASA Astrophysics Data System (ADS)

    Karsznia, Izabela

    2014-12-01

    The paper covers one of the most important problems concerning context-sensitive settlement selection for the purpose of the small-scale maps. So far, no formal parameters for small-scale settlements generalization have been specified, hence the problem seems to be an important and innovative challenge. It is also crucial from the practical point of view as it is necessary to develop appropriate generalization algorithms for the purpose of the General Geographic Objects Database generalization which is the essential Spatial Data Infrastructure component in Poland. The author proposes and verifies quantitative generalization parameters for the purpose of the settlement selection process in small-scale maps. The selection of settlements was carried out in two research areas - in Lower Silesia and Łódź Province. Based on the conducted analysis appropriate contextual-sensitive settlements selection parameters have been defined. Particular effort has been made to develop a methodology of quantitative settlements selection which would be useful in the automation processes and that would make it possible to keep specifics of generalized objects unchanged.

  17. User's guide to SILVAH: stand analysis, prescription, and management simulator program for hardwood stands of the Alleghenies.

    Treesearch

    David A. Marquis; Richard L. Ernst

    1992-01-01

    Describes the purpose and function of the SILVAH computer program in general terms; provides detailed instructions on use of the program; and provides information on program organization , data formats, and the basis of processing algorithms.

  18. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2012-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.

  19. Support Vector Machine algorithm for regression and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less

  20. Optimization-based interactive segmentation interface for multiregion problems

    PubMed Central

    Baxter, John S. H.; Rajchl, Martin; Peters, Terry M.; Chen, Elvis C. S.

    2016-01-01

    Abstract. Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality. PMID:27335892

  1. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  2. Self-learning Monte Carlo method

    DOE PAGES

    Liu, Junwei; Qi, Yang; Meng, Zi Yang; ...

    2017-01-04

    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. Lastly, we demonstrate the efficiency of SLMC in a spin model at the phasemore » transition point, achieving a 10–20 times speedup.« less

  3. Random bits, true and unbiased, from atmospheric turbulence

    PubMed Central

    Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo

    2014-01-01

    Random numbers represent a fundamental ingredient for secure communications and numerical simulation as well as to games and in general to Information Science. Physical processes with intrinsic unpredictability may be exploited to generate genuine random numbers. The optical propagation in strong atmospheric turbulence is here taken to this purpose, by observing a laser beam after a 143 km free-space path. In addition, we developed an algorithm to extract the randomness of the beam images at the receiver without post-processing. The numbers passed very selective randomness tests for qualification as genuine random numbers. The extracting algorithm can be easily generalized to random images generated by different physical processes. PMID:24976499

  4. Analysis and synthesis of abstract data types through generalization from examples

    NASA Technical Reports Server (NTRS)

    Wild, Christian

    1987-01-01

    The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing, and run-time monitoring. Describing the behavior is characterized as a learning process in which the set of inputs is mapped into an appropriate transform space such that general patterns can be easily characterized. The learning algorithm must chose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.

  5. 'Extremotaxis': computing with a bacterial-inspired algorithm.

    PubMed

    Nicolau, Dan V; Burrage, Kevin; Nicolau, Dan V; Maini, Philip K

    2008-01-01

    We present a general-purpose optimization algorithm inspired by "run-and-tumble", the biased random walk chemotactic swimming strategy used by the bacterium Escherichia coli to locate regions of high nutrient concentration The method uses particles (corresponding to bacteria) that swim through the variable space (corresponding to the attractant concentration profile). By constantly performing temporal comparisons, the particles drift towards the minimum or maximum of the function of interest. We illustrate the use of our method with four examples. We also present a discrete version of the algorithm. The new algorithm is expected to be useful in combinatorial optimization problems involving many variables, where the functional landscape is apparently stochastic and has local minima, but preserves some derivative structure at intermediate scales.

  6. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.

    1981-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.

  7. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Segmentation of large periapical lesions toward dental computer-aided diagnosis in cone-beam CT scans

    NASA Astrophysics Data System (ADS)

    Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori

    2008-03-01

    This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.

  9. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  10. Development and testing of operational incident detection algorithms : technical report

    DOT National Transportation Integrated Search

    2000-11-01

    There are over 1.6 million miles of unpaved roads (53% of all roads) in the United States. In some nations, the road network is predominantly unpaved and generally consists of gravel roads. The purpose of this manual is to provide clear and helpful i...

  11. Two Routes to Expertise in Mental Rotation

    ERIC Educational Resources Information Center

    Provost, Alexander; Johnson, Blake; Karayanidis, Frini; Brown, Scott D.; Heathcote, Andrew

    2013-01-01

    The ability to imagine objects undergoing rotation (mental rotation) improves markedly with practice, but an explanation of this plasticity remains controversial. Some researchers propose that practice speeds up the rate of a general-purpose rotation algorithm. Others maintain that performance improvements arise through the adoption of a new…

  12. Comparative Evaluation of Registration Algorithms in Different Brain Databases With Varying Difficulty: Results and Insights

    PubMed Central

    Akbari, Hamed; Bilello, Michel; Da, Xiao; Davatzikos, Christos

    2015-01-01

    Evaluating various algorithms for the inter-subject registration of brain magnetic resonance images (MRI) is a necessary topic receiving growing attention. Existing studies evaluated image registration algorithms in specific tasks or using specific databases (e.g., only for skull-stripped images, only for single-site images, etc.). Consequently, the choice of registration algorithms seems task- and usage/parameter-dependent. Nevertheless, recent large-scale, often multi-institutional imaging-related studies create the need and raise the question whether some registration algorithms can 1) generally apply to various tasks/databases posing various challenges; 2) perform consistently well, and while doing so, 3) require minimal or ideally no parameter tuning. In seeking answers to this question, we evaluated 12 general-purpose registration algorithms, for their generality, accuracy and robustness. We fixed their parameters at values suggested by algorithm developers as reported in the literature. We tested them in 7 databases/tasks, which present one or more of 4 commonly-encountered challenges: 1) inter-subject anatomical variability in skull-stripped images; 2) intensity homogeneity, noise and large structural differences in raw images; 3) imaging protocol and field-of-view (FOV) differences in multi-site data; and 4) missing correspondences in pathology-bearing images. Totally 7,562 registrations were performed. Registration accuracies were measured by (multi-)expert-annotated landmarks or regions of interest (ROIs). To ensure reproducibility, we used public software tools, public databases (whenever possible), and we fully disclose the parameter settings. We show evaluation results, and discuss the performances in light of algorithms’ similarity metrics, transformation models and optimization strategies. We also discuss future directions for the algorithm development and evaluations. PMID:24951685

  13. Performance Testing of GPU-Based Approximate Matching Algorithm on Network Traffic

    DTIC Science & Technology

    2015-03-01

    Defense Department’s use. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I.  INTRODUCTION...22  D.  GENERATING DIGESTS ............................................................................23  1.  Reference...the-shelf GPU Graphical Processing Unit GPGPU General -Purpose Graphic Processing Unit HBSS Host-Based Security System HIPS Host Intrusion

  14. Internet Technology--Going beyond Google

    ERIC Educational Resources Information Center

    Warger, Tom

    2006-01-01

    Over the past dozen years, the switch from paper to electronic sources of information has been all encompassing. How can technology support the efforts of scholars to find and evaluate information? General-purpose search engines use an obscure mix of advanced algorithms to index, search, match, and rank results. Metasearch software extends the…

  15. Self-learning Monte Carlo method and cumulative update in fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Junwei; Shen, Huitao; Qi, Yang

    2017-06-07

    In this study, we develop the self-learning Monte Carlo (SLMC) method, a general-purpose numerical method recently introduced to simulate many-body systems, for studying interacting fermion systems. Our method uses a highly efficient update algorithm, which we design and dub “cumulative update”, to generate new candidate configurations in the Markov chain based on a self-learned bosonic effective model. From a general analysis and a numerical study of the double exchange model as an example, we find that the SLMC with cumulative update drastically reduces the computational cost of the simulation, while remaining statistically exact. Remarkably, its computational complexity is far lessmore » than the conventional algorithm with local updates.« less

  16. Special-purpose computer for holography HORN-4 with recurrence algorithm

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Hishinuma, Sinsuke; Ito, Tomoyoshi

    2002-10-01

    We designed and built a special-purpose computer for holography, HORN-4 (HOlographic ReconstructioN) using PLD (Programmable Logic Device) technology. HORN computers have a pipeline architecture. We use HORN-4 as an attached processor to enhance the performance of a general-purpose computer when it is used to generate holograms using a "recurrence formulas" algorithm developed by our previous paper. In the HORN-4 system, we designed the pipeline by adopting our "recurrence formulas" algorithm which can calculate the phase on a hologram. As the result, we could integrate the pipeline composed of 21 units into one PLD chip. The units in the pipeline consists of one BPU (Basic Phase Unit) unit and twenty CU (Cascade Unit) units. These CU units can compute twenty light intensities on a hologram plane at one time. By mounting two of the PLD chips on a PCI (Peripheral Component Interconnect) universal board, HORN-4 can calculate holograms at high speed of about 42 Gflops equivalent. The cost of HORN-4 board is about 1700 US dollar. We could obtain 800×600 grids hologram from a 3D-image composed of 415 points in about 0.45 sec with the HORN-4 system.

  17. Algorithms for Lightweight Key Exchange.

    PubMed

    Alvarez, Rafael; Caballero-Gil, Cándido; Santonja, Juan; Zamora, Antonio

    2017-06-27

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks.

  18. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.

    1984-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295

  19. Online Tracking Algorithms on GPUs for the P̅ANDA Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Herten, A.; Ritman, J.; Stockmanns, T.; Adinetz, A.; Kraus, J.; Pleiter, D.

    2015-12-01

    P̅ANDA is a future hadron and nuclear physics experiment at the FAIR facility in construction in Darmstadt, Germany. In contrast to the majority of current experiments, PANDA's strategy for data acquisition is based on event reconstruction from free-streaming data, performed in real time entirely by software algorithms using global detector information. This paper reports the status of the development of algorithms for the reconstruction of charged particle tracks, optimized online data processing applications, using General-Purpose Graphic Processing Units (GPU). Two algorithms for trackfinding, the Triplet Finder and the Circle Hough, are described, and details of their GPU implementations are highlighted. Average track reconstruction times of less than 100 ns are obtained running the Triplet Finder on state-of- the-art GPU cards. In addition, a proof-of-concept system for the dispatch of data to tracking algorithms using Message Queues is presented.

  20. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  1. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.

    PubMed

    Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M

    2016-12-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.

  2. An Algorithm for Interactive Modeling of Space-Transportation Engine Simulations: A Constraint Satisfaction Approach

    NASA Technical Reports Server (NTRS)

    Mitra, Debasis; Thomas, Ajai; Hemminger, Joseph; Sakowski, Barbara

    2001-01-01

    In this research we have developed an algorithm for the purpose of constraint processing by utilizing relational algebraic operators. Van Beek and others have investigated in the past this type of constraint processing from within a relational algebraic framework, producing some unique results. Apart from providing new theoretical angles, this approach also gives the opportunity to use the existing efficient implementations of relational database management systems as the underlying data structures for any relevant algorithm. Our algorithm here enhances that framework. The algorithm is quite general in its current form. Weak heuristics (like forward checking) developed within the Constraint-satisfaction problem (CSP) area could be also plugged easily within this algorithm for further enhancements of efficiency. The algorithm as developed here is targeted toward a component-oriented modeling problem that we are currently working on, namely, the problem of interactive modeling for batch-simulation of engineering systems (IMBSES). However, it could be adopted for many other CSP problems as well. The research addresses the algorithm and many aspects of the problem IMBSES that we are currently handling.

  3. FANTOM: Algorithm-Architecture Codesign for High-Performance Embedded Signal and Image Processing Systems

    DTIC Science & Technology

    2013-05-25

    graphics processors by IBM, AMD, and nVIDIA . They are between general-purpose pro- cessors and special-purpose processors. In Phase II. 3.10 Measure of...particular, Dr. Kevin Irick started a company Silicon Scapes and he has been the CEO. 5 Implications for Related/Future Research We speculate that...final project report in Jan. 2011. At the test and validation stage of the project. FANTOM’s partner at Raytheon quit from his company and hence from

  4. Foundations for a syntatic pattern recognition system for genomic DNA sequences. [Annual] report, 1 December 1991--31 March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  5. SU-E-T-577: Commissioning of a Deterministic Algorithm for External Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Finlay, J; Mesina, C

    Purpose: We report commissioning results for a deterministic algorithm for external photon beam treatment planning. A deterministic algorithm solves the radiation transport equations directly using a finite difference method, thus improve the accuracy of dose calculation, particularly under heterogeneous conditions with results similar to that of Monte Carlo (MC) simulation. Methods: Commissioning data for photon energies 6 – 15 MV includes the percentage depth dose (PDD) measured at SSD = 90 cm and output ratio in water (Spc), both normalized to 10 cm depth, for field sizes between 2 and 40 cm and depths between 0 and 40 cm. Off-axismore » ratio (OAR) for the same set of field sizes was used at 5 depths (dmax, 5, 10, 20, 30 cm). The final model was compared with the commissioning data as well as additional benchmark data. The benchmark data includes dose per MU determined for 17 points for SSD between 80 and 110 cm, depth between 5 and 20 cm, and lateral offset of up to 16.5 cm. Relative comparisons were made in a heterogeneous phantom made of cork and solid water. Results: Compared to the commissioning beam data, the agreement are generally better than 2% with large errors (up to 13%) observed in the buildup regions of the FDD and penumbra regions of the OAR profiles. The overall mean standard deviation is 0.04% when all data are taken into account. Compared to the benchmark data, the agreements are generally better than 2%. Relative comparison in heterogeneous phantom is in general better than 4%. Conclusion: A commercial deterministic algorithm was commissioned for megavoltage photon beams. In a homogeneous medium, the agreement between the algorithm and measurement at the benchmark points is generally better than 2%. The dose accuracy for a deterministic algorithm is better than a convolution algorithm in heterogeneous medium.« less

  6. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  7. General purpose graphics-processing-unit implementation of cosmological domain wall network evolution.

    PubMed

    Correia, J R C C C; Martins, C J A P

    2017-10-01

    Topological defects unavoidably form at symmetry breaking phase transitions in the early universe. To probe the parameter space of theoretical models and set tighter experimental constraints (exploiting the recent advances in astrophysical observations), one requires more and more demanding simulations, and therefore more hardware resources and computation time. Improving the speed and efficiency of existing codes is essential. Here we present a general purpose graphics-processing-unit implementation of the canonical Press-Ryden-Spergel algorithm for the evolution of cosmological domain wall networks. This is ported to the Open Computing Language standard, and as a consequence significant speedups are achieved both in two-dimensional (2D) and 3D simulations.

  8. Progressive Precision Surface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on anmore » underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.« less

  9. Self-Learning Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang

    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of general and efficient update algorithm for large size systems close to phase transition or with strong frustrations, for which local updates perform badly. In this work, we propose a new general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup. This work is supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  10. Atomicrex—a general purpose tool for the construction of atomic interaction models

    NASA Astrophysics Data System (ADS)

    Stukowski, Alexander; Fransson, Erik; Mock, Markus; Erhart, Paul

    2017-07-01

    We introduce atomicrex, an open-source code for constructing interatomic potentials as well as more general types of atomic-scale models. Such effective models are required to simulate extended materials structures comprising many thousands of atoms or more, because electronic structure methods become computationally too expensive at this scale. atomicrex covers a wide range of interatomic potential types and fulfills many needs in atomistic model development. As inputs, it supports experimental property values as well as ab initio energies and forces, to which models can be fitted using various optimization algorithms. The open architecture of atomicrex allows it to be used in custom model development scenarios beyond classical interatomic potentials while thanks to its Python interface it can be readily integrated e.g., with electronic structure calculations or machine learning algorithms.

  11. Code conversion from signed-digit to complement representation based on look-ahead optical logic operations

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Qian, Feng

    2001-11-01

    We present, for the first time to our knowledge, a generalized lookahead logic algorithm for number conversion from signed-digit to complement representation. By properly encoding the signed-digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed- digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quarternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using an electron-trapping device is employed and experimental results are shown. This optical module is suitable for implementing complex logic functions in the form of the sum of the product. The algorithm and architecture are compatible with a general-purpose optoelectronic computing system.

  12. Interleaved diffusion-weighted EPI improved by adaptive partial-Fourier and multi-band multiplexed sensitivity-encoding reconstruction

    PubMed Central

    Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei

    2014-01-01

    Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000

  13. Rapid solution of large-scale systems of equations

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.

  14. A genetic algorithm solution to the unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.

    1996-02-01

    This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 unitsmore » and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.« less

  15. Processing Digital Imagery to Enhance Perceptions of Realism

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2003-01-01

    Multi-scale retinex with color restoration (MSRCR) is a method of processing digital image data based on Edwin Land s retinex (retina + cortex) theory of human color vision. An outgrowth of basic scientific research and its application to NASA s remote-sensing mission, MSRCR is embodied in a general-purpose algorithm that greatly improves the perception of visual realism and the quantity and quality of perceived information in a digitized image. In addition, the MSRCR algorithm includes provisions for automatic corrections to accelerate and facilitate what could otherwise be a tedious image-editing process. The MSRCR algorithm has been, and is expected to continue to be, the basis for development of commercial image-enhancement software designed to extend and refine its capabilities for diverse applications.

  16. Algorithms for Lightweight Key Exchange †

    PubMed Central

    Santonja, Juan; Zamora, Antonio

    2017-01-01

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks. PMID:28654006

  17. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing.

    PubMed

    Deist, T M; Gorissen, B L

    2016-02-07

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.

  18. Workflow of the Grover algorithm simulation incorporating CUDA and GPGPU

    NASA Astrophysics Data System (ADS)

    Lu, Xiangwen; Yuan, Jiabin; Zhang, Weiwei

    2013-09-01

    The Grover quantum search algorithm, one of only a few representative quantum algorithms, can speed up many classical algorithms that use search heuristics. No true quantum computer has yet been developed. For the present, simulation is one effective means of verifying the search algorithm. In this work, we focus on the simulation workflow using a compute unified device architecture (CUDA). Two simulation workflow schemes are proposed. These schemes combine the characteristics of the Grover algorithm and the parallelism of general-purpose computing on graphics processing units (GPGPU). We also analyzed the optimization of memory space and memory access from this perspective. We implemented four programs on CUDA to evaluate the performance of schemes and optimization. Through experimentation, we analyzed the organization of threads suited to Grover algorithm simulations, compared the storage costs of the four programs, and validated the effectiveness of optimization. Experimental results also showed that the distinguished program on CUDA outperformed the serial program of libquantum on a CPU with a speedup of up to 23 times (12 times on average), depending on the scale of the simulation.

  19. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology

    PubMed Central

    Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.

    2016-01-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915

  20. Estimation of Item Parameters and the GEM Algorithm.

    ERIC Educational Resources Information Center

    Tsutakawa, Robert K.

    The models and procedures discussed in this paper are related to those presented in Bock and Aitkin (1981), where they considered the 2-parameter probit model and approximated a normally distributed prior distribution of abilities by a finite and discrete distribution. One purpose of this paper is to clarify the nature of the general EM (GEM)…

  1. A Comparison of the DISASTER (Trademark) Scheduling Software with a Simultaneous Scheduling Algorithm for Minimizing Maximum Tardiness in Job Shops

    DTIC Science & Technology

    1993-09-01

    goal ( Heizer , Render , and Stair, 1993:94). Integer Prgronmming. Integer programming is a general purpose approach used to optimally solve job shop...Scheduling," Operations Research Journal. 29, No 4: 646-667 (July-August 1981). Heizer , Jay, Barry Render and Ralph M. Stair, Jr. Production and Operations

  2. Improving Quantum Gate Simulation using a GPU

    NASA Astrophysics Data System (ADS)

    Gutierrez, Eladio; Romero, Sergio; Trenas, Maria A.; Zapata, Emilio L.

    2008-11-01

    Due to the increasing computing power of the graphics processing units (GPU), they are becoming more and more popular when solving general purpose algorithms. As the simulation of quantum computers results on a problem with exponential complexity, it is advisable to perform a parallel computation, such as the one provided by the SIMD multiprocessors present in recent GPUs. In this paper, we focus on an important quantum algorithm, the quantum Fourier transform (QTF), in order to evaluate different parallelization strategies on a novel GPU architecture. Our implementation makes use of the new CUDA software/hardware architecture developed recently by NVIDIA.

  3. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  4. User's manual SIG: a general-purpose signal processing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lager, D.; Azevedo, S.

    1983-10-25

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar tomore » each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.« less

  5. A simple algorithm for beam profile diagnostics using a thermographic camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, Ken; Hojo, Satoru; Honma, Toshihiro

    2014-03-15

    A new algorithm for digital image processing apparatuses is developed to evaluate profiles of high-intensity DC beams from temperature images of irradiated thin foils. Numerical analyses are performed to examine the reliability of the algorithm. To simulate the temperature images acquired by a thermographic camera, temperature distributions are numerically calculated for 20 MeV proton beams with different parameters. Noise in the temperature images which is added by the camera sensor is also simulated to account for its effect. Using the algorithm, beam profiles are evaluated from the simulated temperature images and compared with exact solutions. We find that niobium ismore » an appropriate material for the thin foil used in the diagnostic system. We also confirm that the algorithm is adaptable over a wide beam current range of 0.11–214 μA, even when employing a general-purpose thermographic camera with rather high noise (ΔT{sub NETD} ≃ 0.3 K; NETD: noise equivalent temperature difference)« less

  6. Artificial Intelligence Methods: Choice of algorithms, their complexity, and appropriateness within the context of hydrology and water resources. (Invited)

    NASA Astrophysics Data System (ADS)

    Bastidas, L. A.; Pande, S.

    2009-12-01

    Pattern analysis deals with the automatic detection of patterns in the data and there are a variety of algorithms available for the purpose. These algorithms are commonly called Artificial Intelligence (AI) or data driven algorithms, and have been applied lately to a variety of problems in hydrology and are becoming extremely popular. When confronting such a range of algorithms, the question of which one is the “best” arises. Some algorithms may be preferred because of the lower computational complexity; others take into account prior knowledge of the form and the amount of the data; others are chosen based on a version of the Occam’s razor principle that a simple classifier performs better. Popper has argued, however, that Occam’s razor is without operational value because there is no clear measure or criterion for simplicity. An example of measures that can be used for this purpose are: the so called algorithmic complexity - also known as Kolmogorov complexity or Kolmogorov (algorithmic) entropy; the Bayesian information criterion; or the Vapnik-Chervonenkis dimension. On the other hand, the No Free Lunch Theorem states that there is no best general algorithm, and that specific algorithms are superior only for specific problems. It should be noted also that the appropriate algorithm and the appropriate complexity are constrained by the finiteness of the available data and the uncertainties associated with it. Thus, there is compromise between the complexity of the algorithm, the data properties, and the robustness of the predictions. We discuss the above topics; briefly review the historical development of applications with particular emphasis on statistical learning theory (SLT), also known as machine learning (ML) of which support vector machines and relevant vector machines are the most commonly known algorithms. We present some applications of such algorithms for distributed hydrologic modeling; and introduce an example of how the complexity measure can be applied for appropriate model choice within the context of applications in hydrologic modeling intended for use in studies about water resources and water resources management and their direct relation to extreme conditions or natural hazards.

  7. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1988-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

  8. On the performance of explicit and implicit algorithms for transient thermal analysis

    NASA Astrophysics Data System (ADS)

    Adelman, H. M.; Haftka, R. T.

    1980-09-01

    The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.

  9. Multivariate interactive digital analysis system /MIDAS/ - A new fast multispectral recognition system

    NASA Technical Reports Server (NTRS)

    Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.

    1973-01-01

    The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.

  10. Tomographic image reconstruction using the cell broadband engine (CBE) general purpose hardware

    NASA Astrophysics Data System (ADS)

    Knaup, Michael; Steckmann, Sven; Bockenbach, Olivier; Kachelrieß, Marc

    2007-02-01

    Tomographic image reconstruction, such as the reconstruction of CT projection values, of tomosynthesis data, PET or SPECT events, is computational very demanding. In filtered backprojection as well as in iterative reconstruction schemes, the most time-consuming steps are forward- and backprojection which are often limited by the memory bandwidth. Recently, a novel general purpose architecture optimized for distributed computing became available: the Cell Broadband Engine (CBE). Its eight synergistic processing elements (SPEs) currently allow for a theoretical performance of 192 GFlops (3 GHz, 8 units, 4 floats per vector, 2 instructions, multiply and add, per clock). To maximize image reconstruction speed we modified our parallel-beam and perspective backprojection algorithms which are highly optimized for standard PCs, and optimized the code for the CBE processor. 1-3 In addition, we implemented an optimized perspective forwardprojection on the CBE which allows us to perform statistical image reconstructions like the ordered subset convex (OSC) algorithm. 4 Performance was measured using simulated data with 512 projections per rotation and 5122 detector elements. The data were backprojected into an image of 512 3 voxels using our PC-based approaches and the new CBE- based algorithms. Both the PC and the CBE timings were scaled to a 3 GHz clock frequency. On the CBE, we obtain total reconstruction times of 4.04 s for the parallel backprojection, 13.6 s for the perspective backprojection and 192 s for a complete OSC reconstruction, consisting of one initial Feldkamp reconstruction, followed by 4 OSC iterations.

  11. A reduced successive quadratic programming strategy for errors-in-variables estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.

    Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less

  12. Data mining in bioinformatics using Weka.

    PubMed

    Frank, Eibe; Hall, Mark; Trigg, Len; Holmes, Geoffrey; Witten, Ian H

    2004-10-12

    The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. http://www.cs.waikato.ac.nz/ml/weka.

  13. Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1.

    PubMed

    Ramacher, U; Raab, W; Anlauf, J; Hachmann, U; Beichter, J; Brüls, N; Wesseling, M; Sicheneder, E; Männer, R; Glass, J

    1993-12-01

    A general purpose neurocomputer, SYNAPSE-1, which exhibits a multiprocessor and memory architecture is presented. It offers wide flexibility with respect to neural algorithms and a speed-up factor of several orders of magnitude--including learning. The computational power is provided by a 2-dimensional systolic array of neural signal processors. Since the weights are stored outside these NSPs, memory size and processing power can be adapted individually to the application needs. A neural algorithms programming language, embedded in C(+2) has been defined for the user to cope with the neurocomputer. In a benchmark test, the prototype of SYNAPSE-1 was 8000 times as fast as a standard workstation.

  14. Sensitivity of NTCP parameter values against a change of dose calculation algorithm.

    PubMed

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.

  15. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-15

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis withmore » those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.« less

  16. Comparison of human observer and algorithmic target detection in nonurban forward-looking infrared imagery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.

    2005-07-01

    We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.

  17. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughry, Thomas A.

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to tenmore » times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.« less

  18. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain computer interface

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Bin

    2004-03-01

    The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.

  19. Advanced Architectures for Astrophysical Supercomputing

    NASA Astrophysics Data System (ADS)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  20. Darwin v. 2.0: an interpreted computer language for the biosciences.

