Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong
2010-10-01
Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Parallelization and checkpointing of GPU applications through program transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano-Quinde, Lizandro Damian
2012-01-01
GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solvemore » the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and to develop support for application-level fault tolerance in applications using multiple GPUs. Our techniques reduce the burden of enhancing single-GPU applications to support these features. To achieve our goal, this work designs and implements a framework for enhancing a single-GPU OpenCL application through application transformation.« less
2017-08-01
access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda
GPU: the biggest key processor for AI and parallel processing
NASA Astrophysics Data System (ADS)
Baji, Toru
2017-07-01
Two types of processors exist in the market. One is the conventional CPU and the other is Graphic Processor Unit (GPU). Typical CPU is composed of 1 to 8 cores while GPU has thousands of cores. CPU is good for sequential processing, while GPU is good to accelerate software with heavy parallel executions. GPU was initially dedicated for 3D graphics. However from 2006, when GPU started to apply general-purpose cores, it was noticed that this architecture can be used as a general purpose massive-parallel processor. NVIDIA developed a software framework Compute Unified Device Architecture (CUDA) that make it possible to easily program the GPU for these application. With CUDA, GPU started to be used in workstations and supercomputers widely. Recently two key technologies are highlighted in the industry. The Artificial Intelligence (AI) and Autonomous Driving Cars. AI requires a massive parallel operation to train many-layers of neural networks. With CPU alone, it was impossible to finish the training in a practical time. The latest multi-GPU system with P100 makes it possible to finish the training in a few hours. For the autonomous driving cars, TOPS class of performance is required to implement perception, localization, path planning processing and again SoC with integrated GPU will play a key role there. In this paper, the evolution of the GPU which is one of the biggest commercial devices requiring state-of-the-art fabrication technology will be introduced. Also overview of the GPU demanding key application like the ones described above will be introduced.
Strong scaling of general-purpose molecular dynamics simulations on GPUs
NASA Astrophysics Data System (ADS)
Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.; Lui, Pak; Spiga, Filippo; Millan, Jaime A.; Morse, David C.; Glotzer, Sharon C.
2015-07-01
We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5 ×.
General purpose molecular dynamics simulations fully implemented on graphics processing units
NASA Astrophysics Data System (ADS)
Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.
2008-05-01
Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.
Performance Testing of GPU-Based Approximate Matching Algorithm on Network Traffic
2015-03-01
Defense Department’s use. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I. INTRODUCTION...22 D. GENERATING DIGESTS ............................................................................23 1. Reference...the-shelf GPU Graphical Processing Unit GPGPU General -Purpose Graphic Processing Unit HBSS Host-Based Security System HIPS Host Intrusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Ed F; Nintcheu Fata, Sylvain
2012-01-01
A collocation boundary element code for solving the three-dimensional Laplace equation, publicly available from \\url{http://www.intetec.org}, has been adapted to run on an Nvidia Tesla general purpose graphics processing unit (GPU). Global matrix assembly and LU factorization of the resulting dense matrix were performed on the GPU. Out-of-core techniques were used to solve problems larger than available GPU memory. The code achieved over eight times speedup in matrix assembly and about 56~Gflops/sec in the LU factorization using only 512~Mbytes of GPU memory. Details of the GPU implementation and comparisons with the standard sequential algorithm are included to illustrate the performance ofmore » the GPU code.« less
NASA Astrophysics Data System (ADS)
Liu, Guofeng; Li, Chun
2016-08-01
In this study, we present a practical implementation of prestack Kirchhoff time migration (PSTM) on a general purpose graphic processing unit. First, we consider the three main optimizations of the PSTM GPU code, i.e., designing a configuration based on a reasonable execution, using the texture memory for velocity interpolation, and the application of an intrinsic function in device code. This approach can achieve a speedup of nearly 45 times on a NVIDIA GTX 680 GPU compared with CPU code when a larger imaging space is used, where the PSTM output is a common reflection point that is gathered as I[ nx][ ny][ nh][ nt] in matrix format. However, this method requires more memory space so the limited imaging space cannot fully exploit the GPU sources. To overcome this problem, we designed a PSTM scheme with multi-GPUs for imaging different seismic data on different GPUs using an offset value. This process can achieve the peak speedup of GPU PSTM code and it greatly increases the efficiency of the calculations, but without changing the imaging result.
Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S
2014-03-11
Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.
SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, X; Folkerts, M; Shi, F
Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group andmore » other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.« less
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
NASA Astrophysics Data System (ADS)
Weigel, Martin
2011-09-01
Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.
Impact of memory bottleneck on the performance of graphics processing units
NASA Astrophysics Data System (ADS)
Son, Dong Oh; Choi, Hong Jun; Kim, Jong Myon; Kim, Cheol Hong
2015-12-01
Recent graphics processing units (GPUs) can process general-purpose applications as well as graphics applications with the help of various user-friendly application programming interfaces (APIs) supported by GPU vendors. Unfortunately, utilizing the hardware resource in the GPU efficiently is a challenging problem, since the GPU architecture is totally different to the traditional CPU architecture. To solve this problem, many studies have focused on the techniques for improving the system performance using GPUs. In this work, we analyze the GPU performance varying GPU parameters such as the number of cores and clock frequency. According to our simulations, the GPU performance can be improved by 125.8% and 16.2% on average as the number of cores and clock frequency increase, respectively. However, the performance is saturated when memory bottleneck problems incur due to huge data requests to the memory. The performance of GPUs can be improved as the memory bottleneck is reduced by changing GPU parameters dynamically.
A Survey Of Techniques for Managing and Leveraging Caches in GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
2014-09-01
Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU–GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges ofmore » cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow.« less
NASA Astrophysics Data System (ADS)
González-Vida, Jose M.; Macías, Jorge; Mercado, Aurelio; Ortega, Sergio; Castro, Manuel J.
2017-04-01
Tsunami-HySEA model is used to simulate the Caribbean LANTEX 2013 scenario (LANTEX is the acronym for Large AtlaNtic Tsunami EXercise, which is carried out annually). The numerical simulation of the propagation and inundation phases, is performed with both models but using different mesh resolutions and nested meshes. Some comparisons with the MOST tsunami model available at the University of Puerto Rico (UPR) are made. Both models compare well for propagating tsunami waves in open sea, producing very similar results. In near-shore shallow waters, Tsunami-HySEA should be compared with the inundation version of MOST, since the propagation version of MOST is limited to deeper waters. Regarding the inundation phase, a 1 arc-sec (approximately 30 m) resolution mesh covering all of Puerto Rico, is used, and a three-level nested meshes technique implemented. In the inundation phase, larger differences between model results are observed. Nevertheless, the most striking difference resides in computational time; Tsunami-HySEA is coded using the advantages of GPU architecture, and can produce a 4 h simulation in a 60 arcsec resolution grid for the whole Caribbean Sea in less than 4 min with a single general-purpose GPU and as fast as 11 s with 32 general-purpose GPUs. In the inundation stage with nested meshes, approximately 8 hours of wall clock time is needed for a 2-h simulation in a single GPU (versus more than 2 days for the MOST inundation, running three different parts of the island—West, Center, East—at the same time due to memory limitations in MOST). When domain decomposition techniques are finally implemented by breaking up the computational domain into sub-domains and assigning a GPU to each sub-domain (multi-GPU Tsunami-HySEA version), we show that the wall clock time significantly decreases, allowing high-resolution inundation modelling in very short computational times, reducing, for example, if eight GPUs are used, the wall clock time to around 1 hour. Besides, these computational times are obtained using general-purpose GPU hardware.
Improving Quantum Gate Simulation using a GPU
NASA Astrophysics Data System (ADS)
Gutierrez, Eladio; Romero, Sergio; Trenas, Maria A.; Zapata, Emilio L.
2008-11-01
Due to the increasing computing power of the graphics processing units (GPU), they are becoming more and more popular when solving general purpose algorithms. As the simulation of quantum computers results on a problem with exponential complexity, it is advisable to perform a parallel computation, such as the one provided by the SIMD multiprocessors present in recent GPUs. In this paper, we focus on an important quantum algorithm, the quantum Fourier transform (QTF), in order to evaluate different parallelization strategies on a novel GPU architecture. Our implementation makes use of the new CUDA software/hardware architecture developed recently by NVIDIA.
Samant, Sanjiv S; Xia, Junyi; Muyan-Ozcelik, Pinar; Owens, John D
2008-08-01
The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4 GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5 s was observed for the GPU with image size ranging from 2.0 x 10(6) to 14.2 x 10(6) pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is characterized in terms of time per megapixels per iteration (TPMI) with units of seconds per megapixels per iteration (or spmi). For the demons algorithm, our CPU implementation yielded largely invariant values of TPMI. The mean TPMIs were 0.527 spmi and 0.335 spmi for the single threading and multithreading cases, respectively, with <2% variation over the considered image data range. For GPU computing, we achieved TPMI =0.00916 spmi with 3.7% variation, indicating optimized memory handling under CUDA. The paradigm of GPU based real-time DIR opens up a host of clinical applications for medical imaging.
Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.
Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei
2013-04-01
The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.
Tensor Algebra Library for NVidia Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less
GPU COMPUTING FOR PARTICLE TRACKING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiroshi; Song, Kai; Muriki, Krishna
2011-03-25
This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculationmore » of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.« less
Graphics Processing Units for HEP trigger systems
NASA Astrophysics Data System (ADS)
Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.; Neri, I.; Paolucci, P. S.; Piandani, R.; Pontisso, L.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.
2016-07-01
General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.
2012-02-17
to be solved. Disclaimer: Reference herein to any specific commercial company , product, process, or service by trade name, trademark...data processing rather than data caching and control flow. To make use of this computational power, NVIDIA introduced a general purpose parallel...GPU implementations were run on an Intel Nehalem Xeon E5520 2.26GHz processor with an NVIDIA Tesla C2070 graphics card for varying numbers of
Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni
2011-05-04
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic") for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.
Proton Testing of nVidia GTX 1050 GPU
NASA Technical Reports Server (NTRS)
Wyrwas, E. J.
2017-01-01
Single-Event Effects (SEE) testing was conducted on the nVidia GTX 1050 Graphics Processor Unit (GPU); herein referred to as device under test (DUT). Testing was conducted at Massachusetts General Hospitals (MGH) Francis H. Burr Proton Therapy Center on April 9th, 2017 using 200-MeV protons. This testing trip was purposed to provide a baseline assessment of the radiation susceptibility of the DUT as no previous testing had been conducted on this component.
Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems
Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.
2014-01-01
The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545
CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications.
Lei, Guoqing; Dou, Yong; Wan, Wen; Xia, Fei; Li, Rongchun; Ma, Meng; Zou, Dan
2012-01-01
Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.
Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni
2011-01-01
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a “non-democratic” mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons “vote” independently (“democratic”) for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated. PMID:21572529
Implementation of EAM and FS potentials in HOOMD-blue
NASA Astrophysics Data System (ADS)
Yang, Lin; Zhang, Feng; Travesset, Alex; Wang, Caizhuang; Ho, Kaiming
HOOMD-blue is a general-purpose software to perform classical molecular dynamics simulations entirely on GPUs. We provide full support for EAM and FS type potentials in HOOMD-blue, and report accuracy and efficiency benchmarks, including comparisons with the LAMMPS GPU package. Two problems were selected to test the accuracy: the determination of the glass transition temperature of Cu64.5Zr35.5 alloy using an FS potential and the calculation of pair distribution functions of Ni3Al using an EAM potential. In both cases, the results using HOOMD-blue are indistinguishable from those obtained by the GPU package in LAMMPS within statistical uncertainties. As tests for time efficiency, we benchmark time-steps per second using LAMMPS GPU and HOOMD-blue on one NVIDIA Tesla GPU. Compared to our typical LAMMPS simulations on one CPU cluster node which has 16 CPUs, LAMMPS GPU can be 3-3.5 times faster, and HOOMD-blue can be 4-5.5 times faster. We acknowledge the support from Laboratory Directed Research and Development (LDRD) of Ames Laboratory.
Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi
2011-11-01
Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; McDougal, Matthew; Russell, Sam
2013-01-01
Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.
Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing
NASA Astrophysics Data System (ADS)
Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.
2014-12-01
After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.
CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications
2012-01-01
Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626
Optimization of Selected Remote Sensing Algorithms for Embedded NVIDIA Kepler GPU Architecture
NASA Technical Reports Server (NTRS)
Riha, Lubomir; Le Moigne, Jacqueline; El-Ghazawi, Tarek
2015-01-01
This paper evaluates the potential of embedded Graphic Processing Units in the Nvidias Tegra K1 for onboard processing. The performance is compared to a general purpose multi-core CPU and full fledge GPU accelerator. This study uses two algorithms: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery and Automated Cloud-Cover Assessment (ACCA) Algorithm. Tegra K1 achieved 51 for ACCA algorithm and 20 for the dimension reduction algorithm, as compared to the performance of the high-end 8-core server Intel Xeon CPU with 13.5 times higher power consumption.
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
GPU-based parallel algorithm for blind image restoration using midfrequency-based methods
NASA Astrophysics Data System (ADS)
Xie, Lang; Luo, Yi-han; Bao, Qi-liang
2013-08-01
GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.
Large Scale Document Inversion using a Multi-threaded Computing System
Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won
2018-01-01
Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations. PMID:29861701
Large Scale Document Inversion using a Multi-threaded Computing System.
Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won
2017-06-01
Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; McDougal, Matthew; Russell, Sam
2012-01-01
Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.
GPU Accelerated Vector Median Filter
NASA Technical Reports Server (NTRS)
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU
NASA Astrophysics Data System (ADS)
Lyakh, Dmitry I.
2015-04-01
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).
Online Tracking Algorithms on GPUs for the P̅ANDA Experiment at FAIR
NASA Astrophysics Data System (ADS)
Bianchi, L.; Herten, A.; Ritman, J.; Stockmanns, T.; Adinetz,
2015-12-01
P̅ANDA is a future hadron and nuclear physics experiment at the FAIR facility in construction in Darmstadt, Germany. In contrast to the majority of current experiments, PANDA's strategy for data acquisition is based on event reconstruction from free-streaming data, performed in real time entirely by software algorithms using global detector information. This paper reports the status of the development of algorithms for the reconstruction of charged particle tracks, optimized online data processing applications, using General-Purpose Graphic Processing Units (GPU). Two algorithms for trackfinding, the Triplet Finder and the Circle Hough, are described, and details of their GPU implementations are highlighted. Average track reconstruction times of less than 100 ns are obtained running the Triplet Finder on state-of- the-art GPU cards. In addition, a proof-of-concept system for the dispatch of data to tracking algorithms using Message Queues is presented.
GPU-BSM: A GPU-Based Tool to Map Bisulfite-Treated Reads
Manconi, Andrea; Orro, Alessandro; Manca, Emanuele; Armano, Giuliano; Milanesi, Luciano
2014-01-01
Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads. PMID:24842718
Graphics processing unit based computation for NDE applications
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.
2012-05-01
Advances in parallel processing in recent years are helping to improve the cost of numerical simulation. Breakthroughs in Graphical Processing Unit (GPU) based computation now offer the prospect of further drastic improvements. The introduction of 'compute unified device architecture' (CUDA) by NVIDIA (the global technology company based in Santa Clara, California, USA) has made programming GPUs for general purpose computing accessible to the average programmer. Here we use CUDA to develop parallel finite difference schemes as applicable to two problems of interest to NDE community, namely heat diffusion and elastic wave propagation. The implementations are for two-dimensions. Performance improvement of the GPU implementation against serial CPU implementation is then discussed.
Implementation and optimization of ultrasound signal processing algorithms on mobile GPU
NASA Astrophysics Data System (ADS)
Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong
2014-03-01
A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNR<52.51 dB). The comparable results of CNR were obtained from both processing methods (i.e., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.
Cobalt: A GPU-based correlator and beamformer for LOFAR
NASA Astrophysics Data System (ADS)
Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.
2018-04-01
For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.
An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU
Lyakh, Dmitry I.
2015-01-05
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less
NASA Astrophysics Data System (ADS)
O'Connor, A. S.; Justice, B.; Harris, A. T.
2013-12-01
Graphics Processing Units (GPUs) are high-performance multiple-core processors capable of very high computational speeds and large data throughput. Modern GPUs are inexpensive and widely available commercially. These are general-purpose parallel processors with support for a variety of programming interfaces, including industry standard languages such as C. GPU implementations of algorithms that are well suited for parallel processing can often achieve speedups of several orders of magnitude over optimized CPU codes. Significant improvements in speeds for imagery orthorectification, atmospheric correction, target detection and image transformations like Independent Components Analsyis (ICA) have been achieved using GPU-based implementations. Additional optimizations, when factored in with GPU processing capabilities, can provide 50x - 100x reduction in the time required to process large imagery. Exelis Visual Information Solutions (VIS) has implemented a CUDA based GPU processing frame work for accelerating ENVI and IDL processes that can best take advantage of parallelization. Testing Exelis VIS has performed shows that orthorectification can take as long as two hours with a WorldView1 35,0000 x 35,000 pixel image. With GPU orthorecification, the same orthorectification process takes three minutes. By speeding up image processing, imagery can successfully be used by first responders, scientists making rapid discoveries with near real time data, and provides an operational component to data centers needing to quickly process and disseminate data.
GPU-computing in econophysics and statistical physics
NASA Astrophysics Data System (ADS)
Preis, T.
2011-03-01
A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.
Advantages of GPU technology in DFT calculations of intercalated graphene
NASA Astrophysics Data System (ADS)
Pešić, J.; Gajić, R.
2014-09-01
Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an acceleration of several times compared to standard CPU calculations.
GPU-based Parallel Application Design for Emerging Mobile Devices
NASA Astrophysics Data System (ADS)
Gupta, Kshitij
A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as compute and communication capabilities of mobile devices improve, we analyze energy implications of processing speech recognition locally (on-chip) and offloading it to servers (in-cloud).
Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)
NASA Astrophysics Data System (ADS)
Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.
2016-05-01
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
NASA Astrophysics Data System (ADS)
Srinivasa, K. G.; Shree Devi, B. N.
2017-10-01
String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.
Fast generation of computer-generated hologram by graphics processing unit
NASA Astrophysics Data System (ADS)
Matsuda, Sho; Fujii, Tomohiko; Yamaguchi, Takeshi; Yoshikawa, Hiroshi
2009-02-01
A cylindrical hologram is well known to be viewable in 360 deg. This hologram depends high pixel resolution.Therefore, Computer-Generated Cylindrical Hologram (CGCH) requires huge calculation amount.In our previous research, we used look-up table method for fast calculation with Intel Pentium4 2.8 GHz.It took 480 hours to calculate high resolution CGCH (504,000 x 63,000 pixels and the average number of object points are 27,000).To improve quality of CGCH reconstructed image, fringe pattern requires higher spatial frequency and resolution.Therefore, to increase the calculation speed, we have to change the calculation method. In this paper, to reduce the calculation time of CGCH (912,000 x 108,000 pixels), we employ Graphics Processing Unit (GPU).It took 4,406 hours to calculate high resolution CGCH on Xeon 3.4 GHz.Since GPU has many streaming processors and a parallel processing structure, GPU works as the high performance parallel processor.In addition, GPU gives max performance to 2 dimensional data and streaming data.Recently, GPU can be utilized for the general purpose (GPGPU).For example, NVIDIA's GeForce7 series became a programmable processor with Cg programming language.Next GeForce8 series have CUDA as software development kit made by NVIDIA.Theoretically, calculation ability of GPU is announced as 500 GFLOPS. From the experimental result, we have achieved that 47 times faster calculation compared with our previous work which used CPU.Therefore, CGCH can be generated in 95 hours.So, total time is 110 hours to calculate and print the CGCH.
High performance hybrid functional Petri net simulations of biological pathway models on CUDA.
Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.
Advanced Architectures for Astrophysical Supercomputing
NASA Astrophysics Data System (ADS)
Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.
2010-12-01
Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Roberge, D
Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less
Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer
NASA Technical Reports Server (NTRS)
Godoy, William F.; Liu, Xu
2011-01-01
General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.
Migrating EO/IR sensors to cloud-based infrastructure as service architectures
NASA Astrophysics Data System (ADS)
Berglie, Stephen T.; Webster, Steven; May, Christopher M.
2014-06-01
The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.
GPU-based prompt gamma ray imaging from boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less
TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Suh, T; Yoon, D
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less
CUDA-based high-performance computing of the S-BPF algorithm with no-waiting pipelining
NASA Astrophysics Data System (ADS)
Deng, Lin; Yan, Bin; Chang, Qingmei; Han, Yu; Zhang, Xiang; Xi, Xiaoqi; Li, Lei
2015-10-01
The backprojection-filtration (BPF) algorithm has become a good solution for local reconstruction in cone-beam computed tomography (CBCT). However, the reconstruction speed of BPF is a severe limitation for clinical applications. The selective-backprojection filtration (S-BPF) algorithm is developed to improve the parallel performance of BPF by selective backprojection. Furthermore, the general-purpose graphics processing unit (GP-GPU) is a popular tool for accelerating the reconstruction. Much work has been performed aiming for the optimization of the cone-beam back-projection. As the cone-beam back-projection process becomes faster, the data transportation holds a much bigger time proportion in the reconstruction than before. This paper focuses on minimizing the total time in the reconstruction with the S-BPF algorithm by hiding the data transportation among hard disk, CPU and GPU. And based on the analysis of the S-BPF algorithm, some strategies are implemented: (1) the asynchronous calls are used to overlap the implemention of CPU and GPU, (2) an innovative strategy is applied to obtain the DBP image to hide the transport time effectively, (3) two streams for data transportation and calculation are synchronized by the cudaEvent in the inverse of finite Hilbert transform on GPU. Our main contribution is a smart reconstruction of the S-BPF algorithm with GPU's continuous calculation and no data transportation time cost. a 5123 volume is reconstructed in less than 0.7 second on a single Tesla-based K20 GPU from 182 views projection with 5122 pixel per projection. The time cost of our implementation is about a half of that without the overlap behavior.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
GPUs: An Emerging Platform for General-Purpose Computation
2007-08-01
programming; real-time cinematic quality graphics Peak stream (26) License required (limited time no- cost evaluation program) Commercially...folding.stanford.edu (accessed 30 March 2007). 2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance Computing. ACM/IEEE...accessed 30 March 2007). 8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics Hardware. IEEE Computer Graphics and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, Dmitry I.
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less
Rath, N; Kato, S; Levesque, J P; Mauel, M E; Navratil, G A; Peng, Q
2014-04-01
Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.
Tempest: Accelerated MS/MS database search software for heterogeneous computing platforms
Adamo, Mark E.; Gerber, Scott A.
2017-01-01
MS/MS database search algorithms derive a set of candidate peptide sequences from in-silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU generates peptide candidates that are asynchronously sent to a discrete GPU to be scored against experimental spectra in parallel (Milloy et al., 2012). The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. PMID:27603022
NASA Astrophysics Data System (ADS)
Schultz, A.
2010-12-01
3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
NASA Astrophysics Data System (ADS)
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
GPU-accelerated computation of electron transfer.
Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco
2012-11-05
Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.
GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method
NASA Astrophysics Data System (ADS)
Seen, Wo Mei; Gobithaasan, R. U.; Miura, Kenjiro T.
2014-07-01
There is a significant reduction of processing time and speedup of performance in computer graphics with the emergence of Graphic Processing Units (GPUs). GPUs have been developed to surpass Central Processing Unit (CPU) in terms of performance and processing speed. This evolution has opened up a new area in computing and researches where highly parallel GPU has been used for non-graphical algorithms. Physical or phenomenal simulations and modelling can be accelerated through General Purpose Graphic Processing Units (GPGPU) and Compute Unified Device Architecture (CUDA) implementations. These phenomena can be represented with mathematical models in the form of Ordinary Differential Equations (ODEs) which encompasses the gist of change rate between independent and dependent variables. ODEs are numerically integrated over time in order to simulate these behaviours. The classical Runge-Kutta (RK) scheme is the common method used to numerically solve ODEs. The Runge Kutta Fehlberg (RKF) scheme has been specially developed to provide an estimate of the principal local truncation error at each step, known as embedding estimate technique. This paper delves into the implementation of RKF scheme for GPU devices and compares its result with Dorman Prince method. A pseudo code is developed to show the implementation in detail. Hence, practitioners will be able to understand the data allocation in GPU, formation of RKF kernels and the flow of data to/from GPU-CPU upon RKF kernel evaluation. The pseudo code is then written in C Language and two ODE models are executed to show the achievable speedup as compared to CPU implementation. The accuracy and efficiency of the proposed implementation method is discussed in the final section of this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y; Mazur, T; Green, O
Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using amore » homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification.« less
Multi-GPU implementation of a VMAT treatment plan optimization algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhen, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Folkerts, Michael; Tan, Jun
Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform tomore » solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is then used to validate the authors’ method. The authors also compare their multi-GPU implementation with three different single GPU implementation strategies, i.e., truncating DDC matrix (S1), repeatedly transferring DDC matrix between CPU and GPU (S2), and porting computations involving DDC matrix to CPU (S3), in terms of both plan quality and computational efficiency. Two more H and N patient cases and three prostate cases are used to demonstrate the advantages of the authors’ method. Results: The authors’ multi-GPU implementation can finish the optimization process within ∼1 min for the H and N patient case. S1 leads to an inferior plan quality although its total time was 10 s shorter than the multi-GPU implementation due to the reduced matrix size. S2 and S3 yield the same plan quality as the multi-GPU implementation but take ∼4 and ∼6 min, respectively. High computational efficiency was consistently achieved for the other five patient cases tested, with VMAT plans of clinically acceptable quality obtained within 23–46 s. Conversely, to obtain clinically comparable or acceptable plans for all six of these VMAT cases that the authors have tested in this paper, the optimization time needed in a commercial TPS system on CPU was found to be in an order of several minutes. Conclusions: The results demonstrate that the multi-GPU implementation of the authors’ column-generation-based VMAT optimization can handle the large-scale VMAT optimization problem efficiently without sacrificing plan quality. The authors’ study may serve as an example to shed some light on other large-scale medical physics problems that require multi-GPU techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Southern Medical University, Guangzhou, Guangdong; Tian, Z
Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subjectmore » to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.« less
Analysis of impact of general-purpose graphics processor units in supersonic flow modeling
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.
2017-06-01
Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
High performance MRI simulations of motion on multi-GPU systems.
Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H
2014-07-04
MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications.
Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER
NASA Astrophysics Data System (ADS)
Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena
2015-11-01
Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.
Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
Tian, Zhen; Peng, Fei; Folkerts, Michael; Tan, Jun; Jia, Xun; Jiang, Steve B
2015-06-01
Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU's relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors' group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors' method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H&N) cancer case is then used to validate the authors' method. The authors also compare their multi-GPU implementation with three different single GPU implementation strategies, i.e., truncating DDC matrix (S1), repeatedly transferring DDC matrix between CPU and GPU (S2), and porting computations involving DDC matrix to CPU (S3), in terms of both plan quality and computational efficiency. Two more H&N patient cases and three prostate cases are used to demonstrate the advantages of the authors' method. The authors' multi-GPU implementation can finish the optimization process within ∼ 1 min for the H&N patient case. S1 leads to an inferior plan quality although its total time was 10 s shorter than the multi-GPU implementation due to the reduced matrix size. S2 and S3 yield the same plan quality as the multi-GPU implementation but take ∼4 and ∼6 min, respectively. High computational efficiency was consistently achieved for the other five patient cases tested, with VMAT plans of clinically acceptable quality obtained within 23-46 s. Conversely, to obtain clinically comparable or acceptable plans for all six of these VMAT cases that the authors have tested in this paper, the optimization time needed in a commercial TPS system on CPU was found to be in an order of several minutes. The results demonstrate that the multi-GPU implementation of the authors' column-generation-based VMAT optimization can handle the large-scale VMAT optimization problem efficiently without sacrificing plan quality. The authors' study may serve as an example to shed some light on other large-scale medical physics problems that require multi-GPU techniques.
Gpufit: An open-source toolkit for GPU-accelerated curve fitting.
Przybylski, Adrian; Thiel, Björn; Keller-Findeisen, Jan; Stock, Bernd; Bates, Mark
2017-11-16
We present a general purpose, open-source software library for estimation of non-linear parameters by the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a Graphics Processing Unit (GPU) and executes computations in parallel, resulting in a significant gain in performance. We measured a speed increase of up to 42 times when comparing Gpufit with an identical CPU-based algorithm, with no loss of precision or accuracy. Gpufit is designed such that it is easily incorporated into existing applications or adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab, ensure that Gpufit is accessible from most programming environments. The full source code is published as an open source software repository, making its function transparent to the user and facilitating future improvements and extensions. As a demonstration, we used Gpufit to accelerate an existing scientific image analysis package, yielding significantly improved processing times for super-resolution fluorescence microscopy datasets.
Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.
Adamo, Mark E; Gerber, Scott A
2016-09-07
MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection
Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.
Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
Hallock, Michael J.; Stone, John E.; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida
2014-01-01
Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli. Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems. PMID:24882911
Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida
2014-05-01
Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.
Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations
NASA Astrophysics Data System (ADS)
Hause, Benjamin; Parker, Scott
2012-10-01
We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the GPU accelerator compiler directives. We have implemented the GPU acceleration on a Core I7 gaming PC with a NVIDIA GTX 580 GPU. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. Optimization strategies and comparisons between DIRAC and the gaming PC will be presented. We will also discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.
Heterogeneous real-time computing in radio astronomy
NASA Astrophysics Data System (ADS)
Ford, John M.; Demorest, Paul; Ransom, Scott
2010-07-01
Modern computer architectures suited for general purpose computing are often not the best choice for either I/O-bound or compute-bound problems. Sometimes the best choice is not to choose a single architecture, but to take advantage of the best characteristics of different computer architectures to solve your problems. This paper examines the tradeoffs between using computer systems based on the ubiquitous X86 Central Processing Units (CPU's), Field Programmable Gate Array (FPGA) based signal processors, and Graphical Processing Units (GPU's). We will show how a heterogeneous system can be produced that blends the best of each of these technologies into a real-time signal processing system. FPGA's tightly coupled to analog-to-digital converters connect the instrument to the telescope and supply the first level of computing to the system. These FPGA's are coupled to other FPGA's to continue to provide highly efficient processing power. Data is then packaged up and shipped over fast networks to a cluster of general purpose computers equipped with GPU's, which are used for floating-point intensive computation. Finally, the data is handled by the CPU and written to disk, or further processed. Each of the elements in the system has been chosen for its specific characteristics and the role it can play in creating a system that does the most for the least, in terms of power, space, and money.
GPU-based prompt gamma ray imaging from boron neutron capture therapy.
Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae
2015-01-01
The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.
A survey of GPU-based medical image computing techniques
Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming
2012-01-01
Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080
High performance MRI simulations of motion on multi-GPU systems
2014-01-01
Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications. PMID:24996972
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo
2014-01-01
The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072
Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N
2012-11-13
The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.
2014-05-01
fusion, space and astrophysical plasmas, but still the general picture can be presented quite well with the fluid approach [6, 7]. The microscopic...purpose computing CPU for algorithms where processing of large blocks of data is done in parallel. The reason for that is the GPU’s highly effective...parallel structure. Most of the image and video processing computations involve heavy matrix and vector op- erations over large amounts of data and
SU-E-T-395: Multi-GPU-Based VMAT Treatment Plan Optimization Using a Column-Generation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Jia, X
Purpose: GPU has been employed to speed up VMAT optimizations from hours to minutes. However, its limited memory capacity makes it difficult to handle cases with a huge dose-deposition-coefficient (DDC) matrix, e.g. those with a large target size, multiple arcs, small beam angle intervals and/or small beamlet size. We propose multi-GPU-based VMAT optimization to solve this memory issue to make GPU-based VMAT more practical for clinical use. Methods: Our column-generation-based method generates apertures sequentially by iteratively searching for an optimal feasible aperture (referred as pricing problem, PP) and optimizing aperture intensities (referred as master problem, MP). The PP requires accessmore » to the large DDC matrix, which is implemented on a multi-GPU system. Each GPU stores a DDC sub-matrix corresponding to one fraction of beam angles and is only responsible for calculation related to those angles. Broadcast and parallel reduction schemes are adopted for inter-GPU data transfer. MP is a relatively small-scale problem and is implemented on one GPU. One headand- neck cancer case was used for test. Three different strategies for VMAT optimization on single GPU were also implemented for comparison: (S1) truncating DDC matrix to ignore its small value entries for optimization; (S2) transferring DDC matrix part by part to GPU during optimizations whenever needed; (S3) moving DDC matrix related calculation onto CPU. Results: Our multi-GPU-based implementation reaches a good plan within 1 minute. Although S1 was 10 seconds faster than our method, the obtained plan quality is worse. Both S2 and S3 handle the full DDC matrix and hence yield the same plan as in our method. However, the computation time is longer, namely 4 minutes and 30 minutes, respectively. Conclusion: Our multi-GPU-based VMAT optimization can effectively solve the limited memory issue with good plan quality and high efficiency, making GPUbased ultra-fast VMAT planning practical for real clinical use.« less
Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George
2014-01-01
Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHERRT achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7–1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9–13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500–800 s. Conclusions: ARCHERRT was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms. PMID:24989378
Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste
2013-03-01
Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupledmore » cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.« less
Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing
NASA Astrophysics Data System (ADS)
Hewener, Holger J.; Tretbar, Steffen H.
Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.
Graphical processors for HEP trigger systems
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-02-01
General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.
Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters
NASA Astrophysics Data System (ADS)
Fluke, Christopher J.; Barnes, David G.; Barsdell, Benjamin R.; Hassan, Amr H.
2011-01-01
General-purpose computing on graphics processing units (GPGPU) is dramatically changing the landscape of high performance computing in astronomy. In this paper, we identify and investigate several key decision areas, with a goal of simplifying the early adoption of GPGPU in astronomy. We consider the merits of OpenCL as an open standard in order to reduce risks associated with coding in a native, vendor-specific programming environment, and present a GPU programming philosophy based on using brute force solutions. We assert that effective use of new GPU-based supercomputing facilities will require a change in approach from astronomers. This will likely include improved programming training, an increased need for software development best practice through the use of profiling and related optimisation tools, and a greater reliance on third-party code libraries. As with any new technology, those willing to take the risks and make the investment of time and effort to become early adopters of GPGPU in astronomy, stand to reap great benefits.
NASA Astrophysics Data System (ADS)
Laracuente, Nicholas; Grossman, Carl
2013-03-01
We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College
Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo
2014-01-01
Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957
Bin-Hash Indexing: A Parallel Method for Fast Query Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, Edward W; Gosink, Luke J.; Wu, Kesheng
2008-06-27
This paper presents a new parallel indexing data structure for answering queries. The index, called Bin-Hash, offers extremely high levels of concurrency, and is therefore well-suited for the emerging commodity of parallel processors, such as multi-cores, cell processors, and general purpose graphics processing units (GPU). The Bin-Hash approach first bins the base data, and then partitions and separately stores the values in each bin as a perfect spatial hash table. To answer a query, we first determine whether or not a record satisfies the query conditions based on the bin boundaries. For the bins with records that can not bemore » resolved, we examine the spatial hash tables. The procedures for examining the bin numbers and the spatial hash tables offer the maximum possible level of concurrency; all records are able to be evaluated by our procedure independently in parallel. Additionally, our Bin-Hash procedures access much smaller amounts of data than similar parallel methods, such as the projection index. This smaller data footprint is critical for certain parallel processors, like GPUs, where memory resources are limited. To demonstrate the effectiveness of Bin-Hash, we implement it on a GPU using the data-parallel programming language CUDA. The concurrency offered by the Bin-Hash index allows us to fully utilize the GPU's massive parallelism in our work; over 12,000 records can be simultaneously evaluated at any one time. We show that our new query processing method is an order of magnitude faster than current state-of-the-art CPU-based indexing technologies. Additionally, we compare our performance to existing GPU-based projection index strategies.« less
Real-time traffic sign recognition based on a general purpose GPU and deep-learning.
Lim, Kwangyong; Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea).
SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, K; Chen, D. Z; Hu, X. S
Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this proceduremore » into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF-1217906, and also in part by a research contract from the Sandia National Laboratories.« less
A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors
Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun
2011-01-01
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116
A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.
Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun
2011-01-01
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.
Cheng, Chun-Pei; Lan, Kuo-Lun; Liu, Wen-Chun; Chang, Ting-Tsung; Tseng, Vincent S
2016-12-01
Hepatitis B viral (HBV) infection is strongly associated with an increased risk of liver diseases like cirrhosis or hepatocellular carcinoma (HCC). Many lines of evidence suggest that deletions occurring in HBV genomic DNA are highly associated with the activity of HBV via the interplay between aberrant viral proteins release and human immune system. Deletions finding on the HBV whole genome sequences is thus a very important issue though there exist underlying the challenges in mining such big and complex biological data. Although some next generation sequencing (NGS) tools are recently designed for identifying structural variations such as insertions or deletions, their validity is generally committed to human sequences study. This design may not be suitable for viruses due to different species. We propose a graphics processing unit (GPU)-based data mining method called DeF-GPU to efficiently and precisely identify HBV deletions from large NGS data, which generally contain millions of reads. To fit the single instruction multiple data instructions, sequencing reads are referred to as multiple data and the deletion finding procedure is referred to as a single instruction. We use Compute Unified Device Architecture (CUDA) to parallelize the procedures, and further validate DeF-GPU on 5 synthetic and 1 real datasets. Our results suggest that DeF-GPU outperforms the existing commonly-used method Pindel and is able to exactly identify the deletions of our ground truth in few seconds. The source code and other related materials are available at https://sourceforge.net/projects/defgpu/. Copyright © 2016 Elsevier Inc. All rights reserved.
Transportable GPU (General Processor Units) chip set technology for standard computer architectures
NASA Astrophysics Data System (ADS)
Fosdick, R. E.; Denison, H. C.
1982-11-01
The USAFR-developed GPU Chip Set has been utilized by Tracor to implement both USAF and Navy Standard 16-Bit Airborne Computer Architectures. Both configurations are currently being delivered into DOD full-scale development programs. Leadless Hermetic Chip Carrier packaging has facilitated implementation of both architectures on single 41/2 x 5 substrates. The CMOS and CMOS/SOS implementations of the GPU Chip Set have allowed both CPU implementations to use less than 3 watts of power each. Recent efforts by Tracor for USAF have included the definition of a next-generation GPU Chip Set that will retain the application-proven architecture of the current chip set while offering the added cost advantages of transportability across ISO-CMOS and CMOS/SOS processes and across numerous semiconductor manufacturers using a newly-defined set of common design rules. The Enhanced GPU Chip Set will increase speed by an approximate factor of 3 while significantly reducing chip counts and costs of standard CPU implementations.
GPU computing with Kaczmarz’s and other iterative algorithms for linear systems
Elble, Joseph M.; Sahinidis, Nikolaos V.; Vouzis, Panagiotis
2009-01-01
The graphics processing unit (GPU) is used to solve large linear systems derived from partial differential equations. The differential equations studied are strongly convection-dominated, of various sizes, and common to many fields, including computational fluid dynamics, heat transfer, and structural mechanics. The paper presents comparisons between GPU and CPU implementations of several well-known iterative methods, including Kaczmarz’s, Cimmino’s, component averaging, conjugate gradient normal residual (CGNR), symmetric successive overrelaxation-preconditioned conjugate gradient, and conjugate-gradient-accelerated component-averaged row projections (CARP-CG). Computations are preformed with dense as well as general banded systems. The results demonstrate that our GPU implementation outperforms CPU implementations of these algorithms, as well as previously studied parallel implementations on Linux clusters and shared memory systems. While the CGNR method had begun to fall out of favor for solving such problems, for the problems studied in this paper, the CGNR method implemented on the GPU performed better than the other methods, including a cluster implementation of the CARP-CG method. PMID:20526446
SU-E-T-423: Fast Photon Convolution Calculation with a 3D-Ideal Kernel On the GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, S; Sato, M; Tachibana, H
Purpose: The calculation time is a trade-off for improving the accuracy of convolution dose calculation with fine calculation spacing of the KERMA kernel. We investigated to accelerate the convolution calculation using an ideal kernel on the Graphic Processing Units (GPU). Methods: The calculation was performed on the AMD graphics hardware of Dual FirePro D700 and our algorithm was implemented using the Aparapi that convert Java bytecode to OpenCL. The process of dose calculation was separated with the TERMA and KERMA steps. The dose deposited at the coordinate (x, y, z) was determined in the process. In the dose calculation runningmore » on the central processing unit (CPU) of Intel Xeon E5, the calculation loops were performed for all calculation points. On the GPU computation, all of the calculation processes for the points were sent to the GPU and the multi-thread computation was done. In this study, the dose calculation was performed in a water equivalent homogeneous phantom with 150{sup 3} voxels (2 mm calculation grid) and the calculation speed on the GPU to that on the CPU and the accuracy of PDD were compared. Results: The calculation time for the GPU and the CPU were 3.3 sec and 4.4 hour, respectively. The calculation speed for the GPU was 4800 times faster than that for the CPU. The PDD curve for the GPU was perfectly matched to that for the CPU. Conclusion: The convolution calculation with the ideal kernel on the GPU was clinically acceptable for time and may be more accurate in an inhomogeneous region. Intensity modulated arc therapy needs dose calculations for different gantry angles at many control points. Thus, it would be more practical that the kernel uses a coarse spacing technique if the calculation is faster while keeping the similar accuracy to a current treatment planning system.« less
NASA Astrophysics Data System (ADS)
Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Borisov, Semyon P.; Shershnev, Anton A.
2017-10-01
In the present work a computer code RCFS for numerical simulation of chemically reacting compressible flows on hybrid CPU/GPU supercomputers is developed. It solves 3D unsteady Euler equations for multispecies chemically reacting flows in general curvilinear coordinates using shock-capturing TVD schemes. Time advancement is carried out using the explicit Runge-Kutta TVD schemes. Program implementation uses CUDA application programming interface to perform GPU computations. Data between GPUs is distributed via domain decomposition technique. The developed code is verified on the number of test cases including supersonic flow over a cylinder.
Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures
NASA Astrophysics Data System (ADS)
Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna
2010-09-01
Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.
Rapid earthquake detection through GPU-Based template matching
NASA Astrophysics Data System (ADS)
Mu, Dawei; Lee, En-Jui; Chen, Po
2017-12-01
The template-matching algorithm (TMA) has been widely adopted for improving the reliability of earthquake detection. The TMA is based on calculating the normalized cross-correlation coefficient (NCC) between a collection of selected template waveforms and the continuous waveform recordings of seismic instruments. In realistic applications, the computational cost of the TMA is much higher than that of traditional techniques. In this study, we provide an analysis of the TMA and show how the GPU architecture provides an almost ideal environment for accelerating the TMA and NCC-based pattern recognition algorithms in general. So far, our best-performing GPU code has achieved a speedup factor of more than 800 with respect to a common sequential CPU code. We demonstrate the performance of our GPU code using seismic waveform recordings from the ML 6.6 Meinong earthquake sequence in Taiwan.
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; Russell, Samuel S.
2012-01-01
Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning
Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea). PMID:28264011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Lin; Du, Xining; Liu, Tianyu
Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER{sub RT} is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER{sub RT}. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improvemore » the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER{sub RT} and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER{sub RT} agree well with DOSXYZnrc. For clinical cases, results from ARCHER{sub RT} are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHER{sub RT} achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7–1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9–13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500–800 s. Conclusions: ARCHER{sub RT} was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms.« less
Parallel Computer System for 3D Visualization Stereo on GPU
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Zori, Sergii A.
2018-03-01
This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.
High-throughput Bayesian Network Learning using Heterogeneous Multicore Computers
Linderman, Michael D.; Athalye, Vivek; Meng, Teresa H.; Asadi, Narges Bani; Bruggner, Robert; Nolan, Garry P.
2017-01-01
Aberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20–50 nodes). In this paper, we present a novel graphics processing unit (GPU)-accelerated implementation of a Monte Carlo Markov Chain-based algorithm for learning BNs that is up to 7.5-fold faster than current general-purpose processor (GPP)-based implementations. The GPU-based implementation is just one of several implementations within the larger application, each optimized for a different input or machine configuration. We describe the methodology we use to build an extensible application, assembled from these variants, that can target a broad range of heterogeneous systems, e.g., GPUs, multicore GPPs. Specifically we show how we use the Merge programming model to efficiently integrate, test and intelligently select among the different potential implementations. PMID:28819655
A Programming Framework for Scientific Applications on CPU-GPU Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, John
2013-03-24
At a high level, my research interests center around designing, programming, and evaluating computer systems that use new approaches to solve interesting problems. The rapid change of technology allows a variety of different architectural approaches to computationally difficult problems, and a constantly shifting set of constraints and trends makes the solutions to these problems both challenging and interesting. One of the most important recent trends in computing has been a move to commodity parallel architectures. This sea change is motivated by the industry’s inability to continue to profitably increase performance on a single processor and instead to move to multiplemore » parallel processors. In the period of review, my most significant work has been leading a research group looking at the use of the graphics processing unit (GPU) as a general-purpose processor. GPUs can potentially deliver superior performance on a broad range of problems than their CPU counterparts, but effectively mapping complex applications to a parallel programming model with an emerging programming environment is a significant and important research problem.« less
Graphics processing units in bioinformatics, computational biology and systems biology.
Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela
2017-09-01
Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.
TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisniega, A; Zbijewski, W; Stayman, J
Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced formore » additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain trauma imaging at the point of care in sports and military applications. Research grant from Carestream Health. JY is an employee of Carestream Health.« less
Viscoelastic Finite Difference Modeling Using Graphics Processing Units
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.
2014-12-01
Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size and the slow memory transfers are the limiting factors of our GPU implementation. Those results show the benefits of using GPUs instead of CPUs for time based finite-difference seismic simulations. The reductions in computation time and in hardware costs are significant and open the door for new approaches in seismic inversion.
CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.
Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan
2017-06-24
The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .
Rubus: A compiler for seamless and extensible parallelism.
Adnan, Muhammad; Aslam, Faisal; Nawaz, Zubair; Sarwar, Syed Mansoor
2017-01-01
Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer's expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program.
Rubus: A compiler for seamless and extensible parallelism
Adnan, Muhammad; Aslam, Faisal; Sarwar, Syed Mansoor
2017-01-01
Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer’s expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program. PMID:29211758
Data Parallel Bin-Based Indexing for Answering Queries on Multi-Core Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosink, Luke; Wu, Kesheng; Bethel, E. Wes
2009-06-02
The multi-core trend in CPUs and general purpose graphics processing units (GPUs) offers new opportunities for the database community. The increase of cores at exponential rates is likely to affect virtually every server and client in the coming decade, and presents database management systems with a huge, compelling disruption that will radically change how processing is done. This paper presents a new parallel indexing data structure for answering queries that takes full advantage of the increasing thread-level parallelism emerging in multi-core architectures. In our approach, our Data Parallel Bin-based Index Strategy (DP-BIS) first bins the base data, and then partitionsmore » and stores the values in each bin as a separate, bin-based data cluster. In answering a query, the procedures for examining the bin numbers and the bin-based data clusters offer the maximum possible level of concurrency; each record is evaluated by a single thread and all threads are processed simultaneously in parallel. We implement and demonstrate the effectiveness of DP-BIS on two multi-core architectures: a multi-core CPU and a GPU. The concurrency afforded by DP-BIS allows us to fully utilize the thread-level parallelism provided by each architecture--for example, our GPU-based DP-BIS implementation simultaneously evaluates over 12,000 records with an equivalent number of concurrently executing threads. In comparing DP-BIS's performance across these architectures, we show that the GPU-based DP-BIS implementation requires significantly less computation time to answer a query than the CPU-based implementation. We also demonstrate in our analysis that DP-BIS provides better overall performance than the commonly utilized CPU and GPU-based projection index. Finally, due to data encoding, we show that DP-BIS accesses significantly smaller amounts of data than index strategies that operate solely on a column's base data; this smaller data footprint is critical for parallel processors that possess limited memory resources (e.g., GPUs).« less
High-throughput sequence alignment using Graphics Processing Units
Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh
2007-01-01
Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356
Use of GPUs in Trigger Systems
NASA Astrophysics Data System (ADS)
Lamanna, Gianluca
In recent years the interest for using graphics processor (GPU) in general purpose high performance computing is constantly rising. In this paper we discuss the possible use of GPUs to construct a fast and effective real time trigger system, both in software and hardware levels. In particular, we study the integration of such a system in the NA62 trigger. The first application of GPUs for rings pattern recognition in the RICH will be presented. The results obtained show that there are not showstoppers in trigger systems with relatively low latency. Thanks to the use of off-the-shelf technology, in continous development for purposes related to video game and image processing market, the architecture described would be easily exported to other experiments, to build a versatile and fully customizable online selection.
High Performance Computing of Meshless Time Domain Method on Multi-GPU Cluster
NASA Astrophysics Data System (ADS)
Ikuno, Soichiro; Nakata, Susumu; Hirokawa, Yuta; Itoh, Taku
2015-01-01
High performance computing of Meshless Time Domain Method (MTDM) on multi-GPU using the supercomputer HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences) at University of Tsukuba is investigated. Generally, the finite difference time domain (FDTD) method is adopted for the numerical simulation of the electromagnetic wave propagation phenomena. However, the numerical domain must be divided into rectangle meshes, and it is difficult to adopt the problem in a complexed domain to the method. On the other hand, MTDM can be easily adept to the problem because MTDM does not requires meshes. In the present study, we implement MTDM on multi-GPU cluster to speedup the method, and numerically investigate the performance of the method on multi-GPU cluster. To reduce the computation time, the communication time between the decomposed domain is hided below the perfect matched layer (PML) calculation procedure. The results of computation show that speedup of MTDM on 128 GPUs is 173 times faster than that of single CPU calculation.
SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, M; University of California, San Diego, La Jolla, CA; Graves, Y
Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
Caffe con Troll: Shallow Ideas to Speed Up Deep Learning
Hadjis, Stefan; Abuzaid, Firas; Zhang, Ce; Ré, Christopher
2016-01-01
We present Caffe con Troll (CcT), a fully compatible end-to-end version of the popular framework Caffe with rebuilt internals. We built CcT to examine the performance characteristics of training and deploying general-purpose convolutional neural networks across different hardware architectures. We find that, by employing standard batching optimizations for CPU training, we achieve a 4.5× throughput improvement over Caffe on popular networks like CaffeNet. Moreover, with these improvements, the end-to-end training time for CNNs is directly proportional to the FLOPS delivered by the CPU, which enables us to efficiently train hybrid CPU-GPU systems for CNNs. PMID:27314106
DspaceOgre 3D Graphics Visualization Tool
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.
2011-01-01
This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.
Caffe con Troll: Shallow Ideas to Speed Up Deep Learning.
Hadjis, Stefan; Abuzaid, Firas; Zhang, Ce; Ré, Christopher
2015-01-01
We present Caffe con Troll (CcT), a fully compatible end-to-end version of the popular framework Caffe with rebuilt internals. We built CcT to examine the performance characteristics of training and deploying general-purpose convolutional neural networks across different hardware architectures. We find that, by employing standard batching optimizations for CPU training, we achieve a 4.5× throughput improvement over Caffe on popular networks like CaffeNet. Moreover, with these improvements, the end-to-end training time for CNNs is directly proportional to the FLOPS delivered by the CPU, which enables us to efficiently train hybrid CPU-GPU systems for CNNs.
PEITH(Θ): perfecting experiments with information theory in Python with GPU support.
Dony, Leander; Mackerodt, Jonas; Ward, Scott; Filippi, Sarah; Stumpf, Michael P H; Liepe, Juliane
2018-04-01
Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. https://github.com/MichaelPHStumpf/Peitho. m.stumpf@imperial.ac.uk or juliane.liepe@mpibpc.mpg.de.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, Andreu; Badano, Aldo
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less
Graphics Processors in HEP Low-Level Trigger Systems
NASA Astrophysics Data System (ADS)
Ammendola, Roberto; Biagioni, Andrea; Chiozzi, Stefano; Cotta Ramusino, Angelo; Cretaro, Paolo; Di Lorenzo, Stefano; Fantechi, Riccardo; Fiorini, Massimiliano; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Neri, Ilaria; Paolucci, Pier Stanislao; Pastorelli, Elena; Piandani, Roberto; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Vicini, Piero
2016-11-01
Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.
NASA Astrophysics Data System (ADS)
Chung, Shin Kee; Wen, Linqing; Blair, David; Cannon, Kipp; Datta, Amitava
2010-07-01
We report a novel application of a graphics processing unit (GPU) for the purpose of accelerating the search pipelines for gravitational waves from coalescing binaries of compact objects. A speed-up of 16-fold in total has been achieved with an NVIDIA GeForce 8800 Ultra GPU card compared with one core of a 2.5 GHz Intel Q9300 central processing unit (CPU). We show that substantial improvements are possible and discuss the reduction in CPU count required for the detection of inspiral sources afforded by the use of GPUs.
Hyperspectral processing in graphical processing units
NASA Astrophysics Data System (ADS)
Winter, Michael E.; Winter, Edwin M.
2011-06-01
With the advent of the commercial 3D video card in the mid 1990s, we have seen an order of magnitude performance increase with each generation of new video cards. While these cards were designed primarily for visualization and video games, it became apparent after a short while that they could be used for scientific purposes. These Graphical Processing Units (GPUs) are rapidly being incorporated into data processing tasks usually reserved for general purpose computers. It has been found that many image processing problems scale well to modern GPU systems. We have implemented four popular hyperspectral processing algorithms (N-FINDR, linear unmixing, Principal Components, and the RX anomaly detection algorithm). These algorithms show an across the board speedup of at least a factor of 10, with some special cases showing extreme speedups of a hundred times or more.
NASA Astrophysics Data System (ADS)
Fehr, M.; Navarro, V.; Martin, L.; Fletcher, E.
2013-08-01
Space Situational Awareness[8] (SSA) is defined as the comprehensive knowledge, understanding and maintained awareness of the population of space objects, the space environment and existing threats and risks. As ESA's SSA Conjunction Prediction Service (CPS) requires the repetitive application of a processing algorithm against a data set of man-made space objects, it is crucial to exploit the highly parallelizable nature of this problem. Currently the CPS system makes use of OpenMP[7] for parallelization purposes using CPU threads, but only a GPU with its hundreds of cores can fully benefit from such high levels of parallelism. This paper presents the adaptation of several core algorithms[5] of the CPS for general-purpose computing on graphics processing units (GPGPU) using NVIDIAs Compute Unified Device Architecture (CUDA).
a method of gravity and seismic sequential inversion and its GPU implementation
NASA Astrophysics Data System (ADS)
Liu, G.; Meng, X.