    PubMed

    Gonnet, G H; Hallett, M T; Korostensky, C; Bernardin, L

    2000-02-01

    We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems. This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs. Darwin is made available for most operating systems free of char ge from the Computational Biochemistry Research Group (CBRG), reachable at http://chrg.inf.ethz.ch. darwin@inf.ethz.ch

  1. Reliability Evaluation of Computer Systems.

    DTIC Science & Technology

    1981-01-01

    algorithms in hardware is not restricted by the designs of particular circuits. Applications could be made in new computer architectures; one candidate...pp. 137-148, IEEE, Chicago, Illinois, September 1963. (With J.F. Wakerly ) "Design of Low-Cost General-Purpose Self- Diagnosing Computers," Proc...34 Proc., IEEE Int’l Solid-State Circuits Conference, Philadelphia, Pennsylvania, February 16-18, 1977. (With J.F. Wakerly ) "Microcomputers in the

  2. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.

    PubMed

    Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T

    2010-09-01

    To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  3. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.

    PubMed

    Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S

    2012-10-01

    An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.

  4. A Comparison of Genetic Programming Variants for Hyper-Heuristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Sean

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved, such as routing vehicles over highways with constantly changing traffic flows, because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. Hyper-heuristics typically employ Genetic Programming (GP) and this project has investigated the relationship between the choice of GP and performance inmore » Hyper-heuristics. Results are presented demonstrating the existence of problems for which there is a statistically significant performance differential between the use of different types of GP.« less

  5. Improvements of the Penalty Avoiding Rational Policy Making Algorithm and an Application to the Othello Game

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazuteru; Tsuboi, Sougo; Kobayashi, Shigenobu

    The purpose of reinforcement learning is to learn an optimal policy in general. However, in 2-players games such as the othello game, it is important to acquire a penalty avoiding policy. In this paper, we focus on formation of a penalty avoiding policy based on the Penalty Avoiding Rational Policy Making algorithm [Miyazaki 01]. In applying it to large-scale problems, we are confronted with the curse of dimensionality. We introduce several ideas and heuristics to overcome the combinational explosion in large-scale problems. First, we propose an algorithm to save the memory by calculation of state transition. Second, we describe how to restrict exploration by two type knowledge; KIFU database and evaluation funcion. We show that our learning player can always defeat against the well-known othello game program KITTY.

  6. An NOy* Algorithm for SOLVE

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Greenblatt. B. J.; Jost, H.; Podolske, J. R.; Elkins, Jim; Hurst, Dale; Romanashkin, Pavel; Atlas, Elliott; Schauffler, Sue; Donnelly, Steve; hide

    2000-01-01

    De-nitrification and excess re-nitrification was widely observed by ER-2 instruments in the Arctic vortex during SOLVE in winter/spring 2000. Analyses of these events requires a knowledge of the initial or pre-vortex state of the sampled air masses. The canonical relationship of NOy to the long-lived tracer N2O observed in the unperturbed stratosphere is generally used for this purpose. In this paper we will attempt to establish the current unperturbed NOy:N2O relationship (NOy* algorithm) using the ensemble of extra-vortex data from in situ instruments flying on the ER-2 and DC-8, and from the Mark IV remote measurements on the OMS balloon. Initial analysis indicates a change in the SOLVE NOy* from the values predicted by the 1994 Northern Hemisphere NOy* algorithm which was derived from the observations in the ASHOE/MAESA campaign.

  7. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  8. Algorithms and programming tools for image processing on the MPP, part 2

    NASA Technical Reports Server (NTRS)

    Reeves, Anthony P.

    1986-01-01

    A number of algorithms were developed for image warping and pyramid image filtering. Techniques were investigated for the parallel processing of a large number of independent irregular shaped regions on the MPP. In addition some utilities for dealing with very long vectors and for sorting were developed. Documentation pages for the algorithms which are available for distribution are given. The performance of the MPP for a number of basic data manipulations was determined. From these results it is possible to predict the efficiency of the MPP for a number of algorithms and applications. The Parallel Pascal development system, which is a portable programming environment for the MPP, was improved and better documentation including a tutorial was written. This environment allows programs for the MPP to be developed on any conventional computer system; it consists of a set of system programs and a library of general purpose Parallel Pascal functions. The algorithms were tested on the MPP and a presentation on the development system was made to the MPP users group. The UNIX version of the Parallel Pascal System was distributed to a number of new sites.

  9. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  10. Description of the AILS Alerting Algorithm

    NASA Technical Reports Server (NTRS)

    Samanant, Paul; Jackson, Mike

    2000-01-01

    This document provides a complete description of the Airborne Information for Lateral Spacing (AILS) alerting algorithms. The purpose of AILS is to provide separation assurance between aircraft during simultaneous approaches to closely spaced parallel runways. AILS will allow independent approaches to be flown in such situations where dependent approaches were previously required (typically under Instrument Meteorological Conditions (IMC)). This is achieved by providing multiple levels of alerting for pairs of aircraft that are in parallel approach situations. This document#s scope is comprehensive and covers everything from general overviews, definitions, and concepts down to algorithmic elements and equations. The entire algorithm is presented in complete and detailed pseudo-code format. This can be used by software programmers to program AILS into a software language. Additional supporting information is provided in the form of coordinate frame definitions, data requirements, calling requirements as well as all necessary pre-processing and post-processing requirements. This is important and required information for the implementation of AILS into an analysis, a simulation, or a real-time system.

  11. Visualization for Hyper-Heuristics: Back-End Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Luke

    Modern society is faced with increasingly complex problems, many of which can be formulated as generate-and-test optimization problems. Yet, general-purpose optimization algorithms may sometimes require too much computational time. In these instances, hyperheuristics may be used. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario, finding the solution significantly faster than its predecessor. However, it may be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics and an easy-to-understand scientific visualizationmore » for the produced solutions. To support the development of this GUI, my portion of the research involved developing algorithms that would allow for parsing of the data produced by the hyper-heuristics. This data would then be sent to the front-end, where it would be displayed to the end user.« less

  12. Collision of Physics and Software in the Monte Carlo Application Toolkit (MCATK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, Jeremy Ed

    2016-01-21

    The topic is presented in a series of slides organized as follows: MCATK overview, development strategy, available algorithms, problem modeling (sources, geometry, data, tallies), parallelism, miscellaneous tools/features, example MCATK application, recent areas of research, and summary and future work. MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library with continuous energy neutron and photon transport. Designed to build specialized applications and to provide new functionality in existing general-purpose Monte Carlo codes like MCNP, it reads ACE formatted nuclear data generated by NJOY. The motivation behind MCATK was to reduce costs. MCATK physics involves continuous energy neutron & gammamore » transport with multi-temperature treatment, static eigenvalue (k eff and α) algorithms, time-dependent algorithm, and fission chain algorithms. MCATK geometry includes mesh geometries and solid body geometries. MCATK provides verified, unit-test Monte Carlo components, flexibility in Monte Carlo application development, and numerous tools such as geometry and cross section plotters.« less

  13. Deducing chemical structure from crystallographically determined atomic coordinates

    PubMed Central

    Bruno, Ian J.; Shields, Gregory P.; Taylor, Robin

    2011-01-01

    An improved algorithm has been developed for assigning chemical structures to incoming entries to the Cambridge Structural Database, using only the information available in the deposited CIF. Steps in the algorithm include detection of bonds, selection of polymer unit, resolution of disorder, and assignment of bond types and formal charges. The chief difficulty is posed by the large number of metallo-organic crystal structures that must be processed, given our aspiration that assigned chemical structures should accurately reflect properties such as the oxidation states of metals and redox-active ligands, metal coordination numbers and hapticities, and the aromaticity or otherwise of metal ligands. Other complications arise from disorder, especially when it is symmetry imposed or modelled with the SQUEEZE algorithm. Each assigned structure is accompanied by an estimate of reliability and, where necessary, diagnostic information indicating probable points of error. Although the algorithm was written to aid building of the Cambridge Structural Database, it has the potential to develop into a general-purpose tool for adding chemical information to newly determined crystal structures. PMID:21775812

  14. Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki

    2005-12-01

    In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.

  15. Stable orthogonal local discriminant embedding for linear dimensionality reduction.

    PubMed

    Gao, Quanxue; Ma, Jingjie; Zhang, Hailin; Gao, Xinbo; Liu, Yamin

    2013-07-01

    Manifold learning is widely used in machine learning and pattern recognition. However, manifold learning only considers the similarity of samples belonging to the same class and ignores the within-class variation of data, which will impair the generalization and stableness of the algorithms. For this purpose, we construct an adjacency graph to model the intraclass variation that characterizes the most important properties, such as diversity of patterns, and then incorporate the diversity into the discriminant objective function for linear dimensionality reduction. Finally, we introduce the orthogonal constraint for the basis vectors and propose an orthogonal algorithm called stable orthogonal local discriminate embedding. Experimental results on several standard image databases demonstrate the effectiveness of the proposed dimensionality reduction approach.

  16. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  17. Fast Multiscale Algorithms for Wave Propagation in Heterogeneous Environments

    DTIC Science & Technology

    2016-01-07

    methods for waves’’, Nonlinear solvers for high- intensity focused ultrasound with application to cancer treatment, AIMS, Palo Alto, 2012. ``Hermite...formulation but different parametrizations. . . . . . . . . . . . 6 4 Density µ(t) at mode 0 for scattering of a plane Gaussian pulse from a sphere. On the...spatiotemporal scales. Two crucial components of the highly-efficient, general-purpose wave simulator we envision are • Reliable, low -cost methods for truncating

  18. Probabilistic Structural Analysis Program

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.

    2010-01-01

    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  19. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.

    1988-01-01

    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.

  20. Convergence to Diagonal Form of Block Jacobi-type Processes

    NASA Astrophysics Data System (ADS)

    Hari, Vjeran

    2008-09-01

    The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.

  1. Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2011-01-01

    A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  2. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Traditional expert systems, such as diagnostic and training systems, interact with users only through a keyboard and screen, and are usually symbolic in nature. Expert systems that require access to data bases, complex simulations and real-time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general purpose workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The latter approach was chosen to implement TEXSYS, the thermal expert system, developed by NASA Ames Research Center in conjunction with Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. This paper will explore the integration options, and present several possible solutions.

  3. GPU-based real-time trinocular stereo vision

    NASA Astrophysics Data System (ADS)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  4. A simple extension of Roe's scheme for real gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo

    The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less

  5. ProperCAD: A portable object-oriented parallel environment for VLSI CAD

    NASA Technical Reports Server (NTRS)

    Ramkumar, Balkrishna; Banerjee, Prithviraj

    1993-01-01

    Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.

  6. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  7. Implementation of a rational pharmacotherapy intervention for inpatients at a psychiatric department.

    PubMed

    Sorensen, Lene; Nielsen, Bent; Stage, Kurt B; Brøsen, Kim; Damkier, Per

    2008-01-01

    The objective of the study was to develop, implement and evaluate two treatment algorithms for schizophrenia and depression at a psychiatric hospital department. The treatment algorithms were based on available literature and developed in collaboration between psychiatrists, clinical pharmacologists and a clinical pharmacist. The treatment algorithms were introduced at a meeting for all psychiatrists, reinforced by the project psychiatrists in the daily routine and used for educational purposes of young doctors and medical students. A quantitative pre-post evaluation was conducted using data from medical charts, and qualitative information was collected by interviews. In general, no significant differences were found when comparing outcomes from 104 charts from the baseline period with 96 charts from the post-intervention period. Most of the patients (65% in the post-intervention period) admitted during the data collection periods did not receive any medication changes. Of the patients undergoing medication changes in the post-intervention period, 56% followed the algorithms, and 70% of the patients admitted to the psychiatric hospital department for the first time had their medications changed according to the algorithms. All of the 10 interviewed doctors found the algorithms useful. The treatment algorithms were successfully implemented with a high degree of satisfaction among the interviewed doctors. The majority of patients admitted to the psychiatric hospital department for the first time had their medications changed according to the algorithms.

  8. An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Ward, R. C.

    1973-01-01

    This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.

  9. Department of Defense Fiscal Year (FY) 2005 Budget Estimates. Research, Development, Test and Evaluation, Defense-Wide. Volume 1 - Defense Advanced Research Projects Agency

    DTIC Science & Technology

    2004-02-01

    UNCLASSIFIED − Conducted experiments to determine the usability of general-purpose anomaly detection algorithms to monitor a large, complex military...reaction and detection modules to perform tailored analysis sequences to monitor environmental conditions, health hazards and physiological states...scalability of lab proven anomaly detection techniques for intrusion detection in real world high volume environments. Narrative Title FY 2003

  10. Dimeric spectra analysis in Microsoft Excel: a comparative study.

    PubMed

    Gilani, A Ghanadzadeh; Moghadam, M; Zakerhamidi, M S

    2011-11-01

    The purpose of this work is to introduce the reader to an Add-in implementation, Decom. This implementation provides the whole processing requirements for analysis of dimeric spectra. General linear and nonlinear decomposition algorithms were integrated as an Excel Add-in for easy installation and usage. In this work, the results of several samples investigations were compared to those obtained by Datan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. ORAC-DR -- spectroscopy data reduction

    NASA Astrophysics Data System (ADS)

    Hirst, Paul; Cavanagh, Brad

    ORAC-DR is a general-purpose automatic data-reduction pipeline environment. This document describes its use to reduce spectroscopy data collected at the United Kingdom Infrared Telescope (UKIRT) with the CGS4, UIST and Michelle instruments, at the Anglo-Australian Telescope (AAT) with the IRIS2 instrument, and from the Very Large Telescope with ISAAC. It outlines the algorithms used and how to make minor modifications of them, and how to correct for errors made at the telescope.

  12. WE-G-207-07: Iterative CT Shading Correction Method with No Prior Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, P; Mao, T; Niu, T

    2015-06-15

    Purpose: Shading artifacts are caused by scatter contamination, beam hardening effects and other non-ideal imaging condition. Our Purpose is to propose a novel and general correction framework to eliminate low-frequency shading artifacts in CT imaging (e.g., cone-beam CT, low-kVp CT) without relying on prior information. Methods: Our method applies general knowledge of the relatively uniform CT number distribution in one tissue component. Image segmentation is applied to construct template image where each structure is filled with the same CT number of that specific tissue. By subtracting the ideal template from CT image, the residual from various error sources are generated.more » Since the forward projection is an integration process, the non-continuous low-frequency shading artifacts in the image become continuous and low-frequency signals in the line integral. Residual image is thus forward projected and its line integral is filtered using Savitzky-Golay filter to estimate the error. A compensation map is reconstructed on the error using standard FDK algorithm and added to the original image to obtain the shading corrected one. Since the segmentation is not accurate on shaded CT image, the proposed scheme is iterated until the variation of residual image is minimized. Results: The proposed method is evaluated on a Catphan600 phantom, a pelvic patient and a CT angiography scan for carotid artery assessment. Compared to the one without correction, our method reduces the overall CT number error from >200 HU to be <35 HU and increases the spatial uniformity by a factor of 1.4. Conclusion: We propose an effective iterative algorithm for shading correction in CT imaging. Being different from existing algorithms, our method is only assisted by general anatomical and physical information in CT imaging without relying on prior knowledge. Our method is thus practical and attractive as a general solution to CT shading correction. This work is supported by the National Science Foundation of China (NSFC Grant No. 81201091), National High Technology Research and Development Program of China (863 program, Grant No. 2015AA020917), and Fund Project for Excellent Abroad Scholar Personnel in Science and Technology.« less

  13. An Overview of the JPSS Ground Project Algorithm Integration Process

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.

    2015-12-01

    The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to identify unintended outcomes. Overall the presentation provides a general and easy to follow overview of the JPSS Algorithm Change Process (ACP) and is intended to facility the audience understanding of a very extensive and complex process.

  14. NOBLE - Flexible concept recognition for large-scale biomedical natural language processing.

    PubMed

    Tseytlin, Eugene; Mitchell, Kevin; Legowski, Elizabeth; Corrigan, Julia; Chavan, Girish; Jacobson, Rebecca S

    2016-01-14

    Natural language processing (NLP) applications are increasingly important in biomedical data analysis, knowledge engineering, and decision support. Concept recognition is an important component task for NLP pipelines, and can be either general-purpose or domain-specific. We describe a novel, flexible, and general-purpose concept recognition component for NLP pipelines, and compare its speed and accuracy against five commonly used alternatives on both a biological and clinical corpus. NOBLE Coder implements a general algorithm for matching terms to concepts from an arbitrary vocabulary set. The system's matching options can be configured individually or in combination to yield specific system behavior for a variety of NLP tasks. The software is open source, freely available, and easily integrated into UIMA or GATE. We benchmarked speed and accuracy of the system against the CRAFT and ShARe corpora as reference standards and compared it to MMTx, MGrep, Concept Mapper, cTAKES Dictionary Lookup Annotator, and cTAKES Fast Dictionary Lookup Annotator. We describe key advantages of the NOBLE Coder system and associated tools, including its greedy algorithm, configurable matching strategies, and multiple terminology input formats. These features provide unique functionality when compared with existing alternatives, including state-of-the-art systems. On two benchmarking tasks, NOBLE's performance exceeded commonly used alternatives, performing almost as well as the most advanced systems. Error analysis revealed differences in error profiles among systems. NOBLE Coder is comparable to other widely used concept recognition systems in terms of accuracy and speed. Advantages of NOBLE Coder include its interactive terminology builder tool, ease of configuration, and adaptability to various domains and tasks. NOBLE provides a term-to-concept matching system suitable for general concept recognition in biomedical NLP pipelines.

  15. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2013-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.

  16. Digital optical computers at the optoelectronic computing systems center

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  17. Strong scaling of general-purpose molecular dynamics simulations on GPUs

    NASA Astrophysics Data System (ADS)

    Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.; Lui, Pak; Spiga, Filippo; Millan, Jaime A.; Morse, David C.; Glotzer, Sharon C.

    2015-07-01

    We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5 ×.

  18. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

    NASA Astrophysics Data System (ADS)

    Somers, Ben; Francart, Tom; Bertrand, Alexander

    2018-06-01

    Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.

  19. Theoretical and software considerations for general dynamic analysis using multilevel substructured models

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1985-01-01

    The dynamic analysis of complex structural systems using the finite element method and multilevel substructured models is presented. The fixed-interface method is selected for substructure reduction because of its efficiency, accuracy, and adaptability to restart and reanalysis. This method is extended to reduction of substructures which are themselves composed of reduced substructures. The implementation and performance of the method in a general purpose software system is emphasized. Solution algorithms consistent with the chosen data structures are presented. It is demonstrated that successful finite element software requires the use of software executives to supplement the algorithmic language. The complexity of the implementation of restart and reanalysis porcedures illustrates the need for executive systems to support the noncomputational aspects of the software. It is shown that significant computational efficiencies can be achieved through proper use of substructuring and reduction technbiques without sacrificing solution accuracy. The restart and reanalysis capabilities and the flexible procedures for multilevel substructured modeling gives economical yet accurate analyses of complex structural systems.

  20. Feature Reinforcement Learning: Part I. Unstructured MDPs

    NASA Astrophysics Data System (ADS)

    Hutter, Marcus

    2009-12-01

    General-purpose, intelligent, learning agents cycle through sequences of observations, actions, and rewards that are complex, uncertain, unknown, and non-Markovian. On the other hand, reinforcement learning is well-developed for small finite state Markov decision processes (MDPs). Up to now, extracting the right state representations out of bare observations, that is, reducing the general agent setup to the MDP framework, is an art that involves significant effort by designers. The primary goal of this work is to automate the reduction process and thereby significantly expand the scope of many existing reinforcement learning algorithms and the agents that employ them. Before we can think of mechanizing this search for suitable MDPs, we need a formal objective criterion. The main contribution of this article is to develop such a criterion. I also integrate the various parts into one learning algorithm. Extensions to more realistic dynamic Bayesian networks are developed in Part II (Hutter, 2009c). The role of POMDPs is also considered there.

  1. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  2. Conceptual Comparison of Population Based Metaheuristics for Engineering Problems

    PubMed Central

    Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265

  3. Conceptual comparison of population based metaheuristics for engineering problems.

    PubMed

    Adekanmbi, Oluwole; Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

  4. Data-driven indexing mechanism for the recognition of polyhedral objects

    NASA Astrophysics Data System (ADS)

    McLean, Stewart; Horan, Peter; Caelli, Terry M.

    1992-02-01

    This paper is concerned with the problem of searching large model databases. To date, most object recognition systems have concentrated on the problem of matching using simple searching algorithms. This is quite acceptable when the number of object models is small. However, in the future, general purpose computer vision systems will be required to recognize hundreds or perhaps thousands of objects and, in such circumstances, efficient searching algorithms will be needed. The problem of searching a large model database is one which must be addressed if future computer vision systems are to be at all effective. In this paper we present a method we call data-driven feature-indexed hypothesis generation as one solution to the problem of searching large model databases.

  5. Expanding Metabolic Engineering Algorithms Using Feasible Space and Shadow Price Constraint Modules

    PubMed Central

    Tervo, Christopher J.; Reed, Jennifer L.

    2014-01-01

    While numerous computational methods have been developed that use genome-scale models to propose mutants for the purpose of metabolic engineering, they generally compare mutants based on a single criteria (e.g., production rate at a mutant’s maximum growth rate). As such, these approaches remain limited in their ability to include multiple complex engineering constraints. To address this shortcoming, we have developed feasible space and shadow price constraint (FaceCon and ShadowCon) modules that can be added to existing mixed integer linear adaptive evolution metabolic engineering algorithms, such as OptKnock and OptORF. These modules allow strain designs to be identified amongst a set of multiple metabolic engineering algorithm solutions that are capable of high chemical production while also satisfying additional design criteria. We describe the various module implementations and their potential applications to the field of metabolic engineering. We then incorporated these modules into the OptORF metabolic engineering algorithm. Using an Escherichia coli genome-scale model (iJO1366), we generated different strain designs for the anaerobic production of ethanol from glucose, thus demonstrating the tractability and potential utility of these modules in metabolic engineering algorithms. PMID:25478320

  6. Efficient least angle regression for identification of linear-in-the-parameters models

    PubMed Central

    Beach, Thomas H.; Rezgui, Yacine

    2017-01-01

    Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140

  7. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGES

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  8. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.

    PubMed

    Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.

  9. Fast and Exact Fiber Surfaces for Tetrahedral Meshes.

    PubMed

    Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng

    2017-07-01

    Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.

  10. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  11. Efficient Numerical Diagonalization of Hermitian 3 × 3 Matrices

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim

    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3 × 3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an alytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from .

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, Dmitry I.

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  13. Sensitivity of CO2 Simulation in a GCM to the Convective Transport Algorithms

    NASA Technical Reports Server (NTRS)

    Zhu, Z.; Pawson, S.; Collatz, G. J.; Gregg, W. W.; Kawa, S. R.; Baker, D.; Ott, L.

    2014-01-01

    Convection plays an important role in the transport of heat, moisture and trace gases. In this study, we simulated CO2 concentrations with an atmospheric general circulation model (GCM). Three different convective transport algorithms were used. One is a modified Arakawa-Shubert scheme that was native to the GCM; two others used in two off-line chemical transport models (CTMs) were added to the GCM here for comparison purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were compared to a large quantity of CO2 observation data. We find that the simulation results are sensitive to the convective transport algorithms. Overall, the three simulations are quite realistic and similar to each other in the remote marine regions, but are significantly different in some land regions with strong fluxes such as Amazon and Siberia during the convection seasons. Large biases against CO2 measurements are found in these regions in the control run, which uses the original GCM. The simulation with the simple diffusive algorithm is better. The difference of the two simulations is related to the very different convective transport speed.

  14. A Novel Artificial Bee Colony Algorithm Based on Internal-Feedback Strategy for Image Template Matching

    PubMed Central

    Gong, Li-Gang

    2014-01-01

    Image template matching refers to the technique of locating a given reference image over a source image such that they are the most similar. It is a fundamental mission in the field of visual target recognition. In general, there are two critical aspects of a template matching scheme. One is similarity measurement and the other is best-match location search. In this work, we choose the well-known normalized cross correlation model as a similarity criterion. The searching procedure for the best-match location is carried out through an internal-feedback artificial bee colony (IF-ABC) algorithm. IF-ABC algorithm is highlighted by its effort to fight against premature convergence. This purpose is achieved through discarding the conventional roulette selection procedure in the ABC algorithm so as to provide each employed bee an equal chance to be followed by the onlooker bees in the local search phase. Besides that, we also suggest efficiently utilizing the internal convergence states as feedback guidance for searching intensity in the subsequent cycles of iteration. We have investigated four ideal template matching cases as well as four actual cases using different searching algorithms. Our simulation results show that the IF-ABC algorithm is more effective and robust for this template matching mission than the conventional ABC and two state-of-the-art modified ABC algorithms do. PMID:24892107

  15. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications.

    PubMed

    Lei, Guoqing; Dou, Yong; Wan, Wen; Xia, Fei; Li, Rongchun; Ma, Meng; Zou, Dan

    2012-01-01

    Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.

  16. Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili; Katzgraber, Helmut G.

    2017-10-01

    We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are smaller and less connected, and samplers tend to give better low-energy samples for these problems. The algorithm is trivially parallelizable since each start in the multistart algorithm is independent, and could be applied to any heuristic solver that can be run multiple times to give a sample. We present results for several classes of hard problems solved using simulated annealing, path-integral quantum Monte Carlo, parallel tempering with isoenergetic cluster moves, and a quantum annealer, and show that the success metrics and the scaling are improved substantially. When combined with this algorithm, the quantum annealer's scaling was substantially improved for native Chimera graph problems. In addition, with this algorithm the scaling of the time to solution of the quantum annealer is comparable to the Hamze-de Freitas-Selby algorithm on the weak-strong cluster problems introduced by Boixo et al. Parallel tempering with isoenergetic cluster moves was able to consistently solve three-dimensional spin glass problems with 8000 variables when combined with our method, whereas without our method it could not solve any.

  17. JavaGenes Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Smith, David; Frank, Jeremy; Globus, Al; Crawford, James

    2007-01-01

    JavaGenes is a general-purpose, evolutionary software system written in Java. It implements several versions of a genetic algorithm, simulated annealing, stochastic hill climbing, and other search techniques. This software has been used to evolve molecules, atomic force field parameters, digital circuits, Earth Observing Satellite schedules, and antennas. This version differs from version 0.7.28 in that it includes the molecule evolution code and other improvements. Except for the antenna code, JaveGenes is available for NASA Open Source distribution.

  18. Digital Waveguide Architectures for Virtual Musical Instruments

    NASA Astrophysics Data System (ADS)

    Smith, Julius O.

    Digital sound synthesis has become a standard staple of modern music studios, videogames, personal computers, and hand-held devices. As processing power has increased over the years, sound synthesis implementations have evolved from dedicated chip sets, to single-chip solutions, and ultimately to software implementations within processors used primarily for other tasks (such as for graphics or general purpose computing). With the cost of implementation dropping closer and closer to zero, there is increasing room for higher quality algorithms.

  19. Expert system validation in prolog

    NASA Technical Reports Server (NTRS)

    Stock, Todd; Stachowitz, Rolf; Chang, Chin-Liang; Combs, Jacqueline

    1988-01-01

    An overview of the Expert System Validation Assistant (EVA) is being implemented in Prolog at the Lockheed AI Center. Prolog was chosen to facilitate rapid prototyping of the structure and logic checkers and since February 1987, we have implemented code to check for irrelevance, subsumption, duplication, deadends, unreachability, and cycles. The architecture chosen is extremely flexible and expansible, yet concise and complementary with the normal interactive style of Prolog. The foundation of the system is in the connection graph representation. Rules and facts are modeled as nodes in the graph and arcs indicate common patterns between rules. The basic activity of the validation system is then a traversal of the connection graph, searching for various patterns the system recognizes as erroneous. To aid in specifying these patterns, a metalanguage is developed, providing the user with the basic facilities required to reason about the expert system. Using the metalanguage, the user can, for example, give the Prolog inference engine the goal of finding inconsistent conclusions among the rules, and Prolog will search the graph intantiations which can match the definition of inconsistency. Examples of code for some of the checkers are provided and the algorithms explained. Technical highlights include automatic construction of a connection graph, demonstration of the use of metalanguage, the A* algorithm modified to detect all unique cycles, general-purpose stacks in Prolog, and a general-purpose database browser with pattern completion.