2011-12-01
In this abstract, we introduce a gravity and seismic sequential inversion method to invert for density and velocity together. For the gravity inversion, we use an iterative method based on correlation imaging algorithm; for the seismic inversion, we use the full waveform inversion. The link between the density and velocity is an empirical formula called Gardner equation, for large volumes of data, we use the GPU to accelerate the computation. For the gravity inversion method , we introduce a method based on correlation imaging algorithm,it is also a interative method, first we calculate the correlation imaging of the observed gravity anomaly, it is some value between -1 and +1, then we multiply this value with a little density ,this value become the initial density model. We get a forward reuslt with this initial model and also calculate the correaltion imaging of the misfit of observed data and the forward data, also multiply the correaltion imaging result a little density and add it to the initial model, then do the same procedure above , at last ,we can get a inversion density model. For the seismic inveron method ,we use a mothod base on the linearity of acoustic wave equation written in the frequency domain,with a intial velociy model, we can get a good velocity result. In the sequential inversion of gravity and seismic , we need a link formula to convert between density and velocity ,in our method , we use the Gardner equation. Driven by the insatiable market demand for real time, high-definition 3D images, the programmable NVIDIA Graphic Processing Unit (GPU) as co-processor of CPU has been developed for high performance computing. Compute Unified Device Architecture (CUDA) is a parallel programming model and software environment provided by NVIDIA designed to overcome the challenge of using traditional general purpose GPU while maintaining a low learn curve for programmers familiar with standard programming languages such as C. In our inversion processing, we use the GPU to accelerate our gravity and seismic inversion. Taking the gravity inversion as an example, its kernels are gravity forward simulation and correlation imaging, after the parallelization in GPU, in 3D case,the inversion module, the original five CPU loops are reduced to three,the forward module the original five CPU loops are reduced to two. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X George
2014-07-01
Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHERRT achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7-1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9-13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500-800 s. ARCHERRT was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms.
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
NASA Astrophysics Data System (ADS)
Menzel, R.; Paynter, D.; Jones, A. L.
2017-12-01
Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.
Castaño-Díez, Daniel
2017-01-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance. PMID:28580909
Castaño-Díez, Daniel
2017-06-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.
Musrfit-Real Time Parameter Fitting Using GPUs
NASA Astrophysics Data System (ADS)
Locans, Uldis; Suter, Andreas
High transverse field μSR (HTF-μSR) experiments typically lead to a rather large data sets, since it is necessary to follow the high frequencies present in the positron decay histograms. The analysis of these data sets can be very time consuming, usually due to the limited computational power of the hardware. To overcome the limited computing resources rotating reference frame transformation (RRF) is often used to reduce the data sets that need to be handled. This comes at a price typically the μSR community is not aware of: (i) due to the RRF transformation the fitting parameter estimate is of poorer precision, i.e., more extended expensive beamtime is needed. (ii) RRF introduces systematic errors which hampers the statistical interpretation of χ2 or the maximum log-likelihood. We will briefly discuss these issues in a non-exhaustive practical way. The only and single purpose of the RRF transformation is the sluggish computer power. Therefore during this work GPU (Graphical Processing Units) based fitting was developed which allows to perform real-time full data analysis without RRF. GPUs have become increasingly popular in scientific computing in recent years. Due to their highly parallel architecture they provide the opportunity to accelerate many applications with considerably less costs than upgrading the CPU computational power. With the emergence of frameworks such as CUDA and OpenCL these devices have become more easily programmable. During this work GPU support was added to Musrfit- a data analysis framework for μSR experiments. The new fitting algorithm uses CUDA or OpenCL to offload the most time consuming parts of the calculations to Nvidia or AMD GPUs. Using the current CPU implementation in Musrfit parameter fitting can take hours for certain data sets while the GPU version can allow to perform real-time data analysis on the same data sets. This work describes the challenges that arise in adding the GPU support to t as well as results obtained using the GPU version. The speedups using the GPU were measured comparing to the CPU implementation. Two different GPUs were used for the comparison — high end Nvidia Tesla K40c GPU designed for HPC applications and AMD Radeon R9 390× GPU designed for gaming industry.
Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing
NASA Astrophysics Data System (ADS)
Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.
2018-01-01
We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.
A fast ultrasonic simulation tool based on massively parallel implementations
NASA Astrophysics Data System (ADS)
Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain
2014-02-01
This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.
Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-12-01
The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.
Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho
2015-12-01
A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times higher contrast-to-noise ratio, 1.04 times higher universal quality index, and 1.39 times higher normalized mutual information. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: dynamics with softening
NASA Astrophysics Data System (ADS)
Maureira-Fredes, Cristián; Amaro-Seoane, Pau
2018-01-01
A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and sources of gravitational radiation. The direct-summation of N gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. We present a new graphics processing unit (GPU), direct-summation N-body integrator written from scratch and based on this scheme, which includes relativistic corrections for sources of gravitational radiation. GRAVIDY has high modularity, allowing users to readily introduce new physics, it exploits available computational resources and will be maintained by regular updates. GRAVIDY can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version. A test run using four GPUs in parallel shows a speed-up factor of about 3 as compared to the single-GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards.
GPU acceleration towards real-time image reconstruction in 3D tomographic diffractive microscopy
NASA Astrophysics Data System (ADS)
Bailleul, J.; Simon, B.; Debailleul, M.; Liu, H.; Haeberlé, O.
2012-06-01
Phase microscopy techniques regained interest in allowing for the observation of unprepared specimens with excellent temporal resolution. Tomographic diffractive microscopy is an extension of holographic microscopy which permits 3D observations with a finer resolution than incoherent light microscopes. Specimens are imaged by a series of 2D holograms: their accumulation progressively fills the range of frequencies of the specimen in Fourier space. A 3D inverse FFT eventually provides a spatial image of the specimen. Consequently, acquisition then reconstruction are mandatory to produce an image that could prelude real-time control of the observed specimen. The MIPS Laboratory has built a tomographic diffractive microscope with an unsurpassed 130nm resolution but a low imaging speed - no less than one minute. Afterwards, a high-end PC reconstructs the 3D image in 20 seconds. We now expect an interactive system providing preview images during the acquisition for monitoring purposes. We first present a prototype implementing this solution on CPU: acquisition and reconstruction are tied in a producer-consumer scheme, sharing common data into CPU memory. Then we present a prototype dispatching some reconstruction tasks to GPU in order to take advantage of SIMDparallelization for FFT and higher bandwidth for filtering operations. The CPU scheme takes 6 seconds for a 3D image update while the GPU scheme can go down to 2 or > 1 seconds depending on the GPU class. This opens opportunities for 4D imaging of living organisms or crystallization processes. We also consider the relevance of GPU for 3D image interaction in our specific conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, H; Tseung, Chan; Beltran, C
Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verifiedmore » by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.« less
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-07
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0.69-1.23 times for photon only transport.
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Tian, Z; Jiang, S
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized tomore » define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged particle transport in this geometry are currently in progress.« less
Real-time colouring and filtering with graphics shaders
NASA Astrophysics Data System (ADS)
Vohl, D.; Fluke, C. J.; Barnes, D. G.; Hassan, A. H.
2017-11-01
Despite the popularity of the Graphics Processing Unit (GPU) for general purpose computing, one should not forget about the practicality of the GPU for fast scientific visualization. As astronomers have increasing access to three-dimensional (3D) data from instruments and facilities like integral field units and radio interferometers, visualization techniques such as volume rendering offer means to quickly explore spectral cubes as a whole. As most 3D visualization techniques have been developed in fields of research like medical imaging and fluid dynamics, many transfer functions are not optimal for astronomical data. We demonstrate how transfer functions and graphics shaders can be exploited to provide new astronomy-specific explorative colouring methods. We present 12 shaders, including four novel transfer functions specifically designed to produce intuitive and informative 3D visualizations of spectral cube data. We compare their utility to classic colour mapping. The remaining shaders highlight how common computation like filtering, smoothing and line ratio algorithms can be integrated as part of the graphics pipeline. We discuss how this can be achieved by utilizing the parallelism of modern GPUs along with a shading language, letting astronomers apply these new techniques at interactive frame rates. All shaders investigated in this work are included in the open source software shwirl (Vohl 2017).
Vigelius, Matthias; Meyer, Bernd
2012-01-01
For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
gpuPOM: a GPU-based Princeton Ocean Model
NASA Astrophysics Data System (ADS)
Xu, S.; Huang, X.; Zhang, Y.; Fu, H.; Oey, L.-Y.; Xu, F.; Yang, G.
2014-11-01
Rapid advances in the performance of the graphics processing unit (GPU) have made the GPU a compelling solution for a series of scientific applications. However, most existing GPU acceleration works for climate models are doing partial code porting for certain hot spots, and can only achieve limited speedup for the entire model. In this work, we take the mpiPOM (a parallel version of the Princeton Ocean Model) as our starting point, design and implement a GPU-based Princeton Ocean Model. By carefully considering the architectural features of the state-of-the-art GPU devices, we rewrite the full mpiPOM model from the original Fortran version into a new Compute Unified Device Architecture C (CUDA-C) version. We take several accelerating methods to further improve the performance of gpuPOM, including optimizing memory access in a single GPU, overlapping communication and boundary operations among multiple GPUs, and overlapping input/output (I/O) between the hybrid Central Processing Unit (CPU) and the GPU. Our experimental results indicate that the performance of the gpuPOM on a workstation containing 4 GPUs is comparable to a powerful cluster with 408 CPU cores and it reduces the energy consumption by 6.8 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y; Mazur, T; Green, O
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: We first translated PENELOPE from FORTRAN to C++ and validated that the translation produced equivalent results. Then we adapted the C++ code to CUDA in a workflow optimized for GPU architecture. We expanded upon the original code to include voxelized transportmore » boosted by Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, we incorporated the vendor-provided MRIdian head model into the code. We performed a set of experimental measurements on MRIdian to examine the accuracy of both the head model and gPENELOPE, and then applied gPENELOPE toward independent validation of patient doses calculated by MRIdian’s KMC. Results: We achieve an average acceleration factor of 152 compared to the original single-thread FORTRAN implementation with the original accuracy preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen (1), mediastinum (1) and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: We developed a Monte Carlo simulation platform based on a GPU-accelerated version of PENELOPE. We validated that both the vendor provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, H; Lee, J; Pua, R
2014-06-01
Purpose: The purpose of our study is to reduce imaging radiation dose while maintaining image quality of region of interest (ROI) in X-ray fluoroscopy. A low-dose real-time ROI fluoroscopic imaging technique which includes graphics-processing-unit- (GPU-) accelerated image processing for brightness compensation and noise filtering was developed in this study. Methods: In our ROI fluoroscopic imaging, a copper filter is placed in front of the X-ray tube. The filter contains a round aperture to reduce radiation dose to outside of the aperture. To equalize the brightness difference between inner and outer ROI regions, brightness compensation was performed by use of amore » simple weighting method that applies selectively to the inner ROI, the outer ROI, and the boundary zone. A bilateral filtering was applied to the images to reduce relatively high noise in the outer ROI images. To speed up the calculation of our technique for real-time application, the GPU-acceleration was applied to the image processing algorithm. We performed a dosimetric measurement using an ion-chamber dosimeter to evaluate the amount of radiation dose reduction. The reduction of calculation time compared to a CPU-only computation was also measured, and the assessment of image quality in terms of image noise and spatial resolution was conducted. Results: More than 80% of dose was reduced by use of the ROI filter. The reduction rate depended on the thickness of the filter and the size of ROI aperture. The image noise outside the ROI was remarkably reduced by the bilateral filtering technique. The computation time for processing each frame image was reduced from 3.43 seconds with single CPU to 9.85 milliseconds with GPU-acceleration. Conclusion: The proposed technique for X-ray fluoroscopy can substantially reduce imaging radiation dose to the patient while maintaining image quality particularly in the ROI region in real-time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R; Fallone, B; Cross Cancer Institute, Edmonton, AB
Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. Themore » LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been formulated on GPU, resulting in two orders of magnitude speedup. Funding support from Natural Sciences and Engineering Research Council and Alberta Innovates Health Solutions. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Januszewski, M.; Kostur, M.
2014-09-01
We present Sailfish, an open source fluid simulation package implementing the lattice Boltzmann method (LBM) on modern Graphics Processing Units (GPUs) using CUDA/OpenCL. We take a novel approach to GPU code implementation and use run-time code generation techniques and a high level programming language (Python) to achieve state of the art performance, while allowing easy experimentation with different LBM models and tuning for various types of hardware. We discuss the general design principles of the code, scaling to multiple GPUs in a distributed environment, as well as the GPU implementation and optimization of many different LBM models, both single component (BGK, MRT, ELBM) and multicomponent (Shan-Chen, free energy). The paper also presents results of performance benchmarks spanning the last three NVIDIA GPU generations (Tesla, Fermi, Kepler), which we hope will be useful for researchers working with this type of hardware and similar codes. Catalogue identifier: AETA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 225864 No. of bytes in distributed program, including test data, etc.: 46861049 Distribution format: tar.gz Programming language: Python, CUDA C, OpenCL. Computer: Any with an OpenCL or CUDA-compliant GPU. Operating system: No limits (tested on Linux and Mac OS X). RAM: Hundreds of megabytes to tens of gigabytes for typical cases. Classification: 12, 6.5. External routines: PyCUDA/PyOpenCL, Numpy, Mako, ZeroMQ (for multi-GPU simulations), scipy, sympy Nature of problem: GPU-accelerated simulation of single- and multi-component fluid flows. Solution method: A wide range of relaxation models (LBGK, MRT, regularized LB, ELBM, Shan-Chen, free energy, free surface) and boundary conditions within the lattice Boltzmann method framework. Simulations can be run in single or double precision using one or more GPUs. Restrictions: The lattice Boltzmann method works for low Mach number flows only. Unusual features: The actual numerical calculations run exclusively on GPUs. The numerical code is built dynamically at run-time in CUDA C or OpenCL, using templates and symbolic formulas. The high-level control of the simulation is maintained by a Python process. Additional comments: !!!!! The distribution file for this program is over 45 Mbytes and therefore is not delivered directly when Download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: Problem-dependent, typically minutes (for small cases or short simulations) to hours (large cases or long simulations).
NASA Astrophysics Data System (ADS)
Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio
2012-12-01
We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System
Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram
2014-01-01
We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848
High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.
Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram
2014-01-01
We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.
NASA Astrophysics Data System (ADS)
Hernandez, Monica
2017-12-01
This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
2017-02-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.
2017-01-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746
MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.
Katsigiannis, Stamos; Zacharia, Eleni; Maroulis, Dimitris
2017-05-01
Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.
CUDA-based acceleration of collateral filtering in brain MR images
NASA Astrophysics Data System (ADS)
Li, Cheng-Yuan; Chang, Herng-Hua
2017-02-01
Image denoising is one of the fundamental and essential tasks within image processing. In medical imaging, finding an effective algorithm that can remove random noise in MR images is important. This paper proposes an effective noise reduction method for brain magnetic resonance (MR) images. Our approach is based on the collateral filter which is a more powerful method than the bilateral filter in many cases. However, the computation of the collateral filter algorithm is quite time-consuming. To solve this problem, we improved the collateral filter algorithm with parallel computing using GPU. We adopted CUDA, an application programming interface for GPU by NVIDIA, to accelerate the computation. Our experimental evaluation on an Intel Xeon CPU E5-2620 v3 2.40GHz with a NVIDIA Tesla K40c GPU indicated that the proposed implementation runs dramatically faster than the traditional collateral filter. We believe that the proposed framework has established a general blueprint for achieving fast and robust filtering in a wide variety of medical image denoising applications.
Chessa, Manuela; Bianchi, Valentina; Zampetti, Massimo; Sabatini, Silvio P; Solari, Fabio
2012-01-01
The intrinsic parallelism of visual neural architectures based on distributed hierarchical layers is well suited to be implemented on the multi-core architectures of modern graphics cards. The design strategies that allow us to optimally take advantage of such parallelism, in order to efficiently map on GPU the hierarchy of layers and the canonical neural computations, are proposed. Specifically, the advantages of a cortical map-like representation of the data are exploited. Moreover, a GPU implementation of a novel neural architecture for the computation of binocular disparity from stereo image pairs, based on populations of binocular energy neurons, is presented. The implemented neural model achieves good performances in terms of reliability of the disparity estimates and a near real-time execution speed, thus demonstrating the effectiveness of the devised design strategies. The proposed approach is valid in general, since the neural building blocks we implemented are a common basis for the modeling of visual neural functionalities.
GPU-accelerated computing for Lagrangian coherent structures of multi-body gravitational regimes
NASA Astrophysics Data System (ADS)
Lin, Mingpei; Xu, Ming; Fu, Xiaoyu
2017-04-01
Based on a well-established theoretical foundation, Lagrangian Coherent Structures (LCSs) have elicited widespread research on the intrinsic structures of dynamical systems in many fields, including the field of astrodynamics. Although the application of LCSs in dynamical problems seems straightforward theoretically, its associated computational cost is prohibitive. We propose a block decomposition algorithm developed on Compute Unified Device Architecture (CUDA) platform for the computation of the LCSs of multi-body gravitational regimes. In order to take advantage of GPU's outstanding computing properties, such as Shared Memory, Constant Memory, and Zero-Copy, the algorithm utilizes a block decomposition strategy to facilitate computation of finite-time Lyapunov exponent (FTLE) fields of arbitrary size and timespan. Simulation results demonstrate that this GPU-based algorithm can satisfy double-precision accuracy requirements and greatly decrease the time needed to calculate final results, increasing speed by approximately 13 times. Additionally, this algorithm can be generalized to various large-scale computing problems, such as particle filters, constellation design, and Monte-Carlo simulation.
Large-scale ground motion simulation using GPGPU
NASA Astrophysics Data System (ADS)
Aoi, S.; Maeda, T.; Nishizawa, N.; Aoki, T.
2012-12-01
Huge computation resources are required to perform large-scale ground motion simulations using 3-D finite difference method (FDM) for realistic and complex models with high accuracy. Furthermore, thousands of various simulations are necessary to evaluate the variability of the assessment caused by uncertainty of the assumptions of the source models for future earthquakes. To conquer the problem of restricted computational resources, we introduced the use of GPGPU (General purpose computing on graphics processing units) which is the technique of using a GPU as an accelerator of the computation which has been traditionally conducted by the CPU. We employed the CPU version of GMS (Ground motion Simulator; Aoi et al., 2004) as the original code and implemented the function for GPU calculation using CUDA (Compute Unified Device Architecture). GMS is a total system for seismic wave propagation simulation based on 3-D FDM scheme using discontinuous grids (Aoi&Fujiwara, 1999), which includes the solver as well as the preprocessor tools (parameter generation tool) and postprocessor tools (filter tool, visualization tool, and so on). The computational model is decomposed in two horizontal directions and each decomposed model is allocated to a different GPU. We evaluated the performance of our newly developed GPU version of GMS on the TSUBAME2.0 which is one of the Japanese fastest supercomputer operated by the Tokyo Institute of Technology. First we have performed a strong scaling test using the model with about 22 million grids and achieved 3.2 and 7.3 times of the speed-up by using 4 and 16 GPUs. Next, we have examined a weak scaling test where the model sizes (number of grids) are increased in proportion to the degree of parallelism (number of GPUs). The result showed almost perfect linearity up to the simulation with 22 billion grids using 1024 GPUs where the calculation speed reached to 79.7 TFlops and about 34 times faster than the CPU calculation using the same number of cores. Finally, we applied GPU calculation to the simulation of the 2011 Tohoku-oki earthquake. The model was constructed using a slip model from inversion of strong motion data (Suzuki et al., 2012), and a geological- and geophysical-based velocity structure model comprising all the Tohoku and Kanto regions as well as the large source area, which consists of about 1.9 billion grids. The overall characteristics of observed velocity seismograms for a longer period than range of 8 s were successfully reproduced (Maeda et al., 2012 AGU meeting). The turn around time for 50 thousand-step calculation (which correspond to 416 s in seismograph) using 100 GPUs was 52 minutes which is fairly short, especially considering this is the performance for the realistic and complex model.
Large calculation of the flow over a hypersonic vehicle using a GPU
NASA Astrophysics Data System (ADS)
Elsen, Erich; LeGresley, Patrick; Darve, Eric
2008-12-01
Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, L; Du, X; Liu, T
Purpose: As a module of ARCHER -- Accelerated Radiation-transport Computations in Heterogeneous EnviRonments, ARCHER{sub RT} is designed for RadioTherapy (RT) dose calculation. This paper describes the application of ARCHERRT on patient-dependent TomoTherapy and patient-independent IMRT. It also conducts a 'fair' comparison of different GPUs and multicore CPU. Methods: The source input used for patient-dependent TomoTherapy is phase space file (PSF) generated from optimized plan. For patient-independent IMRT, the open filed PSF is used for different cases. The intensity modulation is simulated by fluence map. The GEANT4 code is used as benchmark. DVH and gamma index test are employed to evaluatemore » the accuracy of ARCHER{sub RT} code. Some previous studies reported misleading speedups by comparing GPU code with serial CPU code. To perform a fairer comparison, we write multi-thread code with OpenMP to fully exploit computing potential of CPU. The hardware involved in this study are a 6-core Intel E5-2620 CPU and 6 NVIDIA M2090 GPUs, a K20 GPU and a K40 GPU. Results: Dosimetric results from ARCHER{sub RT} and GEANT4 show good agreement. The 2%/2mm gamma test pass rates for different clinical cases are 97.2% to 99.7%. A single M2090 GPU needs 50~79 seconds for the simulation to achieve a statistical error of 1% in the PTV. The K40 card is about 1.7∼1.8 times faster than M2090 card. Using 6 M2090 card, the simulation can be finished in about 10 seconds. For comparison, Intel E5-2620 needs 507∼879 seconds for the same simulation. Conclusion: We successfully applied ARCHER{sub RT} to Tomotherapy and patient-independent IMRT, and conducted a fair comparison between GPU and CPU performance. The ARCHER{sub RT} code is both accurate and efficient and may be used towards clinical applications.« less
SU-F-T-256: 4D IMRT Planning Using An Early Prototype GPU-Enabled Eclipse Workstation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, A; Modiri, A; Sawant, A
Purpose: True 4D IMRT planning, based on simultaneous spatiotemporal optimization has been shown to significantly improve plan quality in lung radiotherapy. However, the high computational complexity associated with such planning represents a significant barrier to widespread clinical deployment. We introduce an early prototype GPU-enabled Eclipse workstation for inverse planning. To our knowledge, this is the first GPUintegrated Eclipse system demonstrating the potential for clinical translation of GPU computing on a major commercially-available TPS. Methods: The prototype system comprised of four NVIDIA Tesla K80 GPUs, with a maximum processing capability of 8.5 Tflops per K80 card. The system architecture consisted ofmore » three key modules: (i) a GPU-based inverse planning module using a highly-parallelizable, swarm intelligence-based global optimization algorithm, (ii) a GPU-based open-source b-spline deformable image registration module, Elastix, and (iii) a CUDA-based data management module. For evaluation, aperture fluence weights in an IMRT plan were optimized over 9 beams,166 apertures and 10 respiratory phases (14940 variables) for a lung cancer case (GTV = 95 cc, right lower lobe, 15 mm cranio-caudal motion). Sensitivity of the planning time and memory expense to parameter variations was quantified. Results: GPU-based inverse planning was significantly accelerated compared to its CPU counterpart (36 vs 488 min, for 10 phases, 10 search agents and 10 iterations). The optimized IMRT plan significantly improved OAR sparing compared to the original internal target volume (ITV)-based clinical plan, while maintaining prescribed tumor coverage. The dose-sparing improvements were: Esophagus Dmax 50%, Heart Dmax 42% and Spinal cord Dmax 25%. Conclusion: Our early prototype system demonstrates that through massive parallelization, computationally intense tasks such as 4D treatment planning can be accomplished in clinically feasible timeframes. With further optimization, such systems are expected to enable the eventual clinical translation of higher-dimensional and complex treatment planning strategies to significantly improve plan quality. This work was partially supported through research funding from National Institutes of Health (R01CA169102) and Varian Medical Systems, Palo Alto, CA, USA.« less
GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.
Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka
2016-01-01
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads.
CUDA GPU based full-Stokes finite difference modelling of glaciers
NASA Astrophysics Data System (ADS)
Brædstrup, C. F.; Egholm, D. L.
2012-04-01
Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.
NASA Astrophysics Data System (ADS)
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-01
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-16
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of [Formula: see text] in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles
NASA Astrophysics Data System (ADS)
Neverov, V. S.
XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.
GPU Implementation of High Rayleigh Number Three-Dimensional Mantle Convection
NASA Astrophysics Data System (ADS)
Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.
2010-12-01
Although we have entered the age of petascale computing, many factors are still prohibiting high-performance computing (HPC) from infiltrating all suitable scientific disciplines. For this reason and others, application of GPU to HPC is gaining traction in the scientific world. With its low price point, high performance potential, and competitive scalability, GPU has been an option well worth considering for the last few years. Moreover with the advent of NVIDIA's Fermi architecture, which brings ECC memory, better double-precision performance, and more RAM to GPU, there is a strong message of corporate support for GPU in HPC. However many doubts linger concerning the practicality of using GPU for scientific computing. In particular, GPU has a reputation for being difficult to program and suitable for only a small subset of problems. Although inroads have been made in addressing these concerns, for many scientists GPU still has hurdles to clear before becoming an acceptable choice. We explore the applicability of GPU to geophysics by implementing a three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal convection on an NVIDIA GPU using C for CUDA. Our code reaches sufficient resolution, on the order of 500x500x250 evenly-spaced finite-difference gridpoints, on a single GPU. We make extensive use of highly optimized CUBLAS routines, allowing us to achieve performance on the order of O( 0.1 ) µs per timestep*gridpoint at this resolution. This performance has allowed us to study high Rayleigh number simulations, on the order of 2x10^7, on a single GPU.
3D SPH numerical simulation of the wave generated by the Vajont rockslide
NASA Astrophysics Data System (ADS)
Vacondio, R.; Mignosa, P.; Pagani, S.
2013-09-01
A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.
Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T
2011-11-21
We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30-16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9-67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning.
GPU Optimizations for a Production Molecular Docking Code*
Landaverde, Raphael; Herbordt, Martin C.
2015-01-01
Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users. PMID:26594667
GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering
Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka
2016-01-01
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads. PMID:27482905
GPU Optimizations for a Production Molecular Docking Code.
Landaverde, Raphael; Herbordt, Martin C
2014-09-01
Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users.
Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST
NASA Astrophysics Data System (ADS)
Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2018-04-01
We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.
NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto
2015-02-13
In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu .
GPU acceleration of Dock6's Amber scoring computation.
Yang, Hailong; Zhou, Qiongqiong; Li, Bo; Wang, Yongjian; Luan, Zhongzhi; Qian, Depei; Li, Hanlu
2010-01-01
Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.
Astrophysical data mining with GPU. A case study: Genetic classification of globular clusters
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Garofalo, M.; Brescia, M.; Paolillo, M.; Pescape', A.; Longo, G.; Ventre, G.
2014-01-01
We present a multi-purpose genetic algorithm, designed and implemented with GPGPU/CUDA parallel computing technology. The model was derived from our CPU serial implementation, named GAME (Genetic Algorithm Model Experiment). It was successfully tested and validated on the detection of candidate Globular Clusters in deep, wide-field, single band HST images. The GPU version of GAME will be made available to the community by integrating it into the web application DAMEWARE (DAta Mining Web Application REsource, http://dame.dsf.unina.it/beta_info.html), a public data mining service specialized on massive astrophysical data. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm leads to a speedup of a factor of 200× in the training phase with respect to the CPU based version.