  20. Verification of IEEE Compliant Subtractive Division Algorithms

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.; Leathrum, James F., Jr.

    1996-01-01

    A parameterized definition of subtractive floating point division algorithms is presented and verified using PVS. The general algorithm is proven to satisfy a formal definition of an IEEE standard for floating point arithmetic. The utility of the general specification is illustrated using a number of different instances of the general algorithm.

  1. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the implementation of time splitting, variable stochastic fluid particle mass control, and a second order time accurate (predictor-corrector) scheme used for solving the stochastic differential equations governing the particles evolution. The model compared well against experimental data found in the literature for two different configurations: bluff body and swirl stabilized combustors. The generalized stochastic reactor is a newly developed model. This model relies on the generalization of the concept of the classical stochastic reactor theory in the sense that it accounts for both finite micro- and macro-mixing processes. (Abstract shortened by UMI.)

  2. A Systematic Review of Validated Methods for Identifying Cerebrovascular Accident or Transient Ischemic Attack Using Administrative Data

    PubMed Central

    Andrade, Susan E.; Harrold, Leslie R.; Tjia, Jennifer; Cutrona, Sarah L.; Saczynski, Jane S.; Dodd, Katherine S.; Goldberg, Robert J.; Gurwitz, Jerry H.

    2012-01-01

    Purpose To perform a systematic review of the validity of algorithms for identifying cerebrovascular accidents (CVAs) or transient ischemic attacks (TIAs) using administrative and claims data. Methods PubMed and Iowa Drug Information Service (IDIS) searches of the English language literature were performed to identify studies published between 1990 and 2010 that evaluated the validity of algorithms for identifying CVAs (ischemic and hemorrhagic strokes, intracranial hemorrhage and subarachnoid hemorrhage) and/or TIAs in administrative data. Two study investigators independently reviewed the abstracts and articles to determine relevant studies according to pre-specified criteria. Results A total of 35 articles met the criteria for evaluation. Of these, 26 articles provided data to evaluate the validity of stroke, 7 reported the validity of TIA, 5 reported the validity of intracranial bleeds (intracerebral hemorrhage and subarachnoid hemorrhage), and 10 studies reported the validity of algorithms to identify the composite endpoints of stroke/TIA or cerebrovascular disease. Positive predictive values (PPVs) varied depending on the specific outcomes and algorithms evaluated. Specific algorithms to evaluate the presence of stroke and intracranial bleeds were found to have high PPVs (80% or greater). Algorithms to evaluate TIAs in adult populations were generally found to have PPVs of 70% or greater. Conclusions The algorithms and definitions to identify CVAs and TIAs using administrative and claims data differ greatly in the published literature. The choice of the algorithm employed should be determined by the stroke subtype of interest. PMID:22262598

  3. Missile signal processing common computer architecture for rapid technology upgrade

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.

  4. A Generalized Fluid Formulation for Turbomachinery Computations

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Sankaran, Venkateswaran; Dorney, Daniel J.; Sondak, Douglas L.

    2003-01-01

    A generalized formulation of the equations of motion of an arbitrary fluid are developed for the purpose of defining a common iterative algorithm for computational procedures. The method makes use of the equations of motion in conservation form with separate pseudo-time derivatives used for defining the numerical flux for a Riemann solver and the convergence algorithm. The partial differential equations are complemented by an thermodynamic and caloric equations of state of a complexity necessary for describing the fluid. Representative solutions with a new code based on this general equation formulation are provided for three turbomachinery problems. The first uses air as a working fluid while the second uses gaseous oxygen in a regime in which real gas effects are of little importance. These nearly perfect gas computations provide a basis for comparing with existing perfect gas code computations. The third case is for the flow of liquid oxygen through a turbine where real gas effects are significant. Vortex shedding predictions with the LOX formulations reduce the discrepancy between perfect gas computations and experiment by approximately an order of magnitude, thereby verifying the real gas formulation as well as providing an effective case where its capabilities are necessary.

  5. Analytical learning and term-rewriting systems

    NASA Technical Reports Server (NTRS)

    Laird, Philip; Gamble, Evan

    1990-01-01

    Analytical learning is a set of machine learning techniques for revising the representation of a theory based on a small set of examples of that theory. When the representation of the theory is correct and complete but perhaps inefficient, an important objective of such analysis is to improve the computational efficiency of the representation. Several algorithms with this purpose have been suggested, most of which are closely tied to a first order logical language and are variants of goal regression, such as the familiar explanation based generalization (EBG) procedure. But because predicate calculus is a poor representation for some domains, these learning algorithms are extended to apply to other computational models. It is shown that the goal regression technique applies to a large family of programming languages, all based on a kind of term rewriting system. Included in this family are three language families of importance to artificial intelligence: logic programming, such as Prolog; lambda calculus, such as LISP; and combinatorial based languages, such as FP. A new analytical learning algorithm, AL-2, is exhibited that learns from success but is otherwise quite different from EBG. These results suggest that term rewriting systems are a good framework for analytical learning research in general, and that further research should be directed toward developing new techniques.

  6. Feasibility Study of a Generalized Framework for Developing Computer-Aided Detection Systems-a New Paradigm.

    PubMed

    Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu

    2017-10-01

    We propose a generalized framework for developing computer-aided detection (CADe) systems whose characteristics depend only on those of the training dataset. The purpose of this study is to show the feasibility of the framework. Two different CADe systems were experimentally developed by a prototype of the framework, but with different training datasets. The CADe systems include four components; preprocessing, candidate area extraction, candidate detection, and candidate classification. Four pretrained algorithms with dedicated optimization/setting methods corresponding to the respective components were prepared in advance. The pretrained algorithms were sequentially trained in the order of processing of the components. In this study, two different datasets, brain MRA with cerebral aneurysms and chest CT with lung nodules, were collected to develop two different types of CADe systems in the framework. The performances of the developed CADe systems were evaluated by threefold cross-validation. The CADe systems for detecting cerebral aneurysms in brain MRAs and for detecting lung nodules in chest CTs were successfully developed using the respective datasets. The framework was shown to be feasible by the successful development of the two different types of CADe systems. The feasibility of this framework shows promise for a new paradigm in the development of CADe systems: development of CADe systems without any lesion specific algorithm designing.

  7. Task-specific image partitioning.

    PubMed

    Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D

    2013-02-01

    Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.

  8. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    PubMed Central

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-01-01

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807

  9. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.

    PubMed

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-11-28

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  10. Generalization of some hidden subgroup algorithms for input sets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Poslu, Damla; Say, A. C. Cem

    2006-05-01

    We consider the problem of generalizing some quantum algorithms so that they will work on input domains whose cardinalities are not necessarily powers of two. When analyzing the algorithms we assume that generating superpositions of arbitrary subsets of basis states whose cardinalities are not necessarily powers of two perfectly is possible. We have taken Ballhysa's model as a template and have extended it to Chi, Kim and Lee's generalizations of the Deutsch-Jozsa algorithm and to Simon's algorithm. With perfectly equal superpositions of input sets of arbitrary size, Chi, Kim and Lee's generalized Deutsch-Jozsa algorithms, both for evenly-distributed and evenly-balanced functions, worked with one-sided error property. For Simon's algorithm the success probability of the generalized algorithm is the same as that of the original for input sets of arbitrary cardinalities with equiprobable superpositions, since the property that the measured strings are all those which have dot product zero with the string we search, for the case where the function is 2-to-1, is not lost.

  11. Generalizing Atoms in Constraint Logic

    NASA Technical Reports Server (NTRS)

    Page, C. David, Jr.; Frisch, Alan M.

    1991-01-01

    This paper studies the generalization of atomic formulas, or atoms, that are augmented with constraints on or among their terms. The atoms may also be viewed as definite clauses whose antecedents express the constraints. Atoms are generalized relative to a body of background information about the constraints. This paper first examines generalization of atoms with only monadic constraints. The paper develops an algorithm for the generalization task and discusses algorithm complexity. It then extends the algorithm to apply to atoms with constraints of arbitrary arity. The paper also presents semantic properties of the generalizations computed by the algorithms, making the algorithms applicable to such problems as abduction, induction, and knowledge base verification. The paper emphasizes the application to induction and presents a pac-learning result for constrained atoms.

  12. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  13. An Algorithm to Detect the Retinal Region of Interest

    NASA Astrophysics Data System (ADS)

    Şehirli, E.; Turan, M. K.; Demiral, E.

    2017-11-01

    Retina is one of the important layers of the eyes, which includes sensitive cells to colour and light and nerve fibers. Retina can be displayed by using some medical devices such as fundus camera, ophthalmoscope. Hence, some lesions like microaneurysm, haemorrhage, exudate with many diseases of the eye can be detected by looking at the images taken by devices. In computer vision and biomedical areas, studies to detect lesions of the eyes automatically have been done for a long time. In order to make automated detections, the concept of ROI may be utilized. ROI which stands for region of interest generally serves the purpose of focusing on particular targets. The main concentration of this paper is the algorithm to automatically detect retinal region of interest belonging to different retinal images on a software application. The algorithm consists of three stages such as pre-processing stage, detecting ROI on processed images and overlapping between input image and obtained ROI of the image.

  14. Visualization for Hyper-Heuristics. Front-End Graphical User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroenung, Lauren

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less

  15. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  16. Hardware accelerator design for change detection in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  17. NASA Tech Briefs, August 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Program Merges SAR Data on Terrain and Vegetation Heights; Using G(exp 4)FETs as a Data Router for In-Plane Crossing of Signal Paths; Two Algorithms for Processing Electronic Nose Data; Radiation-Tolerant Dual Data Bus; General-Purpose Front End for Real-Time Data Processing; Nanocomposite Photoelectrochemical Cells; Ultracapacitor-Powered Cordless Drill, Cumulative Timers for Microprocessors; Photocatalytic/Magnetic Composite Particles; Separation and Sealing of a Sample Container Using Brazing; Automated Aerial Refueling Hitches a Ride on AFF; Cobra Probes Containing Replaceable Thermocouples; High-Speed Noninvasive Eye-Tracking System; Detergent-Specific Membrane Protein Crystallization Screens; Evaporation-Cooled Protective Suits for Firefighters; Plasmonic Antenna Coupling for QWIPs; Electronic Tongue Containing Redox and Conductivity Sensors; Improved Heat-Stress Algorithm; A Method of Partly Automated Testing of Software; Rover Wheel-Actuated Tool Interface; and Second-Generation Electronic Nose.

  18. KARMA: the observation preparation tool for KMOS

    NASA Astrophysics Data System (ADS)

    Wegner, Michael; Muschielok, Bernard

    2008-08-01

    KMOS is a multi-object integral field spectrometer working in the near infrared which is currently being built for the ESO VLT by a consortium of UK and German institutes. It is capable of selecting up to 24 target fields for integral field spectroscopy simultaneously by means of 24 robotic pick-off arms. For the preparation of observations with KMOS a dedicated preparation tool KARMA ("KMOS Arm Allocator") will be provided which optimizes the assignment of targets to these arms automatically, thereby taking target priorities and several mechanical and optical constraints into account. For this purpose two efficient algorithms, both being able to cope with the underlying optimization problem in a different way, were developed. We present the concept and architecture of KARMA in general and the optimization algorithms in detail.

  19. A computer method for schedule processing and quick-time updating.

    NASA Technical Reports Server (NTRS)

    Mccoy, W. H.

    1972-01-01

    A schedule analysis program is presented which can be used to process any schedule with continuous flow and with no loops. Although generally thought of as a management tool, it has applicability to such extremes as music composition and computer program efficiency analysis. Other possibilities for its use include the determination of electrical power usage during some operation such as spacecraft checkout, and the determination of impact envelopes for the purpose of scheduling payloads in launch processing. At the core of the described computer method is an algorithm which computes the position of each activity bar on the output waterfall chart. The algorithm is basically a maximal-path computation which gives to each node in the schedule network the maximal path from the initial node to the given node.

  20. On the effective implementation of a boundary element code on graphics processing units unsing an out-of-core LU algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Azevedo, Ed F; Nintcheu Fata, Sylvain

    2012-01-01

    A collocation boundary element code for solving the three-dimensional Laplace equation, publicly available from \\url{http://www.intetec.org}, has been adapted to run on an Nvidia Tesla general purpose graphics processing unit (GPU). Global matrix assembly and LU factorization of the resulting dense matrix were performed on the GPU. Out-of-core techniques were used to solve problems larger than available GPU memory. The code achieved over eight times speedup in matrix assembly and about 56~Gflops/sec in the LU factorization using only 512~Mbytes of GPU memory. Details of the GPU implementation and comparisons with the standard sequential algorithm are included to illustrate the performance ofmore » the GPU code.« less

  1. A complexity-scalable software-based MPEG-2 video encoder.

    PubMed

    Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin

    2004-05-01

    With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.

  2. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  3. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  4. Deformation Invariant Attribute Vector for Deformable Registration of Longitudinal Brain MR Images

    PubMed Central

    Li, Gang; Guo, Lei; Liu, Tianming

    2009-01-01

    This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are provided to demonstrate the good performance of the proposed registration algorithm based on matching of DIAVs. PMID:19369031

  5. Playing biology's name game: identifying protein names in scientific text.

    PubMed

    Hanisch, Daniel; Fluck, Juliane; Mevissen, Heinz-Theodor; Zimmer, Ralf

    2003-01-01

    A growing body of work is devoted to the extraction of protein or gene interaction information from the scientific literature. Yet, the basis for most extraction algorithms, i.e. the specific and sensitive recognition of protein and gene names and their numerous synonyms, has not been adequately addressed. Here we describe the construction of a comprehensive general purpose name dictionary and an accompanying automatic curation procedure based on a simple token model of protein names. We designed an efficient search algorithm to analyze all abstracts in MEDLINE in a reasonable amount of time on standard computers. The parameters of our method are optimized using machine learning techniques. Used in conjunction, these ingredients lead to good search performance. A supplementary web page is available at http://cartan.gmd.de/ProMiner/.

  6. The PHQ-PD as a Screening Tool for Panic Disorder in the Primary Care Setting in Spain

    PubMed Central

    Wood, Cristina Mae; Ruíz-Rodríguez, Paloma; Tomás-Tomás, Patricia; Gracia-Gracia, Irene; Dongil-Collado, Esperanza; Iruarrizaga, M. Iciar

    2016-01-01

    Introduction Panic disorder is a common anxiety disorder and is highly prevalent in Spanish primary care centres. The use of validated tools can improve the detection of panic disorder in primary care populations, thus enabling referral for specialized treatment. The aim of this study is to determine the accuracy of the Patient Health Questionnaire-Panic Disorder (PHQ-PD) as a screening and diagnostic tool for panic disorder in Spanish primary care centres. Method We compared the psychometric properties of the PHQ-PD to the reference standard, the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) interview. General practitioners referred 178 patients who completed the entire PHQ test, including the PHQ-PD, to undergo the SCID-I. The sensitivity, specificity, positive and negative predictive values and positive and negative likelihood ratios of the PHQ-PD were assessed. Results The operating characteristics of the PHQ-PD are moderate. The best cut-off score was 5 (sensitivity .77, specificity .72). Modifications to the questionnaire's algorithms improved test characteristics (sensitivity .77, specificity .72) compared to the original algorithm. The screening question alone yielded the highest sensitivity score (.83). Conclusion Although the modified algorithm of the PHQ-PD only yielded moderate results as a diagnostic test for panic disorder, it was better than the original. Using only the first question of the PHQ-PD showed the best psychometric properties (sensitivity). Based on these findings, we suggest the use of the screening questions for screening purposes and the modified algorithm for diagnostic purposes. PMID:27525977

  7. Computational Performance of Intel MIC, Sandy Bridge, and GPU Architectures: Implementation of a 1D c++/OpenMP Electrostatic Particle-In-Cell Code

    DTIC Science & Technology

    2014-05-01

    fusion, space and astrophysical plasmas, but still the general picture can be presented quite well with the fluid approach [6, 7]. The microscopic...purpose computing CPU for algorithms where processing of large blocks of data is done in parallel. The reason for that is the GPU’s highly effective...parallel structure. Most of the image and video processing computations involve heavy matrix and vector op- erations over large amounts of data and

  8. Organization and use of a Software/Hardware Avionics Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.; Kareemi, M. N.

    1975-01-01

    The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.

  9. Non linear predictive control of a LEGO mobile robot

    NASA Astrophysics Data System (ADS)

    Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.

    2014-10-01

    Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.

  10. Improvement and speed optimization of numerical tsunami modelling program using OpenMP technology

    NASA Astrophysics Data System (ADS)

    Chernov, A.; Zaytsev, A.; Yalciner, A.; Kurkin, A.

    2009-04-01

    Currently, the basic problem of tsunami modeling is low speed of calculations which is unacceptable for services of the operative notification. Existing algorithms of numerical modeling of hydrodynamic processes of tsunami waves are developed without taking the opportunities of modern computer facilities. There is an opportunity to have considerable acceleration of process of calculations by using parallel algorithms. We discuss here new approach to parallelization tsunami modeling code using OpenMP Technology (for multiprocessing systems with the general memory). Nowadays, multiprocessing systems are easily accessible for everyone. The cost of the use of such systems becomes much lower comparing to the costs of clusters. This opportunity also benefits all programmers to apply multithreading algorithms on desktop computers of researchers. Other important advantage of the given approach is the mechanism of the general memory - there is no necessity to send data on slow networks (for example Ethernet). All memory is the common for all computing processes; it causes almost linear scalability of the program and processes. In the new version of NAMI DANCE using OpenMP technology and multi-threading algorithm provide 80% gain in speed in comparison with the one-thread version for dual-processor unit. The speed increased and 320% gain was attained for four core processor unit of PCs. Thus, it was possible to reduce considerably time of performance of calculations on the scientific workstations (desktops) without complete change of the program and user interfaces. The further modernization of algorithms of preparation of initial data and processing of results using OpenMP looks reasonable. The final version of NAMI DANCE with the increased computational speed can be used not only for research purposes but also in real time Tsunami Warning Systems.

  11. Rapid execution of fan beam image reconstruction algorithms using efficient computational techniques and special-purpose processors

    NASA Astrophysics Data System (ADS)

    Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.

    1981-02-01

    Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.

  12. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Evans, P. M.; Hansen, V. N.; Webb, S.

    2009-06-01

    A new method is proposed for scatter-correction of cone-beam CT images. A coarse reconstruction is used in initial iteration steps. Modelling of the x-ray tube spectra and detector response are included in the algorithm. Photon diffusion inside the imaging subject is calculated using the Monte Carlo method. Photon scoring at the detector is calculated using forced detection to a fixed set of node points. The scatter profiles are then obtained by linear interpolation. The algorithm is referred to as the coarse reconstruction and fixed detection (CRFD) technique. Scatter predictions are quantitatively validated against a widely used general-purpose Monte Carlo code: BEAMnrc/EGSnrc (NRCC, Canada). Agreement is excellent. The CRFD algorithm was applied to projection data acquired with a Synergy XVI CBCT unit (Elekta Limited, Crawley, UK), using RANDO and Catphan phantoms (The Phantom Laboratory, Salem NY, USA). The algorithm was shown to be effective in removing scatter-induced artefacts from CBCT images, and took as little as 2 min on a desktop PC. Image uniformity was greatly improved as was CT-number accuracy in reconstructions. This latter improvement was less marked where the expected CT-number of a material was very different to the background material in which it was embedded.

  13. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms

    PubMed Central

    He, Li; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546

  14. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  15. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  16. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications

    PubMed Central

    2012-01-01

    Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626

  17. The pEst version 2.1 user's manual

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Maine, Richard E.

    1987-01-01

    This report is a user's manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete generality in definig the nonlinear equations of motion used in the analysis. The equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is supplied with the program and is described in the report. The report also briefly discusses the scope of the parameter estimation problem the program addresses. The report gives detailed explanations of the purpose and usage of all available program commands and a description of the computational algorithms used in the program.

  18. Public-key encryption with chaos.

    PubMed

    Kocarev, Ljupco; Sterjev, Marjan; Fekete, Attila; Vattay, Gabor

    2004-12-01

    We propose public-key encryption algorithms based on chaotic maps, which are generalization of well-known and commercially used algorithms: Rivest-Shamir-Adleman (RSA), ElGamal, and Rabin. For the case of generalized RSA algorithm we discuss in detail its software implementation and properties. We show that our algorithm is as secure as RSA algorithm.

  19. Public-key encryption with chaos

    NASA Astrophysics Data System (ADS)

    Kocarev, Ljupco; Sterjev, Marjan; Fekete, Attila; Vattay, Gabor

    2004-12-01

    We propose public-key encryption algorithms based on chaotic maps, which are generalization of well-known and commercially used algorithms: Rivest-Shamir-Adleman (RSA), ElGamal, and Rabin. For the case of generalized RSA algorithm we discuss in detail its software implementation and properties. We show that our algorithm is as secure as RSA algorithm.

  20. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    PubMed

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3.

    PubMed

    Petersen, Bjørn Molt; Boel, Mikkel; Montag, Markus; Gardner, David K

    2016-10-01

    Can a generally applicable morphokinetic algorithm suitable for Day 3 transfers of time-lapse monitored embryos originating from different culture conditions and fertilization methods be developed for the purpose of supporting the embryologist's decision on which embryo to transfer back to the patient in assisted reproduction? The algorithm presented here can be used independently of culture conditions and fertilization method and provides predictive power not surpassed by other published algorithms for ranking embryos according to their blastocyst formation potential. Generally applicable algorithms have so far been developed only for predicting blastocyst formation. A number of clinics have reported validated implantation prediction algorithms, which have been developed based on clinic-specific culture conditions and clinical environment. However, a generally applicable embryo evaluation algorithm based on actual implantation outcome has not yet been reported. Retrospective evaluation of data extracted from a database of known implantation data (KID) originating from 3275 embryos transferred on Day 3 conducted in 24 clinics between 2009 and 2014. The data represented different culture conditions (reduced and ambient oxygen with various culture medium strategies) and fertilization methods (IVF, ICSI). The capability to predict blastocyst formation was evaluated on an independent set of morphokinetic data from 11 218 embryos which had been cultured to Day 5. PARTICIPANTS/MATERIALS, SETTING, The algorithm was developed by applying automated recursive partitioning to a large number of annotation types and derived equations, progressing to a five-fold cross-validation test of the complete data set and a validation test of different incubation conditions and fertilization methods. The results were expressed as receiver operating characteristics curves using the area under the curve (AUC) to establish the predictive strength of the algorithm. By applying the here developed algorithm (KIDScore), which was based on six annotations (the number of pronuclei equals 2 at the 1-cell stage, time from insemination to pronuclei fading at the 1-cell stage, time from insemination to the 2-cell stage, time from insemination to the 3-cell stage, time from insemination to the 5-cell stage and time from insemination to the 8-cell stage) and ranking the embryos in five groups, the implantation potential of the embryos was predicted with an AUC of 0.650. On Day 3 the KIDScore algorithm was capable of predicting blastocyst development with an AUC of 0.745 and blastocyst quality with an AUC of 0.679. In a comparison of blastocyst prediction including six other published algorithms and KIDScore, only KIDScore and one more algorithm surpassed an algorithm constructed on conventional Alpha/ESHRE consensus timings in terms of predictive power. Some morphological assessments were not available and consequently three of the algorithms in the comparison were not used in full and may therefore have been put at a disadvantage. Algorithms based on implantation data from Day 3 embryo transfers require adjustments to be capable of predicting the implantation potential of Day 5 embryo transfers. The current study is restricted by its retrospective nature and absence of live birth information. Prospective Randomized Controlled Trials should be used in future studies to establish the value of time-lapse technology and morphokinetic evaluation. Algorithms applicable to different culture conditions can be developed if based on large data sets of heterogeneous origin. This study was funded by Vitrolife A/S, Denmark and Vitrolife AB, Sweden. B.M.P.'s company BMP Analytics is performing consultancy for Vitrolife A/S. M.B. is employed at Vitrolife A/S. M.M.'s company ilabcomm GmbH received honorarium for consultancy from Vitrolife AB. D.K.G. received research support from Vitrolife AB. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  2. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3

    PubMed Central

    Petersen, Bjørn Molt; Boel, Mikkel; Montag, Markus; Gardner, David K.

    2016-01-01

    STUDY QUESTION Can a generally applicable morphokinetic algorithm suitable for Day 3 transfers of time-lapse monitored embryos originating from different culture conditions and fertilization methods be developed for the purpose of supporting the embryologist's decision on which embryo to transfer back to the patient in assisted reproduction? SUMMARY ANSWER The algorithm presented here can be used independently of culture conditions and fertilization method and provides predictive power not surpassed by other published algorithms for ranking embryos according to their blastocyst formation potential. WHAT IS KNOWN ALREADY Generally applicable algorithms have so far been developed only for predicting blastocyst formation. A number of clinics have reported validated implantation prediction algorithms, which have been developed based on clinic-specific culture conditions and clinical environment. However, a generally applicable embryo evaluation algorithm based on actual implantation outcome has not yet been reported. STUDY DESIGN, SIZE, DURATION Retrospective evaluation of data extracted from a database of known implantation data (KID) originating from 3275 embryos transferred on Day 3 conducted in 24 clinics between 2009 and 2014. The data represented different culture conditions (reduced and ambient oxygen with various culture medium strategies) and fertilization methods (IVF, ICSI). The capability to predict blastocyst formation was evaluated on an independent set of morphokinetic data from 11 218 embryos which had been cultured to Day 5. PARTICIPANTS/MATERIALS, SETTING, METHODS The algorithm was developed by applying automated recursive partitioning to a large number of annotation types and derived equations, progressing to a five-fold cross-validation test of the complete data set and a validation test of different incubation conditions and fertilization methods. The results were expressed as receiver operating characteristics curves using the area under the curve (AUC) to establish the predictive strength of the algorithm. MAIN RESULTS AND THE ROLE OF CHANCE By applying the here developed algorithm (KIDScore), which was based on six annotations (the number of pronuclei equals 2 at the 1-cell stage, time from insemination to pronuclei fading at the 1-cell stage, time from insemination to the 2-cell stage, time from insemination to the 3-cell stage, time from insemination to the 5-cell stage and time from insemination to the 8-cell stage) and ranking the embryos in five groups, the implantation potential of the embryos was predicted with an AUC of 0.650. On Day 3 the KIDScore algorithm was capable of predicting blastocyst development with an AUC of 0.745 and blastocyst quality with an AUC of 0.679. In a comparison of blastocyst prediction including six other published algorithms and KIDScore, only KIDScore and one more algorithm surpassed an algorithm constructed on conventional Alpha/ESHRE consensus timings in terms of predictive power. LIMITATIONS, REASONS FOR CAUTION Some morphological assessments were not available and consequently three of the algorithms in the comparison were not used in full and may therefore have been put at a disadvantage. Algorithms based on implantation data from Day 3 embryo transfers require adjustments to be capable of predicting the implantation potential of Day 5 embryo transfers. The current study is restricted by its retrospective nature and absence of live birth information. Prospective Randomized Controlled Trials should be used in future studies to establish the value of time-lapse technology and morphokinetic evaluation. WIDER IMPLICATIONS OF THE FINDINGS Algorithms applicable to different culture conditions can be developed if based on large data sets of heterogeneous origin. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Vitrolife A/S, Denmark and Vitrolife AB, Sweden. B.M.P.’s company BMP Analytics is performing consultancy for Vitrolife A/S. M.B. is employed at Vitrolife A/S. M.M.’s company ilabcomm GmbH received honorarium for consultancy from Vitrolife AB. D.K.G. received research support from Vitrolife AB. PMID:27609980

  3. A programmable five qubit quantum computer using trapped atomic ions

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu

    2017-04-01

    In order to harness the power of quantum information processing, several candidate systems have been investigated, and tailored to demonstrate only specific computations. In my thesis work, we construct a general-purpose multi-qubit device using a linear chain of trapped ion qubits, which in principle can be programmed to run any quantum algorithm. To achieve such flexibility, we develop a pulse shaping technique to realize a set of fully connected two-qubit rotations that entangle arbitrary pairs of qubits using multiple motional modes of the chain. Following a computation architecture, such highly expressive two-qubit gates along with arbitrary single-qubit rotations can be used to compile modular universal logic gates that are effected by targeted optical fields and hence can be reconfigured according to any algorithm circuit programmed in the software. As a demonstration, we run the Deutsch-Jozsa and Bernstein-Vazirani algorithm, and a fully coherent quantum Fourier transform, that we use to solve the `period finding' and `quantum phase estimation' problem. Combining these results with recent demonstrations of quantum fault-tolerance, Grover's search algorithm, and simulation of boson hopping establishes the versatility of such a computation module that can potentially be connected to other modules for future large-scale computations.