A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit
NASA Astrophysics Data System (ADS)
Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.
2013-12-01
Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a single function for calculating the Voigt in-band transmittance, and subsequently for integration into the re-architectured MODTRAN6 code. Our overall objective is that by combining the GPU processing with more efficient Plume Tracker retrieval algorithms, a 100-fold increase in the computational speed will be realized. Since the Plume Tracker runs on Windows-based platforms, the GPU-enhanced MODTRAN6 will be packaged as a DLL. We do however anticipate that the accelerated option will be made available to the general MODTRAN community through an application programming interface (API).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J; Qi, S; Sheng, K
2014-06-15
Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomymore » was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R{sup 2} > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real time assessment of variations of the actual anatomy and delivered dose for adaptive intervention and re-planning.« less
SU-E-T-37: A GPU-Based Pencil Beam Algorithm for Dose Calculations in Proton Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantzis, G; Leventouri, T; Tachibana, H
Purpose: Recent developments in radiation therapy have been focused on applications of charged particles, especially protons. Over the years several dose calculation methods have been proposed in proton therapy. A common characteristic of all these methods is their extensive computational burden. In the current study we present for the first time, to our best knowledge, a GPU-based PBA for proton dose calculations in Matlab. Methods: In the current study we employed an analytical expression for the protons depth dose distribution. The central-axis term is taken from the broad-beam central-axis depth dose in water modified by an inverse square correction whilemore » the distribution of the off-axis term was considered Gaussian. The serial code was implemented in MATLAB and was launched on a desktop with a quad core Intel Xeon X5550 at 2.67GHz with 8 GB of RAM. For the parallelization on the GPU, the parallel computing toolbox was employed and the code was launched on a GTX 770 with Kepler architecture. The performance comparison was established on the speedup factors. Results: The performance of the GPU code was evaluated for three different energies: low (50 MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected for each energy, and the dose calculations were performed with both the serial and parallel codes for a homogeneous water phantom with size 300×300×300 mm3. The resolution of the PBs was set to 1.0 mm. The maximum speedup of ∼127 was achieved for the highest energy and the largest field size. Conclusion: A GPU-based PB algorithm for proton dose calculations in Matlab was presented. A maximum speedup of ∼127 was achieved. Future directions of the current work include extension of our method for dose calculation in heterogeneous phantoms.« less
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
NASA Astrophysics Data System (ADS)
Heisler, Morgan; Lee, Sieun; Mammo, Zaid; Jian, Yifan; Ju, Myeong Jin; Miao, Dongkai; Raposo, Eric; Wahl, Daniel J.; Merkur, Andrew; Navajas, Eduardo; Balaratnasingam, Chandrakumar; Beg, Mirza Faisal; Sarunic, Marinko V.
2017-02-01
High quality visualization of the retinal microvasculature can improve our understanding of the onset and development of retinal vascular diseases, which are a major cause of visual morbidity and are increasing in prevalence. Optical Coherence Tomography Angiography (OCT-A) images are acquired over multiple seconds and are particularly susceptible to motion artifacts, which are more prevalent when imaging patients with pathology whose ability to fixate is limited. The acquisition of multiple OCT-A images sequentially can be performed for the purpose of removing motion artifact and increasing the contrast of the vascular network through averaging. Due to the motion artifacts, a robust registration pipeline is needed before feature preserving image averaging can be performed. In this report, we present a novel method for a GPU-accelerated pipeline for acquisition, processing, segmentation, and registration of multiple, sequentially acquired OCT-A images to correct for the motion artifacts in individual images for the purpose of averaging. High performance computing, blending CPU and GPU, was introduced to accelerate processing in order to provide high quality visualization of the retinal microvasculature and to enable a more accurate quantitative analysis in a clinically useful time frame. Specifically, image discontinuities caused by rapid micro-saccadic movements and image warping due to smoother reflex movements were corrected by strip-wise affine registration estimated using Scale Invariant Feature Transform (SIFT) keypoints and subsequent local similarity-based non-rigid registration. These techniques improve the image quality, increasing the value for clinical diagnosis and increasing the range of patients for whom high quality OCT-A images can be acquired.
GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison
Ma, Chao; Wang, Lirong; Xie, Xiang-Qun
2012-01-01
Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447
Fast skin dose estimation system for interventional radiology
Takata, Takeshi; Kotoku, Jun’ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru
2018-01-01
Abstract To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient’s computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7–7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods. PMID:29136194
Fast skin dose estimation system for interventional radiology.
Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru
2018-03-01
To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.
Multidisciplinary Simulation Acceleration using Multiple Shared-Memory Graphical Processing Units
NASA Astrophysics Data System (ADS)
Kemal, Jonathan Yashar
For purposes of optimizing and analyzing turbomachinery and other designs, the unsteady Favre-averaged flow-field differential equations for an ideal compressible gas can be solved in conjunction with the heat conduction equation. We solve all equations using the finite-volume multiple-grid numerical technique, with the dual time-step scheme used for unsteady simulations. Our numerical solver code targets CUDA-capable Graphical Processing Units (GPUs) produced by NVIDIA. Making use of MPI, our solver can run across networked compute notes, where each MPI process can use either a GPU or a Central Processing Unit (CPU) core for primary solver calculations. We use NVIDIA Tesla C2050/C2070 GPUs based on the Fermi architecture, and compare our resulting performance against Intel Zeon X5690 CPUs. Solver routines converted to CUDA typically run about 10 times faster on a GPU for sufficiently dense computational grids. We used a conjugate cylinder computational grid and ran a turbulent steady flow simulation using 4 increasingly dense computational grids. Our densest computational grid is divided into 13 blocks each containing 1033x1033 grid points, for a total of 13.87 million grid points or 1.07 million grid points per domain block. To obtain overall speedups, we compare the execution time of the solver's iteration loop, including all resource intensive GPU-related memory copies. Comparing the performance of 8 GPUs to that of 8 CPUs, we obtain an overall speedup of about 6.0 when using our densest computational grid. This amounts to an 8-GPU simulation running about 39.5 times faster than running than a single-CPU simulation.
NASA Astrophysics Data System (ADS)
Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying
2017-05-01
In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuhe; Mazur, Thomas R.; Green, Olga
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expandedmore » to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold
2016-01-01
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian’s kmc. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems. PMID:27370123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Liu, B; Liang, B
Purpose: Current CyberKnife treatment planning system (TPS) provided two dose calculation algorithms: Ray-tracing and Monte Carlo. Ray-tracing algorithm is fast, but less accurate, and also can’t handle irregular fields since a multi-leaf collimator system was recently introduced to CyberKnife M6 system. Monte Carlo method has well-known accuracy, but the current version still takes a long time to finish dose calculations. The purpose of this paper is to develop a GPU-based fast C/S dose engine for CyberKnife system to achieve both accuracy and efficiency. Methods: The TERMA distribution from a poly-energetic source was calculated based on beam’s eye view coordinate system,more » which is GPU friendly and has linear complexity. The dose distribution was then computed by inversely collecting the energy depositions from all TERMA points along 192 collapsed-cone directions. EGSnrc user code was used to pre-calculate energy deposition kernels (EDKs) for a series of mono-energy photons The energy spectrum was reconstructed based on measured tissue maximum ratio (TMR) curve, the TERMA averaged cumulative kernels was then calculated. Beam hardening parameters and intensity profiles were optimized based on measurement data from CyberKnife system. Results: The difference between measured and calculated TMR are less than 1% for all collimators except in the build-up regions. The calculated profiles also showed good agreements with the measured doses within 1% except in the penumbra regions. The developed C/S dose engine was also used to evaluate four clinical CyberKnife treatment plans, the results showed a better dose calculation accuracy than Ray-tracing algorithm compared with Monte Carlo method for heterogeneous cases. For the dose calculation time, it takes about several seconds for one beam depends on collimator size and dose calculation grids. Conclusion: A GPU-based C/S dose engine has been developed for CyberKnife system, which was proven to be efficient and accurate for clinical purpose, and can be easily implemented in TPS.« less
Development of a GPU Compatible Version of the Fast Radiation Code RRTMG
NASA Astrophysics Data System (ADS)
Iacono, M. J.; Mlawer, E. J.; Berthiaume, D.; Cady-Pereira, K. E.; Suarez, M.; Oreopoulos, L.; Lee, D.
2012-12-01
The absorption of solar radiation and emission/absorption of thermal radiation are crucial components of the physics that drive Earth's climate and weather. Therefore, accurate radiative transfer calculations are necessary for realistic climate and weather simulations. Efficient radiation codes have been developed for this purpose, but their accuracy requirements still necessitate that as much as 30% of the computational time of a GCM is spent computing radiative fluxes and heating rates. The overall computational expense constitutes a limitation on a GCM's predictive ability if it becomes an impediment to adding new physics to or increasing the spatial and/or vertical resolution of the model. The emergence of Graphics Processing Unit (GPU) technology, which will allow the parallel computation of multiple independent radiative calculations in a GCM, will lead to a fundamental change in the competition between accuracy and speed. Processing time previously consumed by radiative transfer will now be available for the modeling of other processes, such as physics parameterizations, without any sacrifice in the accuracy of the radiative transfer. Furthermore, fast radiation calculations can be performed much more frequently and will allow the modeling of radiative effects of rapid changes in the atmosphere. The fast radiation code RRTMG, developed at Atmospheric and Environmental Research (AER), is utilized operationally in many dynamical models throughout the world. We will present the results from the first stage of an effort to create a version of the RRTMG radiation code designed to run efficiently in a GPU environment. This effort will focus on the RRTMG implementation in GEOS-5. RRTMG has an internal pseudo-spectral vector of length of order 100 that, when combined with the much greater length of the global horizontal grid vector from which the radiation code is called in GEOS-5, makes RRTMG/GEOS-5 particularly suited to achieving a significant speed improvement through GPU technology. This large number of independent cases will allow us to take full advantage of the computational power of the latest GPUs, ensuring that all thread cores in the GPU remain active, a key criterion for obtaining significant speedup. The CUDA (Compute Unified Device Architecture) Fortran compiler developed by PGI and Nvidia will allow us to construct this parallel implementation on the GPU while remaining in the Fortran language. This implementation will scale very well across various CUDA-supported GPUs such as the recently released Fermi Nvidia cards. We will present the computational speed improvements of the GPU-compatible code relative to the standard CPU-based RRTMG with respect to a very large and diverse suite of atmospheric profiles. This suite will also be utilized to demonstrate the minimal impact of the code restructuring on the accuracy of radiation calculations. The GPU-compatible version of RRTMG will be directly applicable to future versions of GEOS-5, but it is also likely to provide significant associated benefits for other GCMs that employ RRTMG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Hagan, A; Gu, X
Purpose 4D-IMRT planning, combined with dynamic MLC tracking delivery, utilizes the temporal dimension as an additional degree of freedom to achieve improved OAR-sparing. The computational complexity for such optimization increases exponentially with increase in dimensionality. In order to accomplish this task in a clinically-feasible time frame, we present an initial implementation of GPU-based 4D-IMRT planning based on particle swarm optimization (PSO). Methods The target and normal structures were manually contoured on ten phases of a 4DCT scan of a NSCLC patient with a 54cm3 right-lower-lobe tumor (1.5cm motion). Corresponding ten 3D-IMRT plans were created in the Eclipse treatment planning systemmore » (Ver-13.6). A vendor-provided scripting interface was used to export 3D-dose matrices corresponding to each control point (10 phases × 9 beams × 166 control points = 14,940), which served as input to PSO. The optimization task was to iteratively adjust the weights of each control point and scale the corresponding dose matrices. In order to handle the large amount of data in GPU memory, dose matrices were sparsified and placed in contiguous memory blocks with the 14,940 weight-variables. PSO was implemented on CPU (dual-Xeon, 3.1GHz) and GPU (dual-K20 Tesla, 2496 cores, 3.52Tflops, each) platforms. NiftyReg, an open-source deformable image registration package, was used to calculate the summed dose. Results The 4D-PSO plan yielded PTV coverage comparable to the clinical ITV-based plan and significantly higher OAR-sparing, as follows: lung Dmean=33%; lung V20=27%; spinal cord Dmax=26%; esophagus Dmax=42%; heart Dmax=0%; heart Dmean=47%. The GPU-PSO processing time for 14940 variables and 7 PSO-particles was 41% that of CPU-PSO (199 vs. 488 minutes). Conclusion Truly 4D-IMRT planning can yield significant OAR dose-sparing while preserving PTV coverage. The corresponding optimization problem is large-scale, non-convex and computationally rigorous. Our initial results indicate that GPU-based PSO with further software optimization can make such planning clinically feasible. This work was supported through funding from the National Institutes of Health and Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Dale M. Snider
2011-02-28
This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendlymore » environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD chose the small business EMPhotonics for the Phase-1 the technical partner. See Section Technical Objective and Approach) Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-1 and its subsections) Task 4: Testing, refinement, and optimization of parallel methodology (See Section Results from Phase-1 and Section Result Comparison Program) Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See Section Results from Phase-1 and its subsections) Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2) With the completion of Phase 1 we have the base understanding to completely parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is given in Plan for Phase-2.« less
Highly Productive Application Development with ViennaCL for Accelerators
NASA Astrophysics Data System (ADS)
Rupp, K.; Weinbub, J.; Rudolf, F.
2012-12-01
The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support for types from the Eigen library [8] and MTL 4 [9] are provided as well, enabling a seamless transition from single-core CPU to GPU and multi-core CPU computations. Case studies from the numerical solution of PDEs are given and isolated performance benchmarks are discussed. Also, pitfalls in scientific computing with GPUs and accelerators are addressed, allowing for a first evaluation of whether these novel devices can be mapped well to certain applications. References: [1] R. Bordawekar et al., Technical Report, IBM, 2010 [2] ViennaCL library. Online: http://viennacl.sourceforge.net/ [3] K. Rupp et al., GPUScA, 2010 [4] MAGMA library. Online: http://icl.cs.utk.edu/magma/ [5] Cusp library. Online: http://code.google.com/p/cusp-library/ [6] uBLAS library. Online: http://www.boost.org/libs/numeric/ublas/ [7] Boost C++ Libraries. Online: http://www.boost.org/ [8] Eigen library. Online: http://eigen.tuxfamily.org/ [9] MTL 4 Library. Online: http://www.mtl4.org/
SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.
Liu, T; Ding, A; Xu, X
2012-06-01
To develop a Graphics Processing Unit (GPU) based Monte Carlo (MC) code that accelerates dose calculations on a dual-GPU system. We simulated a clinical case of prostate cancer treatment. A voxelized abdomen phantom derived from 120 CT slices was used containing 218×126×60 voxels, and a GE LightSpeed 16-MDCT scanner was modeled. A CPU version of the MC code was first developed in C++ and tested on Intel Xeon X5660 2.8GHz CPU, then it was translated into GPU version using CUDA C 4.1 and run on a dual Tesla m 2 090 GPU system. The code was featured with automatic assignment of simulation task to multiple GPUs, as well as accurate calculation of energy- and material- dependent cross-sections. Double-precision floating point format was used for accuracy. Doses to the rectum, prostate, bladder and femoral heads were calculated. When running on a single GPU, the MC GPU code was found to be ×19 times faster than the CPU code and ×42 times faster than MCNPX. These speedup factors were doubled on the dual-GPU system. The dose Result was benchmarked against MCNPX and a maximum difference of 1% was observed when the relative error is kept below 0.1%. A GPU-based MC code was developed for dose calculations using detailed patient and CT scanner models. Efficiency and accuracy were both guaranteed in this code. Scalability of the code was confirmed on the dual-GPU system. © 2012 American Association of Physicists in Medicine.
A multi-port 10GbE PCIe NIC featuring UDP offload and GPUDirect capabilities.
NASA Astrophysics Data System (ADS)
Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero
2015-12-01
NaNet-10 is a four-ports 10GbE PCIe Network Interface Card designed for low-latency real-time operations with GPU systems. To this purpose the design includes an UDP offload module, for fast and clock-cycle deterministic handling of the transport layer protocol, plus a GPUDirect P2P/RDMA engine for low-latency communication with NVIDIA Tesla GPU devices. A dedicated module (Multi-Stream) can optionally process input UDP streams before data is delivered through PCIe DMA to their destination devices, re-organizing data from different streams guaranteeing computational optimization. NaNet-10 is going to be integrated in the NA62 CERN experiment in order to assess the suitability of GPGPU systems as real-time triggers; results and lessons learned while performing this activity will be reported herein.
NASA Astrophysics Data System (ADS)
Lin, Hui; Liu, Tianyu; Su, Lin; Bednarz, Bryan; Caracappa, Peter; Xu, X. George
2017-09-01
Monte Carlo (MC) simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi) and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.
Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).
Yang, Owen; Choi, Bernard
2013-01-01
To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.
Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card
NASA Astrophysics Data System (ADS)
Jiang, Jinpeng; Zhu, Peimin
2018-05-01
Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
Ha, S; Matej, S; Ispiryan, M; Mueller, K
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
NASA Astrophysics Data System (ADS)
Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro
2011-03-01
The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.
NASA Astrophysics Data System (ADS)
Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon
2015-09-15
Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.« less
Combating the Reliability Challenge of GPU Register File at Low Supply Voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jingweijia; Song, Shuaiwen; Yan, Kaige
Supply voltage reduction is an effective approach to significantly reduce GPU energy consumption. As the largest on-chip storage structure, the GPU register file becomes the reliability hotspot that prevents further supply voltage reduction below the safe limit (Vmin) due to process variation effects. This work addresses the reliability challenge of the GPU register file at low supply voltages, which is an essential first step for aggressive supply voltage reduction of the entire GPU chip. We propose GR-Guard, an architectural solution that leverages long register dead time to enable reliable operations from unreliable register file at low voltages.
Validation of GPU based TomoTherapy dose calculation engine.
Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond
2012-04-01
The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.
SU-E-J-91: FFT Based Medical Image Registration Using a Graphics Processing Unit (GPU).
Luce, J; Hoggarth, M; Lin, J; Block, A; Roeske, J
2012-06-01
To evaluate the efficiency gains obtained from using a Graphics Processing Unit (GPU) to perform a Fourier Transform (FT) based image registration. Fourier-based image registration involves obtaining the FT of the component images, and analyzing them in Fourier space to determine the translations and rotations of one image set relative to another. An important property of FT registration is that by enlarging the images (adding additional pixels), one can obtain translations and rotations with sub-pixel resolution. The expense, however, is an increased computational time. GPUs may decrease the computational time associated with FT image registration by taking advantage of their parallel architecture to perform matrix computations much more efficiently than a Central Processor Unit (CPU). In order to evaluate the computational gains produced by a GPU, images with known translational shifts were utilized. A program was written in the Interactive Data Language (IDL; Exelis, Boulder, CO) to performCPU-based calculations. Subsequently, the program was modified using GPU bindings (Tech-X, Boulder, CO) to perform GPU-based computation on the same system. Multiple image sizes were used, ranging from 256×256 to 2304×2304. The time required to complete the full algorithm by the CPU and GPU were benchmarked and the speed increase was defined as the ratio of the CPU-to-GPU computational time. The ratio of the CPU-to- GPU time was greater than 1.0 for all images, which indicates the GPU is performing the algorithm faster than the CPU. The smallest improvement, a 1.21 ratio, was found with the smallest image size of 256×256, and the largest speedup, a 4.25 ratio, was observed with the largest image size of 2304×2304. GPU programming resulted in a significant decrease in computational time associated with a FT image registration algorithm. The inclusion of the GPU may provide near real-time, sub-pixel registration capability. © 2012 American Association of Physicists in Medicine.
GASPACHO: a generic automatic solver using proximal algorithms for convex huge optimization problems
NASA Astrophysics Data System (ADS)
Goossens, Bart; Luong, Hiêp; Philips, Wilfried
2017-08-01
Many inverse problems (e.g., demosaicking, deblurring, denoising, image fusion, HDR synthesis) share various similarities: degradation operators are often modeled by a specific data fitting function while image prior knowledge (e.g., sparsity) is incorporated by additional regularization terms. In this paper, we investigate automatic algorithmic techniques for evaluating proximal operators. These algorithmic techniques also enable efficient calculation of adjoints from linear operators in a general matrix-free setting. In particular, we study the simultaneous-direction method of multipliers (SDMM) and the parallel proximal algorithm (PPXA) solvers and show that the automatically derived implementations are well suited for both single-GPU and multi-GPU processing. We demonstrate this approach for an Electron Microscopy (EM) deconvolution problem.
Memory-Scalable GPU Spatial Hierarchy Construction.
Qiming Hou; Xin Sun; Kun Zhou; Lauterbach, C; Manocha, D
2011-04-01
Recent GPU algorithms for constructing spatial hierarchies have achieved promising performance for moderately complex models by using the breadth-first search (BFS) construction order. While being able to exploit the massive parallelism on the GPU, the BFS order also consumes excessive GPU memory, which becomes a serious issue for interactive applications involving very complex models with more than a few million triangles. In this paper, we propose to use the partial breadth-first search (PBFS) construction order to control memory consumption while maximizing performance. We apply the PBFS order to two hierarchy construction algorithms. The first algorithm is for kd-trees that automatically balances between the level of parallelism and intermediate memory usage. With PBFS, peak memory consumption during construction can be efficiently controlled without costly CPU-GPU data transfer. We also develop memory allocation strategies to effectively limit memory fragmentation. The resulting algorithm scales well with GPU memory and constructs kd-trees of models with millions of triangles at interactive rates on GPUs with 1 GB memory. Compared with existing algorithms, our algorithm is an order of magnitude more scalable for a given GPU memory bound. The second algorithm is for out-of-core bounding volume hierarchy (BVH) construction for very large scenes based on the PBFS construction order. At each iteration, all constructed nodes are dumped to the CPU memory, and the GPU memory is freed for the next iteration's use. In this way, the algorithm is able to build trees that are too large to be stored in the GPU memory. Experiments show that our algorithm can construct BVHs for scenes with up to 20 M triangles, several times larger than previous GPU algorithms.
The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Clifford; School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030; Ji, Weixiao
2014-02-01
We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm,more » which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.« less
Fukuda, Shinichi; Okuda, Kensuke; Kishino, Genichiro; Hoshi, Sujin; Kawano, Itsuki; Fukuda, Masahiro; Yamashita, Toshiharu; Beheregaray, Simone; Nagano, Masumi; Ohneda, Osamu; Nagasawa, Hideko; Oshika, Tetsuro
2016-12-01
Retinal hypoxia plays a crucial role in ocular neovascular diseases, such as diabetic retinopathy, retinopathy of prematurity, and retinal vascular occlusion. Fluorescein angiography is useful for identifying the hypoxia extent by detecting non-perfusion areas or neovascularization, but its ability to detect early stages of hypoxia is limited. Recently, in vivo fluorescent probes for detecting hypoxia have been developed; however, these have not been extensively applied in ophthalmology. We evaluated whether a novel donor-excited photo-induced electron transfer (d-PeT) system based on an activatable hypoxia-selective near-infrared fluorescent (NIRF) probe (GPU-327) responds to both mild and severe hypoxia in various ocular ischemic diseases animal models. The ocular fundus examination offers unique opportunities for direct observation of the retina through the transparent cornea and lens. After injection of GPU-327 in various ocular hypoxic diseases of mouse and rabbit models, NIRF imaging in the ocular fundus can be performed noninvasively and easily by using commercially available fundus cameras. To investigate the safety of GPU-327, electroretinograms were also recorded after GPU-327 and PBS injection. Fluorescence of GPU-327 increased under mild hypoxic conditions in vitro. GPU-327 also yielded excellent signal-to-noise ratio without washing out in vivo experiments. By using near-infrared region, GPU-327 enables imaging of deeper ischemia, such as choroidal circulation. Additionally, from an electroretinogram, GPU-327 did not cause neurotoxicity. GPU-327 identified hypoxic area both in vivo and in vitro.
Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin
2015-01-15
Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin
2014-01-01
Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less
GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid
NASA Astrophysics Data System (ADS)
Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua
2016-10-01
A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.
GPU Accelerated Clustering for Arbitrary Shapes in Geoscience Data
NASA Astrophysics Data System (ADS)
Pankratius, V.; Gowanlock, M.; Rude, C. M.; Li, J. D.
2016-12-01
Clustering algorithms have become a vital component in intelligent systems for geoscience that helps scientists discover and track phenomena of various kinds. Here, we outline advances in Density-Based Spatial Clustering of Applications with Noise (DBSCAN) which detects clusters of arbitrary shape that are common in geospatial data. In particular, we propose a hybrid CPU-GPU implementation of DBSCAN and highlight new optimization approaches on the GPU that allows clustering detection in parallel while optimizing data transport during CPU-GPU interactions. We employ an efficient batching scheme between the host and GPU such that limited GPU memory is not prohibitive when processing large and/or dense datasets. To minimize data transfer overhead, we estimate the total workload size and employ an execution that generates optimized batches that will not overflow the GPU buffer. This work is demonstrated on space weather Total Electron Content (TEC) datasets containing over 5 million measurements from instruments worldwide, and allows scientists to spot spatially coherent phenomena with ease. Our approach is up to 30 times faster than a sequential implementation and therefore accelerates discoveries in large datasets. We acknowledge support from NSF ACI-1442997.
A real-time spike sorting method based on the embedded GPU.
Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng
2017-07-01
Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.
A sample implementation for parallelizing Divide-and-Conquer algorithms on the GPU.
Mei, Gang; Zhang, Jiayin; Xu, Nengxiong; Zhao, Kunyang
2018-01-01
The strategy of Divide-and-Conquer (D&C) is one of the frequently used programming patterns to design efficient algorithms in computer science, which has been parallelized on shared memory systems and distributed memory systems. Tzeng and Owens specifically developed a generic paradigm for parallelizing D&C algorithms on modern Graphics Processing Units (GPUs). In this paper, by following the generic paradigm proposed by Tzeng and Owens, we provide a new and publicly available GPU implementation of the famous D&C algorithm, QuickHull, to give a sample and guide for parallelizing D&C algorithms on the GPU. The experimental results demonstrate the practicality of our sample GPU implementation. Our research objective in this paper is to present a sample GPU implementation of a classical D&C algorithm to help interested readers to develop their own efficient GPU implementations with fewer efforts.
GPU MrBayes V3.1: MrBayes on Graphics Processing Units for Protein Sequence Data.
Pang, Shuai; Stones, Rebecca J; Ren, Ming-Ming; Liu, Xiao-Guang; Wang, Gang; Xia, Hong-ju; Wu, Hao-Yang; Liu, Yang; Xie, Qiang
2015-09-01
We present a modified GPU (graphics processing unit) version of MrBayes, called ta(MC)(3) (GPU MrBayes V3.1), for Bayesian phylogenetic inference on protein data sets. Our main contributions are 1) utilizing 64-bit variables, thereby enabling ta(MC)(3) to process larger data sets than MrBayes; and 2) to use Kahan summation to improve accuracy, convergence rates, and consequently runtime. Versus the current fastest software, we achieve a speedup of up to around 2.5 (and up to around 90 vs. serial MrBayes), and more on multi-GPU hardware. GPU MrBayes V3.1 is available from http://sourceforge.net/projects/mrbayes-gpu/. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
GPU-based High-Performance Computing for Radiation Therapy
Jia, Xun; Ziegenhein, Peter; Jiang, Steve B.