  4. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  5. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  6. General-purpose abductive algorithm for interpretation

    NASA Astrophysics Data System (ADS)

    Fox, Richard K.; Hartigan, Julie

    1996-11-01

    Abduction, inference to the best explanation, is an information-processing task that is useful for solving interpretation problems such as diagnosis, medical test analysis, legal reasoning, theory evaluation, and perception. The task is a generative one in which an explanation comprising of domain hypotheses is assembled and used to account for given findings. The explanation is taken to be an interpretation as to why the findings have arisen within the given situation. Research in abduction has led to the development of a general-purpose computational strategy which has been demonstrated on all of the above types of problems. This abduction strategy can be performed in layers so that different types of knowledge can come together in deriving an explanation at different levels of description. Further, the abduction strategy is tractable and offers a very useful tradeoff between confidence in the explanation and completeness of the explanation. This paper will describe this computational strategy for abduction and demonstrate its usefulness towards perceptual problems by examining problem-solving systems in speech recognition and natural language understanding.

  7. High-Speed On-Board Data Processing for Science Instruments

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  8. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A.

    2014-07-15

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Fivemore » excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100–400 ml). In general, for the small volume difference (100–150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Conclusions: Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.« less

  9. Superelement model based parallel algorithm for vehicle dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, O.P.; Danhof, K.J.; Kumar, R.

    1994-05-01

    This paper presents a superelement model based parallel algorithm for a planar vehicle dynamics. The vehicle model is made up of a chassis and two suspension systems each of which consists of an axle-wheel assembly and two trailing arms. In this model, the chassis is treated as a Cartesian element and each suspension system is treated as a superelement. The parameters associated with the superelements are computed using an inverse dynamics technique. Suspension shock absorbers and the tires are modeled by nonlinear springs and dampers. The Euler-Lagrange approach is used to develop the system equations of motion. This leads tomore » a system of differential and algebraic equations in which the constraints internal to superelements appear only explicitly. The above formulation is implemented on a multiprocessor machine. The numerical flow chart is divided into modules and the computation of several modules is performed in parallel to gain computational efficiency. In this implementation, the master (parent processor) creates a pool of slaves (child processors) at the beginning of the program. The slaves remain in the pool until they are needed to perform certain tasks. Upon completion of a particular task, a slave returns to the pool. This improves the overall response time of the algorithm. The formulation presented is general which makes it attractive for a general purpose code development. Speedups obtained in the different modules of the dynamic analysis computation are also presented. Results show that the superelement model based parallel algorithm can significantly reduce the vehicle dynamics simulation time. 52 refs.« less

  10. Region of Interest Imaging for a General Trajectory with the Rebinned BPF Algorithm*

    PubMed Central

    Bian, Junguo; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2010-01-01

    The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement. PMID:20617122

  11. Region of Interest Imaging for a General Trajectory with the Rebinned BPF Algorithm.

    PubMed

    Bian, Junguo; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2010-02-01

    The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement.

  12. Program for the analysis of time series. [by means of fast Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Brown, T. J.; Brown, C. G.; Hardin, J. C.

    1974-01-01

    A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.

  13. Extremal Optimization: Methods Derived from Co-Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.; Percus, A.G.

    1999-07-13

    We describe a general-purpose method for finding high-quality solutions to hard optimization problems, inspired by self-organized critical models of co-evolution such as the Bak-Sneppen model. The method, called Extremal Optimization, successively eliminates extremely undesirable components of sub-optimal solutions, rather than ''breeding'' better components. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, Extremal Optimization improves on a single candidate solution by treating each of its components as species co-evolving according to Darwinian principles. Unlike Simulated Annealing, its non-equilibrium approach effects an algorithm requiring few parameters to tune. With only one adjustable parameter, its performance provesmore » competitive with, and often superior to, more elaborate stochastic optimization procedures. We demonstrate it here on two classic hard optimization problems: graph partitioning and the traveling salesman problem.« less

  14. Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    NASA Astrophysics Data System (ADS)

    Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.

    2016-05-01

    This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

  15. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  16. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    NASA Astrophysics Data System (ADS)

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-03-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.

  17. Bringing MapReduce Closer To Data With Active Drives

    NASA Astrophysics Data System (ADS)

    Golpayegani, N.; Prathapan, S.; Warmka, R.; Wyatt, B.; Halem, M.; Trantham, J. D.; Markey, C. A.

    2017-12-01

    Moving computation closer to the data location has been a much theorized improvement to computation for decades. The increase in processor performance, the decrease in processor size and power requirement combined with the increase in data intensive computing has created a push to move computation as close to data as possible. We will show the next logical step in this evolution in computing: moving computation directly to storage. Hypothetical systems, known as Active Drives, have been proposed as early as 1998. These Active Drives would have a general-purpose CPU on each disk allowing for computations to be performed on them without the need to transfer the data to the computer over the system bus or via a network. We will utilize Seagate's Active Drives to perform general purpose parallel computing using the MapReduce programming model directly on each drive. We will detail how the MapReduce programming model can be adapted to the Active Drive compute model to perform general purpose computing with comparable results to traditional MapReduce computations performed via Hadoop. We will show how an Active Drive based approach significantly reduces the amount of data leaving the drive when performing several common algorithms: subsetting and gridding. We will show that an Active Drive based design significantly improves data transfer speeds into and out of drives compared to Hadoop's HDFS while at the same time keeping comparable compute speeds as Hadoop.

  18. SU-F-J-198: A Cross-Platform Adaptation of An a Priori Scatter Correction Algorithm for Cone-Beam Projections to Enable Image- and Dose-Guided Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, A; Casares-Magaz, O; Elstroem, U

    Purpose: Cone-beam CT (CBCT) imaging may enable image- and dose-guided proton therapy, but is challenged by image artefacts. The aim of this study was to demonstrate the general applicability of a previously developed a priori scatter correction algorithm to allow CBCT-based proton dose calculations. Methods: The a priori scatter correction algorithm used a plan CT (pCT) and raw cone-beam projections acquired with the Varian On-Board Imager. The projections were initially corrected for bow-tie filtering and beam hardening and subsequently reconstructed using the Feldkamp-Davis-Kress algorithm (rawCBCT). The rawCBCTs were intensity normalised before a rigid and deformable registration were applied on themore » pCTs to the rawCBCTs. The resulting images were forward projected onto the same angles as the raw CB projections. The two projections were subtracted from each other, Gaussian and median filtered, and then subtracted from the raw projections and finally reconstructed to the scatter-corrected CBCTs. For evaluation, water equivalent path length (WEPL) maps (from anterior to posterior) were calculated on different reconstructions of three data sets (CB projections and pCT) of three parts of an Alderson phantom. Finally, single beam spot scanning proton plans (0–360 deg gantry angle in steps of 5 deg; using PyTRiP) treating a 5 cm central spherical target in the pCT were re-calculated on scatter-corrected CBCTs with identical targets. Results: The scatter-corrected CBCTs resulted in sub-mm mean WEPL differences relative to the rigid registration of the pCT for all three data sets. These differences were considerably smaller than what was achieved with the regular Varian CBCT reconstruction algorithm (1–9 mm mean WEPL differences). Target coverage in the re-calculated plans was generally improved using the scatter-corrected CBCTs compared to the Varian CBCT reconstruction. Conclusion: We have demonstrated the general applicability of a priori CBCT scatter correction, potentially opening for CBCT-based image/dose-guided proton therapy, including adaptive strategies. Research agreement with Varian Medical Systems, not connected to the present project.« less

  19. Courses of action for effects based operations using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Haider, Sajjad; Levis, Alexander H.

    2006-05-01

    This paper presents an Evolutionary Algorithms (EAs) based approach to identify effective courses of action (COAs) in Effects Based Operations. The approach uses Timed Influence Nets (TINs) as the underlying mathematical model to capture a dynamic uncertain situation. TINs provide a concise graph-theoretic probabilistic approach to specify the cause and effect relationships that exist among the variables of interest (actions, desired effects, and other uncertain events) in a problem domain. The purpose of building these TIN models is to identify and analyze several alternative courses of action. The current practice is to use trial and error based techniques which are not only labor intensive but also produce sub-optimal results and are not capable of modeling constraints among actionable events. The EA based approach presented in this paper is aimed to overcome these limitations. The approach generates multiple COAs that are close enough in terms of achieving the desired effect. The purpose of generating multiple COAs is to give several alternatives to a decision maker. Moreover, the alternate COAs could be generalized based on the relationships that exist among the actions and their execution timings. The approach also allows a system analyst to capture certain types of constraints among actionable events.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra

    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less

  1. The MSFC UNIVAC 1108 EXEC 8 simulation model

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Richards, F. M.; Weatherbee, J. E.; Paul, L. K.

    1972-01-01

    A model is presented which simulates the MSFC Univac 1108 multiprocessor system. The hardware/operating system is described to enable a good statistical measurement of the system behavior. The performance of the 1108 is evaluated by performing twenty-four different experiments designed to locate system bottlenecks and also to test the sensitivity of system throughput with respect to perturbation of the various Exec 8 scheduling algorithms. The model is implemented in the general purpose system simulation language and the techniques described can be used to assist in the design, development, and evaluation of multiprocessor systems.

  2. Validation Test Report for the Improved Synthetic Ocean Profile (ISOP) System, Part I: Synthetic Profile Methods and Algorithm

    DTIC Science & Technology

    2013-03-15

    methods as those used for constructing the Generalized Digital Environmental Model ( GDEM ) version 4 (Carnes, Helber, et al. 2010). The purpose of...in the EOF analysis, which is described in Sections 4.2. 1 and 5.2.3. The primary difference between the ISOP climatology and GDEM is that ISOP only...uses paired profiles of T and S whereas GDEM uses all T profiles available. Paired profiles of T and S are required for ISOP because the T and S co

  3. Analysis of whisker-toughened CMC structural components using an interactive reliability model

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.

    1992-01-01

    Realizing wider utilization of ceramic matrix composites (CMC) requires the development of advanced structural analysis technologies. This article focuses on the use of interactive reliability models to predict component probability of failure. The deterministic William-Warnke failure criterion serves as theoretical basis for the reliability model presented here. The model has been implemented into a test-bed software program. This computer program has been coupled to a general-purpose finite element program. A simple structural problem is presented to illustrate the reliability model and the computer algorithm.

  4. CRUNCH_PARALLEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, Dana E.; Steefel, Carl I.

    The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.

  5. BioImageXD: an open, general-purpose and high-throughput image-processing platform.

    PubMed

    Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J

    2012-06-28

    BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.

  6. ORAC-DR -- imaging data reduction

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.; Cavanagh, Brad

    ORAC-DR is a general-purpose automatic data-reduction pipeline environment. This document describes its use to reduce imaging data collected at the United Kingdom Infrared Telescope (UKIRT) with the UFTI, UIST, IRCAM, and Michelle instruments; at the Anglo-Australian Telescope (AAT) with the IRIS2 instrument; at the Very Large Telescope with ISAAC and NACO; from Magellan's Classic Cam, at Gemini with NIRI, and from the Isaac Newton Group using INGRID. It outlines the algorithms used and how to make minor modifications to them, and how to correct for errors made at the telescope.

  7. Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zakirov, Andrey; Belousov, Sergei; Valuev, Ilya; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2017-10-01

    We demonstrate an efficient approach to numerical modeling of optical properties of large-scale structures with typical dimensions much greater than the wavelength of light. For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU) architecture. We apply our approach to simulation of optical properties of organic light emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with improved efficiency. Specifically, we consider a problem of excitation and propagation of surface plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay length can be about two orders of magnitude greater than the wavelength of excitation. We show that with our approach it is possible to extend the simulated volume size sufficiently so that SPP decay dynamics is accounted for. We further consider an OLED with periodically corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the conventional FDTD and demonstrate that our approach can efficiently be used for large-scale FDTD simulations with the use of only a single GPGPU-powered workstation, which is not practically feasible with the conventional FDTD.

  8. Handling the data management needs of high-throughput sequencing data: SpeedGene, a compression algorithm for the efficient storage of genetic data

    PubMed Central

    2012-01-01

    Background As Next-Generation Sequencing data becomes available, existing hardware environments do not provide sufficient storage space and computational power to store and process the data due to their enormous size. This is and will be a frequent problem that is encountered everyday by researchers who are working on genetic data. There are some options available for compressing and storing such data, such as general-purpose compression software, PBAT/PLINK binary format, etc. However, these currently available methods either do not offer sufficient compression rates, or require a great amount of CPU time for decompression and loading every time the data is accessed. Results Here, we propose a novel and simple algorithm for storing such sequencing data. We show that, the compression factor of the algorithm ranges from 16 to several hundreds, which potentially allows SNP data of hundreds of Gigabytes to be stored in hundreds of Megabytes. We provide a C++ implementation of the algorithm, which supports direct loading and parallel loading of the compressed format without requiring extra time for decompression. By applying the algorithm to simulated and real datasets, we show that the algorithm gives greater compression rate than the commonly used compression methods, and the data-loading process takes less time. Also, The C++ library provides direct-data-retrieving functions, which allows the compressed information to be easily accessed by other C++ programs. Conclusions The SpeedGene algorithm enables the storage and the analysis of next generation sequencing data in current hardware environment, making system upgrades unnecessary. PMID:22591016

  9. Processor core for real time background identification of HD video based on OpenCV Gaussian mixture model algorithm

    NASA Astrophysics Data System (ADS)

    Genovese, Mariangela; Napoli, Ettore

    2013-05-01

    The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.

  10. Lossless Compression of Classification-Map Data

    NASA Technical Reports Server (NTRS)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  11. Automatic attention-based prioritization of unconstrained video for compression

    NASA Astrophysics Data System (ADS)

    Itti, Laurent

    2004-06-01

    We apply a biologically-motivated algorithm that selects visually-salient regions of interest in video streams to multiply-foveated video compression. Regions of high encoding priority are selected based on nonlinear integration of low-level visual cues, mimicking processing in primate occipital and posterior parietal cortex. A dynamic foveation filter then blurs (foveates) every frame, increasingly with distance from high-priority regions. Two variants of the model (one with continuously-variable blur proportional to saliency at every pixel, and the other with blur proportional to distance from three independent foveation centers) are validated against eye fixations from 4-6 human observers on 50 video clips (synthetic stimuli, video games, outdoors day and night home video, television newscast, sports, talk-shows, etc). Significant overlap is found between human and algorithmic foveations on every clip with one variant, and on 48 out of 50 clips with the other. Substantial compressed file size reductions by a factor 0.5 on average are obtained for foveated compared to unfoveated clips. These results suggest a general-purpose usefulness of the algorithm in improving compression ratios of unconstrained video.

  12. Methods for predicting unsteady takeoff and landing trajectories of the aircraft

    NASA Astrophysics Data System (ADS)

    Shevchenko, A.; Pavlov, B.; Nachinkina, G.

    2017-01-01

    Informational and situational awareness of the aircrew greatly affects the probability of accidents, during takeoff and landing in particular. For the purpose of assessing the current and predicting the future states of an aircraft the energy approach to the flight control is used. Key energy balance equation is generalized to the ground phases. The equation describes the process of accumulating of the total energy of the aircraft along the entire trajectory, including the segment ahead. This segment length is defined by the required terminal energy state. For the takeoff phase the predict algorithm calculates the aircraft position on a runway after which it is possible to accelerate up to the speed of steady level flight and to reach the altitude sufficient for overcoming the high-rise obstacles. For the landing phase the braking distance length is determined. For increasing the likelihood of predicting the correction of the algorithm is introduced. The results of modeling many takeoffs and landings of passenger liner with different weights with the ahead obstacle and the engine failure are given. Working availability of the algorithm correction is shown.

  13. Intelligent Sensing in Dynamic Environments Using Markov Decision Process

    PubMed Central

    Nanayakkara, Thrishantha; Halgamuge, Malka N.; Sridhar, Prasanna; Madni, Asad M.

    2011-01-01

    In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning. PMID:22346624

  14. Performance evaluation of various classifiers for color prediction of rice paddy plant leaf

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Singh, Maninder Lal

    2016-11-01

    The food industry is one of the industries that uses machine vision for a nondestructive quality evaluation of the produce. These quality measuring systems and softwares are precalculated on the basis of various image-processing algorithms which generally use a particular type of classifier. These classifiers play a vital role in making the algorithms so intelligent that it can contribute its best while performing the said quality evaluations by translating the human perception into machine vision and hence machine learning. The crop of interest is rice, and the color of this crop indicates the health status of the plant. An enormous number of classifiers are available to solve the purpose of color prediction, but choosing the best among them is the focus of this paper. Performance of a total of 60 classifiers has been analyzed from the application point of view, and the results have been discussed. The motivation comes from the idea of providing a set of classifiers with excellent performance and implementing them on a single algorithm for the improvement of machine vision learning and, hence, associated applications.

  15. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.

    PubMed

    Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego

    2010-11-01

    Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.

  16. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  17. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  18. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    PubMed

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-08-14

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  19. Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules.

    PubMed

    Anandakrishnan, Ramu; Onufriev, Alexey

    2008-03-01

    In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.

  20. Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control

    NASA Astrophysics Data System (ADS)

    Song, Pucha; Zhao, Haiquan

    2018-07-01

    The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.

  1. The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.

    2001-01-01

    An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).

  2. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  3. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  4. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    NASA Technical Reports Server (NTRS)

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  5. Gradient descent learning algorithm overview: a general dynamical systems perspective.

    PubMed

    Baldi, P

    1995-01-01

    Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.

  6. Effect of Algorithms' Multiple Representations in the Context of Programming Education

    ERIC Educational Resources Information Center

    Siozou, Stefania; Tselios, Nikolaos; Komis, Vassilis

    2008-01-01

    Purpose: The purpose of this paper is to compare the effect of different representations while teaching basic algorithmic concepts to novice programmers. Design/methodology/approach: A learning activity was designed and mediated with two conceptually different learning environments, each one used by a different group. The first group used the…

  7. A parallel algorithm for the eigenvalues and eigenvectors for a general complex matrix

    NASA Technical Reports Server (NTRS)

    Shroff, Gautam

    1989-01-01

    A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this parallel typically display only linear convergence. Sequential norm-reducing algorithms also exit and they display quadratic convergence in most cases. The new algorithm is a parallel form of the norm-reducing algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures.

  8. Gpufit: An open-source toolkit for GPU-accelerated curve fitting.

    PubMed

    Przybylski, Adrian; Thiel, Björn; Keller-Findeisen, Jan; Stock, Bernd; Bates, Mark

    2017-11-16

    We present a general purpose, open-source software library for estimation of non-linear parameters by the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a Graphics Processing Unit (GPU) and executes computations in parallel, resulting in a significant gain in performance. We measured a speed increase of up to 42 times when comparing Gpufit with an identical CPU-based algorithm, with no loss of precision or accuracy. Gpufit is designed such that it is easily incorporated into existing applications or adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab, ensure that Gpufit is accessible from most programming environments. The full source code is published as an open source software repository, making its function transparent to the user and facilitating future improvements and extensions. As a demonstration, we used Gpufit to accelerate an existing scientific image analysis package, yielding significantly improved processing times for super-resolution fluorescence microscopy datasets.

  9. DSP Implementation of the Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2004-01-01

    The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.

  10. The parallel algorithm for the 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  11. Inheritance on processes, exemplified on distributed termination detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomsen, K.S.

    1987-02-01

    A multiple inheritance mechanism on processes is designed and presented within the framework of a small object oriented language. Processes are described in classes, and the different action parts of a process inherited from different classes are executed in a coroutine-like style called alternation. The inheritance mechanism is a useful tool for factorizing the description of common aspects of processes. This is demonstrated within the domain of distributed programming by using the inheritance mechanism to factorize the description of distributed termination detection algorithms from the description of the distributed main computations for which termination is to be detected. A clearmore » separation of concerns is obtained, and arbitrary combinations of terminations detection algorithms and main computations can be formed. The same termination detection classes can also be used for more general purposes within distributed programming, such as detecting termination of each phase in a multi-phase main computation.« less

  12. "Genetically Engineered" Nanoelectronics

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  13. Multi-pass encoding of hyperspectral imagery with spectral quality control

    NASA Astrophysics Data System (ADS)

    Wasson, Steven; Walker, William

    2015-05-01

    Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).

  14. Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd

    2012-01-01

    For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001

  15. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211

    PubMed Central

    Hatt, Mathieu; Lee, John A.; Schmidtlein, Charles R.; Naqa, Issam El; Caldwell, Curtis; De Bernardi, Elisabetta; Lu, Wei; Das, Shiva; Geets, Xavier; Gregoire, Vincent; Jeraj, Robert; MacManus, Michael P.; Mawlawi, Osama R.; Nestle, Ursula; Pugachev, Andrei B.; Schöder, Heiko; Shepherd, Tony; Spezi, Emiliano; Visvikis, Dimitris; Zaidi, Habib; Kirov, Assen S.

    2017-01-01

    Purpose The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. Approach A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. Findings A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. Conclusions Available comparison studies suggest that PET-AS algorithms relying on advanced image analysis paradigms provide generally more accurate segmentation than approaches based on PET activity thresholds, particularly for realistic configurations. However, this may not be the case for simple shape lesions in situations with a narrower range of parameters, where simpler methods may also perform well. Recent algorithms which employ some type of consensus or automatic selection between several PET-AS methods have potential to overcome the limitations of the individual methods when appropriately trained. In either case, accuracy evaluation is required for each different PET scanner and scanning and image reconstruction protocol. For the simpler, less robust approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of parameters is necessary. The results from the method evaluation stage can be used to estimate the contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish performance limits for their acceptance for clinical use. The initial steps toward designing and building such a standard are undertaken by the task group members. PMID:28120467

  16. Identifying multiple influential spreaders based on generalized closeness centrality

    NASA Astrophysics Data System (ADS)

    Liu, Huan-Li; Ma, Chuang; Xiang, Bing-Bing; Tang, Ming; Zhang, Hai-Feng

    2018-02-01

    To maximize the spreading influence of multiple spreaders in complex networks, one important fact cannot be ignored: the multiple spreaders should be dispersively distributed in networks, which can effectively reduce the redundance of information spreading. For this purpose, we define a generalized closeness centrality (GCC) index by generalizing the closeness centrality index to a set of nodes. The problem converts to how to identify multiple spreaders such that an objective function has the minimal value. By comparing with the K-means clustering algorithm, we find that the optimization problem is very similar to the problem of minimizing the objective function in the K-means method. Therefore, how to find multiple nodes with the highest GCC value can be approximately solved by the K-means method. Two typical transmission dynamics-epidemic spreading process and rumor spreading process are implemented in real networks to verify the good performance of our proposed method.

  17. Multidimensional generalized-ensemble algorithms for complex systems.

    PubMed

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  18. A general framework for the manual teleoperation of kinematically redundant space-based manipulators

    NASA Astrophysics Data System (ADS)

    Dupuis, Erick

    This thesis provides a general framework for the manual teleoperation of kinematically redundant space-based manipulators. It is proposed to break down the task of controlling the motion of a redundant manipulator into a sequence of manageable sub-tasks of lower dimension by imposing constraints on the motion of intermediate bodies of the manipulator. This implies that the manipulator then becomes a non-redundant kinematic chain and the operator only controls a reduced number of degrees of freedom at any time. However, by appropriately changing the imposed constraints, the operator can use the full capability of the manipulator throughout the task. Also, by not restricting the point of teleoperation to the end effector but effectively allowing direct control of intermediate bodies of the robot, it is possible to teleoperate a redundant robot of arbitrary kinematic architecture over its entire configuration space in a predictable and natural fashion. It is rigourously proven that this approach will always work for any kinematically redundant serial manipulator regardless of its topology, geometry and of the number of its excess degrees-of-freedom. Furthermore, a methodology is provided for the selection of task and constraint coordinates to ensure the absence of algorithmic rank-deficiencies. Two novel algorithms are provided for the symbolic determination of the rank-deficiency locus of rectangular Jacobian matrices: the Singular Vector Algorithm and the Recursive Sub-Determinant Algorithm. These algorithms are complementary to each other: the former being more computationally efficient and the latter more robust. The application of the methodology to sample cases of varying complexity has demonstrated its power and limitations: It has been shown to be powerful enough to generate complete sets of task/constraint coordinate pairs for realistic examples such as the Space Station Remote Manipulator System and a simplified version of the Special Purpose Dexterous Manipulator.

  19. Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Toeplitz systems

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Zha, Hongyuan

    1992-01-01

    Systems of linear equations with Toeplitz coefficient matrices arise in many important applications. The classical Levinson algorithm computes solutions of Toeplitz systems with only O(n(sub 2)) arithmetic operations, as compared to O(n(sub 3)) operations that are needed for solving general linear systems. However, the Levinson algorithm in its original form requires that all leading principal submatrices are nonsingular. An extension of the Levinson algorithm to general Toeplitz systems is presented. The algorithm uses look-ahead to skip over exactly singular, as well as ill-conditioned leading submatrices, and, at the same time, it still fully exploits the Toeplitz structure. In our derivation of this algorithm, we make use of the intimate connection of Toeplitz matrices with formally biorthogonal polynomials.

  20. Neural Generalized Predictive Control: A Newton-Raphson Implementation

    NASA Technical Reports Server (NTRS)

    Soloway, Donald; Haley, Pamela J.

    1997-01-01

    An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.

  1. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    PubMed

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  2. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  3. Appendix F. Developmental enforcement algorithm definition document : predictive braking enforcement algorithm definition document.

    DOT National Transportation Integrated Search

    2012-05-01

    The purpose of this document is to fully define and describe the logic flow and mathematical equations for a predictive braking enforcement algorithm intended for implementation in a Positive Train Control (PTC) system.