2014-01-01
Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. Graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past a few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of studies have been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this article, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. PMID:24486639
GPU accelerated implementation of NCI calculations using promolecular density.
Rubez, Gaëtan; Etancelin, Jean-Matthieu; Vigouroux, Xavier; Krajecki, Michael; Boisson, Jean-Charles; Hénon, Eric
2017-05-30
The NCI approach is a modern tool to reveal chemical noncovalent interactions. It is particularly attractive to describe ligand-protein binding. A custom implementation for NCI using promolecular density is presented. It is designed to leverage the computational power of NVIDIA graphics processing unit (GPU) accelerators through the CUDA programming model. The code performances of three versions are examined on a test set of 144 systems. NCI calculations are particularly well suited to the GPU architecture, which reduces drastically the computational time. On a single compute node, the dual-GPU version leads to a 39-fold improvement for the biggest instance compared to the optimal OpenMP parallel run (C code, icc compiler) with 16 CPU cores. Energy consumption measurements carried out on both CPU and GPU NCI tests show that the GPU approach provides substantial energy savings. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analyticallymore » derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.« less
GPU-completeness: theory and implications
NASA Astrophysics Data System (ADS)
Lin, I.-Jong
2011-01-01
This paper formalizes a major insight into a class of algorithms that relate parallelism and performance. The purpose of this paper is to define a class of algorithms that trades off parallelism for quality of result (e.g. visual quality, compression rate), and we propose a similar method for algorithmic classification based on NP-Completeness techniques, applied toward parallel acceleration. We will define this class of algorithm as "GPU-Complete" and will postulate the necessary properties of the algorithms for admission into this class. We will also formally relate his algorithmic space and imaging algorithms space. This concept is based upon our experience in the print production area where GPUs (Graphic Processing Units) have shown a substantial cost/performance advantage within the context of HPdelivered enterprise services and commercial printing infrastructure. While CPUs and GPUs are converging in their underlying hardware and functional blocks, their system behaviors are clearly distinct in many ways: memory system design, programming paradigms, and massively parallel SIMD architecture. There are applications that are clearly suited to each architecture: for CPU: language compilation, word processing, operating systems, and other applications that are highly sequential in nature; for GPU: video rendering, particle simulation, pixel color conversion, and other problems clearly amenable to massive parallelization. While GPUs establishing themselves as a second, distinct computing architecture from CPUs, their end-to-end system cost/performance advantage in certain parts of computation inform the structure of algorithms and their efficient parallel implementations. While GPUs are merely one type of architecture for parallelization, we show that their introduction into the design space of printing systems demonstrate the trade-offs against competing multi-core, FPGA, and ASIC architectures. While each architecture has its own optimal application, we believe that the selection of architecture can be defined in terms of properties of GPU-Completeness. For a welldefined subset of algorithms, GPU-Completeness is intended to connect the parallelism, algorithms and efficient architectures into a unified framework to show that multiple layers of parallel implementation are guided by the same underlying trade-off.
Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.
Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui
2016-03-05
The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Persoon, Lucas C G G; Podesta, Mark; van Elmpt, Wouter J C; Nijsten, Sebastiaan M J J G; Verhaegen, Frank
2011-07-01
A widely accepted method to quantify differences in dose distributions is the gamma (gamma) evaluation. Currently, almost all gamma implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D gamma evaluation using a GPU to improve calculation time. The gamma evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (CUDA). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. A GPU over CPU speed-up of 66 +/- 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 +/- 15 using the GPU was obtained. A thread-block size of 16 x 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU gammas were negligible. The GPU and its features, such as texture memory, decreased the calculation time for gamma evaluations considerably without loss of accuracy.
Parallel hyperspectral compressive sensing method on GPU
NASA Astrophysics Data System (ADS)
Bernabé, Sergio; Martín, Gabriel; Nascimento, José M. P.
2015-10-01
Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations
NASA Astrophysics Data System (ADS)
Hause, Benjamin; Parker, Scott; Chen, Yang
2013-10-01
We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.
ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Yun, Kiyun; Yoon, Suk-Jin
General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integrationmore » step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.« less
GPU computing in medical physics: a review.
Pratx, Guillem; Xing, Lei
2011-05-01
The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction, dose calculation and treatment plan optimization, and image processing.
Efficient Implementation of MrBayes on Multi-GPU
Zhou, Jianfu; Liu, Xiaoguang; Wang, Gang
2013-01-01
MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)3), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)3 Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes an efficient implementation a(MC)3 (aMCMCMC) for MrBayes (MC)3 on compute unified device architecture. By dynamically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use of a large number of GPU cards. Furthermore, a new “node-by-node” task scheduling strategy is developed to improve concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)3 achieves up to 63× speedup over serial MrBayes on a single machine with one GPU card, and up to 170× speedup with four GPU cards, and up to 478× speedup with a 32-node GPU cluster. a(MC)3 is dramatically faster than all the previous (MC)3 algorithms and scales well to large GPU clusters. PMID:23493260
Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing
Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin
2016-01-01
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606
Efficient implementation of MrBayes on multi-GPU.
Bao, Jie; Xia, Hongju; Zhou, Jianfu; Liu, Xiaoguang; Wang, Gang
2013-06-01
MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)(3)), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)(3) Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes an efficient implementation a(MC)(3) (aMCMCMC) for MrBayes (MC)(3) on compute unified device architecture. By dynamically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use of a large number of GPU cards. Furthermore, a new "node-by-node" task scheduling strategy is developed to improve concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)(3) achieves up to 63× speedup over serial MrBayes on a single machine with one GPU card, and up to 170× speedup with four GPU cards, and up to 478× speedup with a 32-node GPU cluster. a(MC)(3) is dramatically faster than all the previous (MC)(3) algorithms and scales well to large GPU clusters.
Architecting the Finite Element Method Pipeline for the GPU.
Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T
2014-02-01
The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.
Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.
Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin
2016-04-07
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.
Xu, Daguang; Huang, Yong; Kang, Jin U
2014-06-16
We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).
Su, Xiaoquan; Wang, Xuetao; Jing, Gongchao; Ning, Kang
2014-04-01
The number of microbial community samples is increasing with exponential speed. Data-mining among microbial community samples could facilitate the discovery of valuable biological information that is still hidden in the massive data. However, current methods for the comparison among microbial communities are limited by their ability to process large amount of samples each with complex community structure. We have developed an optimized GPU-based software, GPU-Meta-Storms, to efficiently measure the quantitative phylogenetic similarity among massive amount of microbial community samples. Our results have shown that GPU-Meta-Storms would be able to compute the pair-wise similarity scores for 10 240 samples within 20 min, which gained a speed-up of >17 000 times compared with single-core CPU, and >2600 times compared with 16-core CPU. Therefore, the high-performance of GPU-Meta-Storms could facilitate in-depth data mining among massive microbial community samples, and make the real-time analysis and monitoring of temporal or conditional changes for microbial communities possible. GPU-Meta-Storms is implemented by CUDA (Compute Unified Device Architecture) and C++. Source code is available at http://www.computationalbioenergy.org/meta-storms.html.
Gorshkov, Anton V; Kirillin, Mikhail Yu
2015-08-01
Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.
GPU-based real-time trinocular stereo vision
NASA Astrophysics Data System (ADS)
Yao, Yuanbin; Linton, R. J.; Padir, Taskin
2013-01-01
Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.
2012-01-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G
2011-07-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less
Hadoop-MCC: Efficient Multiple Compound Comparison Algorithm Using Hadoop.
Hua, Guan-Jie; Hung, Che-Lun; Tang, Chuan Yi
2018-01-01
In the past decade, the drug design technologies have been improved enormously. The computer-aided drug design (CADD) has played an important role in analysis and prediction in drug development, which makes the procedure more economical and efficient. However, computation with big data, such as ZINC containing more than 60 million compounds data and GDB-13 with more than 930 million small molecules, is a noticeable issue of time-consuming problem. Therefore, we propose a novel heterogeneous high performance computing method, named as Hadoop-MCC, integrating Hadoop and GPU, to copy with big chemical structure data efficiently. Hadoop-MCC gains the high availability and fault tolerance from Hadoop, as Hadoop is used to scatter input data to GPU devices and gather the results from GPU devices. Hadoop framework adopts mapper/reducer computation model. In the proposed method, mappers response for fetching SMILES data segments and perform LINGO method on GPU, then reducers collect all comparison results produced by mappers. Due to the high availability of Hadoop, all of LINGO computational jobs on mappers can be completed, even if some of the mappers encounter problems. A comparison of LINGO is performed on each the GPU device in parallel. According to the experimental results, the proposed method on multiple GPU devices can achieve better computational performance than the CUDA-MCC on a single GPU device. Hadoop-MCC is able to achieve scalability, high availability, and fault tolerance granted by Hadoop, and high performance as well by integrating computational power of both of Hadoop and GPU. It has been shown that using the heterogeneous architecture as Hadoop-MCC effectively can enhance better computational performance than on a single GPU device. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2015-01-01
The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.
NASA Astrophysics Data System (ADS)
Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.
2016-10-01
We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling to multiple GPUs. Comparison of simulation results to measurements of ASE in Y b 3 + : Y AG ceramics show perfect agreement.
Local Alignment Tool Based on Hadoop Framework and GPU Architecture
Hung, Che-Lun; Hua, Guan-Jie
2014-01-01
With the rapid growth of next generation sequencing technologies, such as Slex, more and more data have been discovered and published. To analyze such huge data the computational performance is an important issue. Recently, many tools, such as SOAP, have been implemented on Hadoop and GPU parallel computing architectures. BLASTP is an important tool, implemented on GPU architectures, for biologists to compare protein sequences. To deal with the big biology data, it is hard to rely on single GPU. Therefore, we implement a distributed BLASTP by combining Hadoop and multi-GPUs. The experimental results present that the proposed method can improve the performance of BLASTP on single GPU, and also it can achieve high availability and fault tolerance. PMID:24955362
Local alignment tool based on Hadoop framework and GPU architecture.
Hung, Che-Lun; Hua, Guan-Jie
2014-01-01
With the rapid growth of next generation sequencing technologies, such as Slex, more and more data have been discovered and published. To analyze such huge data the computational performance is an important issue. Recently, many tools, such as SOAP, have been implemented on Hadoop and GPU parallel computing architectures. BLASTP is an important tool, implemented on GPU architectures, for biologists to compare protein sequences. To deal with the big biology data, it is hard to rely on single GPU. Therefore, we implement a distributed BLASTP by combining Hadoop and multi-GPUs. The experimental results present that the proposed method can improve the performance of BLASTP on single GPU, and also it can achieve high availability and fault tolerance.
A survey of CPU-GPU heterogeneous computing techniques
Mittal, Sparsh; Vetter, Jeffrey S.
2015-07-04
As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and applicationmore » level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). Furthermore, we believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.« less
GPU accelerated manifold correction method for spinning compact binaries
NASA Astrophysics Data System (ADS)
Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying
2018-04-01
The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.
A survey of CPU-GPU heterogeneous computing techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S.
As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and applicationmore » level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). Furthermore, we believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.« less
3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation
NASA Astrophysics Data System (ADS)
Chen, Z.; Meng, X.; Guo, L.; Liu, G.
2011-12-01
In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and comtinue to perform 3D correlation imaging for the redisual gravity data. After several iterations, we can obtain a satisfactoy results. Newly developed general purpose computing technology from Nvidia GPU (Graphics Processing Unit) has been put into practice and received widespread attention in many areas. Based on the GPU programming mode and two parallel levels, five CPU loops for the main computation of 3D correlation imaging are converted into three loops in GPU kernel functions, thus achieving GPU/CPU collaborative computing. The two inner loops are defined as the dimensions of blocks and the three outer loops are defined as the dimensions of threads, thus realizing the double loop block calculation. Theoretical and real gravity data tests show that results are reliable and the computing time is greatly reduced. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
Using a million cell simulation of the cerebellum: network scaling and task generality.
Li, Wen-Ke; Hausknecht, Matthew J; Stone, Peter; Mauk, Michael D
2013-11-01
Several factors combine to make it feasible to build computer simulations of the cerebellum and to test them in biologically realistic ways. These simulations can be used to help understand the computational contributions of various cerebellar components, including the relevance of the enormous number of neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule cells to develop new predictions and to account for various aspects of eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that this increase in number of granule cells requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic features of conditioned eyelid responses, with a slight improvement in performance in one measure. We also use this simulation to examine the generality of the computation properties that we have derived from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level of performance in a classic machine learning task, the cart-pole balancing task. These results suggest that this parallel GPU technology can be used to build very large-scale simulations whose connectivity ratios match those of the real cerebellum and that these simulations can be used guide future studies on cerebellar mediated tasks and on machine learning problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rohl, Sebastian; Bodenstedt, Sebastian; Suwelack, Stefan; Dillmann, Rudiger; Speidel, Stefanie; Kenngott, Hannes; Muller-Stich, Beat P
2012-03-01
In laparoscopic surgery, soft tissue deformations substantially change the surgical site, thus impeding the use of preoperative planning during intraoperative navigation. Extracting depth information from endoscopic images and building a surface model of the surgical field-of-view is one way to represent this constantly deforming environment. The information can then be used for intraoperative registration. Stereo reconstruction is a typical problem within computer vision. However, most of the available methods do not fulfill the specific requirements in a minimally invasive setting such as the need of real-time performance, the problem of view-dependent specular reflections and large curved areas with partly homogeneous or periodic textures and occlusions. In this paper, the authors present an approach toward intraoperative surface reconstruction based on stereo endoscopic images. The authors describe our answer to this problem through correspondence analysis, disparity correction and refinement, 3D reconstruction, point cloud smoothing and meshing. Real-time performance is achieved by implementing the algorithms on the gpu. The authors also present a new hybrid cpu-gpu algorithm that unifies the advantages of the cpu and the gpu version. In a comprehensive evaluation using in vivo data, in silico data from the literature and virtual data from a newly developed simulation environment, the cpu, the gpu, and the hybrid cpu-gpu versions of the surface reconstruction are compared to a cpu and a gpu algorithm from the literature. The recommended approach toward intraoperative surface reconstruction can be conducted in real-time depending on the image resolution (20 fps for the gpu and 14fps for the hybrid cpu-gpu version on resolution of 640 × 480). It is robust to homogeneous regions without texture, large image changes, noise or errors from camera calibration, and it reconstructs the surface down to sub millimeter accuracy. In all the experiments within the simulation environment, the mean distance to ground truth data is between 0.05 and 0.6 mm for the hybrid cpu-gpu version. The hybrid cpu-gpu algorithm shows a much more superior performance than its cpu and gpu counterpart (mean distance reduction 26% and 45%, respectively, for the experiments in the simulation environment). The recommended approach for surface reconstruction is fast, robust, and accurate. It can represent changes in the intraoperative environment and can be used to adapt a preoperative model within the surgical site by registration of these two models.
GPU real-time processing in NA62 trigger system
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-01-01
A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.
gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison.
Yan, Xin; Li, Jiabo; Gu, Qiong; Xu, Jun
2014-06-05
Virtual screening of a large chemical library for drug lead identification requires searching/superimposing a large number of three-dimensional (3D) chemical structures. This article reports a graphic processing unit (GPU)-accelerated weighted Gaussian algorithm (gWEGA) that expedites shape or shape-feature similarity score-based virtual screening. With 86 GPU nodes (each node has one GPU card), gWEGA can screen 110 million conformations derived from an entire ZINC drug-like database with diverse antidiabetic agents as query structures within 2 s (i.e., screening more than 55 million conformations per second). The rapid screening speed was accomplished through the massive parallelization on multiple GPU nodes and rapid prescreening of 3D structures (based on their shape descriptors and pharmacophore feature compositions). Copyright © 2014 Wiley Periodicals, Inc.
Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods
Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.
2016-09-01
Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less
NASA Astrophysics Data System (ADS)
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
Fast distributed large-pixel-count hologram computation using a GPU cluster.
Pan, Yuechao; Xu, Xuewu; Liang, Xinan
2013-09-10
Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.
Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.
Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less
Ellingwood, Nathan D; Yin, Youbing; Smith, Matthew; Lin, Ching-Long
2016-04-01
Faster and more accurate methods for registration of images are important for research involved in conducting population-based studies that utilize medical imaging, as well as improvements for use in clinical applications. We present a novel computation- and memory-efficient multi-level method on graphics processing units (GPU) for performing registration of two computed tomography (CT) volumetric lung images. We developed a computation- and memory-efficient Diffeomorphic Multi-level B-Spline Transform Composite (DMTC) method to implement nonrigid mass-preserving registration of two CT lung images on GPU. The framework consists of a hierarchy of B-Spline control grids of increasing resolution. A similarity criterion known as the sum of squared tissue volume difference (SSTVD) was adopted to preserve lung tissue mass. The use of SSTVD consists of the calculation of the tissue volume, the Jacobian, and their derivatives, which makes its implementation on GPU challenging due to memory constraints. The use of the DMTC method enabled reduced computation and memory storage of variables with minimal communication between GPU and Central Processing Unit (CPU) due to ability to pre-compute values. The method was assessed on six healthy human subjects. Resultant GPU-generated displacement fields were compared against the previously validated CPU counterpart fields, showing good agreement with an average normalized root mean square error (nRMS) of 0.044±0.015. Runtime and performance speedup are compared between single-threaded CPU, multi-threaded CPU, and GPU algorithms. Best performance speedup occurs at the highest resolution in the GPU implementation for the SSTVD cost and cost gradient computations, with a speedup of 112 times that of the single-threaded CPU version and 11 times over the twelve-threaded version when considering average time per iteration using a Nvidia Tesla K20X GPU. The proposed GPU-based DMTC method outperforms its multi-threaded CPU version in terms of runtime. Total registration time reduced runtime to 2.9min on the GPU version, compared to 12.8min on twelve-threaded CPU version and 112.5min on a single-threaded CPU. Furthermore, the GPU implementation discussed in this work can be adapted for use of other cost functions that require calculation of the first derivatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas
NASA Astrophysics Data System (ADS)
Rath, Nikolaus
Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control computations with high computational demands, but is handled easily by the GPU based system. Both digital processing latency and an arbitrary multi-pole response of amplifiers and control coils is fully taken into account for the generation of control signals. To separate sensor signals into perturbed and equilibrium components without knowledge of the equilibrium fields, a new separation method based on biorthogonal decomposition is introduced and used to derive a filter that performs the separation in real-time. The control algorithm has been implemented and tested on the new, GPU-based feedback control system of the HBT-EP tokamak. In this instance, the algorithm was set up to control four rotating n = 1 perturbations at different poloidal angles. The perturbations were treated as coupled in frequency but independent in amplitude and phase, so that the system effectively controls a helical n = 1 perturbation with unknown poloidal spectrum. Depending on the plasma's edge safety factor and rotation frequency, the control system is shown to be able to suppress the amplitude of the dominant 8 kHz mode by up to 60% or amplify the saturated amplitude by a factor of up to two. Intermediate feedback phases combine suppression and amplification with a speed up or slow down of the mode rotation frequency. Increasing feedback gain results in the excitation of an additional, slowly rotating 1.4 kHz mode without further effects on the 8 kHz mode. The feedback performance is found to exceed previous results obtained with an FPGA- and Kalman-filter based control system without requiring any tuning of system model parameters. Experimental results are compared with simulations based on a combination of the Boozer surface current model and the Fitzpatrick-Aydemir model. Within the subset of phenomena that can be represented by the model as well as determined experimentally, qualitative agreement is found.
NASA Astrophysics Data System (ADS)
Xu, Chuanfu; Deng, Xiaogang; Zhang, Lilun; Fang, Jianbin; Wang, Guangxue; Jiang, Yi; Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua
2014-12-01
Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU-GPU collaborative simulations that solve realistic CFD problems with both complex configurations and high-order schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chuanfu, E-mail: xuchuanfu@nudt.edu.cn; Deng, Xiaogang; Zhang, Lilun
Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations formore » high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations that solve realistic CFD problems with both complex configurations and high-order schemes.« less
cellGPU: Massively parallel simulations of dynamic vertex models
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.
2017-10-01
Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation
Incompressible SPH (ISPH) with fast Poisson solver on a GPU
NASA Astrophysics Data System (ADS)
Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.
2018-05-01
This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.
Testing and Validating Gadget2 for GPUs
NASA Astrophysics Data System (ADS)
Wibking, Benjamin; Holley-Bockelmann, K.; Berlind, A. A.
2013-01-01
We are currently upgrading a version of Gadget2 (Springel et al., 2005) that is optimized for NVIDIA's CUDA GPU architecture (Frigaard, unpublished) to work with the latest libraries and graphics cards. Preliminary tests of its performance indicate a ~40x speedup in the particle force tree approximation calculation, with overall speedup of 5-10x for cosmological simulations run with GPUs compared to running on the same CPU cores without GPU acceleration. We believe this speedup can be reasonably increased by an additional factor of two with futher optimization, including overlap of computation on CPU and GPU. Tests of single-precision GPU numerical fidelity currently indicate accuracy of the mass function and the spectral power density to within a few percent of extended-precision CPU results with the unmodified form of Gadget. Additionally, we plan to test and optimize the GPU code for Millenium-scale "grand challenge" simulations of >10^9 particles, a scale that has been previously untested with this code, with the aid of the NSF XSEDE flagship GPU-based supercomputing cluster codenamed "Keeneland." Current work involves additional validation of numerical results, extending the numerical precision of the GPU calculations to double precision, and evaluating performance/accuracy tradeoffs. We believe that this project, if successful, will yield substantial computational performance benefits to the N-body research community as the next generation of GPU supercomputing resources becomes available, both increasing the electrical power efficiency of ever-larger computations (making simulations possible a decade from now at scales and resolutions unavailable today) and accelerating the pace of research in the field.
Lossless data compression for improving the performance of a GPU-based beamformer.
Lok, U-Wai; Fan, Gang-Wei; Li, Pai-Chi
2015-04-01
The powerful parallel computation ability of a graphics processing unit (GPU) makes it feasible to perform dynamic receive beamforming However, a real time GPU-based beamformer requires high data rate to transfer radio-frequency (RF) data from hardware to software memory, as well as from central processing unit (CPU) to GPU memory. There are data compression methods (e.g. Joint Photographic Experts Group (JPEG)) available for the hardware front end to reduce data size, alleviating the data transfer requirement of the hardware interface. Nevertheless, the required decoding time may even be larger than the transmission time of its original data, in turn degrading the overall performance of the GPU-based beamformer. This article proposes and implements a lossless compression-decompression algorithm, which enables in parallel compression and decompression of data. By this means, the data transfer requirement of hardware interface and the transmission time of CPU to GPU data transfers are reduced, without sacrificing image quality. In simulation results, the compression ratio reached around 1.7. The encoder design of our lossless compression approach requires low hardware resources and reasonable latency in a field programmable gate array. In addition, the transmission time of transferring data from CPU to GPU with the parallel decoding process improved by threefold, as compared with transferring original uncompressed data. These results show that our proposed lossless compression plus parallel decoder approach not only mitigate the transmission bandwidth requirement to transfer data from hardware front end to software system but also reduce the transmission time for CPU to GPU data transfer. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Ammazzalorso, F.; Bednarz, T.; Jelen, U.
2014-03-01
We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Kantardjiev, Alexander A
2015-04-05
A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less
Fast 3D elastic micro-seismic source location using new GPU features
NASA Astrophysics Data System (ADS)
Xue, Qingfeng; Wang, Yibo; Chang, Xu
2016-12-01
In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.
GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations
NASA Astrophysics Data System (ADS)
Nguyen, Trung Dac
2017-03-01
The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.
Best bang for your buck: GPU nodes for GROMACS biomolecular simulations
Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L.; Grubmüller, Helmut
2015-01-01
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26238484
GPU-accelerated adjoint algorithmic differentiation
NASA Astrophysics Data System (ADS)
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the ;tape;. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-Accelerated Adjoint Algorithmic Differentiation.
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
Kutzner, Carsten; Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L; Grubmüller, Helmut
2015-10-05
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
GPU-Accelerated Adjoint Algorithmic Differentiation
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2015-01-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography. PMID:26941443
NASA Astrophysics Data System (ADS)
Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.
2015-09-01
We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.
Porting ONETEP to graphical processing unit-based coprocessors. 1. FFT box operations.
Wilkinson, Karl; Skylaris, Chris-Kriton
2013-10-30
We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Alvanos, Michail; Christoudias, Theodoros
2017-10-01
This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.
BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs
Eklund, Anders; Dufort, Paul; Villani, Mattias; LaConte, Stephen
2014-01-01
Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever more computationally demanding as temporal and spatial resolutions improve, and large, publicly available data sets proliferate. Moreover, methodological improvements in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically increase the computational burden. Despite these challenges, there do not yet exist any fMRI software packages which leverage inexpensive and powerful graphics processing units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a free software package written in OpenCL (Open Computing Language) that can be used for parallel analysis of fMRI data on a large variety of hardware configurations. BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and an AMD GPU. These tests show that parallel processing of fMRI data can lead to significantly faster analysis pipelines. This speedup can be achieved on relatively standard hardware, but further, dramatic speed improvements require only a modest investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level permutation test with 10,000 permutations in about a minute. These non-parametric tests are generally more robust than their parametric counterparts, and can also enable more sophisticated analyses by estimating complicated null distributions. Additionally, BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler. The new software is freely available under GNU GPL3 and can be downloaded from github (https://github.com/wanderine/BROCCOLI/). PMID:24672471
Implementation of Multipattern String Matching Accelerated with GPU for Intrusion Detection System
NASA Astrophysics Data System (ADS)
Nehemia, Rangga; Lim, Charles; Galinium, Maulahikmah; Rinaldi Widianto, Ahmad
2017-04-01
As Internet-related security threats continue to increase in terms of volume and sophistication, existing Intrusion Detection System is also being challenged to cope with the current Internet development. Multi Pattern String Matching algorithm accelerated with Graphical Processing Unit is being utilized to improve the packet scanning performance of the IDS. This paper implements a Multi Pattern String Matching algorithm, also called Parallel Failureless Aho Corasick accelerated with GPU to improve the performance of IDS. OpenCL library is used to allow the IDS to support various GPU, including popular GPU such as NVIDIA and AMD, used in our research. The experiment result shows that the application of Multi Pattern String Matching using GPU accelerated platform provides a speed up, by up to 141% in term of throughput compared to the previous research.
An efficient spectral crystal plasticity solver for GPU architectures
NASA Astrophysics Data System (ADS)
Malahe, Michael
2018-03-01
We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
Optimizing Approximate Weighted Matching on Nvidia Kepler K40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh
Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less
GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes
NASA Astrophysics Data System (ADS)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs
Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang
2015-01-01
Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n 2), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k 2 n 2) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results. PMID:26491652
Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.
Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang
2015-01-01
Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.
High-performance biocomputing for simulating the spread of contagion over large contact networks
2012-01-01
Background Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. Results We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. Conclusions We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency. PMID:22537298
Xiao, Kai; Chen, Danny Z; Hu, X Sharon; Zhou, Bo
2012-12-01
The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.
GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
Zhou, Bo; Yu, Cedric X; Chen, Danny Z; Hu, X Sharon
2010-11-01
Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution/superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution/superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors' GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. A speedup in the range of 6.7-11.4x is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors' GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article.
2010-01-01
Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to develop their own GPU implementations, and encourage others to implement their modeling methods on the GPU and to make that code available to the wider community. PMID:20696053
GPU-based optimal control for RWM feedback in tokamaks
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; ...
2017-08-23
The design and implementation of a Graphics Processing Unit (GPU) based Resistive Wall Mode (RWM) controller to perform feedback control on the RWM using Linear Quadratic Gaussian (LQG) control is reported herein. Also, the control algorithm is based on a simplified DIII-D VALEN model. By using NVIDIA’s GPUDirect RDMA framework, the digitizer and output module are able to write and read directly to and from GPU memory, eliminating memory transfers between host and GPU. In conclusion, the system and algorithm was able to reduce plasma response excited by externally applied fields by 32% during development experiments.
GPU-based optimal control for RWM feedback in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim
The design and implementation of a Graphics Processing Unit (GPU) based Resistive Wall Mode (RWM) controller to perform feedback control on the RWM using Linear Quadratic Gaussian (LQG) control is reported herein. Also, the control algorithm is based on a simplified DIII-D VALEN model. By using NVIDIA’s GPUDirect RDMA framework, the digitizer and output module are able to write and read directly to and from GPU memory, eliminating memory transfers between host and GPU. In conclusion, the system and algorithm was able to reduce plasma response excited by externally applied fields by 32% during development experiments.
NASA Astrophysics Data System (ADS)
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time and both second- and fourth-order differencing in space. The integrators are written to run on NVIDIA GPUs and are interfaced with MATLAB including built-in visualization and analysis tools. Restrictions: The main restriction for the GPU integrators is the amount of RAM on the GPU as the code is currently only designed for running on a single GPU. Unusual features: Ability to visualize real-time simulations through the interaction of MATLAB and the compiled GPU integrators. Additional comments: Setup guide and Installation guide provided. Program has a dedicated web site at www.nlsemagic.com. Running time: A three-dimensional run with a grid dimension of 87×87×203 for 3360 time steps (100 non-dimensional time units) takes about one and a half minutes on a GeForce GTX 580 GPU card.
Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie
2010-09-13
In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Priscilla N.
2016-08-12
The code runs the Game of Life among several processors. Each processor uses CUDA to set up the grid's buffer on the GPU, and that buffer is fed to other GPU languages to apply the rules of the game of life. Only the halo is copied off the buffer and exchanged using MPI. This code looks at the interoperability of GPU languages among current platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Chan Tseung, H; Ma, J; Ma, D
2015-06-15
Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based biological planning for the treatment of thyroid tumors in spot-scanning proton therapy. Methods: Recently, we developed a fast and accurate GPU-based MC simulation of proton transport that was benchmarked against Geant4.9.6 and used as the dose calculation engine in a clinically-applicable GPU-accelerated IMPT optimizer. Besides dose, it can simultaneously score the dose-averaged LET (LETd), which makes fast biological dose (BD) estimates possible. To convert from LETd to BD, we used a linear relation based on cellular irradiation data. Given a thyroid patient with a 93cc tumor volume, we createdmore » a 2-field IMPT plan in Eclipse (Varian Medical Systems). This plan was re-calculated with our MC to obtain the BD distribution. A second 5-field plan was made with our in-house optimizer, using pre-generated MC dose and LETd maps. Constraints were placed to maintain the target dose to within 25% of the prescription, while maximizing the BD. The plan optimization and calculation of dose and LETd maps were performed on a GPU cluster. The conventional IMPT and biologically-optimized plans were compared. Results: The mean target physical and biological doses from our biologically-optimized plan were, respectively, 5% and 14% higher than those from the MC re-calculation of the IMPT plan. Dose sparing to critical structures in our plan was also improved. The biological optimization, including the initial dose and LETd map calculations, can be completed in a clinically viable time (∼30 minutes) on a cluster of 25 GPUs. Conclusion: Taking advantage of GPU acceleration, we created a MC-based, biologically optimized treatment plan for a thyroid patient. Compared to a standard IMPT plan, a 5% increase in the target’s physical dose resulted in ∼3 times as much increase in the BD. Biological planning was thus effective in escalating the target BD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J; Min, Y; Qi, S
2014-06-15
Purpose: Deformable image registration (DIR) plays a pivotal role in head and neck adaptive radiotherapy but a systematic validation of DIR algorithms has been limited by a lack of quantitative high-resolution groundtruth. We address this limitation by developing a GPU-based framework that provides a systematic DIR validation by generating (a) model-guided synthetic CTs representing posture and physiological changes, and (b) model-guided landmark-based validation. Method: The GPU-based framework was developed to generate massive mass-spring biomechanical models from patient simulation CTs and contoured structures. The biomechanical model represented soft tissue deformations for known rigid skeletal motion. Posture changes were simulated by articulatingmore » skeletal anatomy, which subsequently applied elastic corrective forces upon the soft tissue. Physiological changes such as tumor regression and weight loss were simulated in a biomechanically precise manner. Synthetic CT data was then generated from the deformed anatomy. The initial and final positions for one hundred randomly-chosen mass elements inside each of the internal contoured structures were recorded as ground truth data. The process was automated to create 45 synthetic CT datasets for a given patient CT. For instance, the head rotation was varied between +/− 4 degrees along each axis, and tumor volumes were systematically reduced up to 30%. Finally, the original CT and deformed synthetic CT were registered using an optical flow based DIR. Results: Each synthetic data creation took approximately 28 seconds of computation time. The number of landmarks per data set varied between two and three thousand. The validation method is able to perform sub-voxel analysis of the DIR, and report the results by structure, giving a much more in depth investigation of the error. Conclusions: We presented a GPU based high-resolution biomechanical head and neck model to validate DIR algorithms by generating CT equivalent 3D volumes with simulated posture changes and physiological regression.« less
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Spazier, J.; Reißland, S.
2014-12-01
Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the concept a whirl and to shape science's future. Further functionality, improvements and possible profound changes have to implemented successively based on the users' evolving needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; Schuemann, J; Dowdell, S
Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavitiesmore » and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Chan Tseung, Hok Seum, E-mail: wanchantseung.hok@mayo.edu; Ma, Jiasen; Kreofsky, Cole R.
Purpose: Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)–based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods and Materials: Recently, a fast and accurate graphics processor unit (GPU)–based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LET{sub d}), which makes biological dose (BD) optimization possible. To convert from LET{sub d} to BD, a simple linear relation was assumed. By use of thismore » novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Results: Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. Conclusions: By exploiting GPU acceleration, MC-based, biologically optimized plans were created for small–tumor target patients. This optimizer will be used in an upcoming feasibility trial on LET{sub d} painting for radioresistant tumors.« less
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model
NASA Astrophysics Data System (ADS)
Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin
2016-08-01
This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.
Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil
2013-04-04
The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.
Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.
Ruymgaart, A Peter; Elber, Ron
2012-11-13
We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).
GPU-accelerated track reconstruction in the ALICE High Level Trigger
NASA Astrophysics Data System (ADS)
Rohr, David; Gorbunov, Sergey; Lindenstruth, Volker;
2017-10-01
ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN. The High Level Trigger (HLT) is an online compute farm which reconstructs events measured by the ALICE detector in real-time. The most compute-intensive part is the reconstruction of particle trajectories called tracking and the most important detector for tracking is the Time Projection Chamber (TPC). The HLT uses a GPU-accelerated algorithm for TPC tracking that is based on the Cellular Automaton principle and on the Kalman filter. The GPU tracking has been running in 24/7 operation since 2012 in LHC Run 1 and 2. In order to better leverage the potential of the GPUs, and speed up the overall HLT reconstruction, we plan to bring more reconstruction steps (e.g. the tracking for other detectors) onto the GPUs. There are several tasks running so far on the CPU that could benefit from cooperation with the tracking, which is hardly feasible at the moment due to the delay of the PCI Express transfers. Moving more steps onto the GPU, and processing them on the GPU at once, will reduce PCI Express transfers and free up CPU resources. On top of that, modern GPUs and GPU programming APIs provide new features which are not yet exploited by the TPC tracking. We present our new developments for GPU reconstruction, both with a focus on the online reconstruction on GPU for the online offline computing upgrade in ALICE during LHC Run 3, and also taking into account how the current HLT in Run 2 can profit from these improvements.
Storage strategies of eddy-current FE-BI model for GPU implementation
NASA Astrophysics Data System (ADS)
Bardel, Charles; Lei, Naiguang; Udpa, Lalita
2013-01-01
In the past few years graphical processing units (GPUs) have shown tremendous improvements in computational throughput over standard CPU architecture. However, this comes at the cost of restructuring the algorithms to meet the strengths and drawbacks of this GPU architecture. A major drawback is the state of limited memory, and hence storage of FE stiffness matrices on the GPU is important. In contrast to storage on CPU the GPU storage format has significant influence on the overall performance. This paper presents an investigation of a storage strategy in the implementation of a two-dimensional finite element-boundary integral (FE-BI) model for Eddy current NDE applications, on GPU architecture. Specifically, the high dimensional matrices are manipulated by examining the matrix structure and optimally splitting into structurally independent component matrices for efficient storage and retrieval of each component. Results obtained using the proposed approach are compared to those of conventional CPU implementation for validating the method.
Wu, Xin; Koslowski, Axel; Thiel, Walter
2012-07-10
In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.
GPU-Powered Coherent Beamforming
NASA Astrophysics Data System (ADS)
Magro, A.; Adami, K. Zarb; Hickish, J.
2015-03-01
Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.
Scalable non-negative matrix tri-factorization.
Čopar, Andrej; Žitnik, Marinka; Zupan, Blaž
2017-01-01
Matrix factorization is a well established pattern discovery tool that has seen numerous applications in biomedical data analytics, such as gene expression co-clustering, patient stratification, and gene-disease association mining. Matrix factorization learns a latent data model that takes a data matrix and transforms it into a latent feature space enabling generalization, noise removal and feature discovery. However, factorization algorithms are numerically intensive, and hence there is a pressing challenge to scale current algorithms to work with large datasets. Our focus in this paper is matrix tri-factorization, a popular method that is not limited by the assumption of standard matrix factorization about data residing in one latent space. Matrix tri-factorization solves this by inferring a separate latent space for each dimension in a data matrix, and a latent mapping of interactions between the inferred spaces, making the approach particularly suitable for biomedical data mining. We developed a block-wise approach for latent factor learning in matrix tri-factorization. The approach partitions a data matrix into disjoint submatrices that are treated independently and fed into a parallel factorization system. An appealing property of the proposed approach is its mathematical equivalence with serial matrix tri-factorization. In a study on large biomedical datasets we show that our approach scales well on multi-processor and multi-GPU architectures. On a four-GPU system we demonstrate that our approach can be more than 100-times faster than its single-processor counterpart. A general approach for scaling non-negative matrix tri-factorization is proposed. The approach is especially useful parallel matrix factorization implemented in a multi-GPU environment. We expect the new approach will be useful in emerging procedures for latent factor analysis, notably for data integration, where many large data matrices need to be collectively factorized.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.
Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy intomore » a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.« less
Particle-in-cell simulations on graphic processing units
NASA Astrophysics Data System (ADS)
Ren, C.; Zhou, X.; Li, J.; Huang, M. C.; Zhao, Y.
2014-10-01
We will show our recent progress in using GPU's to accelerate the PIC code OSIRIS [Fonseca et al. LNCS 2331, 342 (2002)]. The OISRIS parallel structure is retained and the computation-intensive kernels are shipped to GPU's. Algorithms for the kernels are adapted for the GPU, including high-order charge-conserving current deposition schemes with few branching and parallel particle sorting [Kong et al., JCP 230, 1676 (2011)]. These algorithms make efficient use of the GPU shared memory. This work was supported by U.S. Department of Energy under Grant No. DE-FC02-04ER54789 and by NSF under Grant No. PHY-1314734.
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.
Basu, Protonu; Williams, Samuel; Van Straalen, Brian; ...
2017-04-05
GPUs, with their high bandwidths and computational capabilities are an increasingly popular target for scientific computing. Unfortunately, to date, harnessing the power of the GPU has required use of a GPU-specific programming model like CUDA, OpenCL, or OpenACC. Thus, in order to deliver portability across CPU-based and GPU-accelerated supercomputers, programmers are forced to write and maintain two versions of their applications or frameworks. In this paper, we explore the use of a compiler-based autotuning framework based on CUDA-CHiLL to deliver not only portability, but also performance portability across CPU- and GPU-accelerated platforms for the geometric multigrid linear solvers found inmore » many scientific applications. We also show that with autotuning we can attain near Roofline (a performance bound for a computation and target architecture) performance across the key operations in the miniGMG benchmark for both CPU- and GPU-based architectures as well as for a multiple stencil discretizations and smoothers. We show that our technology is readily interoperable with MPI resulting in performance at scale equal to that obtained via hand-optimized MPI+CUDA implementation.« less
Thread scheduling for GPU-based OPC simulation on multi-thread
NASA Astrophysics Data System (ADS)
Lee, Heejun; Kim, Sangwook; Hong, Jisuk; Lee, Sooryong; Han, Hwansoo
2018-03-01
As semiconductor product development based on shrinkage continues, the accuracy and difficulty required for the model based optical proximity correction (MBOPC) is increasing. OPC simulation time, which is the most timeconsuming part of MBOPC, is rapidly increasing due to high pattern density in a layout and complex OPC model. To reduce OPC simulation time, we attempt to apply graphic processing unit (GPU) to MBOPC because OPC process is good to be programmed in parallel. We address some issues that may typically happen during GPU-based OPC simulation in multi thread system, such as "out of memory" and "GPU idle time". To overcome these problems, we propose a thread scheduling method, which manages OPC jobs in multiple threads in such a way that simulations jobs from multiple threads are alternatively executed on GPU while correction jobs are executed at the same time in each CPU cores. It was observed that the amount of GPU peak memory usage decreases by up to 35%, and MBOPC runtime also decreases by 4%. In cases where out of memory issues occur in a multi-threaded environment, the thread scheduler was used to improve MBOPC runtime up to 23%.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Xia, Yong; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957
Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing
NASA Astrophysics Data System (ADS)
Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C.; Gao, Wen
2018-05-01
The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group (MPEG) has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of GPU. We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation and the memory access are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU to resolve the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which has harmoniously leveraged the advantages of GPU platforms, and yielded significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.
High Performance GPU-Based Fourier Volume Rendering.
Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr
2015-01-01
Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)logN) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Protonu; Williams, Samuel; Van Straalen, Brian
GPUs, with their high bandwidths and computational capabilities are an increasingly popular target for scientific computing. Unfortunately, to date, harnessing the power of the GPU has required use of a GPU-specific programming model like CUDA, OpenCL, or OpenACC. Thus, in order to deliver portability across CPU-based and GPU-accelerated supercomputers, programmers are forced to write and maintain two versions of their applications or frameworks. In this paper, we explore the use of a compiler-based autotuning framework based on CUDA-CHiLL to deliver not only portability, but also performance portability across CPU- and GPU-accelerated platforms for the geometric multigrid linear solvers found inmore » many scientific applications. We also show that with autotuning we can attain near Roofline (a performance bound for a computation and target architecture) performance across the key operations in the miniGMG benchmark for both CPU- and GPU-based architectures as well as for a multiple stencil discretizations and smoothers. We show that our technology is readily interoperable with MPI resulting in performance at scale equal to that obtained via hand-optimized MPI+CUDA implementation.« less
The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargaran, Hamed, E-mail: h-kargaran@sbu.ac.ir; Minuchehr, Abdolhamid; Zolfaghari, Ahmad
The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL-MODE and SHARED-MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showedmore » a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL-MODE and SHARED-MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.« less
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
Ng, C M
2013-10-01
The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.
Giantsoudi, Drosoula; Schuemann, Jan; Jia, Xun; Dowdell, Stephen; Jiang, Steve; Paganetti, Harald
2015-03-21
Monte Carlo (MC) methods are recognized as the gold-standard for dose calculation, however they have not replaced analytical methods up to now due to their lengthy calculation times. GPU-based applications allow MC dose calculations to be performed on time scales comparable to conventional analytical algorithms. This study focuses on validating our GPU-based MC code for proton dose calculation (gPMC) using an experimentally validated multi-purpose MC code (TOPAS) and compare their performance for clinical patient cases. Clinical cases from five treatment sites were selected covering the full range from very homogeneous patient geometries (liver) to patients with high geometrical complexity (air cavities and density heterogeneities in head-and-neck and lung patients) and from short beam range (breast) to large beam range (prostate). Both gPMC and TOPAS were used to calculate 3D dose distributions for all patients. Comparisons were performed based on target coverage indices (mean dose, V95, D98, D50, D02) and gamma index distributions. Dosimetric indices differed less than 2% between TOPAS and gPMC dose distributions for most cases. Gamma index analysis with 1%/1 mm criterion resulted in a passing rate of more than 94% of all patient voxels receiving more than 10% of the mean target dose, for all patients except for prostate cases. Although clinically insignificant, gPMC resulted in systematic underestimation of target dose for prostate cases by 1-2% compared to TOPAS. Correspondingly the gamma index analysis with 1%/1 mm criterion failed for most beams for this site, while for 2%/1 mm criterion passing rates of more than 94.6% of all patient voxels were observed. For the same initial number of simulated particles, calculation time for a single beam for a typical head and neck patient plan decreased from 4 CPU hours per million particles (2.8-2.9 GHz Intel X5600) for TOPAS to 2.4 s per million particles (NVIDIA TESLA C2075) for gPMC. Excellent agreement was demonstrated between our fast GPU-based MC code (gPMC) and a previously extensively validated multi-purpose MC code (TOPAS) for a comprehensive set of clinical patient cases. This shows that MC dose calculations in proton therapy can be performed on time scales comparable to analytical algorithms with accuracy comparable to state-of-the-art CPU-based MC codes.
NASA Astrophysics Data System (ADS)
Kluber, Alexander; Hayre, Robert; Cox, Daniel
2012-02-01
Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.
GPU-enabled molecular dynamics simulations of ankyrin kinase complex
NASA Astrophysics Data System (ADS)
Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran
2014-10-01
The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.
CUDAEASY - a GPU accelerated cosmological lattice program
NASA Astrophysics Data System (ADS)
Sainio, J.
2010-05-01
This paper presents, to the author's knowledge, the first graphics processing unit (GPU) accelerated program that solves the evolution of interacting scalar fields in an expanding universe. We present the implementation in NVIDIA's Compute Unified Device Architecture (CUDA) and compare the performance to other similar programs in chaotic inflation models. We report speedups between one and two orders of magnitude depending on the used hardware and software while achieving small errors in single precision. Simulations that used to last roughly one day to compute can now be done in hours and this difference is expected to increase in the future. The program has been written in the spirit of LATTICEEASY and users of the aforementioned program should find it relatively easy to start using CUDAEASY in lattice simulations. The program is available at http://www.physics.utu.fi/theory/particlecosmology/cudaeasy/ under the GNU General Public License.
GPU applications for data processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch; Aleksandrov, Andrey; INFN sezione di Napoli, I-80125 Napoli
2015-12-31
Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.
Distributed GPU Computing in GIScience
NASA Astrophysics Data System (ADS)
Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.
2013-12-01
Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE Transactions on, 9(3), 378-394. 2. Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D Environmental Data Using Many-core Graphics Processing Units (GPUs) and Multi-core Central Processing Units (CPUs). Computers & Geosciences, 59(9), 78-89. 3. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899.
Extending the BEAGLE library to a multi-FPGA platform.
Jin, Zheming; Bakos, Jason D
2013-01-19
Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein's pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein's pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform's peak memory bandwidth and the implementation's memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE's CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE's GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor.
NASA Astrophysics Data System (ADS)
Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.
2017-09-01
Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the Bragg peak in the therapeutic energy range. A comparison with measurements taken at the CNAO treatment center shows that the lateral dose tails are reproduced within 2% in the field size factor test up to 20 cm. The tracing kernel can run on GPU hardware, achieving 10 million primary s-1 on a single card. This performance allows one to recalculate a proton treatment plan at 1% of the total particles in just a few minutes.
The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration
NASA Astrophysics Data System (ADS)
Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.
2017-03-01
In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
NASA Technical Reports Server (NTRS)
Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley
2017-01-01
Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.
Optimizing a mobile robot control system using GPU acceleration
NASA Astrophysics Data System (ADS)
Tuck, Nat; McGuinness, Michael; Martin, Fred
2012-01-01
This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.
Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.
Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu
2012-01-01
Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.
The GPU implementation of micro - Doppler period estimation
NASA Astrophysics Data System (ADS)
Yang, Liyuan; Wang, Junling; Bi, Ran
2018-03-01
Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.
Production Level CFD Code Acceleration for Hybrid Many-Core Architectures
NASA Technical Reports Server (NTRS)
Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.
2012-01-01
In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.
Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing.
Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C; Gao, Wen
2018-05-01
The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of a CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of graphics processing unit (GPU). We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation as well as the memory access mechanism are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU for resolving the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which enables to leverage the advantages of GPU platforms harmoniously, and yield significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.
A GPU-Accelerated Approach for Feature Tracking in Time-Varying Imagery Datasets.
Peng, Chao; Sahani, Sandip; Rushing, John
2017-10-01
We propose a novel parallel connected component labeling (CCL) algorithm along with efficient out-of-core data management to detect and track feature regions of large time-varying imagery datasets. Our approach contributes to the big data field with parallel algorithms tailored for GPU architectures. We remove the data dependency between frames and achieve pixel-level parallelism. Due to the large size, the entire dataset cannot fit into cached memory. Frames have to be streamed through the memory hierarchy (disk to CPU main memory and then to GPU memory), partitioned, and processed as batches, where each batch is small enough to fit into the GPU. To reconnect the feature regions that are separated due to data partitioning, we present a novel batch merging algorithm to extract the region connection information across multiple batches in a parallel fashion. The information is organized in a memory-efficient structure and supports fast indexing on the GPU. Our experiment uses a commodity workstation equipped with a single GPU. The results show that our approach can efficiently process a weather dataset composed of terabytes of time-varying radar images. The advantages of our approach are demonstrated by comparing to the performance of an efficient CPU cluster implementation which is being used by the weather scientists.
A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU
NASA Astrophysics Data System (ADS)
Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha
2018-03-01
Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.
NASA Astrophysics Data System (ADS)
Okamoto, Taro; Takenaka, Hiroshi; Nakamura, Takeshi; Aoki, Takayuki
2010-12-01
We adopted the GPU (graphics processing unit) to accelerate the large-scale finite-difference simulation of seismic wave propagation. The simulation can benefit from the high-memory bandwidth of GPU because it is a "memory intensive" problem. In a single-GPU case we achieved a performance of about 56 GFlops, which was about 45-fold faster than that achieved by a single core of the host central processing unit (CPU). We confirmed that the optimized use of fast shared memory and registers were essential for performance. In the multi-GPU case with three-dimensional domain decomposition, the non-contiguous memory alignment in the ghost zones was found to impose quite long time in data transfer between GPU and the host node. This problem was solved by using contiguous memory buffers for ghost zones. We achieved a performance of about 2.2 TFlops by using 120 GPUs and 330 GB of total memory: nearly (or more than) 2200 cores of host CPUs would be required to achieve the same performance. The weak scaling was nearly proportional to the number of GPUs. We therefore conclude that GPU computing for large-scale simulation of seismic wave propagation is a promising approach as a faster simulation is possible with reduced computational resources compared to CPUs.
Toward GPGPU accelerated human electromechanical cardiac simulations
Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew; Lee, Jack; Smith, Nicolas; Nordsletten, David
2014-01-01
In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of Heart—a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd. PMID:24115492
NASA Astrophysics Data System (ADS)
Jackson, Christopher Robert
"Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.
JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.
Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter
2016-01-01
Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.
GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparingmore » theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.« less
FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks
Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun
2015-01-01
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758
FastGCN: a GPU accelerated tool for fast gene co-expression networks.
Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun
2015-01-01
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.
Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji
2012-01-01
Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290
Fast GPU-based computation of spatial multigrid multiframe LMEM for PET.
Nassiri, Moulay Ali; Carrier, Jean-François; Després, Philippe
2015-09-01
Significant efforts were invested during the last decade to accelerate PET list-mode reconstructions, notably with GPU devices. However, the computation time per event is still relatively long, and the list-mode efficiency on the GPU is well below the histogram-mode efficiency. Since list-mode data are not arranged in any regular pattern, costly accesses to the GPU global memory can hardly be optimized and geometrical symmetries cannot be used. To overcome obstacles that limit the acceleration of reconstruction from list-mode on the GPU, a multigrid and multiframe approach of an expectation-maximization algorithm was developed. The reconstruction process is started during data acquisition, and calculations are executed concurrently on the GPU and the CPU, while the system matrix is computed on-the-fly. A new convergence criterion also was introduced, which is computationally more efficient on the GPU. The implementation was tested on a Tesla C2050 GPU device for a Gemini GXL PET system geometry. The results show that the proposed algorithm (multigrid and multiframe list-mode expectation-maximization, MGMF-LMEM) converges to the same solution as the LMEM algorithm more than three times faster. The execution time of the MGMF-LMEM algorithm was 1.1 s per million of events on the Tesla C2050 hardware used, for a reconstructed space of 188 x 188 x 57 voxels of 2 x 2 x 3.15 mm3. For 17- and 22-mm simulated hot lesions, the MGMF-LMEM algorithm led on the first iteration to contrast recovery coefficients (CRC) of more than 75 % of the maximum CRC while achieving a minimum in the relative mean square error. Therefore, the MGMF-LMEM algorithm can be used as a one-pass method to perform real-time reconstructions for low-count acquisitions, as in list-mode gated studies. The computation time for one iteration and 60 millions of events was approximately 66 s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Tingzing Tim; Tomov, Stanimire Z; Luszczek, Piotr R
As modern hardware keeps evolving, an increasingly effective approach to developing energy efficient and high-performance solvers is to design them to work on many small size and independent problems. Many applications already need this functionality, especially for GPUs, which are currently known to be about four to five times more energy efficient than multicore CPUs. We describe the development of one-sided factorizations that work for a set of small dense matrices in parallel, and we illustrate our techniques on the QR factorization based on Householder transformations. We refer to this mode of operation as a batched factorization. Our approach ismore » based on representing the algorithms as a sequence of batched BLAS routines for GPU-only execution. This is in contrast to the hybrid CPU-GPU algorithms that rely heavily on using the multicore CPU for specific parts of the workload. But for a system to benefit fully from the GPU's significantly higher energy efficiency, avoiding the use of the multicore CPU must be a primary design goal, so the system can rely more heavily on the more efficient GPU. Additionally, this will result in the removal of the costly CPU-to-GPU communication. Furthermore, we do not use a single symmetric multiprocessor(on the GPU) to factorize a single problem at a time. We illustrate how our performance analysis, and the use of profiling and tracing tools, guided the development and optimization of our batched factorization to achieve up to a 2-fold speedup and a 3-fold energy efficiency improvement compared to our highly optimized batched CPU implementations based on the MKL library(when using two sockets of Intel Sandy Bridge CPUs). Compared to a batched QR factorization featured in the CUBLAS library for GPUs, we achieved up to 5x speedup on the K40 GPU.« less
GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H
2012-09-01
Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC architecture.
Graphics processing unit-assisted lossless decompression
Loughry, Thomas A.
2016-04-12
Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.
Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi
2016-01-01
Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design.
Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi
2016-01-01
Abstract: Background Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design. PMID:27075578
A parallel implementation of 3D Zernike moment analysis
NASA Astrophysics Data System (ADS)
Berjón, Daniel; Arnaldo, Sergio; Morán, Francisco
2011-01-01
Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.