  4. Minimal-scan filtered backpropagation algorithms for diffraction tomography.

    PubMed

    Pan, X; Anastasio, M A

    1999-12-01

    The filtered backpropagation (FBPP) algorithm, originally developed by Devaney [Ultrason. Imaging 4, 336 (1982)], has been widely used for reconstructing images in diffraction tomography. It is generally known that the FBPP algorithm requires scattered data from a full angular range of 2 pi for exact reconstruction of a generally complex-valued object function. However, we reveal that one needs scattered data only over the angular range 0 < or = phi < or = 3 pi/2 for exact reconstruction of a generally complex-valued object function. Using this insight, we develop and analyze a family of minimal-scan filtered backpropagation (MS-FBPP) algorithms, which, unlike the FBPP algorithm, use scattered data acquired from view angles over the range 0 < or = phi < or = 3 pi/2. We show analytically that these MS-FBPP algorithms are mathematically identical to the FBPP algorithm. We also perform computer simulation studies for validation, demonstration, and comparison of these MS-FBPP algorithms. The numerical results in these simulation studies corroborate our theoretical assertions.

  5. The Ocean Colour Climate Change Initiative: III. A Round-Robin Comparison on In-Water Bio-Optical Algorithms

    NASA Technical Reports Server (NTRS)

    Brewin, Robert J.W.; Sathyendranath, Shubha; Muller, Dagmar; Brockmann, Carsten; Deschamps, Pierre-Yves; Devred, Emmanuel; Doerffer, Roland; Fomferra, Norman; Franz, Bryan; Grant, Mike; hide

    2013-01-01

    Satellite-derived remote-sensing reflectance (Rrs) can be used for mapping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scale for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative requirements. In this paper we develop an objective methodology designed to rank the quantitative performance of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Using in situ Rrs as input to the models, the performance of eleven semianalytical models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algorithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms perform better than semi-analytical models, in general. The performance of these empirical models reflects either their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also perform with similar accuracy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.

  6. 3D measurement by digital photogrammetry

    NASA Astrophysics Data System (ADS)

    Schneider, Carl T.

    1993-12-01

    Photogrammetry is well known in geodetic surveys as aerial photogrammetry or close range applications as architectural photogrammetry. The photogrammetric methods and algorithms combined with digital cameras and digital image processing methods are now introduced for industrial applications as automation and quality control. The presented paper will describe the photogrammetric and digital image processing algorithms and the calibration methods. These algorithms and methods were demonstrated with application examples. These applications are a digital photogrammetric workstation as a mobil multi purpose 3D measuring tool and a tube measuring system as an example for a single purpose tool.

  7. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  8. Homeostatic Agent for General Environment

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoto

    2018-03-01

    One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.

  9. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  10. Quantized Overcomplete Expansions: Analysis, Synthesis and Algorithms

    DTIC Science & Technology

    1995-07-01

    would be in the spirit of the Lempel - Ziv algorithm . The decoder would have to be aware of changes in the dictionary, but depending on the nature of the...37 3.4 A General Vector Compression Algorithm Based on Frames : : : : : : : : : : 40 ii 3.4.1 Design Considerations...x3.3. Along with exploring general properties of matching pursuit, we are interested in its application to compressing data vectors in RN. A general

  11. Effectiveness and cost-effectiveness of a cardiovascular risk prediction algorithm for people with severe mental illness (PRIMROSE).

    PubMed

    Zomer, Ella; Osborn, David; Nazareth, Irwin; Blackburn, Ruth; Burton, Alexandra; Hardoon, Sarah; Holt, Richard Ian Gregory; King, Michael; Marston, Louise; Morris, Stephen; Omar, Rumana; Petersen, Irene; Walters, Kate; Hunter, Rachael Maree

    2017-09-05

    To determine the cost-effectiveness of two bespoke severe mental illness (SMI)-specific risk algorithms compared with standard risk algorithms for primary cardiovascular disease (CVD) prevention in those with SMI. Primary care setting in the UK. The analysis was from the National Health Service perspective. 1000 individuals with SMI from The Health Improvement Network Database, aged 30-74 years and without existing CVD, populated the model. Four cardiovascular risk algorithms were assessed: (1) general population lipid, (2) general population body mass index (BMI), (3) SMI-specific lipid and (4) SMI-specific BMI, compared against no algorithm. At baseline, each cardiovascular risk algorithm was applied and those considered high risk ( > 10%) were assumed to be prescribed statin therapy while others received usual care. Quality-adjusted life years (QALYs) and costs were accrued for each algorithm including no algorithm, and cost-effectiveness was calculated using the net monetary benefit (NMB) approach. Deterministic and probabilistic sensitivity analyses were performed to test assumptions made and uncertainty around parameter estimates. The SMI-specific BMI algorithm had the highest NMB resulting in 15 additional QALYs and a cost saving of approximately £53 000 per 1000 patients with SMI over 10 years, followed by the general population lipid algorithm (13 additional QALYs and a cost saving of £46 000). The general population lipid and SMI-specific BMI algorithms performed equally well. The ease and acceptability of use of an SMI-specific BMI algorithm (blood tests not required) makes it an attractive algorithm to implement in clinical settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Buhl, W.F.

    1988-07-15

    The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less

  13. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  14. Generalized Jaynes-Cummings model as a quantum search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanelli, A.

    2009-07-15

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  15. Low-cost digital image processing at the University of Oklahoma

    NASA Technical Reports Server (NTRS)

    Harrington, J. A., Jr.

    1981-01-01

    Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.

  16. A real-time MPEG software decoder using a portable message-passing library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan

    1995-12-31

    We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.

  17. Do-it-yourself networks: a novel method of generating weighted networks.

    PubMed

    Shanafelt, D W; Salau, K R; Baggio, J A

    2017-11-01

    Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user-defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open-source code for academic purposes.

  18. On a Three-Channel Cosmic Ray Detector based on Aluminum Blocks

    NASA Astrophysics Data System (ADS)

    Arceo, L.; Félix, J.

    2017-10-01

    There are many general purpose cosmic ray detectors based on plastic scintillators and electronic boards from the market. This is a new cosmic ray detector designed on three 2.54 cm × 5.08 cm × 20.32 cm Aluminum blocks in stack arrangement, and three Hamamatsu S12572-100P photodiodes. The photodiode board, the passive electronic board, and the discriminator board are own designed. The electronic signals are stored with a CompactRIO -cRIO- by National Instruments. It is presented the design, the construction, the data acquisition system algorithm, and the preliminary physical results.

  19. Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models.

    PubMed

    Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S

    2015-09-01

    Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

  20. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) Computer Code Documentation (Version 3). Volume 3. Part 2.

    DTIC Science & Technology

    1983-09-01

    F.P. PX /AMPZIJ/ REFH /AMPZIJ/ REFV /AI4PZIJ/ * RHOX /AI4PZIJ/ RHOY /At4PZIJ/ RHOZ /AI4PZIJ/ S A-ZJ SA /AMPZIJ/ SALP /AMPZIJ/ 6. CALLING ROUTINE: FLDDRV...US3NG ALGORITHM 72 COMPUTE P- YES .~:*:.~~ USING* *. 1. NAME: PLAINT (GTD) ] 2. PURPOSE: To determine if a ray traveling from a given source loca...determine if a source ray reflection from plate MP occurs. If a ray traveling from the source image location in the reflected ray direction passes through

  1. Velocity-image model for online signature verification.

    PubMed

    Khan, Mohammad A U; Niazi, Muhammad Khalid Khan; Khan, Muhammad Aurangzeb

    2006-11-01

    In general, online signature capturing devices provide outputs in the form of shape and velocity signals. In the past, strokes have been extracted while tracking velocity signal minimas. However, the resulting strokes are larger and complicated in shape and thus make the subsequent job of generating a discriminative template difficult. We propose a new stroke-based algorithm that splits velocity signal into various bands. Based on these bands, strokes are extracted which are smaller and more simpler in nature. Training of our proposed system revealed that low- and high-velocity bands of the signal are unstable, whereas the medium-velocity band can be used for discrimination purposes. Euclidean distances of strokes extracted on the basis of medium velocity band are used for verification purpose. The experiments conducted show improvement in discriminative capability of the proposed stroke-based system.

  2. PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.

    PubMed

    Zou, Yu; Pan, Xiaochuan; Xia, Dan; Wang, Ge

    2005-08-01

    Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could arise in helical cone-beam CT fluoroscopy for the determination of vascular structures through real-time imaging of contrast bolus arrival. Most of the existing reconstruction algorithms have been developed only for helical cone-beam CT with constant pitch, including the backprojection-filtration (BPF) and filtered-backprojection (FBP) algorithms that we proposed previously. It is possible to generalize some of these algorithms to reconstruct images exactly for helical cone-beam CT with a variable pitch. In this work, we generalize our BPF and FBP algorithms to reconstruct images directly from data acquired in helical cone-beam CT with a variable pitch. We have also performed a preliminary numerical study to demonstrate and verify the generalization of the two algorithms. The results of the study confirm that our generalized BPF and FBP algorithms can yield exact reconstruction in helical cone-beam CT with a variable pitch. It should be pointed out that our generalized BPF algorithm is the only algorithm that is capable of reconstructing exactly region-of-interest image from data containing transverse truncations.

  3. TH-E-17A-01: Internal Respiratory Surrogate for 4D CT Using Fourier Transform and Anatomical Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, C; Suh, Y; Robertson, D

    Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance ofmore » the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates.« less

  4. Comparison of Three Instructional Sequences for the Addition and Subtraction Algorithms. Technical Report 273.

    ERIC Educational Resources Information Center

    Wiles, Clyde A.

    The study's purpose was to investigate the differential effects on the achievement of second-grade students that could be attributed to three instructional sequences for the learning of the addition and subtraction algorithms. One sequence presented the addition algorithm first (AS), the second presented the subtraction algorithm first (SA), and…

  5. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes.

    PubMed

    Bowling, Lee C; Shaikh, Mustak; Brayan, John; Malthus, Tim

    2017-09-09

    A commercially available handheld spectroradiometer, the WISP-3, was assessed as a tool for monitoring freshwater cyanobacterial blooms for management purposes. Three small eutrophic urban ponds which displayed considerable within-pond and between-pond variability in water quality and cyanobacterial community composition were used as trial sites. On-board algorithms provide field measurements of phycocyanin (CPC) and chlorophyll-a (Chl-a) from surface reflectance spectra measured by the instrument. These were compared with laboratory measurements. Although significant but weak relationships were found between WISP-3 measured CPC and cyanobacterial biovolume measurements and WISP-3 and laboratory Chl-a measurements, there was considerable scatter in the data due likely to error in both WISP-3 and laboratory measurements. The relationships generally differed only slightly between ponds, indicating that different cyanobacterial communities had little effect on the pigment retrievals of the WISP-3. The on-board algorithms need appropriate modification for local conditions, posing a problem if it is to be used extensively across water bodies with differing optical properties. Although suffering a range of other limitations, the WISP-3 has a potential as a rapid screening tool for preliminary risk assessment of cyanobacterial blooms. However, such field assessment would still require adequate support by sampling and laboratory-based analysis.

  6. Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Shixing; Liu, Chang; Hua, Wei; Guo, Yongxin

    2016-11-01

    By using the discrete variational method, we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework, and construct a numerical method of generalized Birkhoffian equations called a self-adjoint-preserving algorithm. Numerical results show that it is reasonable to study the nonholonomic system by the structure-preserving algorithm in the generalized Birkhoffian framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472124, 11572145, 11202090, and 11301350), the Doctor Research Start-up Fund of Liaoning Province, China (Grant No. 20141050), the China Postdoctoral Science Foundation (Grant No. 2014M560203), and the General Science and Technology Research Plans of Liaoning Educational Bureau, China (Grant No. L2013005).

  7. Theory and algorithms for image reconstruction on chords and within regions of interest

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.

    2005-11-01

    We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.

  8. Generalized Grover's Algorithm for Multiple Phase Inversion States

    NASA Astrophysics Data System (ADS)

    Byrnes, Tim; Forster, Gary; Tessler, Louis

    2018-02-01

    Grover's algorithm is a quantum search algorithm that proceeds by repeated applications of the Grover operator and the Oracle until the state evolves to one of the target states. In the standard version of the algorithm, the Grover operator inverts the sign on only one state. Here we provide an exact solution to the problem of performing Grover's search where the Grover operator inverts the sign on N states. We show the underlying structure in terms of the eigenspectrum of the generalized Hamiltonian, and derive an appropriate initial state to perform the Grover evolution. This allows us to use the quantum phase estimation algorithm to solve the search problem in this generalized case, completely bypassing the Grover algorithm altogether. We obtain a time complexity of this case of √{D /Mα }, where D is the search space dimension, M is the number of target states, and α ≈1 , which is close to the optimal scaling.

  9. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit; Ruan, Dan

    2016-01-15

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for themore » trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall. Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.« less

  10. Polarization Smoothing Generalized MUSIC Algorithm with Polarization Sensitive Array for Low Angle Estimation.

    PubMed

    Tan, Jun; Nie, Zaiping

    2018-05-12

    Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.

  11. Are human beings humean robots?

    NASA Astrophysics Data System (ADS)

    Génova, Gonzalo; Quintanilla Navarro, Ignacio

    2018-01-01

    David Hume, the Scottish philosopher, conceives reason as the slave of the passions, which implies that human reason has predetermined objectives it cannot question. An essential element of an algorithm running on a computational machine (or Logical Computing Machine, as Alan Turing calls it) is its having a predetermined purpose: an algorithm cannot question its purpose, because it would cease to be an algorithm. Therefore, if self-determination is essential to human intelligence, then human beings are neither Humean beings, nor computational machines. We examine also some objections to the Turing Test as a model to understand human intelligence.

  12. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  13. LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor

    NASA Astrophysics Data System (ADS)

    Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram

    2007-09-01

    Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.

  14. Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.; Kuvshinov, Alexey V.

    2016-05-01

    This paper presents a methodology to sample equivalence domain (ED) in nonlinear partial differential equation (PDE)-constrained inverse problems. For this purpose, we first applied state-of-the-art stochastic optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMAES) to identify low-misfit regions of the model space. These regions were then randomly sampled to create an ensemble of equivalent models and quantify uncertainty. CMAES is aimed at exploring model space globally and is robust on very ill-conditioned problems. We show that the number of iterations required to converge grows at a moderate rate with respect to number of unknowns and the algorithm is embarrassingly parallel. We formulated the problem by using the generalized Gaussian distribution. This enabled us to seamlessly use arbitrary norms for residual and regularization terms. We show that various regularization norms facilitate studying different classes of equivalent solutions. We further show how performance of the standard Metropolis-Hastings Markov chain Monte Carlo algorithm can be substantially improved by using information CMAES provides. This methodology was tested by using individual and joint inversions of magneotelluric, controlled-source electromagnetic (EM) and global EM induction data.

  15. Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)

    NASA Astrophysics Data System (ADS)

    Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook

    1997-05-01

    This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.

  16. Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    PubMed Central

    Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang

    2009-01-01

    Background In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. Results RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. Conclusion To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU. PMID:19208138

  17. Analysing the Costs of Integrated Care: A Case on Model Selection for Chronic Care Purposes

    PubMed Central

    Sánchez-Pérez, Inma; Ibern, Pere; Coderch, Jordi; Inoriza, José María

    2016-01-01

    Background: The objective of this study is to investigate whether the algorithm proposed by Manning and Mullahy, a consolidated health economics procedure, can also be used to estimate individual costs for different groups of healthcare services in the context of integrated care. Methods: A cross-sectional study focused on the population of the Baix Empordà (Catalonia-Spain) for the year 2012 (N = 92,498 individuals). A set of individual cost models as a function of sex, age and morbidity burden were adjusted and individual healthcare costs were calculated using a retrospective full-costing system. The individual morbidity burden was inferred using the Clinical Risk Groups (CRG) patient classification system. Results: Depending on the characteristics of the data, and according to the algorithm criteria, the choice of model was a linear model on the log of costs or a generalized linear model with a log link. We checked for goodness of fit, accuracy, linear structure and heteroscedasticity for the models obtained. Conclusion: The proposed algorithm identified a set of suitable cost models for the distinct groups of services integrated care entails. The individual morbidity burden was found to be indispensable when allocating appropriate resources to targeted individuals. PMID:28316542

  18. External validation of the international risk prediction algorithm for major depressive episode in the US general population: the PredictD-US study.

    PubMed

    Nigatu, Yeshambel T; Liu, Yan; Wang, JianLi

    2016-07-22

    Multivariable risk prediction algorithms are useful for making clinical decisions and for health planning. While prediction algorithms for new onset of major depression in the primary care attendees in Europe and elsewhere have been developed, the performance of these algorithms in different populations is not known. The objective of this study was to validate the PredictD algorithm for new onset of major depressive episode (MDE) in the US general population. Longitudinal study design was conducted with approximate 3-year follow-up data from a nationally representative sample of the US general population. A total of 29,621 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have an MDE in the past year at Wave 1 were included. The PredictD algorithm was directly applied to the selected participants. MDE was assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule, based on the DSM-IV criteria. Among the participants, 8 % developed an MDE over three years. The PredictD algorithm had acceptable discriminative power (C-statistics = 0.708, 95 % CI: 0.696, 0.720), but poor calibration (p < 0.001) with the NESARC data. In the European primary care attendees, the algorithm had a C-statistics of 0.790 (95 % CI: 0.767, 0.813) with a perfect calibration. The PredictD algorithm has acceptable discrimination, but the calibration capacity was poor in the US general population despite of re-calibration. Therefore, based on the results, at current stage, the use of PredictD in the US general population for predicting individual risk of MDE is not encouraged. More independent validation research is needed.

  19. High reliability - low noise radionuclide signature identification algorithms for border security applications

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu

    Illicit trafficking and smuggling of radioactive materials and special nuclear materials (SNM) are considered as one of the most important recent global nuclear threats. Monitoring the transport and safety of radioisotopes and SNM are challenging due to their weak signals and easy shielding. Great efforts worldwide are focused at developing and improving the detection technologies and algorithms, for accurate and reliable detection of radioisotopes of interest in thus better securing the borders against nuclear threats. In general, radiation portal monitors enable detection of gamma and neutron emitting radioisotopes. Passive or active interrogation techniques, present and/or under the development, are all aimed at increasing accuracy, reliability, and in shortening the time of interrogation as well as the cost of the equipment. Equally important efforts are aimed at advancing algorithms to process the imaging data in an efficient manner providing reliable "readings" of the interiors of the examined volumes of various sizes, ranging from cargos to suitcases. The main objective of this thesis is to develop two synergistic algorithms with the goal to provide highly reliable - low noise identification of radioisotope signatures. These algorithms combine analysis of passive radioactive detection technique with active interrogation imaging techniques such as gamma radiography or muon tomography. One algorithm consists of gamma spectroscopy and cosmic muon tomography, and the other algorithm is based on gamma spectroscopy and gamma radiography. The purpose of fusing two detection methodologies per algorithm is to find both heavy-Z radioisotopes and shielding materials, since radionuclides can be identified with gamma spectroscopy, and shielding materials can be detected using muon tomography or gamma radiography. These combined algorithms are created and analyzed based on numerically generated images of various cargo sizes and materials. In summary, the three detection methodologies are fused into two algorithms with mathematical functions providing: reliable identification of radioisotopes in gamma spectroscopy; noise reduction and precision enhancement in muon tomography; and the atomic number and density estimation in gamma radiography. It is expected that these new algorithms maybe implemented at portal scanning systems with the goal to enhance the accuracy and reliability in detecting nuclear materials inside the cargo containers.

  20. A robust return-map algorithm for general multisurface plasticity

    DOE PAGES

    Adhikary, Deepak P.; Jayasundara, Chandana T.; Podgorney, Robert K.; ...

    2016-06-16

    Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton-Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples alsomore » illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Since it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary-rock plasticity in a commercial software package. Furthermore, the main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting.« less

  1. Tactical Synthesis Of Efficient Global Search Algorithms

    NASA Technical Reports Server (NTRS)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2009-01-01

    Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.

  2. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, S; Rao, A; Wendt, R

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the cameramore » by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination.« less

  3. Computations involving differential operators and their actions on functions

    NASA Technical Reports Server (NTRS)

    Crouch, Peter E.; Grossman, Robert; Larson, Richard

    1991-01-01

    The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications.

  4. Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara

    2016-01-01

    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.

  5. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  6. Generalization of the Lord-Wingersky Algorithm to Computing the Distribution of Summed Test Scores Based on Real-Number Item Scores

    ERIC Educational Resources Information Center

    Kim, Seonghoon

    2013-01-01

    With known item response theory (IRT) item parameters, Lord and Wingersky provided a recursive algorithm for computing the conditional frequency distribution of number-correct test scores, given proficiency. This article presents a generalized algorithm for computing the conditional distribution of summed test scores involving real-number item…

  7. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Samei, Ehsan

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based onmore » a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was reduced by an average of 60% in SAFIRE images compared to FBP. However, for edge pixels, noise magnitude ranged from 20% higher to 40% lower in SAFIRE images compared to FBP. SAFIRE images of the lung phantom exhibited distinct regions with varying noise texture (i.e., noise autocorrelation/power spectra). Conclusions: Quantum noise properties observed in uniform phantoms may not be representative of those in actual patients for nonlinear reconstruction algorithms. Anatomical texture should be considered when evaluating the performance of CT systems that use such nonlinear algorithms.« less

  8. 78 FR 54502 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... transactions. Transactions that originate from unrelated algorithms or separate and distinct trading strategies... transactions were undertaken for manipulative or other fraudulent purposes. Algorithms or trading strategies... activity and the use of algorithms by firms to make trading decisions, FINRA has observed an increase in...

  9. The Porter Stemming Algorithm: Then and Now

    ERIC Educational Resources Information Center

    Willett, Peter

    2006-01-01

    Purpose: In 1980, Porter presented a simple algorithm for stemming English language words. This paper summarises the main features of the algorithm, and highlights its role not just in modern information retrieval research, but also in a range of related subject domains. Design/methodology/approach: Review of literature and research involving use…

  10. Automated Speech Rate Measurement in Dysarthria

    ERIC Educational Resources Information Center

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-01-01

    Purpose: In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. Method: The new algorithm was trained and tested using Dutch…

  11. A generalized reconstruction framework for unconventional PET systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Aswin John, E-mail: amathews@wustl.edu; Li, Ke; O’Sullivan, Joseph A.

    2015-08-15

    Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using amore » simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.« less

  12. A generalized reconstruction framework for unconventional PET systems

    PubMed Central

    Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O’Sullivan, Joseph A.; Tai, Yuan-Chuan

    2015-01-01

    Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations. PMID:26233187

  13. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  14. Ascent guidance algorithm using lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.

    1990-01-01

    The formulation of a general nonlinear programming guidance algorithm that incorporates wind measurements in the computation of ascent guidance steering commands is discussed. A nonlinear programming (NLP) algorithm that is designed to solve a very general problem has the potential to address the diversity demanded by future launch systems. Using B-splines for the command functional form allows the NLP algorithm to adjust the shape of the command profile to achieve optimal performance. The algorithm flexibility is demonstrated by simulation of ascent with dynamic loading constraints through a set of random wind profiles with and without wind sensing capability.

  15. Generalized enhanced suffix array construction in external memory.

    PubMed

    Louza, Felipe A; Telles, Guilherme P; Hoffmann, Steve; Ciferri, Cristina D A

    2017-01-01

    Suffix arrays, augmented by additional data structures, allow solving efficiently many string processing problems. The external memory construction of the generalized suffix array for a string collection is a fundamental task when the size of the input collection or the data structure exceeds the available internal memory. In this article we present and analyze [Formula: see text] [introduced in CPM (External memory generalized suffix and [Formula: see text] arrays construction. In: Proceedings of CPM. pp 201-10, 2013)], the first external memory algorithm to construct generalized suffix arrays augmented with the longest common prefix array for a string collection. Our algorithm relies on a combination of buffers, induced sorting and a heap to avoid direct string comparisons. We performed experiments that covered different aspects of our algorithm, including running time, efficiency, external memory access, internal phases and the influence of different optimization strategies. On real datasets of size up to 24 GB and using 2 GB of internal memory, [Formula: see text] showed a competitive performance when compared to [Formula: see text] and [Formula: see text], which are efficient algorithms for a single string according to the related literature. We also show the effect of disk caching managed by the operating system on our algorithm. The proposed algorithm was validated through performance tests using real datasets from different domains, in various combinations, and showed a competitive performance. Our algorithm can also construct the generalized Burrows-Wheeler transform of a string collection with no additional cost except by the output time.

  16. Surgical motion characterization in simulated needle insertion procedures

    NASA Astrophysics Data System (ADS)

    Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor

    2012-02-01

    PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.

  17. Airport Traffic Conflict Detection and Resolution Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Ballard, Kathryn M.; Otero, Sharon D.; Barker, Glover D.

    2016-01-01

    Two conflict detection and resolution (CD&R) algorithms for the terminal maneuvering area (TMA) were evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. One CD&R algorithm, developed at NASA, was designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The second algorithm, Enhanced Traffic Situation Awareness on the Airport Surface with Indications and Alerts (SURF IA), was designed to increase flight crew awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the aircraft-based CD&R algorithms during various runway, taxiway, and low altitude scenarios, multiple levels of CD&R system equipage, and various levels of horizontal position accuracy. Algorithm performance was assessed through various metrics including the collision rate, nuisance and missed alert rate, and alert toggling rate. The data suggests that, in general, alert toggling, nuisance and missed alerts, and unnecessary maneuvering occurred more frequently as the position accuracy was reduced. Collision avoidance was more effective when all of the aircraft were equipped with CD&R and maneuvered to avoid a collision after an alert was issued. In order to reduce the number of unwanted (nuisance) alerts when taxiing across a runway, a buffer is needed between the hold line and the alerting zone so alerts are not generated when an aircraft is behind the hold line. All of the results support RTCA horizontal position accuracy requirements for performing a CD&R function to reduce the likelihood and severity of runway incursions and collisions.

  18. CUDA-based high-performance computing of the S-BPF algorithm with no-waiting pipelining

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Yan, Bin; Chang, Qingmei; Han, Yu; Zhang, Xiang; Xi, Xiaoqi; Li, Lei

    2015-10-01

    The backprojection-filtration (BPF) algorithm has become a good solution for local reconstruction in cone-beam computed tomography (CBCT). However, the reconstruction speed of BPF is a severe limitation for clinical applications. The selective-backprojection filtration (S-BPF) algorithm is developed to improve the parallel performance of BPF by selective backprojection. Furthermore, the general-purpose graphics processing unit (GP-GPU) is a popular tool for accelerating the reconstruction. Much work has been performed aiming for the optimization of the cone-beam back-projection. As the cone-beam back-projection process becomes faster, the data transportation holds a much bigger time proportion in the reconstruction than before. This paper focuses on minimizing the total time in the reconstruction with the S-BPF algorithm by hiding the data transportation among hard disk, CPU and GPU. And based on the analysis of the S-BPF algorithm, some strategies are implemented: (1) the asynchronous calls are used to overlap the implemention of CPU and GPU, (2) an innovative strategy is applied to obtain the DBP image to hide the transport time effectively, (3) two streams for data transportation and calculation are synchronized by the cudaEvent in the inverse of finite Hilbert transform on GPU. Our main contribution is a smart reconstruction of the S-BPF algorithm with GPU's continuous calculation and no data transportation time cost. a 5123 volume is reconstructed in less than 0.7 second on a single Tesla-based K20 GPU from 182 views projection with 5122 pixel per projection. The time cost of our implementation is about a half of that without the overlap behavior.

  19. Resource efficient data compression algorithms for demanding, WSN based biomedical applications.

    PubMed

    Antonopoulos, Christos P; Voros, Nikolaos S

    2016-02-01

    During the last few years, medical research areas of critical importance such as Epilepsy monitoring and study, increasingly utilize wireless sensor network technologies in order to achieve better understanding and significant breakthroughs. However, the limited memory and communication bandwidth offered by WSN platforms comprise a significant shortcoming to such demanding application scenarios. Although, data compression can mitigate such deficiencies there is a lack of objective and comprehensive evaluation of relative approaches and even more on specialized approaches targeting specific demanding applications. The research work presented in this paper focuses on implementing and offering an in-depth experimental study regarding prominent, already existing as well as novel proposed compression algorithms. All algorithms have been implemented in a common Matlab framework. A major contribution of this paper, that differentiates it from similar research efforts, is the employment of real world Electroencephalography (EEG) and Electrocardiography (ECG) datasets comprising the two most demanding Epilepsy modalities. Emphasis is put on WSN applications, thus the respective metrics focus on compression rate and execution latency for the selected datasets. The evaluation results reveal significant performance and behavioral characteristics of the algorithms related to their complexity and the relative negative effect on compression latency as opposed to the increased compression rate. It is noted that the proposed schemes managed to offer considerable advantage especially aiming to achieve the optimum tradeoff between compression rate-latency. Specifically, proposed algorithm managed to combine highly completive level of compression while ensuring minimum latency thus exhibiting real-time capabilities. Additionally, one of the proposed schemes is compared against state-of-the-art general-purpose compression algorithms also exhibiting considerable advantages as far as the compression rate is concerned. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Path Planning Algorithms for the Adaptive Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hosler, Jeff

    2005-01-01

    The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.

  1. General Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: An Update of DISORT

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Stamnes, Knut; Wiscombe, Warren; Laszlo, Istvan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This update reports a state-of-the-art discrete ordinate algorithm for monochromatic unpolarized radiative transfer in non-isothermal, vertically inhomogeneous, but horizontally homogeneous media. The physical processes included are Planckian thermal emission, scattering with arbitrary phase function, absorption, and surface bidirectional reflection. The system may be driven by parallel or isotropic diffuse radiation incident at the top boundary, as well as by internal thermal sources and thermal emission from the boundaries. Radiances, fluxes, and mean intensities are returned at user-specified angles and levels. DISORT has enjoyed considerable popularity in the atmospheric science and other communities since its introduction in 1988. Several new DISORT features are described in this update: intensity correction algorithms designed to compensate for the 8-M forward-peak scaling and obtain accurate intensities even in low orders of approximation; a more general surface bidirectional reflection option; and an exponential-linear approximation of the Planck function allowing more accurate solutions in the presence of large temperature gradients. DISORT has been designed to be an exemplar of good scientific software as well as a program of intrinsic utility. An extraordinary effort has been made to make it numerically well-conditioned, error-resistant, and user-friendly, and to take advantage of robust existing software tools. A thorough test suite is provided to verify the program both against published results, and for consistency where there are no published results. This careful attention to software design has been just as important in DISORT's popularity as its powerful algorithmic content.

  2. Terahertz thickness measurements for real industrial applications: from automotive paints to aerospace industry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Beigang, René

    2017-02-01

    In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.

  3. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  4. Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin

    2007-12-01

    We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.

  5. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    PubMed

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  6. GRAPE-5: A Special-Purpose Computer for N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Kawai, Atsushi; Fukushige, Toshiyuki; Makino, Junichiro; Taiji, Makoto

    2000-08-01

    We have developed a special-purpose computer for gravitational many-body simulations, GRAPE-5. GRAPE-5 accelerates the force calculation which dominates the calculation cost of the simulation. All other calculations, such as the time integration of orbits, are performed on a general-purpose computer (host computer) connected to GRAPE-5. A GRAPE-5 board consists of eight custom pipeline chips (G5 chip) and its peak performance is 38.4 Gflops. GRAPE-5 is the successor of GRAPE-3. The differences between GRAPE-5 and GRAPE-3 are: (1) The newly developed G5 chip contains two pipelines operating at 80 MHz, while the GRAPE chip, which was used for GRAPE-3, had one at 20 MHz. The calculation speed of GRAPE-5 is 8-times faster than that of GRAPE-3. (2) The GRAPE-5 board adopted a PCI bus as the interface to the host computer instead of VME of GRAPE-3, resulting in a communication speed one order of magnitude faster. (3) In addition to the pure 1/r potential, the G5 chip can calculate forces with arbitrary cutoff functions, so that it can be applied to the Ewald or P3M methods. (4) The pairwise force calculated on GRAPE-5 is about 10-times more accurate than that on GRAPE-3. On one GRAPE-5 board, one timestep with a direct summation algorithm takes 14 (N/128 k)2 seconds. With the Barnes-Hut tree algorithm (theta = 0.75), one timestep can be done in 15 (N/106) seconds.

  7. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  8. Design for dependability: A simulation-based approach. Ph.D. Thesis, 1993

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.

    1994-01-01

    This research addresses issues in simulation-based system level dependability analysis of fault-tolerant computer systems. The issues and difficulties of providing a general simulation-based approach for system level analysis are discussed and a methodology that address and tackle these issues is presented. The proposed methodology is designed to permit the study of a wide variety of architectures under various fault conditions. It permits detailed functional modeling of architectural features such as sparing policies, repair schemes, routing algorithms as well as other fault-tolerant mechanisms, and it allows the execution of actual application software. One key benefit of this approach is that the behavior of a system under faults does not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail and injected with faults to determine its failure modes. The thesis describes how object-oriented design is used to incorporate this methodology into a general purpose design and fault injection package called DEPEND. A software model is presented that uses abstractions of application programs to study the behavior and effect of software on hardware faults in the early design stage when actual code is not available. Finally, an acceleration technique that combines hierarchical simulation, time acceleration algorithms and hybrid simulation to reduce simulation time is introduced.

  9. On simulated annealing phase transitions in phylogeny reconstruction.

    PubMed

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  11. A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    1992-01-01

    This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.

  12. Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.

    PubMed

    Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei

    2013-04-01

    The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.

  13. INFORM Lab: a testbed for high-level information fusion and resource management

    NASA Astrophysics Data System (ADS)

    Valin, Pierre; Guitouni, Adel; Bossé, Eloi; Wehn, Hans; Happe, Jens

    2011-05-01

    DRDC Valcartier and MDA have created an advanced simulation testbed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation, with algorithms provided by several universities. This INFORM Lab testbed allows experimenting with high-level distributed information fusion, dynamic resource management and configuration management, given multiple constraints on the resources and their communications networks. This paper describes the architecture of INFORM Lab, the essential concepts of goals and situation evidence, a selected set of algorithms for distributed information fusion and dynamic resource management, as well as auto-configurable information fusion architectures. The testbed provides general services which include a multilayer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop. The testbed's performance is demonstrated on 2 types of scenarios/vignettes for 1) cooperative search-and-rescue efforts, and 2) a noncooperative smuggling scenario involving many target ships and various methods of deceit. For each mission, an appropriate subset of Canadian airborne and naval platforms are dispatched to collect situation evidence, which is fused, and then used to modify the platform trajectories for the most efficient collection of further situation evidence. These platforms are fusion nodes which obey a Command and Control node hierarchy.

  14. Digitally balanced detection for optical tomography.

    PubMed

    Hafiz, Rehan; Ozanyan, Krikor B

    2007-10-01

    Analog balanced Photodetection has found extensive usage for sensing of a weak absorption signal buried in laser intensity noise. This paper proposes schemes for compact, affordable, and flexible digital implementation of the already established analog balanced detection, as part of a multichannel digital tomography system. Variants of digitally balanced detection (DBD) schemes, suitable for weak signals on a largely varying background or weakly varying envelopes of high frequency carrier waves, are introduced analytically and elaborated in terms of algorithmic and hardware flow. The DBD algorithms are implemented on a low-cost general purpose reconfigurable hardware (field-programmable gate array), utilizing less than half of its resources. The performance of the DBD schemes compare favorably with their analog counterpart: A common mode rejection ratio of 50 dB was observed over a bandwidth of 300 kHz, limited mainly by the host digital hardware. The close relationship between the DBD outputs and those of known analog balancing circuits is discussed in principle and shown experimentally in the example case of propane gas detection.

  15. Performance of Extended Local Clustering Organization (LCO) for Large Scale Job-Shop Scheduling Problem (JSP)

    NASA Astrophysics Data System (ADS)

    Konno, Yohko; Suzuki, Keiji

    This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.

  16. HNBody: A Simulation Package for Hierarchical N-Body Systems

    NASA Astrophysics Data System (ADS)

    Rauch, Kevin P.

    2018-04-01

    HNBody (http://www.hnbody.org/) is an extensible software package forintegrating the dynamics of N-body systems. Although general purpose, itincorporates several features and algorithms particularly well-suited tosystems containing a hierarchy (wide dynamic range) of masses. HNBodyversion 1 focused heavily on symplectic integration of nearly-Kepleriansystems. Here I describe the capabilities of the redesigned and expandedpackage version 2, which includes: symplectic integrators up to eighth order(both leap frog and Wisdom-Holman type methods), with symplectic corrector andclose encounter support; variable-order, variable-timestep Bulirsch-Stoer andStörmer integrators; post-Newtonian and multipole physics options; advancedround-off control for improved long-term stability; multi-threading and SIMDvectorization enhancements; seamless availability of extended precisionarithmetic for all calculations; extremely flexible configuration andoutput. Tests of the physical correctness of the algorithms are presentedusing JPL Horizons ephemerides (https://ssd.jpl.nasa.gov/?horizons) andpreviously published results for reference. The features and performanceof HNBody are also compared to several other freely available N-body codes,including MERCURY (Chambers), SWIFT (Levison & Duncan) and WHFAST (Rein &Tamayo).

  17. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  18. TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Kingsmill, David E.; Yuter, Sandra E.; Hobbs, Peter V.; Rangno, Arthur L.; Heymsfield, Andrew J.; Stith, Jeffrey L.; Bansemer, Aaron; Haggerty, Julie A.; Korolev, Alexei V.

    2004-01-01

    A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the TRMM program is described. These Common Microphysics Products (CMP's) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMP's are organized into an ASCII structure to allow easy access to the data for those less familiar with and without the tools to accomplish microphysical data processing. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, non-proprietary software package for microphysics data processing, initiatives that would likely broaden community access to and use of microphysics datasets.

  19. Graphical processors for HEP trigger systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-02-01

    General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.

  20. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  1. Spectral CT Reconstruction with Image Sparsity and Spectral Mean

    PubMed Central

    Zhang, Yi; Xi, Yan; Yang, Qingsong; Cong, Wenxiang; Zhou, Jiliu

    2017-01-01

    Photon-counting detectors can acquire x-ray intensity data in different energy bins. The signal to noise ratio of resultant raw data in each energy bin is generally low due to the narrow bin width and quantum noise. To address this problem, here we propose an image reconstruction approach for spectral CT to simultaneously reconstructs x-ray attenuation coefficients in all the energy bins. Because the measured spectral data are highly correlated among the x-ray energy bins, the intra-image sparsity and inter-image similarity are important prior acknowledge for image reconstruction. Inspired by this observation, the total variation (TV) and spectral mean (SM) measures are combined to improve the quality of reconstructed images. For this purpose, a linear mapping function is used to minimalize image differences between energy bins. The split Bregman technique is applied to perform image reconstruction. Our numerical and experimental results show that the proposed algorithms outperform competing iterative algorithms in this context. PMID:29034267

  2. Identification and correction of road courses by merging successive segments and using improved attributes

    NASA Astrophysics Data System (ADS)

    Bulatov, Dimitri; Häufel, Gisela; Pohl, Melanie

    2016-10-01

    Both in military and civil applications, there is an urgent need for a highly up-to-date road data, which should be ideally semantically structured (into main roads, walking paths, escape ways, etc.) with application-driven attributes, such as road width, road type, surface condition and many others. A vectorization algorithm processing aerial images recently acquired yields an up-to-date road vector data, which are, however, often represented by wriggly, noisy polylines without semantics. The reasons for zigzagged street courses are insufficiencies in the intermediate results of sensor data processing (orthophotos, elevation maps) and occlusions caused by trees, buildings, and others. In the current contribution, an improved computation of geometric attributes will be explained which makes a difference between straight and circular (or elliptic) polylines. Using improved attributes, the candidates for polylines having identical course and sharing a junction are determined. From such candidates, we form chains of polylines. These chains correspond better to the intuitive perception of the term street than the previously used road polylines, because, even after being interrupted by narrower side roads, a chain maintains its label. The generalization of chains with simultaneously adjusting positions of junctions is evidently performed. We apply a generalization with the purpose-based modification of a well-known polyline simplification algorithm once chain-wise and once polyline-wise in order to show - by means of qualitative results - the advantages of the chain-wise generalization.

  3. Empirical study of parallel LRU simulation algorithms

    NASA Technical Reports Server (NTRS)

    Carr, Eric; Nicol, David M.

    1994-01-01

    This paper reports on the performance of five parallel algorithms for simulating a fully associative cache operating under the LRU (Least-Recently-Used) replacement policy. Three of the algorithms are SIMD, and are implemented on the MasPar MP-2 architecture. Two other algorithms are parallelizations of an efficient serial algorithm on the Intel Paragon. One SIMD algorithm is quite simple, but its cost is linear in the cache size. The two other SIMD algorithm are more complex, but have costs that are independent on the cache size. Both the second and third SIMD algorithms compute all stack distances; the second SIMD algorithm is completely general, whereas the third SIMD algorithm presumes and takes advantage of bounds on the range of reference tags. Both MIMD algorithm implemented on the Paragon are general and compute all stack distances; they differ in one step that may affect their respective scalability. We assess the strengths and weaknesses of these algorithms as a function of problem size and characteristics, and compare their performance on traces derived from execution of three SPEC benchmark programs.

  4. Scalar wave-optical reconstruction of plenoptic camera images.

    PubMed

    Junker, André; Stenau, Tim; Brenner, Karl-Heinz

    2014-09-01

    We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.

  5. Data compression using Chebyshev transform

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F. (Inventor); Hawkins, III, S. Edward (Inventor); Nguyen, Lillian (Inventor); Monaco, Christopher A. (Inventor); Seagrave, Gordon G. (Inventor)

    2007-01-01

    The present invention is a method, system, and computer program product for implementation of a capable, general purpose compression algorithm that can be engaged on the fly. This invention has particular practical application with time-series data, and more particularly, time-series data obtained form a spacecraft, or similar situations where cost, size and/or power limitations are prevalent, although it is not limited to such applications. It is also particularly applicable to the compression of serial data streams and works in one, two, or three dimensions. The original input data is approximated by Chebyshev polynomials, achieving very high compression ratios on serial data streams with minimal loss of scientific information.

  6. An expert system environment for the Generic VHSIC Spaceborne Computer (GVSC)

    NASA Astrophysics Data System (ADS)

    Cockerham, Ann; Labhart, Jay; Rowe, Michael; Skinner, James

    The authors describe a Phase II Phillips Laboratory Small Business Innovative Research (SBIR) program being performed to implement a flexible and general-purpose inference environment for embedded space and avionics applications. This inference environment is being developed in Ada and takes special advantage of the target architecture, the GVSC. The GVSC implements the MIL-STD-1750A ISA and contains enhancements to allow access of up to 8 MBytes of memory. The inference environment makes use of the Merit Enhanced Traversal Engine (METE) algorithm, which employs the latest inference and knowledge representation strategies to optimize both run-time speed and memory utilization.

  7. Development and evaluation of task-specific NLP framework in China.

    PubMed

    Ge, Caixia; Zhang, Yinsheng; Huang, Zhenzhen; Jia, Zheng; Ju, Meizhi; Duan, Huilong; Li, Haomin

    2015-01-01

    Natural language processing (NLP) has been designed to convert narrative text into structured data. Although some general NLP architectures have been developed, a task-specific NLP framework to facilitate the effective use of data is still a challenge in lexical resource limited regions, such as China. The purpose of this study is to design and develop a task-specific NLP framework to extract targeted information from particular documents by adopting dedicated algorithms on current limited lexical resources. In this framework, a shared and evolving ontology mechanism was designed. The result has shown that such a free text driven platform will accelerate the NLP technology acceptance in China.

  8. Developing a Screening Algorithm for Type II Diabetes Mellitus in the Resource-Limited Setting of Rural Tanzania.

    PubMed

    West, Caroline; Ploth, David; Fonner, Virginia; Mbwambo, Jessie; Fredrick, Francis; Sweat, Michael

    2016-04-01

    Noncommunicable diseases are on pace to outnumber infectious disease as the leading cause of death in sub-Saharan Africa, yet many questions remain unanswered with concern toward effective methods of screening for type II diabetes mellitus (DM) in this resource-limited setting. We aim to design a screening algorithm for type II DM that optimizes sensitivity and specificity of identifying individuals with undiagnosed DM, as well as affordability to health systems and individuals. Baseline demographic and clinical data, including hemoglobin A1c (HbA1c), were collected from 713 participants using probability sampling of the general population. We used these data, along with model parameters obtained from the literature, to mathematically model 8 purposed DM screening algorithms, while optimizing the sensitivity and specificity using Monte Carlo and Latin Hypercube simulation. An algorithm that combines risk assessment and measurement of fasting blood glucose was found to be superior for the most resource-limited settings (sensitivity 68%, sensitivity 99% and cost per patient having DM identified as $2.94). Incorporating HbA1c testing improves the sensitivity to 75.62%, but raises the cost per DM case identified to $6.04. The preferred algorithms are heavily biased to diagnose those with more severe cases of DM. Using basic risk assessment tools and fasting blood sugar testing in lieu of HbA1c testing in resource-limited settings could allow for significantly more feasible DM screening programs with reasonable sensitivity and specificity. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  9. Segmentation of ribs in digital chest radiographs

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Guo, Wei; Li, Qiang

    2016-03-01

    Ribs and clavicles in posterior-anterior (PA) digital chest radiographs often overlap with lung abnormalities such as nodules, and cause missing of these abnormalities, it is therefore necessary to remove or reduce the ribs in chest radiographs. The purpose of this study was to develop a fully automated algorithm to segment ribs within lung area in digital radiography (DR) for removal of the ribs. The rib segmentation algorithm consists of three steps. Firstly, a radiograph was pre-processed for contrast adjustment and noise removal; second, generalized Hough transform was employed to localize the lower boundary of the ribs. In the third step, a novel bilateral dynamic programming algorithm was used to accurately segment the upper and lower boundaries of ribs simultaneously. The width of the ribs and the smoothness of the rib boundaries were incorporated in the cost function of the bilateral dynamic programming for obtaining consistent results for the upper and lower boundaries. Our database consisted of 93 DR images, including, respectively, 23 and 70 images acquired with a DR system from Shanghai United-Imaging Healthcare Co. and from GE Healthcare Co. The rib localization algorithm achieved a sensitivity of 98.2% with 0.1 false positives per image. The accuracy of the detected ribs was further evaluated subjectively in 3 levels: "1", good; "2", acceptable; "3", poor. The percentages of good, acceptable, and poor segmentation results were 91.1%, 7.2%, and 1.7%, respectively. Our algorithm can obtain good segmentation results for ribs in chest radiography and would be useful for rib reduction in our future study.

  10. A generalized global alignment algorithm.

    PubMed

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  11. Pure field theories and MACSYMA algorithms

    NASA Technical Reports Server (NTRS)

    Ament, W. S.

    1977-01-01

    A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.

  12. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    NASA Astrophysics Data System (ADS)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  13. Guided particle swarm optimization method to solve general nonlinear optimization problems

    NASA Astrophysics Data System (ADS)

    Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr

    2018-04-01

    The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.

  14. An epidemic model for biological data fusion in ad hoc sensor networks

    NASA Astrophysics Data System (ADS)

    Chang, K. C.; Kotari, Vikas

    2009-05-01

    Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.

  15. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1988-01-01

    Research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a special distributed computer environment is presented. This model is identified by the acronym ATAMM which represents Algorithms To Architecture Mapping Model. The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.

  16. Superior Generalization Capability of Hardware-Learing Algorithm Developed for Self-Learning Neuron-MOS Neural Networks

    NASA Astrophysics Data System (ADS)

    Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro

    1995-02-01

    We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.

  17. Generalized gradient algorithm for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Bryson, A. E.; Slattery, R.

    1990-01-01

    The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.

  18. A biconjugate gradient type algorithm on massively parallel architectures

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Hochbruck, Marlis

    1991-01-01

    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine.

  19. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies

    PubMed Central

    Dräger, Andreas; Kronfeld, Marcel; Ziller, Michael J; Supper, Jochen; Planatscher, Hannes; Magnus, Jørgen B; Oldiges, Marco; Kohlbacher, Oliver; Zell, Andreas

    2009-01-01

    Background To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1) experimental measurement of participating molecules, (2) assignment of rate laws to each reaction, and (3) parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem. Results We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1) coarse-grained comparison of the algorithms on all models and (2) fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis. Conclusion A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics model. A Langevin model is advisable to take stochastic effects into account. To estimate the model parameters, three algorithms are particularly useful: For first attempts the settings-free Tribes algorithm yields valuable results. Particle swarm optimization and differential evolution provide significantly better results with appropriate settings. PMID:19144170

  20. Event-chain Monte Carlo algorithms for three- and many-particle interactions

    NASA Astrophysics Data System (ADS)

    Harland, J.; Michel, M.; Kampmann, T. A.; Kierfeld, J.

    2017-02-01

    We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.

  1. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  2. Communications and information research: Improved space link performance via concatenated forward error correction coding

    NASA Technical Reports Server (NTRS)

    Rao, T. R. N.; Seetharaman, G.; Feng, G. L.

    1996-01-01

    With the development of new advanced instruments for remote sensing applications, sensor data will be generated at a rate that not only requires increased onboard processing and storage capability, but imposes demands on the space to ground communication link and ground data management-communication system. Data compression and error control codes provide viable means to alleviate these demands. Two types of data compression have been studied by many researchers in the area of information theory: a lossless technique that guarantees full reconstruction of the data, and a lossy technique which generally gives higher data compaction ratio but incurs some distortion in the reconstructed data. To satisfy the many science disciplines which NASA supports, lossless data compression becomes a primary focus for the technology development. While transmitting the data obtained by any lossless data compression, it is very important to use some error-control code. For a long time, convolutional codes have been widely used in satellite telecommunications. To more efficiently transform the data obtained by the Rice algorithm, it is required to meet the a posteriori probability (APP) for each decoded bit. A relevant algorithm for this purpose has been proposed which minimizes the bit error probability in the decoding linear block and convolutional codes and meets the APP for each decoded bit. However, recent results on iterative decoding of 'Turbo codes', turn conventional wisdom on its head and suggest fundamentally new techniques. During the past several months of this research, the following approaches have been developed: (1) a new lossless data compression algorithm, which is much better than the extended Rice algorithm for various types of sensor data, (2) a new approach to determine the generalized Hamming weights of the algebraic-geometric codes defined by a large class of curves in high-dimensional spaces, (3) some efficient improved geometric Goppa codes for disk memory systems and high-speed mass memory systems, and (4) a tree based approach for data compression using dynamic programming.

  3. Simplifying the Reinsch algorithm for the Baker-Campbell-Hausdorff series

    NASA Astrophysics Data System (ADS)

    Van-Brunt, Alexander; Visser, Matt

    2016-02-01

    The Goldberg version of the Baker-Campbell-Hausdorff series computes the quantity Z ( X , Y ) = ln (" separators=" e X e Y ) = ∑ w g ( w ) w ( X , Y ) , where X and Y are not necessarily commuting in terms of "words" constructed from the {X, Y} "alphabet." The so-called Goldberg coefficients g(w) are the central topic of this article. This Baker-Campbell-Hausdorff series is a general purpose tool of very wide applicability in mathematical physics, quantum physics, and many other fields. The Reinsch algorithm for the truncated series permits one to calculate the Goldberg coefficients up to some fixed word length |w| by using nilpotent (|w| + 1) × (|w| + 1) matrices. We shall show how to further simplify the Reinsch algorithm, making its implementation (in principle) utterly straightforward using "off the shelf" symbolic manipulation software. Specific computations provide examples which help to provide a deeper understanding of the Goldberg coefficients and their properties. For instance, we shall establish some strict bounds (and some equalities) on the number of non-zero Goldberg coefficients. Unfortunately, we shall see that the number of nonzero Goldberg coefficients often grows very rapidly (in fact exponentially) with the word length |w|. Furthermore, the simplified Reinsch algorithm readily generalizes to many closely related but still quite distinct problems—we shall also present closely related results for the symmetric product S ( X , Y ) = ln (" separators=" e X / 2 e Y e X / 2 ) = ∑ w g S ( w ) w ( X , Y ) . Variations on such themes are straightforward. For instance, one can just as easily consider the "loop" product L ( X , Y ) = ln (" separators=" e X e Y e - X e - Y ) = ∑ w g L ( w ) w ( X , Y ) . This "loop" type of series is of interest, for instance, when considering either differential geometric parallel transport around a closed curve, non-Abelian versions of Stokes' theorem, or even Wigner rotation/Thomas precession in special relativity. Several other closely related series are also briefly investigated.

  4. An efficient approach to CI: General matrix element formulas for spin-coupled particle-hole excitations

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1980-03-01

    A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.

  5. An l1-TV algorithm for deconvolution with salt and pepper noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlberg, Brendt; Rodriguez, Paul

    2008-01-01

    There has recently been considerable interest in applying Total Variation with an {ell}{sup 1} data fidelity term to the denoising of images subject to salt and pepper noise, but the extension of this formulation to more general problems, such as deconvolution, has received little attention, most probably because most efficient algorithms for {ell}{sup 1}-TV denoising can not handle more general inverse problems. We apply the Iteratively Reweighted Norm algorithm to this problem, and compare performance with an alternative algorithm based on the Mumford-Shah functional.

  6. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less

  7. A prediction algorithm for first onset of major depression in the general population: development and validation.

    PubMed

    Wang, JianLi; Sareen, Jitender; Patten, Scott; Bolton, James; Schmitz, Norbert; Birney, Arden

    2014-05-01

    Prediction algorithms are useful for making clinical decisions and for population health planning. However, such prediction algorithms for first onset of major depression do not exist. The objective of this study was to develop and validate a prediction algorithm for first onset of major depression in the general population. Longitudinal study design with approximate 3-year follow-up. The study was based on data from a nationally representative sample of the US general population. A total of 28 059 individuals who participated in Waves 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions and who had not had major depression at Wave 1 were included. The prediction algorithm was developed using logistic regression modelling in 21 813 participants from three census regions. The algorithm was validated in participants from the 4th census region (n=6246). Major depression occurred since Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions, assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule-diagnostic and statistical manual for mental disorders IV. A prediction algorithm containing 17 unique risk factors was developed. The algorithm had good discriminative power (C statistics=0.7538, 95% CI 0.7378 to 0.7699) and excellent calibration (F-adjusted test=1.00, p=0.448) with the weighted data. In the validation sample, the algorithm had a C statistic of 0.7259 and excellent calibration (Hosmer-Lemeshow χ(2)=3.41, p=0.906). The developed prediction algorithm has good discrimination and calibration capacity. It can be used by clinicians, mental health policy-makers and service planners and the general public to predict future risk of having major depression. The application of the algorithm may lead to increased personalisation of treatment, better clinical decisions and more optimal mental health service planning.