2013-03-01
time (milliseconds) GFlops Comparison to GPU peak performance (%) Cascade Gaussian Filtering 13 45.19 6.3 Difference of Gaussian 0.512 152...values for the GPU-targeted actor implementations in terms of Giga Floating Point Operations Per Second ( GFLOPS ). Our GFLOPS calculation for an actor...kernels. The results for GFLOPS are provided in Table . The actors were implemented on an NVIDIA GTX260 GPU, which provides 715 GFLOPS as peak
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
GPU based framework for geospatial analyses
NASA Astrophysics Data System (ADS)
Cosmin Sandric, Ionut; Ionita, Cristian; Dardala, Marian; Furtuna, Titus
2017-04-01
Parallel processing on multiple CPU cores is already used at large scale in geocomputing, but parallel processing on graphics cards is just at the beginning. Being able to use an simple laptop with a dedicated graphics card for advanced and very fast geocomputation is an advantage that each scientist wants to have. The necessity to have high speed computation in geosciences has increased in the last 10 years, mostly due to the increase in the available datasets. These datasets are becoming more and more detailed and hence they require more space to store and more time to process. Distributed computation on multicore CPU's and GPU's plays an important role by processing one by one small parts from these big datasets. These way of computations allows to speed up the process, because instead of using just one process for each dataset, the user can use all the cores from a CPU or up to hundreds of cores from GPU The framework provide to the end user a standalone tools for morphometry analyses at multiscale level. An important part of the framework is dedicated to uncertainty propagation in geospatial analyses. The uncertainty may come from the data collection or may be induced by the model or may have an infinite sources. These uncertainties plays important roles when a spatial delineation of the phenomena is modelled. Uncertainty propagation is implemented inside the GPU framework using Monte Carlo simulations. The GPU framework with the standalone tools proved to be a reliable tool for modelling complex natural phenomena The framework is based on NVidia Cuda technology and is written in C++ programming language. The code source will be available on github at https://github.com/sandricionut/GeoRsGPU Acknowledgement: GPU framework for geospatial analysis, Young Researchers Grant (ICUB-University of Bucharest) 2016, director Ionut Sandric
GPU-Accelerated Voxelwise Hepatic Perfusion Quantification
Wang, H; Cao, Y
2012-01-01
Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using CUDA-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, non-linear least squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626400 voxels in a patient’s liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10−6. The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645
Eslami, Taban; Saeed, Fahad
2018-04-20
Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique, which has been regularly used for studying brain’s functional activities in the past few years. A very well-used measure for capturing functional associations in brain is Pearson’s correlation coefficient. Pearson’s correlation is widely used for constructing functional network and studying dynamic functional connectivity of the brain. These are useful measures for understanding the effects of brain disorders on connectivities among brain regions. The fMRI scanners produce huge number of voxels and using traditional central processing unit (CPU)-based techniques for computing pairwise correlations is very time consuming especially when large number of subjects are being studied. In this paper, we propose a graphics processing unit (GPU)-based algorithm called Fast-GPU-PCC for computing pairwise Pearson’s correlation coefficient. Based on the symmetric property of Pearson’s correlation, this approach returns N ( N − 1 ) / 2 correlation coefficients located at strictly upper triangle part of the correlation matrix. Storing correlations in a one-dimensional array with the order as proposed in this paper is useful for further usage. Our experiments on real and synthetic fMRI data for different number of voxels and varying length of time series show that the proposed approach outperformed state of the art GPU-based techniques as well as the sequential CPU-based versions. We show that Fast-GPU-PCC runs 62 times faster than CPU-based version and about 2 to 3 times faster than two other state of the art GPU-based methods.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
Yan, Hui; Dai, Jian-Rong
2016-03-08
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm and CPU-based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU-based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU-based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU-based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy.
Acceleration of discrete stochastic biochemical simulation using GPGPU.
Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira
2015-01-01
For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.
Acceleration of discrete stochastic biochemical simulation using GPGPU
Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira
2015-01-01
For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130. PMID:25762936
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
Pyglidein - A Simple HTCondor Glidein Service
NASA Astrophysics Data System (ADS)
Schultz, D.; Riedel, B.; Merino, G.
2017-10-01
A major challenge for data processing and analysis at the IceCube Neutrino Observatory presents itself in connecting a large set of individual clusters together to form a computing grid. Most of these clusters do not provide a “standard” grid interface. Using a local account on each submit machine, HTCondor glideins can be submitted to virtually any type of scheduler. The glideins then connect back to a main HTCondor pool, where jobs can run normally with no special syntax. To respond to dynamic load, a simple server advertises the number of idle jobs in the queue and the resources they request. The submit script can query this server to optimize glideins to what is needed, or not submit if there is no demand. Configuring HTCondor dynamic slots in the glideins allows us to efficiently handle varying memory requirements as well as whole-node jobs. One step of the IceCube simulation chain, photon propagation in the ice, heavily relies on GPUs for faster execution. Therefore, one important requirement for any workload management system in IceCube is to handle GPU resources properly. Within the pyglidein system, we have successfully configured HTCondor glideins to use any GPU allocated to it, with jobs using the standard HTCondor GPU syntax to request and use a GPU. This mechanism allows us to seamlessly integrate our local GPU cluster with remote non-Grid GPU clusters, including specially allocated resources at XSEDE supercomputers.
NASA Astrophysics Data System (ADS)
Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin
2016-06-01
CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.
Xia, Yidong; Lou, Jialin; Luo, Hong; ...
2015-02-09
Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementationmore » of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.« less
Li, Zheng; Xu, Xue; Li, Gang; Fu, Xiaoting; Liu, Yanzhi; Feng, Yufeng; Wang, Mingyan; Ouyang, Yunting; Han, Jing
2017-12-15
The free fatty acid receptor 4 (FFA4) has emerged as a promising anti-diabetic target due to its function in improvement of insulin secretion and insulin resistance. The FFA4 agonist TUG-891 revealed great potential as a widely used pharmacological tool, but it has been suffered from high plasma clearance probably because the phenylpropanoic acid is vulnerable to β-oxidation. To identify metabolically stable analog without influence on physiological mechanism of TUG-891, we tried to incorporate deuterium at the α-position of phenylpropionic acid to afford compound 4 (GPU-028). As expected, GPU-028 revealed a longer half-life (T 1/2 = 1.66 h), lower clearance (CL = 0.97 L/h/kg) and higher maximum plasma concentration (C max = 2035.23 μg/L), resulting in a 4-fold higher exposure than TUG-891. Although GPU-028 exhibited a similar agonistic activity in comparison to TUG-891, the hypoglycemic effect of GPU-028 was better than that of TUG-891 after treatment over four weeks in diet-induced obese mice. These positive results indicated that GPU-028 might be a better pharmacological tool than TUG-891 to explore physiological function of FFA4, especially on the in vivo study. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jilin; Sha, Chaoqun; Wu, Yusen; Wan, Jian; Zhou, Li; Ren, Yongjian; Si, Huayou; Yin, Yuyu; Jing, Ya
2017-02-01
GPU not only is used in the field of graphic technology but also has been widely used in areas needing a large number of numerical calculations. In the energy industry, because of low carbon, high energy density, high duration and other characteristics, the development of nuclear energy cannot easily be replaced by other energy sources. Management of core fuel is one of the major areas of concern in a nuclear power plant, and it is directly related to the economic benefits and cost of nuclear power. The large-scale reactor core expansion equation is large and complicated, so the calculation of the diffusion equation is crucial in the core fuel management process. In this paper, we use CUDA programming technology on a GPU cluster to run the LU-SGS parallel iterative calculation against the background of the diffusion equation of the reactor. We divide one-dimensional and two-dimensional mesh into a plurality of domains, with each domain evenly distributed on the GPU blocks. A parallel collision scheme is put forward that defines the virtual boundary of the grid exchange information and data transmission by non-stop collision. Compared with the serial program, the experiment shows that GPU greatly improves the efficiency of program execution and verifies that GPU is playing a much more important role in the field of numerical calculations.
Simulation-based MDP verification for leading-edge masks
NASA Astrophysics Data System (ADS)
Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki
2017-07-01
For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification acceptable.
permGPU: Using graphics processing units in RNA microarray association studies.
Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros
2010-06-16
Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.
NASA Astrophysics Data System (ADS)
Hou, Zhenlong; Huang, Danian
2017-09-01
In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.
NASA Astrophysics Data System (ADS)
Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain
2014-11-01
Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.
Work stealing for GPU-accelerated parallel programs in a global address space framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less
GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart
2011-06-01
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.
Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver
NASA Astrophysics Data System (ADS)
Kestener, Pierre
2017-10-01
RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.
Simulation of ring polymer melts with GPU acceleration
NASA Astrophysics Data System (ADS)
Schram, R. D.; Barkema, G. T.
2018-06-01
We implemented the elastic lattice polymer model on the GPU (Graphics Processing Unit), and show that the GPU is very efficient for polymer simulations of dense polymer melts. The implementation is able to perform up to 4.1 ṡ109 Monte Carlo moves per second. Compared to our standard CPU implementation, we find an effective speed-up of a factor 92. Using this GPU implementation we studied the equilibrium properties and the dynamics of non-concatenated ring polymers in a melt of such polymers, using Rouse modes. With increasing polymer length, we found a very slow transition to compactness with a growth exponent ν ≈ 1 / 3. Numerically we find that the longest internal time scale of the polymer scales as N3.1, with N the molecular weight of the ring polymer.
Overview of implementation of DARPA GPU program in SAIC
NASA Astrophysics Data System (ADS)
Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis
2008-04-01
This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
2013-09-01
Results from the GelOE optical engineering software are presented for the through-focus, monochromatic coherent and polychromatic incoherent imaging of a radial "star" target for equivalent t-number circular and Gaussian pupils. The FFT-based simulations are carried out using OpenMP threading on a multi-core desktop computer, with and without the aid of a many-core NVIDIA GPU accessing its cuFFT library. It is found that a custom FFT optimized for the 12-core host has similar performance to a simply implemented 256-core GPU FFT. A more sophisticated version of the latter but tuned to reduce overhead on a 448-core GPU is 20 to 28 times faster than a basic FFT implementation running on one CPU core.
A GPU-paralleled implementation of an enhanced face recognition algorithm
NASA Astrophysics Data System (ADS)
Chen, Hao; Liu, Xiyang; Shao, Shuai; Zan, Jiguo
2013-03-01
Face recognition algorithm based on compressed sensing and sparse representation is hotly argued in these years. The scheme of this algorithm increases recognition rate as well as anti-noise capability. However, the computational cost is expensive and has become a main restricting factor for real world applications. In this paper, we introduce a GPU-accelerated hybrid variant of face recognition algorithm named parallel face recognition algorithm (pFRA). We describe here how to carry out parallel optimization design to take full advantage of many-core structure of a GPU. The pFRA is tested and compared with several other implementations under different data sample size. Finally, Our pFRA, implemented with NVIDIA GPU and Computer Unified Device Architecture (CUDA) programming model, achieves a significant speedup over the traditional CPU implementations.
Characterization of PET preforms using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Hosseiny, Hamid; Ferreira, Manuel João.; Martins, Teresa; Carmelo Rosa, Carla
2013-11-01
Polyethylene terephthalate (PET) preforms are massively produced nowadays with the purpose of producing food and beverages packaging and liquid containers. Some varieties of these preforms are produced as multilayer structures, where very thin inner film(s) act as a barrier for nutrients leakage. The knowledge of the thickness of this thin inner layer is important in the production line. The quality control of preforms production requires a fast approach and normally the thickness control is performed by destructive means out of the production line. A spectral domain optical coherence tomography (SD-OCT) method was proposed to examine the thin layers in real time. This paper describes a nondestructive approach and all required signal processing steps to characterize the thin inner layers and also to improve the imaging speed and the signal to noise ratio. The algorithm was developed by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This GPU-accelerated white light interferometry technique nondestructively assesses the samples and has high imaging speed advantage, overcoming the bottlenecks in PET performs quality control.
An MPI + $X$ implementation of contact global search using Kokkos
Hansen, Glen A.; Xavier, Patrick G.; Mish, Sam P.; ...
2015-10-05
This paper describes an approach that seeks to parallelize the spatial search associated with computational contact mechanics. In contact mechanics, the purpose of the spatial search is to find “nearest neighbors,” which is the prelude to an imprinting search that resolves the interactions between the external surfaces of contacting bodies. In particular, we are interested in the contact global search portion of the spatial search associated with this operation on domain-decomposition-based meshes. Specifically, we describe an implementation that combines standard domain-decomposition-based MPI-parallel spatial search with thread-level parallelism (MPI-X) available on advanced computer architectures (those with GPU coprocessors). Our goal ismore » to demonstrate the efficacy of the MPI-X paradigm in the overall contact search. Standard MPI-parallel implementations typically use a domain decomposition of the external surfaces of bodies within the domain in an attempt to efficiently distribute computational work. This decomposition may or may not be the same as the volume decomposition associated with the host physics. The parallel contact global search phase is then employed to find and distribute surface entities (nodes and faces) that are needed to compute contact constraints between entities owned by different MPI ranks without further inter-rank communication. Key steps of the contact global search include computing bounding boxes, building surface entity (node and face) search trees and finding and distributing entities required to complete on-rank (local) spatial searches. To enable source-code portability and performance across a variety of different computer architectures, we implemented the algorithm using the Kokkos hardware abstraction library. While we targeted development towards machines with a GPU accelerator per MPI rank, we also report performance results for OpenMP with a conventional multi-core compute node per rank. Results here demonstrate a 47 % decrease in the time spent within the global search algorithm, comparing the reference ACME algorithm with the GPU implementation, on an 18M face problem using four MPI ranks. As a result, while further work remains to maximize performance on the GPU, this result illustrates the potential of the proposed implementation.« less
TU-AB-303-08: GPU-Based Software Platform for Efficient Image-Guided Adaptive Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; McNutt, T
2015-06-15
Purpose: In this study, we develop an integrated software platform for adaptive radiation therapy (ART) that combines fast and accurate image registration, segmentation, and dose computation/accumulation methods. Methods: The proposed system consists of three key components; 1) deformable image registration (DIR), 2) automatic segmentation, and 3) dose computation/accumulation. The computationally intensive modules including DIR and dose computation have been implemented on a graphics processing unit (GPU). All required patient-specific data including the planning CT (pCT) with contours, daily cone-beam CTs, and treatment plan are automatically queried and retrieved from their own databases. To improve the accuracy of DIR between pCTmore » and CBCTs, we use the double force demons DIR algorithm in combination with iterative CBCT intensity correction by local intensity histogram matching. Segmentation of daily CBCT is then obtained by propagating contours from the pCT. Daily dose delivered to the patient is computed on the registered pCT by a GPU-accelerated superposition/convolution algorithm. Finally, computed daily doses are accumulated to show the total delivered dose to date. Results: Since the accuracy of DIR critically affects the quality of the other processes, we first evaluated our DIR method on eight head-and-neck cancer cases and compared its performance. Normalized mutual-information (NMI) and normalized cross-correlation (NCC) computed as similarity measures, and our method produced overall NMI of 0.663 and NCC of 0.987, outperforming conventional methods by 3.8% and 1.9%, respectively. Experimental results show that our registration method is more consistent and roust than existing algorithms, and also computationally efficient. Computation time at each fraction took around one minute (30–50 seconds for registration and 15–25 seconds for dose computation). Conclusion: We developed an integrated GPU-accelerated software platform that enables accurate and efficient DIR, auto-segmentation, and dose computation, thus supporting an efficient ART workflow. This work was supported by NIH/NCI under grant R42CA137886.« less
TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Southern Medical University, Guangzhou; Bai, T
2014-06-15
Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections;more » 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research in Strategic Emerging Industry, Guangdong, China (2011A081402003)« less
TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z; Zhuang, L; Gu, X
Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step ismore » to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.« less
WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, AS; Sun, X; Pitsianis, N
2015-06-15
Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digitalmore » projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub-kernels. Conclusion: Composable projection operators constitute a versatile research tool which can greatly accelerate iterative registration algorithms and may be conducive to the clinical applicability of LIVE. National Institutes of Health Grant No. R01-CA184173; GPU donation by NVIDIA Corporation.« less
Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold
2016-07-01
The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.
Assessment of Efficiency and Performance in Tsunami Numerical Modeling with GPU
NASA Astrophysics Data System (ADS)
Yalciner, Bora; Zaytsev, Andrey
2017-04-01
Non-linear shallow water equations (NSWE) are used to solve the propagation and coastal amplification of long waves and tsunamis. Leap Frog scheme of finite difference technique is one of the satisfactory numerical methods which is widely used in these problems. Tsunami numerical models are necessary for not only academic but also operational purposes which need faster and accurate solutions. Recent developments in information technology provide considerably faster numerical solutions in this respect and are becoming one of the crucial requirements. Tsunami numerical code NAMI DANCE uses finite difference numerical method to solve linear and non-linear forms of shallow water equations for long wave problems, specifically for tsunamis. In this study, the new code is structured for Graphical Processing Unit (GPU) using CUDA API. The new code is applied to different (analytical, experimental and field) benchmark problems of tsunamis for tests. One of those applications is 2011 Great East Japan tsunami which was instrumentally recorded on various types of gauges including tide and wave gauges and offshore GPS buoys cabled Ocean Bottom Pressure (OBP) gauges and DART buoys. The accuracy of the results are compared with the measurements and fairly well agreements are obtained. The efficiency and performance of the code is also compared with the version using multi-core Central Processing Unit (CPU). Dependence of simulation speed with GPU on linear or non-linear solutions is also investigated. One of the results is that the simulation speed is increased up to 75 times comparing to the process time in the computer using single 4/8 thread multi-core CPU. The results are presented with comparisons and discussions. Furthermore how multi-dimensional finite difference problems fits towards GPU architecture is also discussed. The research leading to this study has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No: 603839 (Project ASTARTE-Assessment, Strategy and Risk Reduction for Tsunamis in Europe). PARI, Japan and NOAA, USA are acknowledged for the data of the measurements. Prof. Ahmet C. Yalciner is also acknowledged for his long term and sustained support to the authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, S; Neylon, J; Chen, A
2014-06-01
Purposes: To systematically monitor anatomic variations and their dosimetric consequences during head-and-neck (H'N) radiation therapy using a GPU-based deformable image registration (DIR) framework. Methods: Eleven H'N IMRT patients comprised the subject population. The daily megavoltage CT and weekly kVCT scans were acquired for each patient. The pre-treatment CTs were automatically registered with their corresponding planning CT through an in-house GPU-based DIR framework. The deformation of each contoured structure was computed to account for non-rigid change in the patient setup. The Jacobian determinant for the PTVs and critical structures was used to quantify anatomical volume changes. Dose accumulation was performed tomore » determine the actual delivered dose and dose accumulation. A landmark tool was developed to determine the uncertainty in the dose distribution due to registration error. Results: Dramatic interfraction anatomic changes leading to dosimetric variations were observed. During the treatment courses of 6–7 weeks, the parotid gland volumes changed up to 34.7%, the center-of-mass displacement of the two parotids varied in the range of 0.9–8.8mm. Mean doses were within 5% and 3% of the planned mean doses for all PTVs and CTVs, respectively. The cumulative minimum/mean/EUD doses were lower than the planned doses by 18%, 2%, and 7%, respectively for the PTV1. The ratio of the averaged cumulative cord maximum doses to the plan was 1.06±0.15. The cumulative mean doses assessed by the weekly kVCTs were significantly higher than the planned dose for the left-parotid (p=0.03) and right-parotid gland (p=0.006). The computation time was nearly real-time (∼ 45 seconds) for registering each pre-treatment CT to the planning CT and dose accumulation with registration accuracy (for kVCT) at sub-voxel level (<1.5mm). Conclusions: Real-time assessment of anatomic and dosimetric variations is feasible using the GPU-based DIR framework. Clinical implementation of this technology may enable timely plan adaption and potentially lead to improved outcome.« less
Graphics processing unit (GPU) real-time infrared scene generation
NASA Astrophysics Data System (ADS)
Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.
2007-04-01
VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.
A survey of techniques for architecting and managing GPU register file
Mittal, Sparsh
2016-04-07
To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency. Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between the techniques, we classify themmore » along several parameters. Lastly, the aim of this paper is to synthesize the state-of-art developments in RF management and also stimulate further research in this area.« less
de Paula, Lauro C. M.; Soares, Anderson S.; de Lima, Telma W.; Delbem, Alexandre C. B.; Coelho, Clarimar J.; Filho, Arlindo R. G.
2014-01-01
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation. PMID:25493625
de Paula, Lauro C M; Soares, Anderson S; de Lima, Telma W; Delbem, Alexandre C B; Coelho, Clarimar J; Filho, Arlindo R G
2014-01-01
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation.
Accelerating electron tomography reconstruction algorithm ICON with GPU.
Chen, Yu; Wang, Zihao; Zhang, Jingrong; Li, Lun; Wan, Xiaohua; Sun, Fei; Zhang, Fa
2017-01-01
Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.
Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures
2015-01-01
Background The hardware accelerators will provide solutions to computationally complex problems in bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection of an appropriate accelerator requires some consideration. Results In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation. The GPU implementation performed the protein-protein docking calculations approximately five times faster than the MIC offload mode implementation. The MIC native mode implementation has the advantage in the implementation costs. However, the performance was worse with larger protein pairs because of memory limitations. Conclusion The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein docking applications. PMID:25707855
A survey of techniques for architecting and managing GPU register file
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency. Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between the techniques, we classify themmore » along several parameters. Lastly, the aim of this paper is to synthesize the state-of-art developments in RF management and also stimulate further research in this area.« less
Bedez, Mathieu; Belhachmi, Zakaria; Haeberlé, Olivier; Greget, Renaud; Moussaoui, Saliha; Bouteiller, Jean-Marie; Bischoff, Serge
2016-01-15
The resolution of a model describing the electrical activity of neural tissue and its propagation within this tissue is highly consuming in term of computing time and requires strong computing power to achieve good results. In this study, we present a method to solve a model describing the electrical propagation in neuronal tissue, using parareal algorithm, coupling with parallelization space using CUDA in graphical processing unit (GPU). We applied the method of resolution to different dimensions of the geometry of our model (1-D, 2-D and 3-D). The GPU results are compared with simulations from a multi-core processor cluster, using message-passing interface (MPI), where the spatial scale was parallelized in order to reach a comparable calculation time than that of the presented method using GPU. A gain of a factor 100 in term of computational time between sequential results and those obtained using the GPU has been obtained, in the case of 3-D geometry. Given the structure of the GPU, this factor increases according to the fineness of the geometry used in the computation. To the best of our knowledge, it is the first time such a method is used, even in the case of neuroscience. Parallelization time coupled with GPU parallelization space allows for drastically reducing computational time with a fine resolution of the model describing the propagation of the electrical signal in a neuronal tissue. Copyright © 2015 Elsevier B.V. All rights reserved.
GPU acceleration of particle-in-cell methods
NASA Astrophysics Data System (ADS)
Cowan, Benjamin; Cary, John; Meiser, Dominic
2015-11-01
Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).
Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications
NASA Astrophysics Data System (ADS)
Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.
2015-06-01
The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.
NASA Astrophysics Data System (ADS)
Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.
2012-07-01
Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.
Exploiting graphics processing units for computational biology and bioinformatics.
Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H
2010-09-01
Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.
NASA Astrophysics Data System (ADS)
Bhosale, Parag; Staring, Marius; Al-Ars, Zaid; Berendsen, Floris F.
2018-03-01
Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gradient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registration tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD (FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction.
Bexelius, Tobias; Sohlberg, Antti
2018-06-01
Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing. Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies. The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included. GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
Kalantzis, Georgios; Tachibana, Hidenobu
2014-01-01
For microdosimetric calculations event-by-event Monte Carlo (MC) methods are considered the most accurate. The main shortcoming of those methods is the extensive requirement for computational time. In this work we present an event-by-event MC code of low projectile energy electron and proton tracks for accelerated microdosimetric MC simulations on a graphic processing unit (GPU). Additionally, a hybrid implementation scheme was realized by employing OpenMP and CUDA in such a way that both GPU and multi-core CPU were utilized simultaneously. The two implementation schemes have been tested and compared with the sequential single threaded MC code on the CPU. Performance comparison was established on the speed-up for a set of benchmarking cases of electron and proton tracks. A maximum speedup of 67.2 was achieved for the GPU-based MC code, while a further improvement of the speedup up to 20% was achieved for the hybrid approach. The results indicate the capability of our CPU-GPU implementation for accelerated MC microdosimetric calculations of both electron and proton tracks without loss of accuracy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-04-01
Our primary objective of this paper was to extend a previously published 2-D coupled subsample tracking algorithm for 3-D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3-D coupled subsample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking phantom and in vivo breast ultrasound data. The performance of this 3-D subsample tracking algorithm was compared with the conventional 3-D quadratic subsample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3-D subsample estimation algorithm can provide high-quality strain data (i.e., high correlation between the predeformation and the motion-compensated postdeformation radio frequency echo data and high contrast-to-noise ratio strain images), as compared with the conventional 3-D quadratic subsample algorithm. Using the GPU implementation of the 3-D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 s per volume [2.5 cm ×2.5 cm ×2.5 cm]).
PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kylasa, S.B., E-mail: skylasa@purdue.edu; Aktulga, H.M., E-mail: hmaktulga@lbl.gov; Grama, A.Y., E-mail: ayg@cs.purdue.edu
2014-09-01
We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques wemore » developed to obtain high performance on state-of-the-art hardware. Comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16× improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors.« less
Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
Slażyński, Leszek; Bohte, Sander
2012-01-01
The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.
Multi-GPU maximum entropy image synthesis for radio astronomy
NASA Astrophysics Data System (ADS)
Cárcamo, M.; Román, P. E.; Casassus, S.; Moral, V.; Rannou, F. R.
2018-01-01
The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 min, instead of 2.5 days that takes a sequential version on CPU.
Araki, Hiromitsu; Takada, Naoki; Niwase, Hiroaki; Ikawa, Shohei; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2015-12-01
We propose real-time time-division color electroholography using a single graphics processing unit (GPU) and a simple synchronization system of reference light. To facilitate real-time time-division color electroholography, we developed a light emitting diode (LED) controller with a universal serial bus (USB) module and the drive circuit for reference light. A one-chip RGB LED connected to a personal computer via an LED controller was used as the reference light. A single GPU calculates three computer-generated holograms (CGHs) suitable for red, green, and blue colors in each frame of a three-dimensional (3D) movie. After CGH calculation using a single GPU, the CPU can synchronize the CGH display with the color switching of the one-chip RGB LED via the LED controller. Consequently, we succeeded in real-time time-division color electroholography for a 3D object consisting of around 1000 points per color when an NVIDIA GeForce GTX TITAN was used as the GPU. Furthermore, we implemented the proposed method in various GPUs. The experimental results showed that the proposed method was effective for various GPUs.