  8. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  9. Conjugate-Gradient Algorithms For Dynamics Of Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1993-01-01

    Algorithms for serial and parallel computation of forward dynamics of multiple-link robotic manipulators by conjugate-gradient method developed. Parallel algorithms have potential for speedup of computations on multiple linked, specialized processors implemented in very-large-scale integrated circuits. Such processors used to stimulate dynamics, possibly faster than in real time, for purposes of planning and control.

  10. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  11. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    NASA Astrophysics Data System (ADS)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  12. Using Patient Flow Information to Determine Risk of Hospital Presentation: Protocol for a Proof-of-Concept Study.

    PubMed

    Pearce, Christopher M; McLeod, Adam; Patrick, Jon; Boyle, Douglas; Shearer, Marianne; Eustace, Paula; Pearce, Mary Catherine

    2016-12-20

    Every day, patients are admitted to the hospital with conditions that could have been effectively managed in the primary care sector. These admissions are expensive and in many cases are possible to avoid if early intervention occurs. General practitioners are in the best position to identify those at risk of imminent hospital presentation and admission; however, it is not always possible for all the factors to be considered. A lack of shared information contributes significantly to the challenge of understanding a patient's full medical history. Some health care systems around the world use algorithms to analyze patient data in order to predict events such as emergency presentation; however, those responsible for the design and use of such systems readily admit that the algorithms can only be used to assess the populations used to design the algorithm in the first place. The United Kingdom health care system has contributed data toward algorithm development, which is possible through the unified health care system in place there. The lack of unified patient records in Australia has made building an algorithm for local use a significant challenge. Our objective is to use linked patient records to track patient flow through primary and secondary health care in order to develop a tool that can be applied in real time at the general practice level. This algorithm will allow the generation of reports for general practitioners that indicate the relative risk of patients presenting to an emergency department. A previously designed tool was used to deidentify the general practice and hospital records of approximately 100,000 patients. Records were pooled for patients who had attended emergency departments within the Eastern Health Network of hospitals and general practices within the Eastern Health Network catchment. The next phase will involve development of a model using a predictive analytic machine learning algorithm. The model will be developed iteratively, testing the combination of variables that will provide the best predictive model. Records of approximately 97,000 patients who have attended both a general practice and an emergency department have been identified within the database. These records are currently being used to develop the predictive model. Records from general practice and emergency department visits have been identified and pooled for development of the algorithm. The next phase in the project will see validation and live testing of the algorithm in a practice setting. The algorithm will underpin a clinical decision support tool for general practitioners which will be tested for face validity in this initial study into its efficacy. ©Christopher M Pearce, Adam McLeod, Jon Patrick, Douglas Boyle, Marianne Shearer, Paula Eustace, Mary Catherine Pearce. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 20.12.2016.

  13. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  14. WE-FG-207B-05: Iterative Reconstruction Via Prior Image Constrained Total Generalized Variation for Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, S; Zhang, Y; Ma, J

    Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less

  15. Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization

    NASA Astrophysics Data System (ADS)

    Jia, Zhongxiao; Yang, Yanfei

    2018-05-01

    In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).

  16. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency

    NASA Astrophysics Data System (ADS)

    Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup

    2017-06-01

    This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.

  17. Achieving reutilization of scheduling software through abstraction and generalization

    NASA Technical Reports Server (NTRS)

    Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael

    1995-01-01

    Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.

  18. Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1983-01-01

    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.

  19. Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming.

    PubMed

    Ibarra, Ignacio L; Melo, Francisco

    2010-07-01

    Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.

  20. A novel VLSI processor architecture for supercomputing arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Devanathan, R.; Ahmed, Ashaf; Venkataraman, S.; Ganesh, N.

    1993-01-01

    Design of the processor element for general purpose massively parallel supercomputing arrays is highly complex and cost ineffective. To overcome this, the architecture and organization of the functional units of the processor element should be such as to suit the diverse computational structures and simplify mapping of complex communication structures of different classes of algorithms. This demands that the computation and communication structures of different class of algorithms be unified. While unifying the different communication structures is a difficult process, analysis of a wide class of algorithms reveals that their computation structures can be expressed in terms of basic IP,IP,OP,CM,R,SM, and MAA operations. The execution of these operations is unified on the PAcube macro-cell array. Based on this PAcube macro-cell array, we present a novel processor element called the GIPOP processor, which has dedicated functional units to perform the above operations. The architecture and organization of these functional units are such to satisfy the two important criteria mentioned above. The structure of the macro-cell and the unification process has led to a very regular and simpler design of the GIPOP processor. The production cost of the GIPOP processor is drastically reduced as it is designed on high performance mask programmable PAcube arrays.

  1. Anatomisation with slicing: a new privacy preservation approach for multiple sensitive attributes.

    PubMed

    Susan, V Shyamala; Christopher, T

    2016-01-01

    An enormous quantity of personal health information is available in recent decades and tampering of any part of this information imposes a great risk to the health care field. Existing anonymization methods are only apt for single sensitive and low dimensional data to keep up with privacy specifically like generalization and bucketization. In this paper, an anonymization technique is proposed that is a combination of the benefits of anatomization, and enhanced slicing approach adhering to the principle of k-anonymity and l-diversity for the purpose of dealing with high dimensional data along with multiple sensitive data. The anatomization approach dissociates the correlation observed between the quasi identifier attributes and sensitive attributes (SA) and yields two separate tables with non-overlapping attributes. In the enhanced slicing algorithm, vertical partitioning does the grouping of the correlated SA in ST together and thereby minimizes the dimensionality by employing the advanced clustering algorithm. In order to get the optimal size of buckets, tuple partitioning is conducted by MFA. The experimental outcomes indicate that the proposed method can preserve privacy of data with numerous SA. The anatomization approach minimizes the loss of information and slicing algorithm helps in the preservation of correlation and utility which in turn results in reducing the data dimensionality and information loss. The advanced clustering algorithms prove its efficiency by minimizing the time and complexity. Furthermore, this work sticks to the principle of k-anonymity, l-diversity and thus avoids privacy threats like membership, identity and attributes disclosure.

  2. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. On a New Optimization Approach for the Hydroforming of Defects-Free Tubular Metallic Parts

    NASA Astrophysics Data System (ADS)

    Caseiro, J. F.; Valente, R. A. F.; Andrade-Campos, A.; Jorge, R. M. Natal

    2011-05-01

    In the hydroforming of tubular metallic components, process parameters (internal pressure, axial feed and counter-punch position) must be carefully set in order to avoid defects in the final part. If, on one hand, excessive pressure may lead to thinning and bursting during forming, on the other hand insufficient pressure may lead to an inadequate filling of the die. Similarly, an excessive axial feeding may lead to the formation of wrinkles, whilst an inadequate one may cause thinning and, consequentially, bursting. These apparently contradictory targets are virtually impossible to achieve without trial-and-error procedures in industry, unless optimization approaches are formulated and implemented for complex parts. In this sense, an optimization algorithm based on differentialevolutionary techniques is presented here, capable of being applied in the determination of the adequate process parameters for the hydroforming of metallic tubular components of complex geometries. The Hybrid Differential Evolution Particle Swarm Optimization (HDEPSO) algorithm, combining the advantages of a number of well-known distinct optimization strategies, acts along with a general purpose implicit finite element software, and is based on the definition of a wrinkling and thinning indicators. If defects are detected, the algorithm automatically corrects the process parameters and new numerical simulations are performed in real time. In the end, the algorithm proved to be robust and computationally cost-effective, thus providing a valid design tool for the conformation of defects-free components in industry [1].

  4. Practical sliced configuration spaces for curved planar pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, E.

    1999-01-01

    In this article, the author presents a practical configuration-space computation algorithm for pairs of curved planar parts, based on the general algorithm developed by Bajaj and the author. The general algorithm advances the theoretical understanding of configuration-space computation, but is too slow and fragile for some applications. The new algorithm solves these problems by restricting the analysis to parts bounded by line segments and circular arcs, whereas the general algorithm handles rational parametric curves. The trade-off is worthwhile, because the restricted class handles most robotics and mechanical engineering applications. The algorithm reduces run time by a factor of 60 onmore » nine representative engineering pairs, and by a factor of 9 on two human-knee pairs. It also handles common special pairs by specialized methods. A survey of 2,500 mechanisms shows that these methods cover 90% of pairs and yield an additional factor of 10 reduction in average run time. The theme of this article is that application requirements, as well as intrinsic theoretical interest, should drive configuration-space research.« less

  5. A quantum–quantum Metropolis algorithm

    PubMed Central

    Yung, Man-Hong; Aspuru-Guzik, Alán

    2012-01-01

    The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584

  6. Identification of observer/Kalman filter Markov parameters: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh; Horta, Lucas G.; Longman, Richard W.

    1991-01-01

    An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed. The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design. The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes. The relationship between these other algorithms is developed. The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order. It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment. Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure.

  7. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1987-01-01

    The results of ongoing research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a spatial distributed computer environment is presented. This model is identified by the acronym ATAMM (Algorithm/Architecture Mapping Model). The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to optimize computational concurrency in the multiprocessor environment and to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.

  8. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    PubMed

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Algorithms for monitoring warfarin use: Results from Delphi Method.

    PubMed

    Kano, Eunice Kazue; Borges, Jessica Bassani; Scomparini, Erika Burim; Curi, Ana Paula; Ribeiro, Eliane

    2017-10-01

    Warfarin stands as the most prescribed oral anticoagulant. New oral anticoagulants have been approved recently; however, their use is limited and the reversibility techniques of the anticoagulation effect are little known. Thus, our study's purpose was to develop algorithms for therapeutic monitoring of patients taking warfarin based on the opinion of physicians who prescribe this medicine in their clinical practice. The development of the algorithm was performed in two stages, namely: (i) literature review and (ii) algorithm evaluation by physicians using a Delphi Method. Based on the articles analyzed, two algorithms were developed: "Recommendations for the use of warfarin in anticoagulation therapy" and "Recommendations for the use of warfarin in anticoagulation therapy: dose adjustment and bleeding control." Later, these algorithms were analyzed by 19 medical doctors that responded to the invitation and agreed to participate in the study. Of these, 16 responded to the first round, 11 to the second and eight to the third round. A 70% consensus or higher was reached for most issues and at least 50% for six questions. We were able to develop algorithms to monitor the use of warfarin by physicians using a Delphi Method. The proposed method is inexpensive and involves the participation of specialists, and it has proved adequate for the intended purpose. Further studies are needed to validate these algorithms, enabling them to be used in clinical practice.

  10. A General Program for Item-Response Analysis That Employs the Stabilized Newton-Raphson Algorithm. Research Report. ETS RR-13-32

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2013-01-01

    A general program for item-response analysis is described that uses the stabilized Newton-Raphson algorithm. This program is written to be compliant with Fortran 2003 standards and is sufficiently general to handle independent variables, multidimensional ability parameters, and matrix sampling. The ability variables may be either polytomous or…

  11. Heuristics and biases: interactions among numeracy, ability, and reflectiveness predict normative responding

    PubMed Central

    Klaczynski, Paul A.

    2014-01-01

    In Stanovich's (2009a, 2011) dual-process theory, analytic processing occurs in the algorithmic and reflective minds. Thinking dispositions, indexes of reflective mind functioning, are believed to regulate operations at the algorithmic level, indexed by general cognitive ability. General limitations at the algorithmic level impose constraints on, and affect the adequacy of, specific strategies and abilities (e.g., numeracy). In a study of 216 undergraduates, the hypothesis that thinking dispositions and general ability moderate the relationship between numeracy (understanding of mathematical concepts and attention to numerical information) and normative responses on probabilistic heuristics and biases (HB) problems was tested. Although all three individual difference measures predicted normative responses, the numeracy-normative response association depended on thinking dispositions and general ability. Specifically, numeracy directly affected normative responding only at relatively high levels of thinking dispositions and general ability. At low levels of thinking dispositions, neither general ability nor numeric skills related to normative responses. Discussion focuses on the consistency of these findings with the hypothesis that the implementation of specific skills is constrained by limitations at both the reflective level and the algorithmic level, methodological limitations that prohibit definitive conclusions, and alternative explanations. PMID:25071639

  12. Heuristics and biases: interactions among numeracy, ability, and reflectiveness predict normative responding.

    PubMed

    Klaczynski, Paul A

    2014-01-01

    In Stanovich's (2009a, 2011) dual-process theory, analytic processing occurs in the algorithmic and reflective minds. Thinking dispositions, indexes of reflective mind functioning, are believed to regulate operations at the algorithmic level, indexed by general cognitive ability. General limitations at the algorithmic level impose constraints on, and affect the adequacy of, specific strategies and abilities (e.g., numeracy). In a study of 216 undergraduates, the hypothesis that thinking dispositions and general ability moderate the relationship between numeracy (understanding of mathematical concepts and attention to numerical information) and normative responses on probabilistic heuristics and biases (HB) problems was tested. Although all three individual difference measures predicted normative responses, the numeracy-normative response association depended on thinking dispositions and general ability. Specifically, numeracy directly affected normative responding only at relatively high levels of thinking dispositions and general ability. At low levels of thinking dispositions, neither general ability nor numeric skills related to normative responses. Discussion focuses on the consistency of these findings with the hypothesis that the implementation of specific skills is constrained by limitations at both the reflective level and the algorithmic level, methodological limitations that prohibit definitive conclusions, and alternative explanations.

  13. A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Vuik, C.; Lucas, Peter; vanGijzen, Martin; Bijl, Hester

    2010-01-01

    A general algorithm is developed that reuses available information to accelerate the iterative convergence of linear systems with multiple right-hand sides A x = b (sup i), which are commonly encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection preprocessing step and several novel Krylov subspace reuse strategies. The new approach is applied to a set of test problems, including an unsteady turbulent airfoil, and is shown in some cases to provide significant improvement in computational efficiency relative to baseline approaches.

  14. Estimation of Contextual Effects through Nonlinear Multilevel Latent Variable Modeling with a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Yang, Ji Seung; Cai, Li

    2014-01-01

    The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…

  15. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  16. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    NASA Astrophysics Data System (ADS)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  17. Query construction, entropy, and generalization in neural-network models

    NASA Astrophysics Data System (ADS)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  18. Evaluation of Machine Learning Algorithms for Classification of Primary Biological Aerosol using a new UV-LIF spectrometer

    NASA Astrophysics Data System (ADS)

    Ruske, S. T.; Topping, D. O.; Foot, V. E.; Kaye, P. H.; Stanley, W. R.; Morse, A. P.; Crawford, I.; Gallagher, M. W.

    2016-12-01

    Characterisation of bio-aerosols has important implications within Environment and Public Health sectors. Recent developments in Ultra-Violet Light Induced Fluorescence (UV-LIF) detectors such as the Wideband Integrated bio-aerosol Spectrometer (WIBS) and the newly introduced Multiparameter bio-aerosol Spectrometer (MBS) has allowed for the real time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal Spores and pollen. This new generation of instruments has enabled ever-larger data sets to be compiled with the aim of studying more complex environments, yet the algorithms used for specie classification remain largely invalidated. It is therefore imperative that we validate the performance of different algorithms that can be used for the task of classification, which is the focus of this study. For unsupervised learning we test Hierarchical Agglomerative Clustering with various different linkages. For supervised learning, ten methods were tested; including decision trees, ensemble methods: Random Forests, Gradient Boosting and AdaBoost; two implementations for support vector machines: libsvm and liblinear; Gaussian methods: Gaussian naïve Bayesian, quadratic and linear discriminant analysis and finally the k-nearest neighbours algorithm. The methods were applied to two different data sets measured using a new Multiparameter bio-aerosol Spectrometer. We find that clustering, in general, performs slightly worse than the supervised learning methods correctly classifying, at best, only 72.7 and 91.1 percent for the two data sets. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 88.1 and 97.8 percent of the testing data respectively across the two data sets. We discuss the wider relevance of these results with regards to challenging existing classification in real-world environments.

  19. Economic evaluation in short bowel syndrome (SBS): an algorithm to estimate utility scores for a patient-reported SBS-specific quality of life scale (SBS-QoL™).

    PubMed

    Lloyd, Andrew; Kerr, Cicely; Breheny, Katie; Brazier, John; Ortiz, Aurora; Borg, Emma

    2014-03-01

    Condition-specific preference-based measures can offer utility data where they would not otherwise be available or where generic measures may lack sensitivity, although they lack comparability across conditions. This study aimed to develop an algorithm for estimating utilities from the short bowel syndrome health-related quality of life scale (SBS-QoL™). SBS-QoL™ items were selected based on factor and item performance analysis of a European SBS-QoL™ dataset and consultation with 3 SBS clinical experts. Six-dimension health states were developed using 8 SBS-QoL™ items (2 dimensions combined 2 SBS-QoL™ items). SBS health states were valued by a UK general population sample (N = 250) using the lead-time time trade-off method. Preference weights or 'utility decrements' for each severity level of each dimension were estimated by regression models and used to develop the scoring algorithm. Mean utilities for the SBS health states ranged from -0.46 (worst health state, very much affected on all dimensions) to 0.92 (best health state, not at all affected on all dimensions). The random effects model with maximum likelihood estimation regression had the best predictive ability and lowest root mean squared error and mean absolute error, and was used to develop the scoring algorithm. The preference-weighted scoring algorithm for the SBS-QoL™ developed is able to estimate a wide range of utility values from patient-level SBS-QoL™ data. This allows estimation of SBS HRQL impact for the purpose of economic evaluation of SBS treatment benefits.

  20. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    PubMed

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.

  1. Generic algorithms for high performance scalable geocomputing

    NASA Astrophysics Data System (ADS)

    de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    During the last decade, the characteristics of computing hardware have changed a lot. For example, instead of a single general purpose CPU core, personal computers nowadays contain multiple cores per CPU and often general purpose accelerators, like GPUs. Additionally, compute nodes are often grouped together to form clusters or a supercomputer, providing enormous amounts of compute power. For existing earth simulation models to be able to use modern hardware platforms, their compute intensive parts must be rewritten. This can be a major undertaking and may involve many technical challenges. Compute tasks must be distributed over CPU cores, offloaded to hardware accelerators, or distributed to different compute nodes. And ideally, all of this should be done in such a way that the compute task scales well with the hardware resources. This presents two challenges: 1) how to make good use of all the compute resources and 2) how to make these compute resources available for developers of simulation models, who may not (want to) have the required technical background for distributing compute tasks. The first challenge requires the use of specialized technology (e.g.: threads, OpenMP, MPI, OpenCL, CUDA). The second challenge requires the abstraction of the logic handling the distribution of compute tasks from the model-specific logic, hiding the technical details from the model developer. To assist the model developer, we are developing a C++ software library (called Fern) containing algorithms that can use all CPU cores available in a single compute node (distributing tasks over multiple compute nodes will be done at a later stage). The algorithms are grid-based (finite difference) and include local and spatial operations such as convolution filters. The algorithms handle distribution of the compute tasks to CPU cores internally. In the resulting model the low-level details of how this is done is separated from the model-specific logic representing the modeled system. This contrasts with practices in which code for distributing of compute tasks is mixed with model-specific code, and results in a better maintainable model. For flexibility and efficiency, the algorithms are configurable at compile-time with the respect to the following aspects: data type, value type, no-data handling, input value domain handling, and output value range handling. This makes the algorithms usable in very different contexts, without the need for making intrusive changes to existing models when using them. Applications that benefit from using the Fern library include the construction of forward simulation models in (global) hydrology (e.g. PCR-GLOBWB (Van Beek et al. 2011)), ecology, geomorphology, or land use change (e.g. PLUC (Verstegen et al. 2014)) and manipulation of hyper-resolution land surface data such as digital elevation models and remote sensing data. Using the Fern library, we have also created an add-on to the PCRaster Python Framework (Karssenberg et al. 2010) allowing its users to speed up their spatio-temporal models, sometimes by changing just a single line of Python code in their model. In our presentation we will give an overview of the design of the algorithms, providing examples of different contexts where they can be used to replace existing sequential algorithms, including the PCRaster environmental modeling software (www.pcraster.eu). We will show how the algorithms can be configured to behave differently when necessary. References Karssenberg, D., Schmitz, O., Salamon, P., De Jong, K. and Bierkens, M.F.P., 2010, A software framework for construction of process-based stochastic spatio-temporal models and data assimilation. Environmental Modelling & Software, 25, pp. 489-502, Link. Best Paper Award 2010: Software and Decision Support. Van Beek, L. P. H., Y. Wada, and M. F. P. Bierkens. 2011. Global monthly water stress: 1. Water balance and water availability. Water Resources Research. 47. Verstegen, J. A., D. Karssenberg, F. van der Hilst, and A. P. C. Faaij. 2014. Identifying a land use change cellular automaton by Bayesian data assimilation. Environmental Modelling & Software 53:121-136.

  2. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    PubMed

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  3. Signal detection on spontaneous reports of adverse events following immunisation: a comparison of the performance of a disproportionality-based algorithm and a time-to-onset-based algorithm

    PubMed Central

    van Holle, Lionel; Bauchau, Vincent

    2014-01-01

    Purpose Disproportionality methods measure how unexpected the observed number of adverse events is. Time-to-onset (TTO) methods measure how unexpected the TTO distribution of a vaccine-event pair is compared with what is expected from other vaccines and events. Our purpose is to compare the performance associated with each method. Methods For the disproportionality algorithms, we defined 336 combinations of stratification factors (sex, age, region and year) and threshold values of the multi-item gamma Poisson shrinker (MGPS). For the TTO algorithms, we defined 18 combinations of significance level and time windows. We used spontaneous reports of adverse events recorded for eight vaccines. The vaccine product labels were used as proxies for true safety signals. Algorithms were ranked according to their positive predictive value (PPV) for each vaccine separately; amedian rank was attributed to each algorithm across vaccines. Results The algorithm with the highest median rank was based on TTO with a significance level of 0.01 and a time window of 60 days after immunisation. It had an overall PPV 2.5 times higher than for the highest-ranked MGPS algorithm, 16th rank overall, which was fully stratified and had a threshold value of 0.8. A TTO algorithm with roughly the same sensitivity as the highest-ranked MGPS had better specificity but longer time-to-detection. Conclusions Within the scope of this study, the majority of the TTO algorithms presented a higher PPV than for any MGPS algorithm. Considering the complementarity of TTO and disproportionality methods, a signal detection strategy combining them merits further investigation. PMID:24038719

  4. Meshing of a Spiral Bevel Gearset with 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, George D.; Handschuh, Robert

    1996-01-01

    Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gearset through mesh. With the advent of user specific programming linked to 3D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gearset is placed in mesh, user subroutines attached to the FE code easily roll the gearset through mesh. The method is described in detail. Preliminary results for a gearset segment showing the progression of the contact lineload is given as the gears roll through mesh.

  5. Design optimization studies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.

    1993-01-01

    The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.

  6. Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Patterson, M. R.

    1982-01-01

    Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.

  7. Data Understanding Applied to Optimization

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Shilman, Michael

    1998-01-01

    The goal of this research is to explore and develop software for supporting visualization and data analysis of search and optimization. Optimization is an ever-present problem in science. The theory of NP-completeness implies that the problems can only be resolved by increasingly smarter problem specific knowledge, possibly for use in some general purpose algorithms. Visualization and data analysis offers an opportunity to accelerate our understanding of key computational bottlenecks in optimization and to automatically tune aspects of the computation for specific problems. We will prototype systems to demonstrate how data understanding can be successfully applied to problems characteristic of NASA's key science optimization tasks, such as central tasks for parallel processing, spacecraft scheduling, and data transmission from a remote satellite.

  8. Evaluation of Algorithms for Compressing Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  9. BCI2000: a general-purpose brain-computer interface (BCI) system.

    PubMed

    Schalk, Gerwin; McFarland, Dennis J; Hinterberger, Thilo; Birbaumer, Niels; Wolpaw, Jonathan R

    2004-06-01

    Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.

  10. Some Algorithms for the Recursive Input-Output Modeling of 2-D Systems.

    DTIC Science & Technology

    1979-12-01

    is viewed as a 2-D prediction problem. This problem is solved recursvl by general ling the r nQ0 .-- UNCLASSIFIED SECURITY CLASSIVICATIOI; OF THr3... generalizing to the 2-D case an algorithm due to Levinson in the I-D case. The predictors obtained by this algorithm are then showed to converge to...ijzn-i M-j a(z,) = I a i m , a0 0 = 1 (6a) i=0 j=0 is monic, and n m b(z,w) = I b ij zn’ipm’j (6b) i=o j=0 There is no loss of generality in making

  11. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  12. A New Approach for Solving the Generalized Traveling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Pop, P. C.; Matei, O.; Sabo, C.

    The generalized traveling problem (GTSP) is an extension of the classical traveling salesman problem. The GTSP is known to be an NP-hard problem and has many interesting applications. In this paper we present a local-global approach for the generalized traveling salesman problem. Based on this approach we describe a novel hybrid metaheuristic algorithm for solving the problem using genetic algorithms. Computational results are reported for Euclidean TSPlib instances and compared with the existing ones. The obtained results point out that our hybrid algorithm is an appropriate method to explore the search space of this complex problem and leads to good solutions in a reasonable amount of time.

  13. Using Physical Models to Explain a Division Algorithm.

    ERIC Educational Resources Information Center

    Vest, Floyd

    1985-01-01

    Develops a division algorithm in terms of familiar manipulations of concrete objects and presents it with a series of questions for diagnosis of students' understanding of the algorithm in terms of the concrete model utilized. Also offers general guidelines for using concrete illustrations to explain algorithms and other mathematical principles.…

  14. Space shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.

  15. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fastmore » superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of algorithms in lung cancer radiotherapy involving small fields. However, further investigation by Monte Carlo simulation is required to confirm our results.« less

  16. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, T; Zhou, L; Li, Y

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive results. Conclusion: We have successfully developed a fast and automatic multi-objective optimization for intensity modulated radiotherapy. This work is supported by the National Natural Science Foundation of China (No: 81571771)« less

  17. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  18. The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code.

  19. Optimal convolution SOR acceleration of waveform relaxation with application to semiconductor device simulation

    NASA Technical Reports Server (NTRS)

    Reichelt, Mark

    1993-01-01

    In this paper we describe a novel generalized SOR (successive overrelaxation) algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is substantially faster than that of the more obvious frequency-independent waveform SOR algorithm. Finally, to demonstrate the general applicability of this new method, it is used to solve the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations.

  20. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  1. Transform methods for precision continuum and control models of flexible space structures

    NASA Technical Reports Server (NTRS)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  2. Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen

    2006-12-01

    Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimizationmore » problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.« less

  3. General optical discrete z transform: design and application.

    PubMed

    Ngo, Nam Quoc

    2016-12-20

    This paper presents a generalization of the discrete z transform algorithm. It is shown that the GOD-ZT algorithm is a generalization of several important conventional discrete transforms. Based on the GOD-ZT algorithm, a tunable general optical discrete z transform (GOD-ZT) processor is synthesized using the silica-based finite impulse response transversal filter. To demonstrate the effectiveness of the method, the design and simulation of a tunable optical discrete Fourier transform (ODFT) processor as a special case of the synthesized GOD-ZT processor is presented. It is also shown that the ODFT processor can function as a real-time optical spectrum analyzer. The tunable ODFT has an important potential application as a tunable optical demultiplexer at the receiver end of an optical orthogonal frequency-division multiplexing transmission system.

  4. Orthorectification by Using Gpgpu Method

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kulur, S.

    2012-07-01

    Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.

  5. Quantifying uncertainty in read-across assessment – an algorithmic approach - (SOT)

    EPA Science Inventory

    Read-across is a popular data gap filling technique within category and analogue approaches for regulatory purposes. Acceptance of read-across remains an ongoing challenge with several efforts underway for identifying and addressing uncertainties. Here we demonstrate an algorithm...