GALARIO: a GPU accelerated library for analysing radio interferometer observations
NASA Astrophysics Data System (ADS)
Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo
2018-06-01
We present GALARIO, a computational library that exploits the power of modern graphical processing units (GPUs) to accelerate the analysis of observations from radio interferometers like Atacama Large Millimeter and sub-millimeter Array or the Karl G. Jansky Very Large Array. GALARIO speeds up the computation of synthetic visibilities from a generic 2D model image or a radial brightness profile (for axisymmetric sources). On a GPU, GALARIO is 150 faster than standard PYTHON and 10 times faster than serial C++ code on a CPU. Highly modular, easy to use, and to adopt in existing code, GALARIO comes as two compiled libraries, one for Nvidia GPUs and one for multicore CPUs, where both have the same functions with identical interfaces. GALARIO comes with PYTHON bindings but can also be directly used in C or C++. The versatility and the speed of GALARIO open new analysis pathways that otherwise would be prohibitively time consuming, e.g. fitting high-resolution observations of large number of objects, or entire spectral cubes of molecular gas emission. It is a general tool that can be applied to any field that uses radio interferometer observations. The source code is available online at http://github.com/mtazzari/galario under the open source GNU Lesser General Public License v3.
FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)
NASA Astrophysics Data System (ADS)
Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.
2011-04-01
A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.
Benchmarking GPU and CPU codes for Heisenberg spin glass over-relaxation
NASA Astrophysics Data System (ADS)
Bernaschi, M.; Parisi, G.; Parisi, L.
2011-06-01
We present a set of possible implementations for Graphics Processing Units (GPU) of the Over-relaxation technique applied to the 3D Heisenberg spin glass model. The results show that a carefully tuned code can achieve more than 100 GFlops/s of sustained performance and update a single spin in about 0.6 nanoseconds. A multi-hit technique that exploits the GPU shared memory further reduces this time. Such results are compared with those obtained by means of a highly-tuned vector-parallel code on latest generation multi-core CPUs.
Simultaneous Range-Velocity Processing and SNR Analysis of AFIT’s Random Noise Radar
2012-03-22
reducing the overall processing time. Two computers, equipped with NVIDIA ® GPUs, were used to process the col- 45 lected data. The specifications for each...gather the results back to the CPU. Another company , AccelerEyes®, has developed a product called Jacket® that claims to be better than the parallel...Number of Processing Cores 4 8 Processor Speed 3.33 GHz 3.07 GHz Installed Memory 48 GB 48 GB GPU Make NVIDIA NVIDIA GPU Model Tesla 1060 Tesla C2070 GPU
GPU Acceleration of DSP for Communication Receivers.
Gunther, Jake; Gunther, Hyrum; Moon, Todd
2017-09-01
Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.
High performance transcription factor-DNA docking with GPU computing
2012-01-01
Background Protein-DNA docking is a very challenging problem in structural bioinformatics and has important implications in a number of applications, such as structure-based prediction of transcription factor binding sites and rational drug design. Protein-DNA docking is very computational demanding due to the high cost of energy calculation and the statistical nature of conformational sampling algorithms. More importantly, experiments show that the docking quality depends on the coverage of the conformational sampling space. It is therefore desirable to accelerate the computation of the docking algorithm, not only to reduce computing time, but also to improve docking quality. Methods In an attempt to accelerate the sampling process and to improve the docking performance, we developed a graphics processing unit (GPU)-based protein-DNA docking algorithm. The algorithm employs a potential-based energy function to describe the binding affinity of a protein-DNA pair, and integrates Monte-Carlo simulation and a simulated annealing method to search through the conformational space. Algorithmic techniques were developed to improve the computation efficiency and scalability on GPU-based high performance computing systems. Results The effectiveness of our approach is tested on a non-redundant set of 75 TF-DNA complexes and a newly developed TF-DNA docking benchmark. We demonstrated that the GPU-based docking algorithm can significantly accelerate the simulation process and thereby improving the chance of finding near-native TF-DNA complex structures. This study also suggests that further improvement in protein-DNA docking research would require efforts from two integral aspects: improvement in computation efficiency and energy function design. Conclusions We present a high performance computing approach for improving the prediction accuracy of protein-DNA docking. The GPU-based docking algorithm accelerates the search of the conformational space and thus increases the chance of finding more near-native structures. To the best of our knowledge, this is the first ad hoc effort of applying GPU or GPU clusters to the protein-DNA docking problem. PMID:22759575
Ice-sheet modelling accelerated by graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek
2014-11-01
Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.
Gpu Implementation of a Viscous Flow Solver on Unstructured Grids
NASA Astrophysics Data System (ADS)
Xu, Tianhao; Chen, Long
2016-06-01
Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.
Medical image processing on the GPU - past, present and future.
Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M
2013-12-01
Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.
3D Data Denoising via Nonlocal Means Filter by Using Parallel GPU Strategies
Cuomo, Salvatore; De Michele, Pasquale; Piccialli, Francesco
2014-01-01
Nonlocal Means (NLM) algorithm is widely considered as a state-of-the-art denoising filter in many research fields. Its high computational complexity leads researchers to the development of parallel programming approaches and the use of massively parallel architectures such as the GPUs. In the recent years, the GPU devices had led to achieving reasonable running times by filtering, slice-by-slice, and 3D datasets with a 2D NLM algorithm. In our approach we design and implement a fully 3D NonLocal Means parallel approach, adopting different algorithm mapping strategies on GPU architecture and multi-GPU framework, in order to demonstrate its high applicability and scalability. The experimental results we obtained encourage the usability of our approach in a large spectrum of applicative scenarios such as magnetic resonance imaging (MRI) or video sequence denoising. PMID:25045397
Real-time generation of infrared ocean scene based on GPU
NASA Astrophysics Data System (ADS)
Jiang, Zhaoyi; Wang, Xun; Lin, Yun; Jin, Jianqiu
2007-12-01
Infrared (IR) image synthesis for ocean scene has become more and more important nowadays, especially for remote sensing and military application. Although a number of works present ready-to-use simulations, those techniques cover only a few possible ways of water interacting with the environment. And the detail calculation of ocean temperature is rarely considered by previous investigators. With the advance of programmable features of graphic card, many algorithms previously limited to offline processing have become feasible for real-time usage. In this paper, we propose an efficient algorithm for real-time rendering of infrared ocean scene using the newest features of programmable graphics processors (GPU). It differs from previous works in three aspects: adaptive GPU-based ocean surface tessellation, sophisticated balance equation of thermal balance for ocean surface, and GPU-based rendering for infrared ocean scene. Finally some results of infrared image are shown, which are in good accordance with real images.
A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions
NASA Astrophysics Data System (ADS)
Exl, Lukas
2017-12-01
An efficient solver for the three dimensional free-space Poisson equation is presented. The underlying numerical method is based on finite Fourier series approximation. While the error of all involved approximations can be fully controlled, the overall computation error is driven by the convergence of the finite Fourier series of the density. For smooth and fast-decaying densities the proposed method will be spectrally accurate. The method scales with O(N log N) operations, where N is the total number of discretization points in the Cartesian grid. The majority of the computational costs come from fast Fourier transforms (FFT), which makes it ideal for GPU computation. Several numerical computations on CPU and GPU validate the method and show efficiency and convergence behavior. Tests are performed using the Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is provided to the interested community.
SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less
cudaMap: a GPU accelerated program for gene expression connectivity mapping.
McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong
2013-10-11
Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the reaction types as contiguous as possible and removes completed histories from the transport cycle. The sort reduces the amount of divergence in GPU ``thread blocks,'' keeps the SIMD units as full as possible, and eliminates using memory bandwidth to check if a neutron in the batch has been terminated or not. Using a remapping vector means the data access pattern is irregular, but this is mitigated by using large batch sizes where the GPU can effectively eliminate the high cost of irregular global memory access. WARP modifies the standard unionized energy grid implementation to reduce memory traffic. Instead of storing a matrix of pointers indexed by reaction type and energy, WARP stores three matrices. The first contains cross section values, the second contains pointers to angular distributions, and a third contains pointers to energy distributions. This linked list type of layout increases memory usage, but lowers the number of data loads that are needed to determine a reaction by eliminating a pointer load to find a cross section value. Optimized, high-performance GPU code libraries are also used by WARP wherever possible. The CUDA performance primitives (CUDPP) library is used to perform the parallel reductions, sorts and sums, the CURAND library is used to seed the linear congruential random number generators, and the OptiX ray tracing framework is used for geometry representation. OptiX is a highly-optimized library developed by NVIDIA that automatically builds hierarchical acceleration structures around user-input geometry so only surfaces along a ray line need to be queried in ray tracing. WARP also performs material and cell number queries with OptiX by using a point-in-polygon like algorithm. WARP has shown that GPUs are an effective platform for performing Monte Carlo neutron transport with continuous energy cross sections. Currently, WARP is the most detailed and feature-rich program in existence for performing continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs, but compared to production codes like Serpent and MCNP, WARP has limited capabilities. Despite WARP's lack of features, its novel algorithm implementations show that high performance can be achieved on a GPU despite the inherently divergent program flow and sparse data access patterns. WARP is not ready for everyday nuclear reactor calculations, but is a good platform for further development of GPU-accelerated Monte Carlo neutron transport. In it's current state, it may be a useful tool for multiplication factor searches, i.e. determining reactivity coefficients by perturbing material densities or temperatures, since these types of calculations typically do not require many flux tallies. (Abstract shortened by UMI.)
Extending the BEAGLE library to a multi-FPGA platform
2013-01-01
Background Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein’s pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein’s pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. Results The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform’s peak memory bandwidth and the implementation’s memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE’s CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE’s GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. Conclusions The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor. PMID:23331707
Cost-effective GPU-grid for genome-wide epistasis calculations.
Pütz, B; Kam-Thong, T; Karbalai, N; Altmann, A; Müller-Myhsok, B
2013-01-01
Until recently, genotype studies were limited to the investigation of single SNP effects due to the computational burden incurred when studying pairwise interactions of SNPs. However, some genetic effects as simple as coloring (in plants and animals) cannot be ascribed to a single locus but only understood when epistasis is taken into account [1]. It is expected that such effects are also found in complex diseases where many genes contribute to the clinical outcome of affected individuals. Only recently have such problems become feasible computationally. The inherently parallel structure of the problem makes it a perfect candidate for massive parallelization on either grid or cloud architectures. Since we are also dealing with confidential patient data, we were not able to consider a cloud-based solution but had to find a way to process the data in-house and aimed to build a local GPU-based grid structure. Sequential epistatsis calculations were ported to GPU using CUDA at various levels. Parallelization on the CPU was compared to corresponding GPU counterparts with regards to performance and cost. A cost-effective solution was created by combining custom-built nodes equipped with relatively inexpensive consumer-level graphics cards with highly parallel GPUs in a local grid. The GPU method outperforms current cluster-based systems on a price/performance criterion, as a single GPU shows speed performance comparable up to 200 CPU cores. The outlined approach will work for problems that easily lend themselves to massive parallelization. Code for various tasks has been made available and ongoing development of tools will further ease the transition from sequential to parallel algorithms.
Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei
2015-04-11
To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.
Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.
Han, Bing; Taha, Tarek M
2010-04-01
There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)
NASA Astrophysics Data System (ADS)
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun
2015-09-01
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
NASA Astrophysics Data System (ADS)
Komura, Yukihiro; Okabe, Yutaka
2014-03-01
We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the q-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions. Catalogue identifier: AERM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5632 No. of bytes in distributed program, including test data, etc.: 14688 Distribution format: tar.gz Programming language: C, CUDA. Computer: System with an NVIDIA CUDA enabled GPU. Operating system: System with an NVIDIA CUDA enabled GPU. Classification: 23. External routines: NVIDIA CUDA Toolkit 3.0 or newer Nature of problem: Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices. Solution method: GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. [2]. Restrictions: The system size is limited depending on the memory of a GPU. Running time: For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc. References: [1] K.A. Hawick, A. Leist, and D. P. Playne, Parallel Computing 36 (2010) 655-678 [2] O. Kalentev, A. Rai, S. Kemnitzb, and R. Schneider, J. Parallel Distrib. Comput. 71 (2011) 615-620
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-10-07
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
Accelerating Pseudo-Random Number Generator for MCNP on GPU
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu
2010-09-01
Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.
Digital image processing using parallel computing based on CUDA technology
NASA Astrophysics Data System (ADS)
Skirnevskiy, I. P.; Pustovit, A. V.; Abdrashitova, M. O.
2017-01-01
This article describes expediency of using a graphics processing unit (GPU) in big data processing in the context of digital images processing. It provides a short description of a parallel computing technology and its usage in different areas, definition of the image noise and a brief overview of some noise removal algorithms. It also describes some basic requirements that should be met by certain noise removal algorithm in the projection to computer tomography. It provides comparison of the performance with and without using GPU as well as with different percentage of using CPU and GPU.
GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code.
E, J C; Wang, L; Chen, S; Zhang, Y Y; Luo, S N
2018-03-01
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train
NASA Astrophysics Data System (ADS)
Sytov, E. S.; Bratus, A. S.; Yurchenko, D.
2018-04-01
This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.
A 3D front tracking method on a CPU/GPU system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Wurigen; Grove, John
2011-01-21
We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.
Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter
2017-01-01
Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.
Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2017-01-01
In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result. PMID:29072588
Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2017-10-26
In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-01-01
Our primary objective of this work was to extend a previously published 2D coupled sub-sample tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking algorithm was compared with the conventional 3D quadratic sub-sample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 seconds per volume [2.5 cm × 2.5 cm × 2.5 cm]). PMID:28166493
cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.
Zhang, Jing; Wang, Hao; Feng, Wu-Chun
2017-01-01
BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.
Ling, Cheng; Hamada, Tsuyoshi; Gao, Jingyang; Zhao, Guoguang; Sun, Donghong; Shi, Weifeng
2016-01-01
MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC 3 ++ method (proposed herein) outperforms the tgMC 3 (v1.0), nMC 3 (v2.1.1) and oMC 3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC 3 ++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.
GPU based contouring method on grid DEM data
NASA Astrophysics Data System (ADS)
Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong
2017-08-01
This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.
Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.
2014-01-01
Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6 mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868
Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P
2014-07-01
Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6 mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.
GPU.proton.DOCK: Genuine Protein Ultrafast proton equilibria consistent DOCKing.
Kantardjiev, Alexander A
2011-07-01
GPU.proton.DOCK (Genuine Protein Ultrafast proton equilibria consistent DOCKing) is a state of the art service for in silico prediction of protein-protein interactions via rigorous and ultrafast docking code. It is unique in providing stringent account of electrostatic interactions self-consistency and proton equilibria mutual effects of docking partners. GPU.proton.DOCK is the first server offering such a crucial supplement to protein docking algorithms--a step toward more reliable and high accuracy docking results. The code (especially the Fast Fourier Transform bottleneck and electrostatic fields computation) is parallelized to run on a GPU supercomputer. The high performance will be of use for large-scale structural bioinformatics and systems biology projects, thus bridging physics of the interactions with analysis of molecular networks. We propose workflows for exploring in silico charge mutagenesis effects. Special emphasis is given to the interface-intuitive and user-friendly. The input is comprised of the atomic coordinate files in PDB format. The advanced user is provided with a special input section for addition of non-polypeptide charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. The output is comprised of docked complexes in PDB format as well as interactive visualization in a molecular viewer. GPU.proton.DOCK server can be accessed at http://gpudock.orgchm.bas.bg/.
GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.
Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin
2017-07-01
Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.
Hierarchical Petascale Simulation Framework For Stress Corrosion Cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grama, Ananth
2013-12-18
A number of major accomplishments resulted from the project. These include: • Data Structures, Algorithms, and Numerical Methods for Reactive Molecular Dynamics. We have developed a range of novel data structures, algorithms, and solvers (amortized ILU, Spike) for use with ReaxFF and charge equilibration. • Parallel Formulations of ReactiveMD (Purdue ReactiveMolecular Dynamics Package, PuReMD, PuReMD-GPU, and PG-PuReMD) for Messaging, GPU, and GPU Cluster Platforms. We have developed efficient serial, parallel (MPI), GPU (Cuda), and GPU Cluster (MPI/Cuda) implementations. Our implementations have been demonstrated to be significantly better than the state of the art, both in terms of performance and scalability.more » • Comprehensive Validation in the Context of Diverse Applications. We have demonstrated the use of our software in diverse systems, including silica-water, silicon-germanium nanorods, and as part of other projects, extended it to applications ranging from explosives (RDX) to lipid bilayers (biomembranes under oxidative stress). • Open Source Software Packages for Reactive Molecular Dynamics. All versions of our soft- ware have been released over the public domain. There are over 100 major research groups worldwide using our software. • Implementation into the Department of Energy LAMMPS Software Package. We have also integrated our software into the Department of Energy LAMMPS software package.« less
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-10-21
Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.
Development of an embedded atmospheric turbulence mitigation engine
NASA Astrophysics Data System (ADS)
Paolini, Aaron; Bonnett, James; Kozacik, Stephen; Kelmelis, Eric
2017-05-01
Methods to reconstruct pictures from imagery degraded by atmospheric turbulence have been under development for decades. The techniques were initially developed for observing astronomical phenomena from the Earth's surface, but have more recently been modified for ground and air surveillance scenarios. Such applications can impose significant constraints on deployment options because they both increase the computational complexity of the algorithms themselves and often dictate a requirement for low size, weight, and power (SWaP) form factors. Consequently, embedded implementations must be developed that can perform the necessary computations on low-SWaP platforms. Fortunately, there is an emerging class of embedded processors driven by the mobile and ubiquitous computing industries. We have leveraged these processors to develop embedded versions of the core atmospheric correction engine found in our ATCOM software. In this paper, we will present our experience adapting our algorithms for embedded systems on a chip (SoCs), namely the NVIDIA Tegra that couples general-purpose ARM cores with their graphics processing unit (GPU) technology and the Xilinx Zynq which pairs similar ARM cores with their field-programmable gate array (FPGA) fabric.
Parallel hyperbolic PDE simulation on clusters: Cell versus GPU
NASA Astrophysics Data System (ADS)
Rostrup, Scott; De Sterck, Hans
2010-12-01
Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-02-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. Copyright © 2011. Published by Elsevier GmbH.
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-01-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.
2012-01-01
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616
Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.
Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel
2011-05-20
Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.
The normal vaginal and uterine bacterial microbiome in giant pandas (Ailuropoda melanoleuca).
Yang, Xin; Cheng, Guangyang; Li, Caiwu; Yang, Jiang; Li, Jianan; Chen, Danyu; Zou, Wencheng; Jin, SenYan; Zhang, Hemin; Li, Desheng; He, Yongguo; Wang, Chengdong; Wang, Min; Wang, Hongning
2017-06-01
While the health effects of the colonization of the reproductive tracts of mammals by bacterial communities are widely known, there is a dearth of knowledge specifically in relation to giant panda microbiomes. In order to investigate the vaginal and uterine bacterial diversity of healthy giant pandas, we used high-throughput sequence analysis of portions of the 16S rRNA gene, based on samples taken from the vaginas (GPV group) and uteri (GPU group) of these animals. Results showed that the four most abundant phyla, which contained in excess of 98% of the total sequences, were Proteobacteria (59.2% for GPV and 51.4% for GPU), Firmicutes (34.4% for GPV and 23.3% for GPU), Actinobacteria (5.2% for GPV and 14.0% for GPU) and Bacteroidetes (0.3% for GPV and 10.3% for GPU). At the genus level, Escherichia was most abundant (11.0%) in the GPV, followed by Leuconostoc (8.7%), Pseudomonas (8.0%), Acinetobacter (7.3%), Streptococcus (6.3%) and Lactococcus (6.0%). In relation to the uterine samples, Janthinobacterium had the highest prevalence rate (20.2%), followed by Corynebacterium (13.2%), Streptococcus (19.6%), Psychrobacter (9.3%), Escherichia (7.5%) and Bacteroides (6.2%). Moreover, both Chao1 and abundance-based coverage estimator (ACE) species richness indices, which were operating at the same sequencing depth for each sample, demonstrated that GPV had more species richness than GPU, while Simpson and Shannon indices of diversity indicated that GPV had the higher bacterial diversity. These findings contribute to our understanding of the potential influence abnormal reproductive tract microbial communities have on negative pregnancy outcomes in giant pandas. Copyright © 2017 Elsevier GmbH. All rights reserved.
Discovering epistasis in large scale genetic association studies by exploiting graphics cards.
Chen, Gary K; Guo, Yunfei
2013-12-03
Despite the enormous investments made in collecting DNA samples and generating germline variation data across thousands of individuals in modern genome-wide association studies (GWAS), progress has been frustratingly slow in explaining much of the heritability in common disease. Today's paradigm of testing independent hypotheses on each single nucleotide polymorphism (SNP) marker is unlikely to adequately reflect the complex biological processes in disease risk. Alternatively, modeling risk as an ensemble of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for example, may be a more sensible way to approach gene mapping in modern studies. Implementing such analyzes genome-wide can quickly become intractable due to the fact that even modest size SNP panels on modern genotype arrays (500k markers) pose a combinatorial nightmare, require tens of billions of models to be tested for evidence of interaction. In this article, we provide an in-depth analysis of programs that have been developed to explicitly overcome these enormous computational barriers through the use of processors on graphics cards known as Graphics Processing Units (GPU). We include tutorials on GPU technology, which will convey why they are growing in appeal with today's numerical scientists. One obvious advantage is the impressive density of microprocessor cores that are available on only a single GPU. Whereas high end servers feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over 2600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on GPUs varies across problems. However, epistasis screens fare well due to the high degree of parallelism exposed in these problems. Papers that we review routinely report GPU speedups of over two orders of magnitude (>100x) over standard CPU implementations.
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R
2012-02-23
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.
A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.
Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H
2017-01-01
Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.
NASA Astrophysics Data System (ADS)
Rueda, Antonio J.; Noguera, José M.; Luque, Adrián
2016-02-01
In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.
Discovering epistasis in large scale genetic association studies by exploiting graphics cards
Chen, Gary K.; Guo, Yunfei
2013-01-01
Despite the enormous investments made in collecting DNA samples and generating germline variation data across thousands of individuals in modern genome-wide association studies (GWAS), progress has been frustratingly slow in explaining much of the heritability in common disease. Today's paradigm of testing independent hypotheses on each single nucleotide polymorphism (SNP) marker is unlikely to adequately reflect the complex biological processes in disease risk. Alternatively, modeling risk as an ensemble of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for example, may be a more sensible way to approach gene mapping in modern studies. Implementing such analyzes genome-wide can quickly become intractable due to the fact that even modest size SNP panels on modern genotype arrays (500k markers) pose a combinatorial nightmare, require tens of billions of models to be tested for evidence of interaction. In this article, we provide an in-depth analysis of programs that have been developed to explicitly overcome these enormous computational barriers through the use of processors on graphics cards known as Graphics Processing Units (GPU). We include tutorials on GPU technology, which will convey why they are growing in appeal with today's numerical scientists. One obvious advantage is the impressive density of microprocessor cores that are available on only a single GPU. Whereas high end servers feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over 2600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on GPUs varies across problems. However, epistasis screens fare well due to the high degree of parallelism exposed in these problems. Papers that we review routinely report GPU speedups of over two orders of magnitude (>100x) over standard CPU implementations. PMID:24348518
Fast Simulation of Dynamic Ultrasound Images Using the GPU.
Storve, Sigurd; Torp, Hans
2017-10-01
Simulated ultrasound data is a valuable tool for development and validation of quantitative image analysis methods in echocardiography. Unfortunately, simulation time can become prohibitive for phantoms consisting of a large number of point scatterers. The COLE algorithm by Gao et al. is a fast convolution-based simulator that trades simulation accuracy for improved speed. We present highly efficient parallelized CPU and GPU implementations of the COLE algorithm with an emphasis on dynamic simulations involving moving point scatterers. We argue that it is crucial to minimize the amount of data transfers from the CPU to achieve good performance on the GPU. We achieve this by storing the complete trajectories of the dynamic point scatterers as spline curves in the GPU memory. This leads to good efficiency when simulating sequences consisting of a large number of frames, such as B-mode and tissue Doppler data for a full cardiac cycle. In addition, we propose a phase-based subsample delay technique that efficiently eliminates flickering artifacts seen in B-mode sequences when COLE is used without enough temporal oversampling. To assess the performance, we used a laptop computer and a desktop computer, each equipped with a multicore Intel CPU and an NVIDIA GPU. Running the simulator on a high-end TITAN X GPU, we observed two orders of magnitude speedup compared to the parallel CPU version, three orders of magnitude speedup compared to simulation times reported by Gao et al. in their paper on COLE, and a speedup of 27000 times compared to the multithreaded version of Field II, using numbers reported in a paper by Jensen. We hope that by releasing the simulator as an open-source project we will encourage its use and further development.
Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun
2015-01-01
The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.
Symplectic multi-particle tracking on GPUs
NASA Astrophysics Data System (ADS)
Liu, Zhicong; Qiang, Ji
2018-05-01
A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.
Particle-in-cell simulations with charge-conserving current deposition on graphic processing units
NASA Astrophysics Data System (ADS)
Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren
2011-10-01
Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.
GPU computing of compressible flow problems by a meshless method with space-filling curves
NASA Astrophysics Data System (ADS)
Ma, Z. H.; Wang, H.; Pu, S. H.
2014-04-01
A graphic processing unit (GPU) implementation of a meshless method for solving compressible flow problems is presented in this paper. Least-square fit is used to discretize the spatial derivatives of Euler equations and an upwind scheme is applied to estimate the flux terms. The compute unified device architecture (CUDA) C programming model is employed to efficiently and flexibly port the meshless solver from CPU to GPU. Considering the data locality of randomly distributed points, space-filling curves are adopted to re-number the points in order to improve the memory performance. Detailed evaluations are firstly carried out to assess the accuracy and conservation property of the underlying numerical method. Then the GPU accelerated flow solver is used to solve external steady flows over aerodynamic configurations. Representative results are validated through extensive comparisons with the experimental, finite volume or other available reference solutions. Performance analysis reveals that the running time cost of simulations is significantly reduced while impressive (more than an order of magnitude) speedups are achieved.
Sharp, G C; Kandasamy, N; Singh, H; Folkert, M
2007-10-07
This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.
Power and Performance Trade-offs for Space Time Adaptive Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino
Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementationmore » on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.« less
NASA Astrophysics Data System (ADS)
Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter
2014-06-01
In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.
GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array
Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.
2014-01-01
Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080
Accelerating a three-dimensional eco-hydrological cellular automaton on GPGPU with OpenCL
NASA Astrophysics Data System (ADS)
Senatore, Alfonso; D'Ambrosio, Donato; De Rango, Alessio; Rongo, Rocco; Spataro, William; Straface, Salvatore; Mendicino, Giuseppe
2016-10-01
This work presents an effective implementation of a numerical model for complete eco-hydrological Cellular Automata modeling on Graphical Processing Units (GPU) with OpenCL (Open Computing Language) for heterogeneous computation (i.e., on CPUs and/or GPUs). Different types of parallel implementations were carried out (e.g., use of fast local memory, loop unrolling, etc), showing increasing performance improvements in terms of speedup, adopting also some original optimizations strategies. Moreover, numerical analysis of results (i.e., comparison of CPU and GPU outcomes in terms of rounding errors) have proven to be satisfactory. Experiments were carried out on a workstation with two CPUs (Intel Xeon E5440 at 2.83GHz), one GPU AMD R9 280X and one GPU nVIDIA Tesla K20c. Results have been extremely positive, but further testing should be performed to assess the functionality of the adopted strategies on other complete models and their ability to fruitfully exploit parallel systems resources.
NASA Astrophysics Data System (ADS)
Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine
2017-06-01
The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908
Stochastic DT-MRI connectivity mapping on the GPU.
McGraw, Tim; Nadar, Mariappan
2007-01-01
We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps per iteration at interactive frame rates on consumer-grade graphics hardware.