  6. The algorithms for rational spline interpolation of surfaces

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1986-01-01

    Two algorithms for interpolating surfaces with spline functions containing tension parameters are discussed. Both algorithms are based on the tensor products of univariate rational spline functions. The simpler algorithm uses a single tension parameter for the entire surface. This algorithm is generalized to use separate tension parameters for each rectangular subregion. The new algorithm allows for local control of tension on the interpolating surface. Both algorithms are illustrated and the results are compared with the results of bicubic spline and bilinear interpolation of terrain elevation data.

  7. Linear-time general decoding algorithm for the surface code

    NASA Astrophysics Data System (ADS)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  8. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    NASA Astrophysics Data System (ADS)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  9. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    PubMed

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  10. Noise-enhanced clustering and competitive learning algorithms.

    PubMed

    Osoba, Osonde; Kosko, Bart

    2013-01-01

    Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Generalized Chirp Scaling Combined with Baseband Azimuth Scaling Algorithm for Large Bandwidth Sliding Spotlight SAR Imaging

    PubMed Central

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057

  12. Parallel Software Model Checking

    DTIC Science & Technology

    2015-01-08

    checker. This project will explore this strategy to parallelize the generalized PDR algorithm for software model checking. It belongs to TF1 due to its ... focus on formal verification . Generalized PDR. Generalized Property Driven Rechability (GPDR) i is an algorithm for solving HORN-SMT reachability...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 08

  13. Progress in computer vision.

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Dorai, C.

    Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

  14. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  15. StrBioLib: a Java library for development of custom computationalstructural biology applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandonia, John-Marc

    2007-05-14

    Summary: StrBioLib is a library of Java classes useful fordeveloping software for computational structural biology research.StrBioLib contains classes to represent and manipulate proteinstructures, biopolymer sequences, sets of biopolymer sequences, andalignments between biopolymers based on either sequence or structure.Interfaces are provided to interact with commonly used bioinformaticsapplications, including (PSI)-BLAST, MODELLER, MUSCLE, and Primer3, andtools are provided to read and write many file formats used to representbioinformatic data. The library includes a general-purpose neural networkobject with multiple training algorithms, the Hooke and Jeeves nonlinearoptimization algorithm, and tools for efficient C-style string parsingand formatting. StrBioLib is the basis for the Pred2ary secondarystructure predictionmore » program, is used to build the ASTRAL compendium forsequence and structure analysis, and has been extensively tested throughuse in many smaller projects. Examples and documentation are available atthe site below.Availability: StrBioLib may be obtained under the terms ofthe GNU LGPL license from http://strbio.sourceforge.net/Contact:JMChandonia@lbl.gov« less

  16. Real-Time Algebraic Derivative Estimations Using a Novel Low-Cost Architecture Based on Reconfigurable Logic

    PubMed Central

    Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos

    2014-01-01

    Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033

  17. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  18. KISS for STRAP: user extensions for a protein alignment editor.

    PubMed

    Gille, Christoph; Lorenzen, Stephan; Michalsky, Elke; Frömmel, Cornelius

    2003-12-12

    The Structural Alignment Program STRAP is a comfortable comprehensive editor and analyzing tool for protein alignments. A wide range of functions related to protein sequences and protein structures are accessible with an intuitive graphical interface. Recent features include mapping of mutations and polymorphisms onto structures and production of high quality figures for publication. Here we address the general problem of multi-purpose program packages to keep up with the rapid development of bioinformatical methods and the demand for specific program functions. STRAP was remade implementing a novel design which aims at Keeping Interfaces in STRAP Simple (KISS). KISS renders STRAP extendable to bio-scientists as well as to bio-informaticians. Scientists with basic computer skills are capable of implementing statistical methods or embedding existing bioinformatical tools in STRAP themselves. For bio-informaticians STRAP may serve as an environment for rapid prototyping and testing of complex algorithms such as automatic alignment algorithms or phylogenetic methods. Further, STRAP can be applied as an interactive web applet to present data related to a particular protein family and as a teaching tool. JAVA-1.4 or higher. http://www.charite.de/bioinf/strap/

  19. StrBioLib: a Java library for development of custom computational structural biology applications.

    PubMed

    Chandonia, John-Marc

    2007-08-01

    StrBioLib is a library of Java classes useful for developing software for computational structural biology research. StrBioLib contains classes to represent and manipulate protein structures, biopolymer sequences, sets of biopolymer sequences, and alignments between biopolymers based on either sequence or structure. Interfaces are provided to interact with commonly used bioinformatics applications, including (psi)-blast, modeller, muscle and Primer3, and tools are provided to read and write many file formats used to represent bioinformatic data. The library includes a general-purpose neural network object with multiple training algorithms, the Hooke and Jeeves non-linear optimization algorithm, and tools for efficient C-style string parsing and formatting. StrBioLib is the basis for the Pred2ary secondary structure prediction program, is used to build the astral compendium for sequence and structure analysis, and has been extensively tested through use in many smaller projects. Examples and documentation are available at the site below. StrBioLib may be obtained under the terms of the GNU LGPL license from http://strbio.sourceforge.net/

  20. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  1. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  2. A review on simple assembly line balancing type-e problem

    NASA Astrophysics Data System (ADS)

    Jusop, M.; Rashid, M. F. F. Ab

    2015-12-01

    Simple assembly line balancing (SALB) is an attempt to assign the tasks to the various workstations along the line so that the precedence relations are satisfied and some performance measure are optimised. Advanced approach of algorithm is necessary to solve large-scale problems as SALB is a class of NP-hard. Only a few studies are focusing on simple assembly line balancing of Type-E problem (SALB-E) since it is a general and complex problem. SALB-E problem is one of SALB problem which consider the number of workstation and the cycle time simultaneously for the purpose of maximising the line efficiency. This paper review previous works that has been done in order to optimise SALB -E problem. Besides that, this paper also reviewed the Genetic Algorithm approach that has been used to optimise SALB-E. From the reviewed that has been done, it was found that none of the existing works are concern on the resource constraint in the SALB-E problem especially on machine and tool constraints. The research on SALB-E will contribute to the improvement of productivity in real industrial application.

  3. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    NASA Astrophysics Data System (ADS)

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  4. Some aspects of SR beamline alignment

    NASA Astrophysics Data System (ADS)

    Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  5. Development of an embedded atmospheric turbulence mitigation engine

    NASA Astrophysics Data System (ADS)

    Paolini, Aaron; Bonnett, James; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Methods to reconstruct pictures from imagery degraded by atmospheric turbulence have been under development for decades. The techniques were initially developed for observing astronomical phenomena from the Earth's surface, but have more recently been modified for ground and air surveillance scenarios. Such applications can impose significant constraints on deployment options because they both increase the computational complexity of the algorithms themselves and often dictate a requirement for low size, weight, and power (SWaP) form factors. Consequently, embedded implementations must be developed that can perform the necessary computations on low-SWaP platforms. Fortunately, there is an emerging class of embedded processors driven by the mobile and ubiquitous computing industries. We have leveraged these processors to develop embedded versions of the core atmospheric correction engine found in our ATCOM software. In this paper, we will present our experience adapting our algorithms for embedded systems on a chip (SoCs), namely the NVIDIA Tegra that couples general-purpose ARM cores with their graphics processing unit (GPU) technology and the Xilinx Zynq which pairs similar ARM cores with their field-programmable gate array (FPGA) fabric.

  6. Generalizing the Arden Syntax to a Common Clinical Application Language.

    PubMed

    Kraus, Stefan

    2018-01-01

    The Arden Syntax for Medical Logic Systems is a standard for encoding and sharing knowledge in the form of Medical Logic Modules (MLMs). Although the Arden Syntax has been designed to meet the requirements of data-driven clinical event monitoring, multiple studies suggest that its language constructs may be suitable for use outside the intended application area and even as a common clinical application language. Such a broader context, however, requires to reconsider some language features. The purpose of this paper is to outline the related modifications on the basis of a generalized Arden Syntax version. The implemented prototype provides multiple adjustments to the standard, such as an option to use programming language constructs without the frame-like MLM structure, a JSON compliant data type system, a means to use MLMs as user-defined functions, and native support of restful web services with integrated data mapping. This study does not aim to promote an actually new language, but a more generic version of the proven Arden Syntax standard. Such an easy-to-understand domain-specific language for common clinical applications might cover multiple additional medical subdomains and serve as a lingua franca for arbitrary clinical algorithms, therefore avoiding a patchwork of multiple all-purpose languages between, and even within, institutions.

  7. A neural network based methodology to predict site-specific spectral acceleration values

    NASA Astrophysics Data System (ADS)

    Kamatchi, P.; Rajasankar, J.; Ramana, G. V.; Nagpal, A. K.

    2010-12-01

    A general neural network based methodology that has the potential to replace the computationally-intensive site-specific seismic analysis of structures is proposed in this paper. The basic framework of the methodology consists of a feed forward back propagation neural network algorithm with one hidden layer to represent the seismic potential of a region and soil amplification effects. The methodology is implemented and verified with parameters corresponding to Delhi city in India. For this purpose, strong ground motions are generated at bedrock level for a chosen site in Delhi due to earthquakes considered to originate from the central seismic gap of the Himalayan belt using necessary geological as well as geotechnical data. Surface level ground motions and corresponding site-specific response spectra are obtained by using a one-dimensional equivalent linear wave propagation model. Spectral acceleration values are considered as a target parameter to verify the performance of the methodology. Numerical studies carried out to validate the proposed methodology show that the errors in predicted spectral acceleration values are within acceptable limits for design purposes. The methodology is general in the sense that it can be applied to other seismically vulnerable regions and also can be updated by including more parameters depending on the state-of-the-art in the subject.

  8. An application of the discrete-time Toda lattice to the progressive algorithm by Lanczos and related problems

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshimasa; Sekido, Hiroto

    2018-04-01

    The finite or the semi-infinite discrete-time Toda lattice has many applications to various areas in applied mathematics. The purpose of this paper is to review how the Toda lattice appears in the Lanczos algorithm through the quotient-difference algorithm and its progressive form (pqd). Then a multistep progressive algorithm (MPA) for solving linear systems is presented. The extended Lanczos parameters can be given not by computing inner products of the extended Lanczos vectors but by using the pqd algorithm with highly relative accuracy in a lower cost. The asymptotic behavior of the pqd algorithm brings us some applications of MPA related to eigenvectors.

  9. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    PubMed Central

    He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151

  10. A generalized algorithm to design finite field normal basis multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1986-01-01

    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.

  11. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  12. Dynamic programming algorithms for biological sequence comparison.

    PubMed

    Pearson, W R; Miller, W

    1992-01-01

    Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, M; Pacaci, P; Mabhouti, H

    Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less

  14. SCALCE: boosting sequence compression algorithms using locally consistent encoding.

    PubMed

    Hach, Faraz; Numanagic, Ibrahim; Alkan, Can; Sahinalp, S Cenk

    2012-12-01

    The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a 'boosting' scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19-when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip provides up to 2.01 times better compression while improving the running time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as well as the read names, in addition to the reads themselves. This is achieved by compressing the quality scores through order-3 Arithmetic Coding (AC) and the read names through gzip through the reordering SCALCE provides on the reads. This way, in comparison with gzip compression of the unordered FASTQ files (including reads, read names and quality scores), SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement in the compression rate and 1.26 improvement in running time. Our algorithm, SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding), is implemented in C++ with both gzip and bzip2 compression options. It also supports multithreading when gzip option is selected, and the pigz binary is available. It is available at http://scalce.sourceforge.net. fhach@cs.sfu.ca or cenk@cs.sfu.ca Supplementary data are available at Bioinformatics online.

  15. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  16. Development of generalized pressure velocity coupling scheme for the analysis of compressible and incompressible combusting flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Wu, S. T.

    1992-01-01

    The objective of this investigation has been to develop an algorithm (or algorithms) for the improvement of the accuracy and efficiency of the computer fluid dynamics (CFD) models to study the fundamental physics of combustion chamber flows, which are necessary ultimately for the design of propulsion systems such as SSME and STME. During this three year study (May 19, 1978 - May 18, 1992), a unique algorithm was developed for all speed flows. This newly developed algorithm basically consists of two pressure-based algorithms (i.e. PISOC and MFICE). This PISOC is a non-iterative scheme and the FICE is an iterative scheme where PISOC has the characteristic advantages on low and high speed flows and the modified FICE has shown its efficiency and accuracy to compute the flows in the transonic region. A new algorithm is born from a combination of these two algorithms. This newly developed algorithm has general application in both time-accurate and steady state flows, and also was tested extensively for various flow conditions, such as turbulent flows, chemically reacting flows, and multiphase flows.

  17. Implementing a self-structuring data learning algorithm

    NASA Astrophysics Data System (ADS)

    Graham, James; Carson, Daniel; Ternovskiy, Igor

    2016-05-01

    In this paper, we elaborate on what we did to implement our self-structuring data learning algorithm. To recap, we are working to develop a data learning algorithm that will eventually be capable of goal driven pattern learning and extrapolation of more complex patterns from less complex ones. At this point we have developed a conceptual framework for the algorithm, but have yet to discuss our actual implementation and the consideration and shortcuts we needed to take to create said implementation. We will elaborate on our initial setup of the algorithm and the scenarios we used to test our early stage algorithm. While we want this to be a general algorithm, it is necessary to start with a simple scenario or two to provide a viable development and testing environment. To that end, our discussion will be geared toward what we include in our initial implementation and why, as well as what concerns we may have. In the future, we expect to be able to apply our algorithm to a more general approach, but to do so within a reasonable time, we needed to pick a place to start.

  18. Development of Parallel Architectures for Sensor Array Processing. Volume 1

    DTIC Science & Technology

    1993-08-01

    required for the DOA estimation [ 1-7]. The Multiple Signal Classification ( MUSIC ) [ 1] and the Estimation of Signal Parameters by Rotational...manifold and the estimated subspace. Although MUSIC is a high resolution algorithm, it has several drawbacks including the fact that complete knowledge of...thoroughly, MUSIC algorithm was selected to develop special purpose hardware for real time computation. Summary of the MUSIC algorithm is as follows

  19. Opto-numerical procedures supporting dynamic lower limbs monitoring and their medical diagnosis

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Kujawińska, Malgorzata; Rapp, Walter; Sitnik, Robert

    2006-01-01

    New optical full-field shape measurement systems allow transient shape capture at rates between 15 and 30 Hz. These frequency rates are enough to monitor controlled movements used e.g. for medical examination purposes. In this paper we present a set of algorithms which may be applied for processing of data gathered by fringe projection method implemented for lower limbs shape measurement. The purpose of presented algorithms is to locate anatomical structures based on the limb shape and its deformation in time. The algorithms are based on local surface curvature calculation and analysis of curvature maps changes during the measurement sequence. One of anatomical structure of high medical interest that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. Therefore the usefulness of the algorithms developed was proven at examples of patella localization and monitoring.

  20. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    PubMed

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  1. General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight

    NASA Astrophysics Data System (ADS)

    Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong

    2016-10-01

    Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526

  2. An algorithm for a selective use of throat swabs in the diagnosis of group A streptococcal pharyngo-tonsillitis in general practice.

    PubMed

    Hoffmann, S

    1992-12-01

    A prospective evaluation was made of an algorithm for a selective use of throat swabs in patients with sore throat in general practice. The algorithm states that a throat swab should be obtained (a) in all children younger than 15 years; (b) in patients aged 15 years or more who have pain on swallowing and at least three of four signs (enlarged or hyperaemic tonsils; exudate; enlarged or tender angular lymph nodes; and a temperature > or = 38 degrees C); and (c) in adults aged 15-44 years with pain on swallowing and one or two of the four signs, but not both cough and coryza. Group A streptococci were found by laboratory culture in 30% of throat swabs from 1783 patients. Using these results as the reference, the algorithm was 95% sensitive and 26% specific, and assigned 80% of the patients to be swabbed. Its positive and negative predictive values in this setting were 36% and 92%, respectively. It is concluded that this algorithm may be useful in general practice.

  3. Prediction of dynamical systems by symbolic regression

    NASA Astrophysics Data System (ADS)

    Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K.; Noack, Bernd R.

    2016-07-01

    We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.

  4. Comparison of Point Cloud Registration Algorithms for Better Result Assessment - Towards AN Open-Source Solution

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2018-05-01

    Terrestrial and airborne laser scanning, photogrammetry and more generally 3D recording techniques are used in a wide range of applications. After recording several individual 3D datasets known in local systems, one of the first crucial processing steps is the registration of these data into a common reference frame. To perform such a 3D transformation, commercial and open source software as well as programs from the academic community are available. Due to some lacks in terms of computation transparency and quality assessment in these solutions, it has been decided to develop an open source algorithm which is presented in this paper. It is dedicated to the simultaneous registration of multiple point clouds as well as their georeferencing. The idea is to use this algorithm as a start point for further implementations, involving the possibility of combining 3D data from different sources. Parallel to the presentation of the global registration methodology which has been employed, the aim of this paper is to confront the results achieved this way with the above-mentioned existing solutions. For this purpose, first results obtained with the proposed algorithm to perform the global registration of ten laser scanning point clouds are presented. An analysis of the quality criteria delivered by two selected software used in this study and a reflexion about these criteria is also performed to complete the comparison of the obtained results. The final aim of this paper is to validate the current efficiency of the proposed method through these comparisons.

  5. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    PubMed Central

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  6. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    NASA Astrophysics Data System (ADS)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  7. Uncertainty analysis of hydrological modeling in a tropical area using different algorithms

    NASA Astrophysics Data System (ADS)

    Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh

    2018-01-01

    Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor <0.56 and R 2>0.91, NSE>0.89, and 0.18

  8. Poster — Thur Eve — 70: Automatic lung bronchial and vessel bifurcations detection algorithm for deformable image registration assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labine, Alexandre; Carrier, Jean-François; Bedwani, Stéphane

    2014-08-15

    Purpose: To investigate an automatic bronchial and vessel bifurcations detection algorithm for deformable image registration (DIR) assessment to improve lung cancer radiation treatment. Methods: 4DCT datasets were acquired and exported to Varian treatment planning system (TPS) EclipseTM for contouring. The lungs TPS contour was used as the prior shape for a segmentation algorithm based on hierarchical surface deformation that identifies the deformed lungs volumes of the 10 breathing phases. Hounsfield unit (HU) threshold filter was applied within the segmented lung volumes to identify blood vessels and airways. Segmented blood vessels and airways were skeletonised using a hierarchical curve-skeleton algorithm basedmore » on a generalized potential field approach. A graph representation of the computed skeleton was generated to assign one of three labels to each node: the termination node, the continuation node or the branching node. Results: 320 ± 51 bifurcations were detected in the right lung of a patient for the 10 breathing phases. The bifurcations were visually analyzed. 92 ± 10 bifurcations were found in the upper half of the lung and 228 ± 45 bifurcations were found in the lower half of the lung. Discrepancies between ten vessel trees were mainly ascribed to large deformation and in regions where the HU varies. Conclusions: We established an automatic method for DIR assessment using the morphological information of the patient anatomy. This approach allows a description of the lung's internal structure movement, which is needed to validate the DIR deformation fields for accurate 4D cancer treatment planning.« less

  9. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).

    PubMed

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  10. Trajectory NG: portable, compressed, general molecular dynamics trajectories.

    PubMed

    Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David

    2011-10-01

    We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.

  11. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia

    NASA Astrophysics Data System (ADS)

    Bunai, Tasya; Rokhmatuloh; Wibowo, Adi

    2018-05-01

    In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.

  12. SU-E-T-371: Evaluating the Convolution Algorithm of a Commercially Available Radiosurgery Irradiator Using a Novel Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cates, J; Drzymala, R

    2015-06-15

    Purpose: The purpose of this study was to develop and use a novel phantom to evaluate the accuracy and usefulness of the Leskell Gamma Plan convolution-based dose calculation algorithm compared with the current TMR10 algorithm. Methods: A novel phantom was designed to fit the Leskell Gamma Knife G Frame which could accommodate various materials in the form of one inch diameter, cylindrical plugs. The plugs were split axially to allow EBT2 film placement. Film measurements were made during two experiments. The first utilized plans generated on a homogeneous acrylic phantom setup using the TMR10 algorithm, with various materials inserted intomore » the phantom during film irradiation to assess the effect on delivered dose due to unplanned heterogeneities upstream in the beam path. The second experiment utilized plans made on CT scans of different heterogeneous setups, with one plan using the TMR10 dose calculation algorithm and the second using the convolution-based algorithm. Materials used to introduce heterogeneities included air, LDPE, polystyrene, Delrin, Teflon, and aluminum. Results: The data shows that, as would be expected, having heterogeneities in the beam path does induce dose delivery error when using the TMR10 algorithm, with the largest errors being due to the heterogeneities with electron densities most different from that of water, i.e. air, Teflon, and aluminum. Additionally, the Convolution algorithm did account for the heterogeneous material and provided a more accurate predicted dose, in extreme cases up to a 7–12% improvement over the TMR10 algorithm. The convolution algorithm expected dose was accurate to within 3% in all cases. Conclusion: This study proves that the convolution algorithm is an improvement over the TMR10 algorithm when heterogeneities are present. More work is needed to determine what the heterogeneity size/volume limits are where this improvement exists, and in what clinical and/or research cases this would be relevant.« less

  13. A General Exponential Framework for Dimensionality Reduction.

    PubMed

    Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan

    2014-02-01

    As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.

  14. Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images

    NASA Astrophysics Data System (ADS)

    LeAnder, Robert; Chowdary, Myneni Sushma; Mokkapati, Swapnasri; Umbaugh, Scott E.

    2008-03-01

    Effective timing and treatment are critical to saving the sight of patients with diabetes. Lack of screening, as well as a shortage of ophthalmologists, help contribute to approximately 8,000 cases per year of people who lose their sight to diabetic retinopathy, the leading cause of new cases of blindness [1] [2]. Timely treatment for diabetic retinopathy prevents severe vision loss in over 50% of eyes tested [1]. Fundus images can provide information for detecting and monitoring eye-related diseases, like diabetic retinopathy, which if detected early, may help prevent vision loss. Damaged blood vessels can indicate the presence of diabetic retinopathy [9]. So, early detection of damaged vessels in retinal images can provide valuable information about the presence of disease, thereby helping to prevent vision loss. Purpose: The purpose of this study was to compare the effectiveness of two blood vessel segmentation algorithms. Methods: Fifteen fundus images from the STARE database were used to develop two algorithms using the CVIPtools software environment. Another set of fifteen images were derived from the first fifteen and contained ophthalmologists' hand-drawn tracings over the retinal vessels. The ophthalmologists' tracings were used as the "gold standard" for perfect segmentation and compared with the segmented images that were output by the two algorithms. Comparisons between the segmented and the hand-drawn images were made using Pratt's Figure of Merit (FOM), Signal-to-Noise Ratio (SNR) and Root Mean Square (RMS) Error. Results: Algorithm 2 has an FOM that is 10% higher than Algorithm 1. Algorithm 2 has a 6%-higher SNR than Algorithm 1. Algorithm 2 has only 1.3% more RMS error than Algorithm 1. Conclusions: Algorithm 1 extracted most of the blood vessels with some missing intersections and bifurcations. Algorithm 2 extracted all the major blood vessels, but eradicated some vessels as well. Algorithm 2 outperformed Algorithm 1 in terms of visual clarity, FOM and SNR. The performances of these algorithms show that they have an appreciable amount of potential in helping ophthalmologists detect the severity of eye-related diseases and prevent vision loss.

  15. A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Taiji, Makoto; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro

    1996-09-01

    We have developed a parallel, pipelined special-purpose computer for N-body simulations, MD-GRAPE (for "GRAvity PipE"). In gravitational N- body simulations, almost all computing time is spent on the calculation of interactions between particles. GRAPE is specialized hardware to calculate these interactions. It is used with a general-purpose front-end computer that performs all calculations other than the force calculation. MD-GRAPE is the first parallel GRAPE that can calculate an arbitrary central force. A force different from a pure 1/r potential is necessary for N-body simulations with periodic boundary conditions using the Ewald or particle-particle/particle-mesh (P^3^M) method. MD-GRAPE accelerates the calculation of particle-particle force for these algorithms. An MD- GRAPE board has four MD chips and its peak performance is 4.2 GFLOPS. On an MD-GRAPE board, a cosmological N-body simulation takes 6O0(N/10^6^)^3/2^ s per step for the Ewald method, where N is the number of particles, and would take 24O(N/10^6^) s per step for the P^3^M method, in a uniform distribution of particles.

  16. A development of intelligent entertainment robot for home life

    NASA Astrophysics Data System (ADS)

    Kim, Cheoltaek; Lee, Ju-Jang

    2005-12-01

    The purpose of this paper was to present the study and design idea for entertainment robot with educational purpose (IRFEE). The robot has been designed for home life considering dependability and interaction. The developed robot has three objectives - 1. Develop autonomous robot, 2. Design robot considering mobility and robustness, 3. Develop robot interface and software considering entertainment and education functionalities. The autonomous navigation was implemented by active vision based SLAM and modified EPF algorithm. The two differential wheels, the pan-tilt were designed mobility and robustness and the exterior was designed considering esthetic element and minimizing interference. The speech and tracking algorithm provided the good interface with human. The image transfer and Internet site connection is needed for service of remote connection and educational purpose.

  17. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.

  18. Investigation of BPF algorithm in cone-beam CT with 2D general trajectories.

    PubMed

    Zou, Jing; Gui, Jianbao; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Xia, Dan

    2012-01-01

    A mathematical derivation was conducted to illustrate that exact 3D image reconstruction could be achieved for z-homogeneous phantoms from data acquired with 2D general trajectories using the back projection filtration (BPF) algorithm. The conclusion was verified by computer simulation and experimental result with a circular scanning trajectory. Furthermore, the effect of the non-uniform degree along z-axis of the phantoms on the accuracy of the 3D reconstruction by BPF algorithm was investigated by numerical simulation with a gradual-phantom and a disk-phantom. The preliminary result showed that the performance of BPF algorithm improved with the z-axis homogeneity of the scanned object.

  19. Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment

    PubMed Central

    Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.

    2015-01-01

    We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700

  20. Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks.

    PubMed

    Wang, Chenguang; Song, Yangqiu; El-Kishky, Ahmed; Roth, Dan; Zhang, Ming; Han, Jiawei

    2015-08-01

    One of the key obstacles in making learning protocols realistic in applications is the need to supervise them, a costly process that often requires hiring domain experts. We consider the framework to use the world knowledge as indirect supervision. World knowledge is general-purpose knowledge, which is not designed for any specific domain. Then the key challenges are how to adapt the world knowledge to domains and how to represent it for learning. In this paper, we provide an example of using world knowledge for domain dependent document clustering. We provide three ways to specify the world knowledge to domains by resolving the ambiguity of the entities and their types, and represent the data with world knowledge as a heterogeneous information network. Then we propose a clustering algorithm that can cluster multiple types and incorporate the sub-type information as constraints. In the experiments, we use two existing knowledge bases as our sources of world knowledge. One is Freebase, which is collaboratively collected knowledge about entities and their organizations. The other is YAGO2, a knowledge base automatically extracted from Wikipedia and maps knowledge to the linguistic knowledge base, Word-Net. Experimental results on two text benchmark datasets (20newsgroups and RCV1) show that incorporating world knowledge as indirect supervision can significantly outperform the state-of-the-art clustering algorithms as well as clustering algorithms enhanced with world knowledge features.

Top